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Abstract

With the pervasive deployment of Machine Learning (ML) models in real-world
applications, verifying and auditing properties of ML models have become a
central concern. In this work, we focus on three properties: robustness, individual
fairness, and group fairness. We discuss two approaches for auditing ML model
properties: estimation with and without reconstruction of the target model under
audit. Though the first approach is studied in the literature, the second approach
remains unexplored. For this purpose, we develop a new framework that quantifies
different properties in terms of the Fourier coefficients of the ML model under audit
but does not parametrically reconstruct it. We propose the Active Fourier Auditor
(AFA), which queries sample points according to the Fourier coefficients of the
ML model, and further estimates the properties. We derive high probability error
bounds on AFA’s estimates, along with the worst-case lower bounds on the sample
complexity to audit them. Numerically we demonstrate on multiple datasets and
models that AFA is more accurate and sample-efficient to estimate the properties
of interest than the baselines.

1 Introduction

As Machine Learning (ML) systems are pervasively being deployed in high-stake applications,
mitigating discrimination and guaranteeing reliability are critical to ensure the safe pre and post-
deployment of ML [Madiega, 2021]. These issues are addressed in the growing subfield of ML, i.e.
trustworthy or responsible ML [Rasheed et al., 2022, Li et al., 2023], in terms of robustness and
fairness of ML models. Robustness quantifies how stable a model’s predictions are under perturbation
of its inputs [Xu and Shie, 2011, Kumar et al., 2020]. Fairness [Dwork et al., 2012, Barocas et al.,
2023] seeks to address discrimination in predictions both at the individual level and across groups.
Thus, AI regulations, such as the European Union AI Act [Madiega, 2021], increasingly suggest
certifying different model properties, such as robustness, fairness, and privacy, for a safe integration of
of ML in high-risk applications. Thus, estimating these model properties under minimum interactions
with the models has become a central question in algorithmic auditing [Raji et al., 2020, Wilson et al.,
2021, Metaxa et al., 2021, Yan and Zhang, 2022].
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Figure 1: A schematic of AFA.

Example 1. Following [Ghosh et al., 2021, Example 1], let us consider an ML model that predicts
who is eligible to get medical insurance given a sensitive feature ‘age’, and two non-sensitive features
‘income’ and ‘health’. Owing to historical bias in the training data, the model, i.e. an explainable
decision tree, discriminates against the ‘elderly’ population by denying their health insurance and
favors the ‘young’ population. Hence, an auditor would realize that the model does not satisfy group
fairness since the difference in the probability of approving health insurance between the elderly and
the young is large. In addition, the model violates individual fairness, where perturbing the feature
‘age’ from elderly to young increases the probability of insurance. Further, the model lacks robustness
if perturbing any feature by an infinitesimal quantity flips the prediction.

Related Work: ML Auditing. Towards trustworthy ML, several methods have been proposed to
ally audit an ML model by estimating different distributional properties of it, such as fairness and
robustness, where the model hyper-property has to be assessed against the distribution of inputs. A
stream of work focuses on property verification that verifies whether these properties are violated
above a pre-determined threshold [Goldwasser et al., 2021, John et al., 2020, Mutreja and Shafer,
2023, Herman and Rothblum, 2022, Kearns et al., 2018]. Thus, we focus on estimating these
properties instead of a ‘yes/no’ answer, which is a harder problem than verification [Goldwasser
et al., 2021]. On estimating distributional properties, Neiswanger et al. [2021] proposed a Bayesian
approach for estimating properties of black-box optimizers and required a prior distribution of models.
Wang et al. [2022] studies simpler distributional properties, e.g. the mean, the median, and the
trimmed mean defined as a conditional expectation, using offline and interactive algorithms. Yan
and Zhang [2022] considered a frequentist approach for estimating group fairness but assumed
the knowledge of the model class and a finite hypothesis class under audit. These assumptions
are violated if we do not know the model type and can be challenging for complex models, e.g.
deep neural networks. Albarghouthi et al. [2017], Ghosh et al. [2021] considered finite models for
estimating group fairness w.r.t. the features distribution, and Ghosh et al. [2022] further narrowed
down to linear models. Therefore, we identify the following limitations of the existing methods in
ML auditing. (1) Property-specific auditing: most methods considered a property-specific tailored
approach to audit ML systems, for example either robustness [Cohen et al., 2019, Salman et al.,
2019], group fairness [Albarghouthi et al., 2017, Ghosh et al., 2021], or individual fairness [John
et al., 2020]. (2) Model-specific auditing: all the methods considered a prior knowledge about the
ML model [Neiswanger et al., 2021, Ghosh et al., 2021, 2022, Yan and Zhang, 2022], or a white-box
access to it [Cohen et al., 2019, Salman et al., 2019]. These are unavailable in practical systems
such as API-based ML. Therefore, our research question is: Can we design a unified ML auditor for
black-box systems for estimating a set of distributional properties including robustness and fairness?

Contributions. We propose a framework, namely AFA (Active Fourier Auditor), which is an ML
auditor based on the Fourier approximation of a black-box ML model (Figure 1). We observe
that existing black-box ML auditors work in two steps: the model reconstruction step, where they
reconstruct a model completely, and the estimation step, where they put an estimator on top of
it [Yan and Zhang, 2022]. We propose a model-agnostic strategy that does not need to reconstruct
the model completely. In particular, for any ML model admitting a Fourier expansion, we compute
the significant Fourier coefficients of a model accepting categorical input distributions such that they
are enough to estimate different distributional properties such as robustness, individual fairness, and
group fairness. Our contributions are:

• Formalism. For any bounded output model (e.g. all classifiers), we theoretically reduce
the estimation of robustness, individual fairness, and group fairness in terms of the Fourier
coefficients of the model. The key idea is based on influence functions, which capture how
much a model output changes due to a change in input variables and can be computed via
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Fourier coefficients (Section 3). We propose two types of influence functions for each of
these properties that unifies robustness and individual fairness auditing while put group
fairness in a distinct class.

• Algorithm. In AFA, we integrate Goldreich-Levin algorithm [Goldreich and Levin, 1989,
Kushilevitz and Mansour, 1993] to efficiently compute the significant Fourier coefficients of
the ML model, which are enough to compute the corresponding properties. AFA yields a
probably approximately correct (PAC) estimation of distributional properties. We propose a
dynamic version of Goldreich-Levin to accelerate the computations.

• Theoretical Sample Complexity. We show that our algorithm requires Õ
(

1
ϵ

√
log 1

δ

)
samples

to yield (ϵ, δ) estimate of robustness and individual fairness, while it needs Õ
(

1
ϵ2 log

1
δ

)
samples to audit group fairness. We further derive a lower bound on the sample complexity
of (ϵ, δ)-auditing of group fairness to be Ω̃( δ

ϵ2 ). Further, for group fairness, we prove that
AFA is manipulation-proof under perturbation of 2n−1 Fourier coefficients.

• Experimental Results. We numerically test the performance of AFA to estimate the three
properties of different types of models. The results show that AFA achieves lower estimation
error while estimating robustness and individual fairness across perturbation levels. Com-
pared to existing group fairness auditors, AFA not only achieves lower estimation error but
also incurs lower computation time across models and the number of samples.

