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Abstract
The classical Weisfeiler-Leman algorithm aka color refinement is fundamental
for graph learning with kernels and neural networks. Originally developed for
graph isomorphism testing, the algorithm iteratively refines vertex colors. On many
datasets, the stable coloring is reached after a few iterations and the optimal number
of iterations for machine learning tasks is typically even lower. This suggests that
the colors diverge too fast, defining a similarity that is too coarse. We generalize
the concept of color refinement and propose a framework for gradual neighborhood
refinement, which allows a slower convergence to the stable coloring and thus
provides a more fine-grained refinement hierarchy and vertex similarity. We assign
new colors by clustering vertex neighborhoods, replacing the original injective
color assignment function. Our approach is used to derive new variants of existing
graph kernels and to approximate the graph edit distance via optimal assignments
regarding vertex similarity. We show that in both tasks, our method outperforms the
original color refinement with only a moderate increase in running time advancing
the state of the art.

1 Introduction
The (1-dimensional) Weisfeiler-Leman algorithm, also referred to as color refinement, iteratively
refines vertex colors by encoding colors of neighbors and was originally developed as a heuristic for
the graph isomorphism problem. Although it cannot distinguish some non-isomorphic graph pairs,
for example strongly regular graphs, it succeeds in many cases. It is widely used as a sub-routine
in isomorphism algorithms today to reduce ambiguities that have to be resolved by backtracking
search [1]. It has also gained high popularity in graph learning, where the technique is used to
define graph kernels [2–5] and to formalize the expressivity of graph neural networks, see the recent
surveys [6, 7]. Graph kernels based on Weisfeiler-Leman refinement provide remarkable predictive
performance while being computationally highly efficient. The original Weisfeiler-Leman subtree
kernel [2] and its variants and extensions, e.g., [3–5], provide state-of-the-art classification accuracy
on many datasets and are widely used baselines. The update scheme of the Weisfeiler-Leman
algorithm is similar to the idea of neighborhood aggregation in graph neural networks (GNNs). It has
been shown that (i) the expressive power of GNNs is limited by the Weisfeiler-Leman algorithm, and
(ii) that GNN architectures exist that reach this expressive power [8, 9].

As a consequence of its original application, the Weisfeiler-Leman algorithm assigns discrete colors
and does not distinguish minor and major differences in vertex neighborhoods. Most Weisfeiler-
Leman graph kernels match vertex colors of the first few refinement steps by equality, which can be
considered too rigid, since these colors encode complex neighborhood structures. In machine learning
tasks, a more fine-grained differentiation appears promising. Real-world data is often noisy leading
to small differences in vertex degree. Such differences get picked up by the refinement strategy of the
Weisfeiler-Leman algorithm and cannot be distinguished from significant differences.

We address this problem by providing a different approach to the refinement step of the Weisfeiler-
Leman algorithm: We replace the injective relabeling function with a non-injective one to gain a more
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gradual refinement of colors. This allows obtaining a finer vertex similarity measure, distinguishing
between large and small changes in vertex neighborhoods with increasing radius. We characterize
the set of functions that, while not necessarily injective, guarantee that the stable coloring of the
original Weisfeiler-Leman algorithm is reached after a possibly higher number of iterations. Thus, our
approach preserves the expressive power of the Weisfeiler-Leman algorithm. We discuss a realization
of such a function and use k-means clustering in our experimental evaluation as an exemplary one.

Our Contribution.

1. We propose refining, neighborhood preserving (renep) functions, which generalize the concept
of color refinement. This family of functions leads to the coarsest stable coloring while only
incorporating direct neighborhoods.

2. We show the connections of our approach to the original Weisfeiler-Leman algorithm, as well as
other vertex refinement strategies.

3. We propose two new graph kernels based on renep functions, which outperform state-of-the-art
kernels on synthetic and real-world datasets, with only a moderate increase in running time.

4. We apply our new approach for approximating the graph edit distance via bipartite graph
matching and show that it outperforms state-of-the-art heuristics.

2 Related Work
Various graph kernels based on Weisfeiler-Leman refinement have been proposed [2–5, 10]. Recent
comprehensive experimental evaluations confirm their high classification accuracy on many real-
world datasets [11, 12]. In both studies, the classical Weisfeiler-Leman subtree kernel [2] is shown
to provide a competitive baseline. Variants based on optimal assignments [5, 10] improve the
classification accuracy on some datasets and achieve excellent results overall.

Most Weisfeiler-Leman based approaches implicitly match colors by equality, which can be consid-
ered too rigid, since colors encode unfolding trees representing complex neighborhood structures.
Some recent works address this problem: Yanardag and Vishwanathan [13] introduced similarities
between colors using techniques inspired by natural language processing, which were subsequently
refined by Narayanan et al. [14]. Schulz et al. [15] define a distance function between colors by
comparing the associated unfolding trees using a tree edit distance. Based on this distance, the
colors are clustered to obtain a new graph kernel. Although the tree edit distance is polynomial-time
computable, the running time of the algorithm is very high. A kernel based on the Wasserstein
distance of sets of unfolding trees was proposed by Fang et al. [16]. The vertices of the graphs are
embedded into `1 space using an approximation of the tree edit distance between their unfolding
trees. A graph can then be seen as a distribution over those embeddings. While the function proposed
is not guaranteed to be positive semidefinite, the method showed results similar to and, in some cases,
exceeding state-of-the-art techniques. The running time, however, is still very high and the method
is only feasible for unfolding trees of small height. These approaches define similarities between
Weisfeiler-Leman colors and the associated unfolding trees. Our approach, in contrast, alters the
Weisfeiler-Leman refinement procedure itself and does not rely on the computationally expensive
matching of unfolding trees.