2 Background

Before proceeding to the contributions, we discuss the three statistical properties of ML models that
we study, i.e. robustness, individual fairness, and group fairness. We also discuss basics of Fourier
analysis that we leverage to design AFA.

Notations. Here, x represents a scalar, and x represents a vector. X is a set. We denote J1, nK as the
set {1, . . . , n}. We denote the power set of X by P(X ).
Properties of ML Models. A Machine Learning (ML) model h is a deterministic or probabilistic
mapping from an n-dimensional input domain of features (or covariates) X to set of labels (or
response variables or outcomes) Y . For example, for Boolean features X ≜ {−1, 1}n, and for
categorical features, X ≜ [K]n. For binary classifiers, Y ≜ {0, 1}.
We assume to have only black-box access to h, i.e. we send queries from a data-generating distribution
and collect only the labels predicted by h. The dataset on which h is tested is sampled from a data-
generating distribution DX ,Y over X × Y , which has a marginal distribution D over X .

We aim to audit a distributional (aka global) property µ : H×DX ,Y → R of an ML model h : X → Y
belonging to an unknown model classH while having only black-box access to h.

Hereafter, we develop the methodology for binary classifiers and Boolean features. Later, we discuss
approaches to extend the proposed methodology to categorical features and multi-class classifiers,
and corresponding experimental results. In this paper, we study three properties of ML models, i.e.
robustness (µRob), individual fairness (µIFair), and group fairness (µGFair), which are defined below.

Robustness is the ability of a model h to generate same output against a given input and its perturbed
(or noisy) version. Robustness has been central to sub-fields of AI, e.g. safe RL [Garcıa and
Fernández, 2015], adversarial ML [Kurakin et al., 2016, Biggio and Roli, 2018], and gained attention
for safety-critical deployment of AI.
Definition 1 (Robustness). Given a model h and a perturbation mechanism Γ of input x ∈ X ,
robustness of h is µRob(h) ≜ Px∼D, y∼Γ(x)[h(x) ̸= h(y)].

Examples of perturbation mechanisms include Binary feature flipping Nρ(x) ≜ {x′ | ∀i ∈ [n],x′
i =

xi ×Bernoulli(ρ)} [O’Donnell, 2014], Gaussian perturbation Nρ(x) ≜ {x′ | x′ = x+ ϵ where ϵ ∼
Normal(0, ρ2I)} [Cohen et al., 2019], among others.

In trustworthy and responsible AI, another prevalent concern about deploying ML models is bias in
their predictions. This has led to the study of different fairness metrics, their auditing algorithms, and
algorithms to enhance fairness [Mehrabi et al., 2021, Barocas et al., 2023]. There are two categories
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Table 1: Example 3
S ∅ {1} {2} {1, 2} {3} {1, 3} {2, 3} {1, 2, 3}
χS 1 x1 x2 x1x2 x3 x1x3 x2x3 x1x2x3
ψS 1 x1 x2 x1x2 0 0 0 0

of fairness measures [Barocas et al., 2023]. The first is the individual fairness that aims to ensure
that individuals with similar features should obtain similar predictions [Dwork et al., 2012].

Definition 2 (Individual Fairness). For a model h and a neighbourhood Γ(x) of a x ∈ X , the
individual fairness discrepancy of h is µIFair(h) ≜ Px∼D, y∼Γ(x) P[h(x) ̸= h(y)].

The neighborhood Γ(x) is commonly defined as the points around x which are at a distance less than
ρ ≥ 0 w.r.t. a pre-defined metric. The metric depends on the application of choice and the input
data [Mehrabi et al., 2021]. IF of a model measures its capacity to yield similar predictions for similar
input features of individuals [Dwork et al., 2012, A. Friedler et al., 2016]. The similarity between
individuals are measured with different metrics. Let dX and dY be the metrics for the metric spaces
of input (X ) and predictions (Y), respectively.

A model h satisfies (ϵ, ϵ′)-IF if dX (x,x′) ≤ ϵ implies dY(h(x), h(x′)) ≤ ϵ′ for all (x,x′) ∈
X 2 [A. Friedler et al., 2016]. For Boolean features and binary classifiers, the natural candidate for dX
and dY is the Hamming distance. This measures the difference between vectors x and x′ by counting
the number of differing elements. Thus, dX (x,x′) ≤ l means that x′ has l different bits than x. As
auditors, we are interested in measuring how much the Hamming distance between outcomes of x
and x′, i.e. ϵ′. However, since the data-generation process and the models might be stochastic, we
take a stochastic view and use a perturbation mechanism that defines a neighborhood around each
input sample.

Group fairness is the other category of fairness measures that considers the input to be generated
from multiple protected groups (or sub-populations), and we want to remove discrimination in
predictions across these protected groups [Mehrabi et al., 2021]. Specifically, we focus on Statistical
Parity (SP) [Feldman et al., 2015, Dwork et al., 2012] as our measure of deviation from group fairness.
For simplicity, we discuss SP for two groups, but we can also generalize it to multiple groups.

Definition 3 (Statistical Parity). The statistical parity of h is µGFair(h) ≜ |Px∼D[h(x) = 1|xA =
1]− Px∼D[h(x) = 1|xA = −1]|, where xA is the binary sensitive attribute.

In AFA, we use techniques of Fourier analysis to design one computational scheme for simultaneously
estimating these three properties of an ML model.

A Primer on Fourier Analysis. Designing AFA is motivated by the Fourier expansion of Boolean
functions. Fourier coefficients are distribution-dependent components that capture key information
about the distribution’s properties. This study was initially addressed by [O’Donnell, 2014], who
focused on the uniform distribution. Later, [Heidari et al., 2021] generalized this result to arbitrary
distributions, which we leverage further.

Proposition 1 (Heidari et al. [2021]). There exists a set of orthonormal parity functions {ψS}S⊆[n]

such that any function h : {−1, 1}n → {−1, 1} is decomposed as

h(x) =
∑

S⊆[n]
ĥ(S)ψS(x) for any x ∼ D. (1)

The Fourier coefficients ĥ(S) ≜ Ex∼D[h(X)ψS(x)] are unique for all S ⊆ [n].

Example 2. Let us consider h to be the XOR function on x ∈ {−1, 1}2. This means that h(−1,−1) =
h(1, 1) = 0 and h(1,−1) = h(−1, 1) = 1. The Fourier representation of h(x) = 0.5 + 0.5x1 +
0.5x2 − 0.5x1x2, when x is sampled from a uniform distribution on {−1, 1}2.