Some graph kernels use a neighborhood aggregation scheme similar in spirit to the Weisfeiler-Leman
algorithm with a non-injective relabeling function. The neighborhood hash kernel [17] represents
labels by bit-vectors and uses logical operations and hashing to encode neighborhoods efficiently.
Shervashidze [18, Section 3.7.3.2] proposed to compress neighborhood label histograms using locality
sensitive hashing allowing collisions of similar neighborhoods. Propagation kernels [19] provide a
generic framework to obtain graph kernels from (neighborhood) propagation schemes by comparing
label distributions after every propagation step. In contrast to these methods, our approach uses
a data-dependent non-injective relabel function and guarantees that the expressive power of the
Weisfeiler-Leman algorithm is reached.

Several authors proposed techniques supporting graphs with continuous attributes directly based on
or inspired by the Weisfeiler-Leman algorithm. Propagation kernels were adapted to this setting by
using a hash function to map continuous attributes to discrete labels [19]. The hash graph kernel
framework [20] repeatedly performs such a discretization using random hash functions, applies a
kernel for graphs with discrete labels to each resulting graph and combines their feature vectors. It
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obtains high classification accuracies when combined with the Weisfeiler-Leman subtree kernel. The
Wasserstein Weisfeiler-Leman graph kernel [3] establishes node matchings similar to the Weisfeiler-
Leman optimal assignment kernel [5, 7]. The authors support continuous attributes by replacing
discrete colors with real-valued vectors without guaranteeing that the resulting function is positive
semidefinite. Finally, graph neural networks can be viewed as a neural version of the Weisfeiler-
Leman algorithm, where continuous feature vectors replace colors, and neural networks are used to
aggregate over local node neighborhoods [7–9]. None of these methods explicitly aims to slow down
the Weisfeiler-Leman refinement process.

3 Preliminaries
In this section we provide the definitions necessary to understand our new vertex refinement algorithm.
We first give a short introduction to graphs and the original Weisfeiler-Leman algorithm, before we
cover graph kernels.

Graph Theory. A graph G = (V,E, µ, ν) consists of a set of vertices V , denoted by V (G), a set
of edges E(G) = E ⊆

(
V
2

)
between the vertices, a labeling function for the vertices µ : V → L, and

a labeling function for the edges ν : E → L. The set L contains categorical labels, which can be
represented as natural numbers. We discuss only undirected graphs and denote an edge between u and
v by uv. The set of neighbors of a vertex v ∈ V is denoted by N(v) = {u | uv ∈ E}. A (rooted) tree
T is a simple (no self-loops or multi-edges), connected graph without cycles and with a designated
node r called root. A tree T ′ is a subtree of a tree T , denoted by T ′ ⊆ T , iff V (T ′) ⊆ V (T ). The
root of T ′ is the node closest to the root in T .

A vertex coloring c : V (G) → N0 of a graph G is a function assigning each vertex a color. For
vertices with c(u) = c(v) we also write u ≈c v. A coloring π on a set S is a refinement of (or refines)
a coloring π′, iff s1 ≈π s2 ⇒ s1 ≈π′ s2 for all s1, s2 in S. We denote this by π 4 π′ and write
π ≡ π′ if π 4 π′ and π′ 4 π. If π 4 π′ and π 6≡ π′, we say that π is a strict refinement of π′, written
π ≺ π′. The refinement relation defines a partial ordering on the colorings.

Color Hierarchy. We consider a sequence of vertex colorings (π0, π1, . . . , πh) with πh 4 · · · 4 π0
and assume that for i 6= j the colors assigned by πi and πj are distinct. We can interpret such a
sequence of colorings as a color hierarchy, i.e., a tree Th that contains a node for each color c ∈
{πi(v) | i ∈ {0, . . . , h} ∧ v ∈ V (G)} and an edge (c, d) iff ∃v ∈ V (G) : πi(v) = c ∧ πi+1(v) = d.
We associate each tree node with the set of vertices of G having that color.1 Here, we assume that
the initial coloring is uniform. If this is not the case, we add an artificial root node and connect it to
the initial colors. Likewise we insert the coloring π0 =

{
V (G)

}
as first element in the sequence of

vertex colorings. An example color hierarchy is given in Figure 1.

Using this color hierarchy we can derive multiple colorings on the vertices: Choosing exactly one
color on every path from the leaves to the root (or only the root), always leads to a valid coloring. The
finest coloring is induced by the colors representing the leaves of the tree. Given a color hierarchy T ,
we denote this coloring (which is equal to πh) by πT .

Weisfeiler-Leman Color Refinement. The 1-dimensional Weisfeiler-Leman (WL) algorithm or
color refinement [21, 22] starts with a coloring c0, where all vertices have a color representing their
label (or a uniform coloring in case of unlabeled vertices). In iteration i, the coloring ci is obtained
by assigning each vertex v in V (G) a new color according to the colors of its neighbors, i.e.,

ci+1(v) = z
(
ci(v), {{ci(u) | u ∈ N(v)}}

)
,

where z : N0×NN0
0 → N0 is an injective function. Figure 1 depicts the first iterations of the algorithm

for an example graph.

After enough iterations the number of different colors will no longer change and this resulting coloring
is called the coarsest stable coloring. The coarsest stable coloring is unique and always reached after
at most

∣∣V (G)
∣∣− 1 iterations. This trivial upper bound on the number of iterations is tight [23]. In

practice, however, Weisfeiler-Leman refinement converges much faster (see Appendix C).
1Here, we consider a color hierarchy for a single graph. However, given corresponding colorings on a set of

graphs, a color hierarchy can be generated in the same way. In an inductive setting, where no fixed set of graphs
is given, the color hierarchy contains all colors, that can be produced by the corresponding coloring algorithm.
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(a) Initial colors (b) Iteration 1 (c) Iteration 2 (d) Iteration 3 (e) Hierarchy

Figure 1: Initial coloring and results of the first three iterations of the Weisfeiler-Leman algorithm.
To use less colors for this example, vertices with a unique color do not get a new color. The color
hierarchy shows the development of the colors over the refinement iterations.

Graph Kernels and the Weisfeiler-Leman Subtree Kernel. A kernel on X is a function k : X ×
X → R, so that there exist a Hilbert spaceH and a mapping φ : X → H with k(x, y) = 〈φ(x), φ(y)〉
for all x, y in X , where 〈·, ·〉 is the inner product ofH. A graph kernel is a kernel on graphs, i.e., X
is the set of all graphs.

The Weisfeiler-Leman subtree kernel [2] with height h is defined as

khST (G1, G2) =
h∑
i=0

∑
u∈V (G1)

∑
v∈V (G2)

δ(ci(u), ci(v)), (1)

where δ is the Dirac kernel (1, iff ci(u) and ci(v) are equal, and 0 otherwise). It counts the number of
vertices with common colors in the two graphs up to the given bound on the number of Weisfeiler-
Leman iterations.

4 Gradual Weisfeiler-Leman Refinement
As a different approach to the refinement step of the Weisfeiler-Leman algorithm, we essentially
replace the injective relabeling function with a non-injective one. We do this by allowing vertices
with differing neighbor color multisets to be assigned the same color under some conditions. Through
this, the number of colors per iteration can be limited, allowing to obtain a more gradual refinement
of colors. To reach the same stable coloring as the original Weisfeiler-Leman algorithm, the function
has to assure that vertices with differing colors in one iteration will get differing colors in future
iterations and that in each iteration at least one color is split up, if possible.

We first define the property necessary to reach the stable coloring of the original Weisfeiler-Leman
algorithm and discuss connections to the original as well as other vertex refinement algorithms. Then
we provide a realization of such a function by means of clustering, which is used in our experimental
evaluation. Figure 2 illustrates our idea. It depicts the initial coloring, the result of the first iteration
of WL and a possible result of the first iteration of the gradual Weisfeiler-Leman refinement (GWL),
when restricting the maximum number of new colors to two by clustering the neighbor color multisets.

Update Functions. Using the same approach as the Weisfeiler-Leman algorithm, the color of a
vertex is updated iteratively according to the colors of its neighbors. Let Ti denote a color hierarchy
belonging to G and ni(v) = {{πTi(x) | x ∈ N(v)}} the neighbor color multiset of v in iteration i.
We use a similar update strategy, but generalize it using a special type of function:

∀v ∈ V (G) : ci+1(v) = πTi+1
(v),with Ti+1 = f(G, Ti),

where f is a refining, neighborhood preserving function.

A refining, neighborhood preserving (renep) function f maps a pair (G, Ti) to a tree Ti+1, such that
Condition 1. Ti ⊆ Ti+1

Condition 2. Ti = Ti+1, iff ∀v, w ∈ V (G) : v ≈πTi
w ⇒ ni(v) = ni(w)

Condition 3. Ti ( Ti+1 ⇒ πTi+1
≺ πTi

Condition 4. ∀v, w ∈ V (G) : (v ≈πTi
w ∧ ni(v) = ni(w))⇒ v ≈πTi+1

w

The conditions assure, that the coloring πTi+1 is a strict refinement of πTi , if there exists a strict
refinement: Condition 1 assures that the new coloring is a refinement of the old one. Condition 2
assures that the tree (and in turn the coloring) only stays the same, iff the stable coloring is reached,
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(a) Initial colors
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(b) Neighbor colors (c) Result of WL (d) Result of GWL (e) Color hierarchy

Figure 2: Initial coloring and results of the first iteration using WL and GWL refinement. We assume
that the update function of GWL is a clustering algorithm, producing two clusters per old color.
Vertices colored gray and yellow by WL are put into the same cluster, as well as green and light blue
ones, as their neighbor color multisets only differ by one element each.

while Condition 3 assures that, if the trees are not equal, πTi+1
is a strict refinement of πTi . Without

this condition it would be possible to obtain a tree, that fulfills Condition 1 but does not strictly refine
the coloring (for example by adding one child to each leaf). Condition 4 assures that vertices, that are
indistinguishable regarding their color and their neighbor color multiset, get the same color (as in the
original Weisfeiler-Leman algorithm).

We call this new approach gradual Weisfeiler-Leman refinement (GWL refinement). Since f is a
renep function, it is assured that at least one color is split into at least two new colors, if the stable
coloring is not yet reached. This property and its implications are explored in the following section.

Usually, the refinement is computed simultaneously for multiple graphs. This can be realized by using
the disjoint union of all graphs as input. Note that this will have an influence on the function f , since
refinements might differ based on the vertices involved. This is a typical case of transductive learning,
because the algorithm has to run on all graphs and if a new graph is encountered, the algorithm has to
run again on the enlarged graph. To counteract this, one could only run the algorithm on the training
set and keep track of the coloring choices. Then for new graphs, the vertices are colored with the
most similar colors.

4.1 Equivalence of the Stable Colorings

The gradual color refinement will never assign two vertices the same color, if their colors differed in
the previous iteration, since we require the coloring to be a refinement of the previous one. We can
show that the stable coloring obtained by GWL refinement using any renep function is equal to the
unique coarsest stable coloring, which is obtained by the original Weisfeiler-Leman algorithm.
Theorem 5 ([24], Proposition 3). For every coloring π of V (G), there is a unique coarsest stable
coloring p that refines π.

This means GWL with any renep function, should it reach a coarsest stable coloring, will reach this
unique coarsest stable coloring. It remains to show that GWL will reach a coarsest stable coloring.
Theorem 6. For all G the GWL refinement using any renep function will find the unique coarsest
stable coloring of V (G).

Proof. Let πT = {p1, . . . , pn} be the stable coloring obtained from GWL on the initial coloring
π0. Assume there exists another stable coloring π′ = {p′1, . . . , p′m} with πT ≺ π′ 4 π0, so m < n.
Then ∃v, w ∈ V (G) : (v ≈π′ w ∧ v 6≈πT w) and since Condition 4 applies n(v) 6= n(w), which
contradicts the assumption that π′ is stable.