Example 3. Suppose random variables X1 and X2 are drawn i.i.d. from the standard normal
distribution N (0, 1) [Heidari et al., 2021]. Define another random variable X3 as X3 = X1X2. It
can be verified that the Gram-Schmidt basis of XOR of X1, X2, X3 has four zero coefficients, i.e. the
sets including X3 do not influence the outcomes. This is because X3’s information is encoded in X1

and X2 jointly.
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Influence functions. To estimate the properties of interest, we use a tool from Fourier analysis,
i.e. influence functions [O’Donnell, 2014]. They measure how changing an input changes the
output of a model. Different influence functions are widely used in statistics, e.g. to design robust
estimators [Mathieu et al., 2022], and ML, e.g. to find important features [Heidari et al., 2021],
to evaluate how features induce bias [Ghosh et al., 2021], to explain contribution of datapoints on
predictions [Ilyas et al., 2022]. Here, we use them to estimate model properties.
Definition 4 (Influence functions). If Γ is a transformation of an input x ∈ X , the influence function
is defined as InfΓ(h) ≜ Px∼D[h(x) ̸= h(Γ(x))]. InfΓ(h) is called deterministic if the transformation
Γ is deterministic, and randomized if Γ randomized.

In general, deterministic influence functions are used in Boolean function analysis [O’Donnell,
2014]. In contrast, in Section 3, we express robustness, individual fairness, and group fairness with
randomized influence functions. We also show that the influence functions can be computed using
the Fourier coefficients of the model under audit (Equation (1)).

3 Active Fourier Auditor

In the black-box setting, the access to the model h is limited by the query oracle, accessible to the
auditor. The auditor’s objective is to estimate the property µ through interaction with this oracle. The
definition of the property estimator relies on the information made available to the auditor during
this interaction. In the context of auditing with model reconstruction [Yan and Zhang, 2022], the
auditor is denoted as µ̂ : H× B → R. Here, the auditor has access to an unlabeled pool and applies
active learning techniques (e.g. CAL algorithm) to query samples. This process uses the additional
information given by the hypothesis class where the model h lives. Following the reconstruction
phase, the auditor has an approximate model ĥ of true model h, enabling estimation of the property
via plug-in estimator µ̂(ĥ).

Now, we present a novel non-parametric black-box auditor AFA that assumes no knowledge of the
model class and the data-generating distribution. Unlike the full model-reconstruction-based auditors,
AFA uses Fourier expansion and adaptive queries to estimate the robustness, Individual Fairness
(IF), and Group Fairness (GF) properties of a model h. In this setting, the auditor is defined as
µ̂ : Fµ × B → R, where Fµ represents the set of Fourier coefficients upon which the property µ
depends. First, we show that property estimation with model reconstruction always incurs higher
error. Then, we show that robustness, IF, and GF for binary classifiers can be computed using Fourier
coefficients of h. Finally, we compute the Fourier coefficients and thus, estimate the properties at
once (Algorithm 1). We begin by defining a PAC-agnostic auditor that we realise with AFA.
Definition 5 (PAC-agnostic auditor). Let µ be a computable distributional property of model h. An
algorithmA is a PAC-agnostic auditor if for any ϵ, δ ∈ (0, 1), there exists a functionm(ϵ, δ) such that
∀m ≥ m(ϵ, δ) samples drawn fromD, it outputs an estimate µ̂m satisfying P(|µ̂m−µ| ≤ ϵ) ≥ 1− δ.

Remark. µ(h) is a computable property if there exists a (randomized) algorithm, such that when
given access to (black-box) queries, it outputs a PAC estimate of the property µ(h) [Kearns et al.,
2018]. Any distributional property, including robustness, individual fairness and group fairness, is
computable given the existence of the uniform estimator.

3.1 The Cost of Reconstruction

The naive way to estimate a model property is to reconstruct the model and then use a plug-in
estimator [Yan and Zhang, 2022]. However, this requires an exact knowledge of the model class and
comes with an additional cost of reconstructing the model before property estimation. For group
fairness, we show that the reconstruct-then-estimate approach induces significantly higher error than
the reconstruction error, while the exact model reconstruction itself is NP-hard [Jagielski et al., 2020].

Proposition 2. If ĥ is the reconstructed model from h, then

|µGFair(ĥ)− µGFair(h)| ≤ min

{
1,

Px∼D[ĥ(x) ̸= h(x)]

min(Px∼D[xA = 1],Px∼D[xA = −1])

}
.

Proposition 2 connects the estimation error and the reconstruction error before plugging in the
estimator. It also shows that to have a sensible estimation the reconstruction algorithm needs to

5



achieve an error below the proportion of minority group, which can be significantly small requiring
high sample complexity. The proof is deferred to Appendix A. This motivates an approach that avoids
model reconstruction by computing only the right components of the model expansion. To capture
the information relevant to estimating our properties of interest, we will represent them in terms of
Fourier coefficients given in the model decomposition. Then we aim to adaptively estimate larger
Fourier coefficients in contrast to model reconstruction method requiring to recovering all the Fourier
coefficients.

3.2 Model Properties with Fourier Expansion

Throughout the rest of this paper, we denote by {ψS}S⊆[n] the basis derived from Proposition 1. In
this section, we express the model properties of h using its Fourier coefficients. The detailed proofs
are deferred to Appendix B.

a. Robustness. Robustness of a model h measures its ability to maintain its performance when new
data is corrupted. Auditing robustness requires a generative model to imitate the corruptions, which is
modelled by the perturbation mechanism (Definition 1). As we focus on the Boolean case, the worst
case perturbation Γρ is the protocol of flipping vector coordinates with a probability ρ. Specifically, a
corrupted sample y is generated from x such that for every component, we independently set yi = xi
with probability 1+ρ

2 and yi = −xi with probability 1−ρ
2 . This perturbation mechanism leads us to

the ρ-flipping influence function.
Definition 6 (ρ-flipping Influence Function). The ρ-flipping influence function of any model h is
defined as Infρ(h) ≜ Px∼D,y∼Γρ(x)[h(x) ̸= h(y)].

For a Boolean classifier, we further observe that Infρ(h) = Ex∼D, y∼Nρ(x)[h(x)h(y)]. This allows
us to show that the robustness of h under Γρ perturbation is measured by ρ-flipping influence function,
and thus, can be computed using Fourier coefficients of h.
Proposition 3. Robustness of h under the Γρ flipping perturbation is equivalent to the ρ-flipping
influence function, and thus, can be expressed as

µRob(h) = Infρ(h) =
∑
S⊆[n]

ρ|S|ĥ(S)2. (2)

b. Individual Fairness (IF). To demonstrate the universality of our approach, we express IF with the
model’s Fourier coefficients. We consider the perturbation mechanism Γ = Γρ,l(·) that independently
flips uniformly l vector coordinates with a probability 1+ρ

2 . Thus, we consider a neighbourhood with
Ex′∼Γρ,l(x)[dX (x,x′)] ≤ 1

2 (1 + ρ)l around each sample x as the similar set of individuals. This
perturbation mechanism leads us to the (ρ, l)-flipping influence function.
Definition 7 ((ρ, l)-flipping influence function). The (ρ, l)-flipping influence function of any model h
is defined as Infρ,l(h) = Px∼D,y∼Nρ,l(x)[h(x) ̸= h(y)].

We leverage (ρ, l)-flipping influence function to express IF of h in terms of its Fourier coefficients
(Proposition 4).
Proposition 4. Individual fairness defined with respect to the Γρ,l perturbation is equivalent to the
(ρ, l)-flipping influence function, and thus, can be expressed as

µIFair(h) = Infρ,l(h) =
∑
S⊆[n]

ρ|Sl|ĥ(S)2 , (3)

where Sl denotes the power sets for which l features change.