The original Weisfeiler-Leman refinement can be realized by using the renep function with⇔ instead
of⇒ in Condition 4. This ensures that vertices get assigned the same color, iff they previously had
the same color and their neighborhood color multisets do not differ. Since this procedure splits all
colors, that can be split up, it is the fastest converging possible renep function (because only direct
neighborhood is considered). A trivial upper bound for the maximum number of Weisfeiler-Leman
iterations needed is

∣∣V (G)
∣∣−1 and there are infinitely many graphs on which this number of iterations

is required for convergence [23]. We obtain the same upper bound for GWL.
Theorem 7. The maximum number of iterations needed to reach the stable coloring using GWL
refinement is

∣∣V (G)
∣∣− 1.
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Proof. The function we consider is a renep function. It follows that, prior to reaching the stable
coloring, at least one color is split into at least two new colors in every iteration. Since vertices that
had different colors at any step will also have different colors in the following iterations, the number
of colors increases in every step. Hence, after at most

∣∣V (G)
∣∣ − 1 steps, each vertex has a unique

color, which is a stable coloring.

Sequential Weisfeiler-Leman. For optimizing the running time of the Weisfeiler-Leman algorithm,
sequential refinement strategies have been proposed [24–26], which lead to the same stable coloring
as the original WL. Our presentation follows Berkholz et al. [24], who provide implementation
details and a thorough complexity analysis. Sequential WL manages a stack containing the colors
that still have to be processed. All initial colors are added to this stack. In each step, the next
color c from the stack is used to refine the current coloring π (and generate a new coloring π′)
using the following update strategy: ∀v, w ∈ V (G) : v ≈π′ w ⇔

∣∣{{x | x ∈ N(v) ∧ π(x) = c}}
∣∣ =∣∣{{x | x ∈ N(w) ∧ π(x) = c}}

∣∣ ∧ v ≈π w. Note that π′ ≺ π is not guaranteed. For colors that are
split, all new colors are added to the stack with exception of the largest color class. This is shown to
be sufficient for generating the coarsest stable coloring [24].

Sequential Weisfeiler-Leman can be realized by our GWL with the restriction, that in sequential
WL, some refinement operations might not produce strict refinements. We need to skip these in our
approach (since renep functions have to produce strict refinements as long as the coloring is not stable).
The renep function has to fulfill ∀v, w ∈ V (G) : v ≈πTi+1

w ⇔
∣∣{{x | x ∈ N(v) ∧ πTi(x) = c}}

∣∣ =∣∣{{x | x ∈ N(w) ∧ πTi(x) = c}}
∣∣ ∧ v ≈πTi

w, where c is the next color in the stack that produces a
strict refinement.

4.2 Running Time

The running time of the gradual Weisfeiler-Leman refinement depends on the cost of the update
function used.
Theorem 8. The running time for the gradual Weisfeiler-Leman refinement is O(h · tu(

∣∣V (G)
∣∣)),

where h is the number of iterations and tu(n) is the time needed to compute the renep function for n
elements.

The update function used in the original Weisfeiler-Leman refinement can be computed in time
O(
∣∣V (G)

∣∣+
∣∣E(G)

∣∣) in the worst-case by sorting the neighbor color multisets using bucket sort [2].

4.3 Discussion of Suitable Update Functions

The update function of the original Weisfeiler-Leman refinement provides a fast way to reach the
stable coloring, but in machine learning tasks a more fine grained vertex similarity might be desirable.
A suitable update function restricts the number of new colors to a manageable amount, while still
fulfilling the requirements of a renep function. Clustering the neighborhood multisets of the vertices,
and letting the clusters imply the new colors, is an intuitive way to restrict the number of colors per
iteration and assign similar neighborhoods the same new color. We discuss how to realize a renep
function using clustering.

Whether two vertices, that currently have the same color, will be assigned the same color in the next
step, depends on two factors: If they have the same neighbor color multiset, they have to remain in
one color group. If their neighbor color multisets differ, however, the renep function can decide to
either separate them or not (provided any new colors are generated to fulfill Condition 3). We propose
clustering the neighbor color multisets separately for each old color and let the clusters imply new
colors. If a clustering function guarantees to produce at least two clusters for inputs with at least two
distinct objects, we obtain a renep function.

Although various clustering algorithms are available, we identified k-means as a convenient choice
because of its efficiency and controllability of the number of clusters. In order to apply k-means to
multisets of colors, we represent them as (sparse) vectors, where each entry counts the number of
neighbors with a specific color. The above method using k-means clustering with k > 1 satisfies the
requirements of a renep function. Of course, if the number of elements to cluster is less than or equal
to k, the clustering can be omitted and each element can be assigned its own cluster. The number of
clusters in iteration i is bounded by |L| · ki, since each color can split into at most k new colors in
each iteration and the initial coloring has at most|L| colors.
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5 Applications
The gradual Weisfeiler-Leman refinement provides a more fine-grained approach to capture vertex
similarity, where two vertices are considered more similar, the longer it takes until they get assigned
different colors. This makes the approach applicable not only to vertex classification, but also in graph
kernels and as a vertex similarity measure for graph matching. We further describe these possible
applications in the following and evaluate them against the state-of-the-art methods in Section 6.

Graph Kernels. The idea of the GWL subtree kernel is essentially the same as the Weisfeiler-
Leman subtree kernel [2], but instead of using the original Weisfeiler-Leman algorithm, the GWL
algorithm is used to generate the features. We use the definition given in Equation (1) replacing
the Weisfeiler-Leman colorings with the coloring from the GWL algorithm. The Weisfeiler-Leman
optimal assignment kernel [5] is obtained from an optimal assignment between the vertices of two
graphs regarding a vertex similarity defined by a color hierarchy. We replace the Weisfeiler-Leman
color hierarchy used originally by the one from our gradual refinement. We evaluate the performance
of our newly proposed kernels in Section 6.