Unifying robustness and IF: The Characteristic Function. It is worth noting that IF is sim-
ilar to robustness, differing only by a single degree of freedom, i.e. the number of flipped
directions l. Specifically, from Equation (2) and (3), we observe that both the properties as
µ(h) =

∑
S⊆[n] char(S, µ·)ĥ(S)

2, such that char(S, µRob) = ρ|S|, and char(S, µIFair) = ρ|Sl|.
We call char as the characteristic function of the property.

c. Group Fairness (GF). Now, we focus on Group Fairness which aims to ensure similar predictions
for different subgroups of population [Barocas et al., 2023]. We focus on Statistical Parity (SP)
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as the measure of deviation from GF [Feldman et al., 2015]. To quantify SP, we propose a novel
membership influence function.
Definition 8 (Membership influence function). If A denotes a sensitive feature, we define the
membership influence function w.r.t. A as the conditional probability InfA(h) ≜ Px,y∼D

[
h(x) ̸=

h(y)
∣∣∣xA = 1, yA = −1

]
.

InfA(h) is the conditional probability of the change in the outcome of h due to change in group
membership of samples from D. In other words, it expresses the amount of independence between
the outcome and group membership.

Note that the membership influence function is a randomised version of the deterministic influence
function in [O’Donnell, 2014]. If we denote the transformation of flipping membership, i.e. sensitive
attribute of x, fA(x), the classical influence function is Infdet

A = Px∼D[h(x) ̸= h(fA(x))]. The
limitation of this deterministic function is that given x ∼ D the transformed vector fA(x) may not
represent a sample from D. Thus, it fails to encode the information relevant to SP, whereas the
proposed membership influence function does it correctly as shown below.
Proposition 5. Statistical parity of h w.r.t a sensitive attribute A and distribution D is the root of the
second order polynomial Pĥ(X), i.e. α(1−α)X2−ĥ(∅)(1−2α)X−

∑
S⊆[n],S∋Aĥ(S)

2− (1−ĥ2(∅))
2 ,

where α = P
x∼D

[xA = 1] and ĥ(∅) is the coefficient of empty set.

Summary of the Fourier Representation of Model Properties. Robustness and individual fairness
have the same Fourier pattern. They depend on all the Fourier coefficients of the model but differ
only on their characteristic functions. In contrast, statistical parity of a sensitive feature A depends
only on the Fourier coefficient of that sensitive feature ĥ({A}) and the Fourier coefficient of the
empty set ĥ(∅).

3.3 NP-hardness of Exact Computation

We have shown that the exact computation of robustness and individual fairness depends on all Fourier
coefficients of the model. Since each Fourier coefficient of h is given by ĥ(S) = E

x∼D
[h(x)ψS(x)],

exactly computing a single Fourier coefficient takesO(|X |) time. Additionally, the number of Fourier
coefficients to compute to estimate robustness and individual fairness is exponential in the dimension
of the input domain (2n). Thus, exactly computing robustness and individual fairness requires
O(2n|X |) time. This gives us an idea about the computational hardness of the exact estimation
problem. Now, we prove estimating large Fourier coefficients to be NP-complete.

Theorem 1. Let Q ≜ {x, h(x)} be the set of input samples sent to h and the predictions obtained.
Given τ ∈ R≥0, exactly computing all the τ -significant Fourier coefficients of h is NP-complete.

Proof Sketch. For a set of queries Q and for each power set S, Fourier coefficient is given by
ĥ(S) = 1

|Q|
∑

(x,h(x))∈Q h(x)ψS(x). Maximizing the Fourier coefficient |ĥ(S)| is equivalent to
maximizing the agreement or disagreement between h and the sign of ψS for each truth assignment.
Alternatively, maximizing |ĥ(S)| is equivalent to finding a truth assignment that maximizes the
number of true clauses in a CNF, where each clause is a disjunction of h(x) and the sign of ψS(x),
and the CNF includes all such clauses for all x ∈ Q. This is known as the Max2Sat (maximum
two satisfiability) problem, which is known to be NP-complete. Hence, we conclude that finding
large Fourier coefficients is also NP-complete. This result shows that the exact computation of the
Fourier coefficients for our properties is NP-hard. This has motivated us to design AFA, which we
later proved to be an (ϵ, δ)-PAC agnostic auditor.

3.4 Algorithm: Active Fourier Auditor (AFA)

We have shown that finding significant Fourier coefficients can be an NP-hard problem. In this
section, we propose AFA (Algorithm 1) that takes as input a restricted access of q > 0 queries
from the data-generating distribution and requests labels from the black-box oracle of h (Line 2).
Those queries enable us to find the squares of significant Fourier coefficients and estimate them
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Algorithm 1 Active Fourier Auditor (AFA)

1: Input: Sensitive attribute A, Query access to h, τ, δ ∈ (0, 1), ϵ← τ2/4
2: {xk, h(xk)}k∈[q] ← BLACKBOXQUERY(h, q)
3: Lh ← GOLDREICHLEVIN(h, q, τ, δ)
4: µ̂(h)←

∑
S∈Lh

char(µ, S)ĥ(s)2

5: µ̂GF (h)← P−1

ĥ
(0)

6: return {µ̂RB , µ̂IF , µ̂GF }

simultaneously. The list of the significant Fourier coefficients Lh of the model h contains both
subsets and their estimated Fourier weights. We adopt a Goldreich-Levin (GL) algorithm based
approach [Goldreich and Levin, 1989, Kushilevitz and Mansour, 1993] to find such list of significant
Fourier coefficients (Figure 2). Since estimating the properties – robustness, individual fairness and
group fairness – depend on estimating those Fourier coefficients, we plug in their computed estimates
and output an (ϵ, δ)-PAC estimate of the properties (Line 4 and 5).

Algorithmic Insights. To compute the significant Fourier coefficients, we start with the power set.
Now, we denote the subsets containing an element i as Bi(X ), and the subsets not containing i as
B¬i(X ). Let Υ denote a trajectory starting from the set of all Fourier coefficients in the binary search
tree of Fourier coefficients (Figure 1). The question is that from the power set, how can we design a
Υ to reach subsets of Fourier coefficients above a given threshold τ?

In AFA, we dynamically create “buckets" of coefficients for this purpose. Each bucketBS,k, represents
a collection of power sets, such that BS,k ≜ {S ∪ T | T ⊆ {k + 1, . . . , n}}. The corresponding
weight is quantified byWS,k ≜

∑
T⊆{k+1,...,n} ĥ(S ∪ T )2. In this context,WS,k measures the total

contribution of the Fourier coefficients associated with the elements in the bucket BS,k. The bucket
is initialized at B∅,0, which represents the weight of the power set of J1, nK. By Parseval’s identity,
we know that the weight of the power set is 1, i.e.

∑
S∈P(X )ĥ(S)

2 = 1. The bucket BS,k is then
split into two buckets of the same cardinal: BS,k−1 and BS∪{k+1},k+1. We then estimate the weight
of each bucket by sending black-box queries to the model h. The algorithm discards the bucket
whose weight is below the threshold. When all the buckets collected at a round consist of exactly one
element each, i.e. we reach the leaves, the algorithm halts and the buckets collected in this process
are subsets of J1, nK that have large Fourier coefficients.

Extension to Continuous Features. Heidari et al. [2021] extend Proposition 1 to encompass a
general Euclidean space. We use the generic construction of Fourier coefficients in the Euclidean
space to extend our computations for feature spaces involving both categorical and continuous
features. Rest of our computations follow naturally.

Extension to Multi-class Classification. We also deploy AFA for multi-class classification, where
Y consists of multiple labels. In this setting, the concept of group fairness, i.e. µGFair(h) ≜
maxy∈Y |Px∼D[h(x) = y|xA = 1]−Px∼D[h(x) = y|xA = −1]|, is called multicalibration [Dwork
et al., 2023]. Here, we construct Fourier expansions of the model for each pair of labels. Then, we
use Proposition 5 to compute the group fairness for each of the expansions, and finally, take the
maximum to estimate multi-group fairness of h. Formal details are deferred to Appendix D. We
experimentally evaluate both the extensions.

4 Theoretical Analysis

Upper Bounds on Sample Complexity.
Theorem 2 (Upper bounds for Robustness and Individual Fairness). AFA is a PAC-agnostic auditor

for robustness and individual fairness with sample complexity O
(
char(L,µ)(1−4char(L̄,µ))

ϵ

√
log 2

δ

)
.

Here, char(L, µ·) ≜
∑
S∈L

char(S, µ·) and char(L̄, µ·) ≜
∑
S∈L̄

char(S, µ·).

Theorem 3 (Upper bounds for Group Fairness). AFA yields an (ϵ, δ)-PAC estimate of µGFair(h) if it
has access to predictions of O

(
1
ϵ2 log

4
δ

)
input samples.
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Figure 2: AFA begins with the set of all Fourier coefficients, with weight 1, which is above the
threshold τ < 1. It proceeds by splitting the bucket and verifies at each level of the tree the weight
of the node. If the weight is below the threshold, the algorithm halts. Otherwise, it continues to
expand, yielding a set of (informative) trajectories Υ, the subsets with large Fourier coefficients are
{BΥ1

(X ), · · · ,BΥk
(X )}.

We prove that AFA achieves an optimal rate of Õ( 1ϵ
√
log 1

δ ) for robustness and individual fairness

and an Õ( 1
ϵ2 log

1
δ ) rate for group fairness. Consequently, under the same number of samples, AFA

exhibits a higher error rate for group fairness compared to robustness and individual fairness, as
group fairness involves solving a quadratic equation while the others correspond to their respective
influence functions. The proofs of these theorems are in Appendix C.
Corollary 1. AFA yields an (ϵ, δ)-PAC estimate of robustness, individual fairness, and group fairness
in time complexity poly

(
1
ϵ , n
)

using:

• O
(
char(L,µ)(1−4char(L̄,µ))

ϵ

√
log 2

δ

)
queries for robustness and individual fairness.

• O
(

1
ϵ2 log

4
δ

)
queries for group fairness.

Where, char(L, µ·) ≜
∑
S∈L

char(S, µ·) and char(L̄, µ·) ≜
∑
S∈L̄

char(S, µ·).

Rethinking Manipulation-proof. Yan and Zhang [2022] first propose manipulation-proof auditing
that primarily revolves around fully reconstructing the model, and defines the manipulation-proof
subclass using a version space. However, this approach may overlook numerous other models that,
while having a significant probability mass in areas where they disagree with the black-box model,
exhibit similar behavior to the black-box model w.r.t. the property. In contrast, we propose to capture
all those functions by defining only the essential information required for auditing.
Definition 9 (Fourier strategic manipulation-proof). Let h be a model that admits a Fourier expansion
as in h =

∑
S⊆[n] ĥ(S)ψS . We say that an auditor A achieves optimal manipulation-proof for

estimating a (distributional) property µ when A is a PAC-agnostic auditor (Definition 5) and outputs
an exponential-size subclass of functions that satisfies ∀h, h′ ∈M,P (|µ(h)− µ(h′)| ≥ ϵ) ≤ δ.
Theorem 4 (Manipulation-proof of AFA). AFA achieves optimal manipulation-proof for estimating
statistical parity with manipulation-proof subclass of size 2n−2.

Lower Bounds without Manipulation-proof. In the following, we propose a lower bound for
yielding a PAC estimate of the statistical parity with no manipulation-proof constraint. Additionally,
we assume the auditing algorithm can sequentially query the black-box model with informative
queries. The proof is in Appendix C.4.
Theorem 5 (Lower bound without manipulation-proof). Let ϵ ∈ (0, 1), δ ∈ (0, 1/2]. We aim to obtain
(ϵ, δ)-PAC estimate of SP of model h ∈ H, where the hypothesis classH has VC dimension d. For any
auditing algorithm A, there exists an adversarial distribution realizable by the model to audit such
that with Ω̃( δ

ϵ2 ) samples, A outputs an estimate µ̂ of µGFair(h
∗) with P[|µ̂− µGFair(h

∗)| > ϵ] > δ.

9



Table 2: Average estimation error for statistical parity across different ML models. ‘—’ denotes when
a method cannot scale to the model. The best method is in bold.

Dataset COMPAS Student Drug

Model LR MLP RF LR MLP RF LR MLP RF

µCAL 0.312 — — — — — — — —
Uniform 0.077 0.225 0.077 0.132 0.225 0.077 0.254 0.116 0.127
AFA 0.006 0.147 0.006 0.030 0.147 0.006 0.220 0.040 0.120
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Figure 3: Error (left) and running time (right) of different auditors in estimating statistical parity of
COMPAS in LR.

Table 3: Estimation error for robustness and individual fairness by Uniform and AFA. Bold case
means lower error.

Robustness Individual Fairness

ρ Uniform AFA Uniform AFA

0.25 0.033 0.016 0.036 0.029
0.30 0.333 0.078 0.309 0.047
0.35 0.299 0.139 0.248 0.092

Our results extend the existing sample complexity results with model reconstruction [Yan and Zhang,
2022], and also provide a reference of optimality for upper bounds. We highlight the gap from the
upper bound established in Theorem 3, attributed to the lack of the manipulation proof.

5 Empirical Performance Analysis

In this section, we evaluate the performance of AFA in estimating multiple models’ group fairness,
robustness, and individual fairness. Below, we provide a detailed discussion of the experimental
setup, objectives, and results.

Experimental Setup. We conduct experiments on COMPAS [Angwin et al., 2016], student per-
formance (Student) [Cortez and Silva, 2008], and drug consumption (Drug) [Fehrman et al., 2019]
datasets. The datasets contain a mix of binary, categorical, and continuous features for binary and
multi-class classification.

We evaluate AFA on three ML models: Logistic Regression (LR), Multi-layer Perceptron (MLP),
and Random Forest (RF). The ground truth of group fairness, individual fairness, and robustness is
computed using the entire dataset as in [Yan and Zhang, 2022].