Tree Metrics for Approximating the Graph Edit Distance. The graph edit distance, a general
distance measure for graphs, is usually approximated due to its complexity. Many approximations
find an optimal assignment between the vertices of the two graphs and derive a (sub-optimal) edit
path from this assignment. Naturally, the cost of such an edit path is an upper bound for the graph
edit distance. An optimal assignment can be computed in linear time, if the underlying cost function
is a tree metric [27], which means an approximation of the graph edit distance can be found in
linear time, given a tree metric on the vertices. The color hierarchy, see Figure 1, produced by the
original Weisfeiler-Leman refinement, as well as our gradual variant, can be interpreted as such
a tree metric. Lin [27] approximated the graph edit distance as described above. We can again
replace the original color hierarchy by the one produced by our gradual Weisfeiler-Leman refinement.
Appendix I includes a more detailed explanation on how to approximate the graph edit distance using
assignments. We evaluate this approximation of the graph edit distance regarding its accuracy in
knn-classification against the state-of-the-art and the original approach.

6 Experimental Evaluation
We evaluate the proposed approach regarding its applicability in graph kernels, as the gradual
Weisfeiler-Leman subtree kernel (GWL) and the gradual Weisfeiler-Leman optimal assignment
kernel (GWLOA), as well as its usefulness as a tree metric for approximating the graph edit distance.
Specifically, we address the following research questions:

Q1 Can our kernels compete with state-of-the-art methods regarding classification accuracy on
real-world and synthetic datasets?

Q2 Which refinement speed is appropriate and are there dataset-specific differences?

Q3 How do our kernels compare to the state-of-the-art methods in terms of running time?

Q4 Is the vertex similarity obtained from GWL refinement suitable for approximating the graph edit
distance and solving learning problems with it?

We compare to the Weisfeiler-Leman subtree kernel (WLST) [2], the Weisfeiler-Leman optimal
assignment kernel (WLOA) [5], as well as the approximation of the relaxed Weisfeiler-Leman subtree
kernel (RWL*) [15], and the deep Weisfeiler-Leman kernel (DWL) [13]. We do not compare to [4],
since the kernel showed results similar to the WLOA kernel. We compare the graph edit distance
approximation using our tree metric GWLT to the original approach Lin [27] and state-of-the-art
method BGM [28]. Our implementation is publicly available at https://github.com/frareba/
GradualWeisfeilerLeman.

6.1 Setup

As discussed in Section 4.3 we used k-means clustering in our new approach. If for any color less
than k different vectors were present in the clustering step, each distinct vector got its own cluster.
We implemented our GWL, GWLOA and also the original WLST and WLOA in Java. We used the
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Table 1: Average classification accuracy and standard deviation (highest accuracies marked in bold).

Kernel PTC_FM KKI EGO-1 EGO-2 EGO-3 EGO-4

WLST 64.16 ±1.30 49.97 ±2.88 51.30 ±2.42 57.15 ±1.61 56.15 ±1.67 53.40 ±1.77
DWL 64.18 ±1.46 50.93 ±2.87 55.80 ±1.35 56.50 ±1.64 55.90 ±1.64 53.25 ±2.81
RWL* 62.43 ±1.46 46.54 ±4.03 65.60 ±2.74 70.20 ±1.36 67.60 ±1.07 74.25 ±2.12
WLOA 62.34 ±1.39 48.72 ±4.05 55.95 ±1.11 60.30 ±2.00 54.25 ±1.35 52.30 ±2.29

GWL 62.61 ±1.94 57.79 ±3.95 67.95 ±2.05 73.65 ±1.86 65.45 ±1.88 77.45 ±1.97
GWLOA 64.58 ±1.77 47.47 ±2.41 69.80 ±1.65 72.40 ±2.52 67.45 ±1.69 75.35 ±1.67

COLLAB DD IMDB-B MSRC_9 NCI1 REDDIT-B

WLST 78.98 ±0.22 79.00 ±0.52 72.01 ±0.80 90.13 ±0.75 85.96 ±0.18 80.81 ±0.52
DWL 78.93 ±0.18 78.92 ±0.40 72.36 ±0.56 90.50 ±0.76 85.68 ±0.18 80.83 ±0.40
RWL* 77.94 ±0.38 77.52 ±0.65 72.96 ±0.86 88.86 ±0.89 79.45 ±0.32 77.69 ±0.31
WLOA 80.81 ±0.22 79.44 ±0.31 72.60 ±0.89 90.68 ±0.92 86.29 ±0.13 89.40 ±0.14

GWL 80.62 ±0.33 79.00 ±0.81 73.66 ±1.25 88.32 ±1.20 85.33 ±0.35 86.46 ±0.35
GWLOA 81.30 ±0.29 78.49 ±0.57 72.88 ±0.79 91.27 ±1.06 85.36 ±0.36 89.98 ±0.34

RWL* and DWL Python implementations provided by the authors. Note that in contrast to the other
approaches, the RWL* implementation uses multi-threading.

For evaluation, we used the C-SVM implementation LIBSVM [29] and report average classification
accuracies obtained by 10-fold nested cross-validation repeated 10 times with random fold assign-
ments. The parameters of the SVM and the kernels were optimized by the inner cross-validation
on the current training fold using grid search. We chose C ∈ {10−3, 10−2, . . . , 103} for the SVM,
h ∈ {0, . . . , 10} for WLST, WLOA, GWL and GWLOA and k-means with k ∈ {2, 4, 8, 16}. For
RWL* we used h ∈ {1, . . . , 4} and default values for the other parameters. In DWL the window
size w and dimension d were set to 25, since this generally worked best out of the combinations
from d,w ∈ {5, 25, 50} and no defaults were provided. We used the default settings for the other
parameters and again h ∈ {1, . . . , 10}. The running time experiments were conducted on an Intel
Xeon Gold 6130 machine at 2.1 GHz with 96 GB RAM. For evaluating the approximation of the
graph edit distance, we compare the 1-nn classification accuracy and used the Java implementation of
Lin provided by the authors and implemented our approach GWLT, as well as BGM, also in Java for
a fair comparison.