For group fairness, we compare AFA with uniform sampling method, namely Uniform, and the
active fairness auditing algorithms [Yan and Zhang, 2022, Algorithm 3], i.e. CAL and its variants
µCAL and randomized µCAL, which requires more information about the model class than black-box
access. We report the best variant of CAL with the lowest error. For robustness and individual fairness,
we compare AFA with Uniform. Each experiment is run 10 times and we report the averages. We
refer to Appendix E.1 for details.

Our empirical studies have the following objectives:
1. How accurate AFA is with respect to the baselines to audit robustness, individual fairness, and
group fairness for different models and datasets?
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2. How sample efficient and computationally efficient AFA is with baselines in auditing distributional
properties?

Accurate, Sample Efficient, and Fast Estimation of Group Fairness.

In Table 2, we demonstrate the estimation error of group fairness by different methods across datasets
and models. AFA yields the lowest estimation error, hence a better method, than all baselines in all
nine configurations of models and datasets. Among baselines, CAL cannot estimate group fairness
beyond COMPAS on LR, due to the requirement of a finite version space, which is provided only for
COMPAS on LR. Uniform, albeit simple to implement, invariably demonstrates erroneous estimate.
Thus, AFA is the most accurate auditor for group fairness w.r.t. baselines.

Figure 3 (left) demonstrates the sample efficiency of different methods for statistical parity. AFA
requires the lowest number of samples to reach almost zero estimation error. Thus, AFA is sample
efficient than other methods. Figure 3 (right) demonstrates the corresponding runtimes, where AFA is
the second fastest method after Uniform and faster than CAL. Therefore, AFA yields a well balance
between accuracy, sample efficiency, and running time among baselines.

Accurate Estimation of Robustness and Individual Fairness. Table 3 demonstrates the estimation
error for robustness and individual fairness achieved by AFA and Uniform with different ρ’s and 1000
samples from COMPAS dataset and LR model. AFA yields lower estimation error than Uniform
across different models, and for higher values of ρ, the improvement due to AFA increases. Intuitively,
Uniform samples IID from the space of input features, perturbs samples uniformly randomly, then
queries the black-box model to obtain labels of perturbed samples to estimate properties. In contrast,
AFA queries samples recursively to cover the feature space and estimates large Fourier coefficients
without perturbing the input features. This also reflects the theoretical sample complexity results
for Uniform and AFA, i.e. O(1/ϵ2) and O(1/ϵ), respectively. Thus, AFA is more accurate than
Uniform to estimate robustness and individual fairness.

6 Conclusion and Future Work

We propose AFA, a Fourier-based model-agnostic and black-box approach for universally auditing an
ML model’s distributional properties. We focus on three properties: robustness, individual fairness,
and group fairness. We show that the significant Fourier coefficients of the black-box model yield
a PAC approximation of all properties, establishing AFA as a universal auditor of ML. Empirically,
AFA is more accurate, and sample efficient, while being competitive in running time than existing
methods across datasets. In the future, we aim to extend AFA to estimate distributional properties
other than the three studied in this paper.
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A The cost of auditing with reconstruction: Proof of Proposition 2

Proposition 2. If ĥ is the reconstructed model from h, then

|µGFair(ĥ)− µGFair(h)| ≤ min

{
1,

Px∼D[ĥ(x) ̸= h(x)]

min(Px∼D[xA = 1],Px∼D[xA = −1])

}
. (4)

Proof. Step 1. We begin the proof by lower bounding the probability of yielding different predictions
by h and ĥ.

P
x∼D

[ĥ(x) ̸= h(x)] = P
x∼D

[ĥ(x) ̸= h(x)|xA = 0] P
x∼D

[xA = 0] + P
x∼D

[ĥ(x) ̸= h(x)|xA = 1] P
x∼D

[xA = 1]

≥ p
(

P
x∼D

[ĥ(x) ̸= h(x)|xA = 0] + P
x∼D

[ĥ(x) ̸= h(x)|xA = 1]
)

The first equality is a consequence of the law of total probability. The last inequality holds as we
define p ≜ min{ P

x∼D
[xA = 1], P

x∼D
[xA = 0]}.

Since p ̸= 0, we get

1

p
P

x∼D
[ĥ(x) ̸= h(x)] ≥ P

x∼D
[ĥ(x) ̸= h(x)|xA = 0]︸ ︷︷ ︸

Term 1

+ P
x∼D

[ĥ(x) ̸= h(x)|xA = 1]︸ ︷︷ ︸
Term 2

. (5)

Step 2. We observe that the Term 2 above can be rewritten as

P
x∼D

[ĥ(x) = 1|xA = 1] = P
x∼D

[ĥ(x) = 1, h(x) = −1|xA = 1] + P
x∼D

[ĥ(x) = 1, h(x) = 1|xA = 1]

≤ P
x∼D

[ĥ(x) ̸= h(x)|xA = 1] + P
x∼D

[h(x) = 1|xA = 1]

The last inequality is true due to the fact that ĥ(x) = 1, h(x) = −1 is a sub-event of the event
h(x) ̸= ĥ(x).

Now, by symmetry of h and ĥ, we get∣∣∣∣∣ P
x∼D

[ĥ(x) = 1|xA = 1]− P
x∼D

[h(x) = 1|xA = 1]

∣∣∣∣∣≤ P
x∼D

[ĥ(x) ̸= h(x)|xA = 1] (6)

Similarly, working further with the Term 1 yields∣∣∣∣∣ P
x∼D

[ĥ(x) = 1|xA = 0]− P
x∼D

[h(x) = 1|xA = 0]

∣∣∣∣∣≤ P
x∼D

[ĥ(x) ̸= h(x)|xA = 0] (7)

Step 3. Finally, using triangle inequality yields

|µ(ĥ)− µ(h)| ≤

∣∣∣∣∣ P
x∼D

[ĥ(x) = 1|xA = 0]− P
x∼D

[h(x) = 1|xA = 0]

∣∣∣∣∣+
∣∣∣∣∣ P
x∼D

[ĥ(x) = 1|xA = 1]− P
x∼D

[h(x) = 1|xA = 1]

∣∣∣∣∣
≤ P

x∼D
[ĥ(x) ̸= h(x)|xA = 0] + P

x∼D
[ĥ(x) ̸= h(x)|xA = 1]

≤ 1

p
P

x∼D
[ĥ(x) ̸= h(x)]

The second step comes from inequalities (6) and (7), while the last one is due to inequality (5).
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B Computing Model’s Properties with Fourier Coefficients: Proofs of
Section 3.2

B.1 Robustness and Individual Fairness

Proposition 3. Let ρ ∈ [−1, 1].
The robustness of a binary classifier h : {−1, 1}n → {−1, 1} under the Γρ flipping perturbation is
equivalent to the ρ-flipping influence function, and thus, can be expressed as

µRob(h) = Infρ(h) =
∑
S⊆[n]

ρ|S|ĥ(S)2.

Proof.

Step 0: Robustness in terms of a composition of expectations over the perturbation Γρ and D.
By the definition of robustness, we have:

Infρ(h) = P
x∼D

y∼Γρ(x)

[h(x) ̸= h(y)]

= E
x∼D

y∼Γρ(x)

[h(x)h(y)]

Where the second equation comes from the fact that h takes values in {−1, 1}.
Step 1: Robustness via operator approach. We commence the proof by defining the robust operator
Tρ : {−1, 1}n → R as

Tρh(x) ≜ E
y∼Nρ(x)

[h(y)] .