Extension to Edge Labels. The original Weisfeiler-Leman algorithm can be extended to respect
edge labels by updating the colors according to ci+1(v) = z(ci(v), {{(l(u, v), ci(u)) | u ∈ N(v)}}).
All kernels used in the comparison use a similar strategy to incorporate edge labels if present.

Datasets. We used several real-world datasets from the TUDataset [30] and the EGO-Nets
datasets [15] for our experiments. See Appendix B and F for an overview of the datasets, as
well as additional synthetic datasets and corresponding results. We selected these datasets as they
cover a wide range of applications, consisting of both molecule datasets and graphs derived from
social networks. See Appendix C for the number of Weisfeiler-Leman iterations needed to reach the
stable coloring for each dataset.

6.2 Results

In the following, we present the classification accuracies and running times of the different kernels.
We investigate the parameter selection for our algorithm and discuss the application of our approach
for approximating the graph edit distance.

Q1: Classification Accuracy. Table 1 shows the classification accuracy of the different kernels.
While on some datasets our new approaches do not outcompete all state-of-the-art methods, they
are more accurate in most cases, in some cases even with a large margin to the second-placed (for
example on KKI, EGO-1 or EGO-4). While RWL* is better than our approaches on some datasets,
the running time of this method is much higher, cf. Q3. WLOA also produces very good results on
many datasets, but cannot compete on the EGO-Nets and synthetic datasets (see Appendix F). For
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Figure 3: Number of times a parameter combination of GWL and GWLOA was selected from
k ∈ {2, 4, 8, 16} and h ∈ {0, . . . , 10} based on the accuracy achieved on the test set.
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Figure 4: Running time in milliseconds for computing the feature vectors for all graphs of a dataset
using the different methods. Note that RWL* uses multi-threading, while the other methods do not.
Missing values for RWL* and DWL in the larger datasets are due to timeout.

molecular graphs (PTC_FM, NCI) we see no significant improvements, which can be explained by
their small degree and sensitivity of molecular properties to small changes. Overall, our method
provides the highest accuracy on 9 of 12 datasets and is close to the best accuracy for the others.

Q2: Parameter Selection. For GWL and GWLOA two parameters have to be chosen: The number
of iterations h and the number k of clusters in k-means. We investigate which choices lead to the best
classification accuracy. Figure 3 shows the number of times, a specific parameter combination was
selected as it provided the best accuracy for the test set. Here, we only show the parameter selection
for some of the datasets. The results for the other datasets, as well as the parameter selection for
WLST and WLOA, can be found in Appendix D. We can see that for GWL and most datasets the
best k is in {2, 4, 8} and on those datasets classification accuracy of GWL exceeds that of WLST. On
datasets on which GWL performed worse than WLST, the best choice for parameters is not clear
and it seems like a larger k might be beneficial for improving the classification accuracy. Similar
tendencies can be observed for GWLOA.

Q3: Running Time. Figure 4 shows the time needed for computing the feature vectors using the
different kernels (for results on the other datasets and the influence of the parameter k on running
time see Appendix E and G). RWL* and DWL are much slower than the other kernels, while only
RWL* leads to minor improvements in classification accuracy on few datasets. While our approach is
only slightly slower than WLST/WLOA, it yields great improvements on the classification accuracy
on most datasets, cf. Q1.

Q4: Learning with Approximated Graph Edit Distance. Table 2 compares the 1-nn classifi-
cation accuracy of our approach when approximating the graph edit distance to the original [27]
and another state-of-the-art method based on bipartite graph matching [28]. Our approach clearly
outcompetes both methods on all datasets.

We investigate the approximation quality for similar graphs (which are important for k-nn classifica-
tion) further by comparing the approximation of Lin [27] to our method GWLT directly, see Figure 5.
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Table 2: Average classification accuracy and standard deviation (highest accuracies marked in bold).

Method PTC_FM MSRC_9 KKI EGO-1 EGO-2 EGO-3 EGO-4

BGM 60.14 ±1.50 72.13 ±1.28 43.89 ±1.27 44.75 ±1.05 42.05 ±1.25 out of time out of time
Lin 62.38 ±1.08 81.36 ±0.64 55.18 ±2.44 40.40 ±1.17 31.65 ±1.07 26.60 ±0.94 36.55 ±1.72

GWLT 63.19 ±0.11 85.97 ±0.59 55.18 ±2.44 56.20 ±1.42 47.90 ±1.28 36.40 ±1.04 47.90 ±1.32
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Figure 5: Approximation quality of GWLT compared to Lin [27]. Marks below the gray diagonal
indicate that GWLT had a better approximation, while marks above indicate the same for Lin.

Only graph pairs for which at least one of the methods returned a distance below a cutoff threshold
are depicted to emphasize the important case of highly similar graphs. The results clearly show that
GWLT provides more accurate approximations, in particular, for the EGO-Nets. This finding and
the accuracy results discussed in Q1 indicate that on these datasets methods benefit from the more
fine-grained vertex similarity provided by GWL.

7 Conclusions

We proposed a general framework for iterative vertex refinement generalizing the popular Weisfeiler-
Leman algorithm and discussed connections to other vertex refinement strategies. Based on this, we
proposed two new graph kernels and showed that they outperform the original Weisfeiler-Leman
subtree kernel and similar state-of-the-art approaches in terms of classification accuracy in almost all
cases, while keeping the running time much lower than comparable methods. We also investigated
the application of our method to approximating the graph edit distance, where we again outperformed
the state-of-the-art methods.

In further research, other renep functions can be explored, for example, by using different clustering
strategies or developing new concepts for inexact neighborhood comparison. Moreover, we will
systematically relate our approach to graph neural networks and investigate whether similar ideas can
be incorporated into their neighborhood aggregation step and to what extent common architectures
and optimization methods are capable of learning certain renep functions.
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Table 3: Datasets with discrete vertex and edge labels and their statistics [30]. The EGO-Nets
datasets [15] are unlabeled.