Given the expression of the influence function in step 0, we have:

Infρ(h) = E
x∼D

y∼Nρ(x)

[h(x)h(y)]

= E
x∼D

[h(x) E
y∼Nρ(x)

h(y)]

= E
x∼D

[h(x)Tρh(x)]

≜ ⟨ h, Tρh⟩D

The second equation comes from the linearity of the expectation, and the last step comes from the
definition of the inner product that depends on the distribution D.

Now, we expand both the model h and the operator Tρh in the Gram-Schmidt basis given by Heidari
et al. [2021]:

Infρ(h) = ⟨
2n∑

i1=1

ĥ(Si1)ψSi1
(·),

2n∑
i2=1

ĥ(Si2) E
y∼Nρ(·)

[ψSi2
(y)]⟩D

=

2n∑
i1=1

2n∑
i2=1

ĥ(Si1)ĥ(Si2)⟨ ψSi1
, fρSi2

⟩D

Where, for all x ∈ {−1, 1}n and for all i ∈ {1, · · · , 2n}, we used the following notation: fρSi
(x) ≜

E
y∼Nρ(x)

[ψSi
(y)].
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Step 2: Reduction of the robust operator to basis elements operators.

Let x ∈ X ,

fρSi
(x) = E

y∼Nρ(x)
[ψSi

(y)]

= E
y∼Nρ(x)

[χSi
(y)]−

i−1∑
j=1

αi,j E
y∼Nρ(x)

[ψSj
(y)]

= E
y∼Nρ(x)

[
∏
k∈Si

yk]−
i−1∑
j=1

αi,jf
ρ
Sj
(x)

=
∏
k∈Si

E
y∼Nρ(x)

[yk]−
i−1∑
j=1

αi,jf
ρ
Sj
(x)

=
∏
k∈Si

ρxk −
i−1∑
j=1

αi,jf
ρ
Sj
(x)

The second inequality comes from replacing each basis element from the Gram-Schmidt orthogonal-
ization process with its expression in terms of parity functions. In the fourth equation, the expectation
over each component is computed by the perturbation process Γρ, that is for each k in Si, xk is
flipped with probability 1−ρ

2 .

fρSi
(x) = ρ|Si|χSi

(x)−
i−1∑
j=1

αi,jf
ρ
Sj
(x)

= ρ|Si|ψSi
(x) + ρ|Si|

i−1∑
j=1

αi,jψSj
(x)−

i−1∑
j=1

αi,jf
ρ
Sj
(x)

= ρ|Si|ψSi
(x) +

i−1∑
j=1

αi,j(ρ
|Si|ψSj

(x)− fρSj
(x)) .

Now, we compute the inner product left in step 1 to conclude the proof:

⟨ ψSi
, fρSk
⟩D = ⟨ ψSi

, ρ|Sk|ψSk
+

k−1∑
j=1

αk,j(ρ
|Sk|ψSj

− fρSj
)⟩D

= ρ|Sk|δi,k +

k−1∑
j=1

δj,kαk,j(ρ
|Sk| − ⟨ ψSi , f

ρ
Sj
⟩D)

⟨ ψSi
, fρSk
⟩D = ρ|Sk|δi,k

Where the last step comes from the fact that j < k.

Step 4: Conclusion.

Infρ(h) =

2n∑
i1=1

2n∑
i2=1

ĥ(Si1)ĥ(Si2)⟨ ψSi1
, fρSi2

⟩D

=

2n∑
i1=1

2n∑
i2=1

ĥ(Si1)ĥ(Si2)ρ
|Si1

|δi1,i2

17



=

2n∑
i=1

ρ|Si|ĥ(Si)
2

=
∑
S⊆[n]

ρ|S|ĥ(S)2

We deduce the Fourier pattern in robustness property:

µRob(h) =
∑
S⊆[n]

ρ|S|ĥ(S)2

The proof for individual fairness proceeds similarly by considering the operator Tρ : {−1, 1}n → R,
defined as:

Tρ,lh(x) = Ey∼Nρ,l(x)[h(y)]

B.2 Group Fairness: Statistical Parity

We first establish the relationship between group fairness and Fourier coefficients.
Lemma 1. If InfA(h) denotes the membership influence function for the sensitive attribute A of the
model h, we have the following result that relates the influence function to the model’s h Fourier
coefficients:

InfA(h) =
∑
S⊆[n]
S∋A

ĥ(S)2

Proof. The membership influence function for the sensitive attribute A is given by:

InfA(h) = P
x∼D+

y∼D−

[h(x) ̸= h(y)]

This function is closely related to the Laplacian of the target model in the direction of the sensitive
attribute A, defined as:

LAh(x,y) :=
h(x)− h(y)

2
,∀(x,y) ∈ (X+,X−)

Since h takes values in {−1, 1}, one can see that |LAh(x,y)|2 = 1{h(x)̸=h(y)}.

By taking the expectation over the left and right part:

∥LAh∥2D+,D− = E
x∼D+

y∼D−

[LAh(x,y)
2] = InfA(h)

∀(x,y) ∈ X+ ×X− : LAh(x,y) =
1

2

∑
S⊆[n]

ĥ(S)ψS(x)−
1

2

∑
S⊆[n]

ĥ(S)ψS(y)

=
1

2

∑
S⊆[n]
S∋A

ĥ(S)ψS(x) +
1

2

∑
S⊆[n]
S ̸∋A

ĥ(S)ψS(x)

− 1

2

∑
S⊆[n]
S∋A

ĥ(S)ψS(y)−
1

2

∑
S⊆[n]
S ̸∋A

ĥ(S)ψS(y)

∀(x,y) ∈ X+ ×X− : LAh(x, ,y) =
1

2

∑
S⊆[n]
S∋A

ĥ(S)ψS(x)−
1

2

∑
S⊆[n]
S∋A

ĥ(S)ψS(y)

18



By Parseval identity, ∥LAh∥2D+,D− =
∑

S⊆[n]
S∋A

ĥ(S)2.

Hence,

InfA(h) = ∥LAh∥2D+,D− =
∑
S⊆[n]
S∋A

ĥ(S)2

Proposition 5. Statistical parity of h w.r.t a sensitive attribute A and distribution D is the root of the
second order polynomial

Pĥ(X) ≜ α(1− α)X2 − ĥ(∅)(1− 2α)X −
∑

S⊆[n],S∋A

ĥ(S)2 − (1− ĥ2(∅))
2

, (8)

where α = P
x∼D

[xA = 1] and ĥ(∅) is the coefficient of the empty set.