Name |Graphs| |Classes| avg |V | avg |E| |LV | |LE|
KKI 83 2 26.96 48.42 190 −
PTC_FM 349 2 14.11 14.48 18 4

COLLAB 5000 3 74.49 2457.78 − −
DD 1178 2 284.32 715.66 82 −
IMDB-BINARY 1000 2 19.77 96.53 − −
MSRC_9 221 2 40.58 97.94 10 −
NCI1 4110 2 29.87 32.30 37 −
REDDIT-BINARY 2000 2 429.63 497.75 − −
EGO-1 200 4 138.97 593.53 − −
EGO-2 200 4 178.55 1444.86 − −
EGO-3 200 4 220.01 2613.49 − −
EGO-4 200 4 259.78 4135.80 − −

A Pseudocode
Algorithm 1 shows the procedure of gradual Weisfeiler-Leman refinement. We start with an initial
coloring (either uniform or based on the vertex labels) and then iteratively refine these colors using a
renep function, h times.

Algorithm 1 Gradual Weisfeiler-Leman Refinement.

1: procedure GWL(G, h) . h is number of iterations
2: for all v ∈ V (G) do . Initial coloring
3: c0(v)← µ(v)

4: initialize T0 as described in Section 3
5: for i← 1, i ≤ h, i← i+ 1 do
6: Ti ← f(G, Ti−1) . Compute new colors
7: for all v ∈ V (G) do . Assign new colors
8: ci(v)← πTi(v)

B Datasets
We used several real-world datasets from the TUDataset [30], the EGO-Nets datasets [15], as well
as synthetic datasets for our experiments. See Table 3 for an overview of the real-world datasets.
We selected these datasets as they cover a wide range of applications, consisting of both molecule
datasets and graphs derived from social networks.

The synthetic datasets were generated using the block graph generation method [15]. We generated 9
synthetic datasets with two classes and 200 graphs in each class. For each dataset we first generated
two seed graphs (one per class) with 16 vertices, that both are constructed from a tree by appending
a single edge, so that their sets of vertex degrees are equal. For the dataset graphs each vertex of
the seed graph was replaced by 8 vertices. Vertices generated from the same seed vertex, as well as
from adjacent vertices are connected with probability p. m noise edges are then added randomly.
We investigated the two cases p = 1.0 and m ∈ {0, 10, 20, 50, 100}, and p ∈ {1.0, 0.8, 0.6, 0.4, 0.2}
and m = 0. We denote the datasets by S_p_m.

C Number of Weisfeiler-Leman Iterations
We investigate the number of WL iterations needed to reach the stable coloring in the various datasets.
On the datasets with − entries (see Table 4) our algorithm, that checked whether the stable coloring
is reached, did not finish in a reasonable time due to the size of the datasets/graphs. It can be seen
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Table 4: Number of iterations needed to reach the stable coloring.

Dataset KKI PTC_FM COLLAB DD IMDB-B MSRC_9
WL 3 13 − − 3 3

Dataset NCI1 REDDIT-B EGO-1 EGO-2 EGO-3 EGO-4
WL 39 − 5 4 4 5
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Figure 6: With k ∈ {2, 4, 8, 16} and h ∈ {0, . . . , 10}, we show the number of times a specific
parameter combination for GWL was selected as it provided the best accuracy for the test set.

that on most datasets the number of iterations needed to reach the stable coloring is very low. This
means that after a few iterations we do not gain any new information when using for example the
traditional WLST kernel.

D Parameter Selection - Further Results

Figures 6 and 7 show the parameter selection for the remaining datasets for GWL and GWLOA. In
most datasets the choice is restricted to two or three values. For some of the datasets, the best choice
seems to include k = 16. This might indicate that a larger k could be beneficial for increasing the
accuracy.

Figure 8 shows the parameter selection for WLST and WLOA. There is only one parameter, the
number of WL iterations, for both kernels. We can see that indeed on most datasets, only few
iterations are needed to gain the best possible accuracy. On datasets such as EGO-2, EGO-4 or NCI1,
however, this is not the case. For NCI1 we can assume that we still gain information through more
iterations, since we have not yet reached the stable coloring. For the EGO-datasets, this is surprising,
since the stable coloring is reached after 4 (5) iterations. On the other hand, the classification accuracy
reached is still not good.
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Figure 7: With k ∈ {2, 4, 8, 16} and h ∈ {0, . . . , 10}, we show the number of times a specific
parameter combination for GWLOA was selected as it provided the best accuracy for the test set.
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Figure 8: With h ∈ {0, . . . , 10}, we show the number of times a specific parameter combination for
WLST and WLOA was selected as it provided the best accuracy for the test set.
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Figure 9: Running time in milliseconds for computing the feature vectors using the different methods.
Note that RWL* uses multi-threading, while the other methods do not. Missing values for RWL* and
DWL in the larger datasets are due to timeout.

E Running Time - Further Results

Figure 9 shows the running time results for the remaining datasets. While the runtime of our approach
exceeds that of DWL on some of the larger datasets, it enhances the classification accuracy a lot.

F Results on Synthetic Datasets

Table 5 shows the classification accuracy of the different methods on the synthetic datasets (generated
as described in Appendix B), with the best accuracy for each dataset being marked in bold. We can
see, while all kernels can perfectly learn on the datasets without noise, neither WLST, WLOA nor
DWL can manage the noise included in the other datasets, having worse accuracy with increasing
noise. While the decrease in accuracy with decreasing the edge probability is slightly worse than that
of RWL*, our approach has a much lower running time.
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Table 5: Average classification accuracy and standard deviation on the synthetic datasets.
Kernel S_1_0 S_1_10 S_1_20 S_1_50 S_1_100 S_0.8_0 S_0.6_0 S_0.4_0 S_0.2_0

WLST 100.00±0.00 98.68 ±0.34 61.93 ±1.08 54.55 ±0.68 49.78 ±1.18 50.65 ±1.57 48.10 ±1.10 51.98 ±1.40 42.65 ±1.80
DWL 100.00±0.00 98.70 ±0.31 62.10 ±0.98 43.83 ±1.66 51.40 ±0.94 49.80 ±2.01 46.88 ±1.89 49.05 ±1.98 42.85 ±1.98
RWL* 100.00±0.00 100.00±0.00 100.00±0.00 out of time 100.00±0.00 100.00±0.00 99.35 ±0.17 81.93 ±1.00 56.33 ±2.48
WLOA 100.00±0.00 97.65 ±0.44 60.85 ±1.65 47.50 ±1.83 50.23 ±1.24 49.45 ±1.47 48.08 ±1.92 43.23 ±1.21 50.53 ±1.92

GWL 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 92.20 ±0.97 72.53 ±1.78 53.58 ±1.71
GWLOA 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 94.95 ±0.59 72.03 ±1.66 50.90 ±2.63
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Figure 10: Running time in milliseconds for computing the feature vectors using the different values
for parameter k on our newly proposed methods.

G Influence of Parameter k on Running Time
We investigate which effect the choice of k has on the running time. Figure 10 shows the time needed
for computing the feature vectors using our kernels with k ∈ {2, 4, 8, 16}. The difference in running
time between GWL and GWLOA is only marginal on most datasets, only on KKI and NCI1 a larger
difference can be seen. As expected, the running time of both kernels increases with increasing k.
Interestingly, for larger k, the running time does not increase much anymore, after a certain number
of iterations, this might be because the stable coloring was reached by then.

H Results on Larger Datasets
GWL allows to generate explicit sparse feature vectors just as WLST. Therefore, these kernels can be
used with a linear SVM, which is more efficient than a kernel SVM and makes the application to
larger datasets feasible. We performed additional experiments with these kernels on larger synthetic
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Table 6: Parameters used for generating the larger datasets.

Dataset p m |Graphs| b r

L1 1 200 10000 25 10
L2 1 100 20000 25 10
L3 1 200 20000 10 15
L4 1 400 20000 25 10

Table 7: Results on larger datasets with running time in seconds and |f | being the number of features
(for WLST we only give the order of magnitude).

Kernel L1 L2 L3 L4
time acc |f | time acc |f | time acc |f | time acc |f |

WLST 25 50.92 106 59 84.57 106 45 49.91 106 124 49.65 106

GWL 208 99.98 61 237 100.0 15 103 100.0 7 137 99.98 7

datasets using the linear SVM implementation LIBLINEAR [31]. The datasets were generated using
the same method as described in Appendix B, but with different values for the number of vertices
in the seed graphs, b, and number of vertices, each vertex in the seed graph is replaced by, r (see
Table 6 for the values of the parameters). The experimental setup used in these experiments was as
follows: We split the dataset randomly into a training, validation and test set and chose the parameter
C ∈ {0.1, 1, 10}. We used h ∈ {1, . . . , 5} for both kernels and set k = 2 for all datasets.

In Table 7 we report the running time and the number of features f obtained for the choice of h that
gave the best classification accuracy (for GWL this choice was h = 2 for L4 and L5, h = 3 for L2
and h = 5 for L1, for WLST it was h = 2 for all datasets except L4, on which it was h = 5). We
noticed that running the SVM with the feature vectors generated by WLST took much more time
than GWL, which can be explained by the number of features each algorithm produced: For GWL
the number is restricted by the choice of parameters, but for WLST the number of features is only
restricted by the number of vertices in the dataset. In WLST the number of features exceeded 106 for
h ≥ 2. For a small increase in running time in generating the feature vectors, GWL provides not only
a much better classification accuracy than WLST, it also generates less features, but more meaningful
ones.

I Approximating the Graph Edit Distance using Optimal Assignments
The graph edit distance (GED), a commonly used distance measure for graphs, is defined as the
cost of transforming one graph into the other using edit operations, i.e. deleting or inserting an
isolated vertex or an edge, or relabeling any of the two. An edit path between G and H is a sequence
(e1, e2, . . . , ek) of edit operations that transforms G into H . This means, that applying all operations
in the edit path to G, yields a graph G′ that is isomorphic to H .

Edit operations have non-negative costs assigned to them by a cost function c and the GED of two
graphs is defined as the cost of a cheapest edit path between them:

GED(G,H) = min


k∑
i=1

c(ei) | (e1, . . . , ek) ∈ Υ(G,H)

 ,

where Υ(G,H) denotes the set of all possible edit paths from G to H .

Since computing the GED is NP-hard [32], it is often approximated; often an optimal assignment
between the vertices of the graphs is computed and a (suboptimal) edit path is derived from this
assignment [28]. Figure 11 shows two graphs, an assignment between their vertices indicated by
matching numbers, and a corresponding edit path.

If the cost function is a tree metric, such an assignment can be computed in linear time [27] (as
opposed to cubic runtime for arbitrary cost functions). The color hierarchy produced by for example
GWLT can be interpreted as such a tree metric, which means it can be used to find an optimal
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Figure 11: Two graphs G and H with an assignment between their vertices (vertices with matching
numbers are assigned to each other) and an edit path derived from this assignment.

assignment between the vertices and in turn approximate the graph edit distance. Given a tree T ,
representing a tree metric, an optimal assignment between two sets A and B can be computed as
follows: Let φ be a function that associates all elements with their node in the tree (for GWLT this
means, that we associate each vertex with its "newest" color). Then deconstruct T fully (until there
are no leaves left) by repeating these steps:

1. Pick a random leaf l.
2. Assign as many elements of A associated with l to elements of B associated with l as possible.
3. Re-associate remaining elements to the parent of l.
4. Delete l from T .

The resulting assignment is optimal and can be used to derive an edit path as above.
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