Proof. We use the following notation in the proof:

p = P
x∼D

[h(x) = 1]

α = P
x∼D

[X+] (probability of belonging to the first sensitive group)

µ+
GFair(h) = P

x∼D
[h(x) = 1|xA = 1]

µ−
GFair(h) = P

x∼D
[h(x) = 1|xA = −1]

We have,

µGFair(h) = µ+
GFair(h)− µ

−
GFair(h) (9)

By the law of total probability, we also have:

p = αµ+
GFair(h) + (1− α)µ−

GFair(h) (10)

We first express the membership influence function in terms of the statistical parity:

InfA(h) = P
x,x′∼D

[h(x) ̸= h(x′)|xA = 1, x′A = −1]

= P
x,x′∼D

[h(x) = 1, h(x′) = 0|xA = 1, x′A = −1] + P
x,x′∼D

[h(x) = −1, h(x′) = 1|xA = 1, x′A = −1]

= µ+
GFair(h)(1− µ

−
GFair(h)) + µ−

GFair(h)(1− µ
+
GFair(h))

= µ+
GFair(h) + µ−

GFair(h)− 2µ+
GFair(h)µ

−
GFair(h)

Hence, we have:

µ+
GFair(h) + µ−

GFair(h)− 2µ+
GFair(h)µ

−
GFair(h)− InfA(h) = 0

From equation 9, and equation 10, we have:

{
µ+
GFair(h) = p+ (1− α)µGFair(h)

µ−
GFair(h) = p− αµGFair(h)
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The expression becomes:

2α(1− α)µGFair(h)
2 + (1− 2p)(1− 2α)µGFair(h)− InfA(h) + 2p(1− p) = 0

The Fourier coefficient of the empty set is given by:

ĥ(∅) = E
x∼D

[h(x)]

= E
x∼D

[21{h(x)=1} − 1]

ĥ(∅) = 2 P
x∼D

[h(x) = 1]− 1

Since p = P
x∼D

[h(x) = 1], we get the desired result.

Corollary 2. If D is the uniform distribution, statistical parity is exactly the Fourier coefficient of the
sensitive attribute, i.e.

µGFair(h) = ĥ({A})

Proof.

µGFair(h) = | P
x∼D

[h(x) = y|x ∈ A+]− P
x∼D

[h(x) = y|x ∈ A−]|

= | P
x∼D

[h(x) = y|x ∈ A+]− 1

2
− P

x∼D
[h(x) = y|x ∈ A−] +

1

2
|

= |1
2

E
x∼D

[21{h(x)=1} − 1|x ∈ A+]− 1

2
E

x∼D
[21{h(x)=1} − 1|x ∈ A−]|

= |1
2

E
x∼D

[h(x)|x ∈ A+]− 1

2
E

x∼D
[h(x)|x ∈ A−]|

= |1
2

E
x∼D

[h(x)ψA(x)|x ∈ A+]− 1

2
E

x∼D
[h(x)ψA(x)|x ∈ A−]|

C Theoretical Analysis: Proofs of Section 4

C.1 Upper Bounds on Sample Complexity of AFA

Claim 1. Let {Ai}i∈I a finite set of events indexed by I. Then,

P
[⋂
i∈I

Ai

]
≥
∑
i∈I

P
[
Ai

]
− |I|+ 1

The proof is a consequence of the union bound.
Lemma 2 (Two-Sample Hoeffding’s Inequality). IfX1, ...Xm1

, X ′
1, ...X

′
m2

are iid random variables
taking values in [−1, 1] generating by the distribution D, such that

µ = E[X2], and µ̂ =
1

m1m2

m1∑
i=1

m2∑
j=1

XiX
′
j ,

then

P[|µ̂− µ| ≤ 4ϵ] ≥ 1− 2 exp
{
− m1m2ϵ

2

8

}
The proof is obtained by employing one sample Hoeffding inequality to the random variable Zi,j =
XiX

′
j .

20



Theorem 2 (Upper bounds for Robustness and Individual Fairness). Given ϵ ∈ (0, 1) and δ ∈ (0, 1],
AFA is a PAC-agnostic auditor for robustness and individual fairness with sample complexity

O
(char(L, µ)(1− 4char(L̄, µ))

ϵ

√
log

2

δ

)
.

Here, char(L, µ·) ≜
∑
S∈L

char(S, µ·) and char(L̄, µ·) ≜
∑
S∈L̄

char(S, µ·).

Proof.

Step 0. Let us define τ2 ≜ 4ϵ.

Let x1, · · · , xm1
, x′1, · · · , x′m2

are sampled i.i.d. from D, where m = m1 +m2 denotes the total
number of samples, and m1 and m2 to be the number of samples with xa = 1 and xA = −1,
respectively.

Let L denote the list of subsets exhibiting Fourier coefficients larger than τ .

Step 1. By definitions of char(S, µ·), and the results of Proposition 3 and 4, we unifiedly express
both the ‘true’ properties of h as

µ(h) =
∑

S⊆J1,nK

char(S, µ)ĥ(S)2

=
∑

S⊆J1,nK

char(S, µ)Ex,y∼D[h(x)h(y)ψS(x)ψS(y)] . (11)

Now, for any S ∈ L, we define an unbiased estimator of the squared Fourier coefficients as

ĥAFA(S)
2 ≜

1

m1m2

m1∑
i=1

m2∑
j=1

h(xi)h(x
′
j)ψS(xi)ψS(xj) . (12)

Hence, the estimators of these properties, i.e. robustness and individual fairness, takes the form

µ̂AFA ≜
1

m1m2

∑
S∈L

m1∑
i=1

m2∑
j=1

char(S, µ)h(xi)h(x′j)ψS(xi)ψS(xj) . (13)

Step 2. Using Equation (11) and (13), we express the estimation error as

|µ(h)− µ̂AFA| =

∣∣∣∣∣ ∑
S⊆J1,nK

char(S, µ)ĥ(S)2 −
∑
S∈L

char(S, µ)ĥAFA(S)2
∣∣∣∣∣

=

∣∣∣∣∣∑
S∈L

char(S, µ)ĥ(S)2 +
∑
S ̸∈L

char(S, µ)ĥ(S)2 −
∑
S∈L

char(S, µ)ĥAFA(S)2
∣∣∣∣∣

≤
∑
S ̸∈L

char(S, µ)ĥ(S)2 +
∑
S∈L

char(S, µ)
∣∣∣ĥ(S)2 − ĥAFA(S)2∣∣∣

≤ τ2
∑
S ̸∈L

char(S, µ) +
∑
S∈L

char(S, µ)
∣∣∣ĥ(S)2 − ĥAFA(S)2∣∣∣ . (14)

The penultimate inequality is due to the fact that |x + y| ≤ |x| + |y| for all x, y ∈ R. The last
inequality is by the definition of L, i.e. ∀S ⊆ J1 , nK : S ̸∈ L implies that |ĥ(S)| ≤ τ . AFA gets
access to this list of subsets L due to the Goldreich-Levin algorithm.

Step 3. Now, we leverage Equation (14), to derive an PAC estimation bound for robustness and
individual fairness. Specifically,

P
[
|µ(h)− µ̂AFA| ≥ ϵ

]
≤ P

[∑
S∈L

char(S, µ)|ĥ(S)2 − ĥAFA(S)2| ≥ ϵ− τ2char(L̄, µ)
]

(15)
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Here, we denote by char(L, µ) the sum
∑

S∈L char(S, µ) and char(L̄, µ) the sum∑
S ̸∈L char(S, µ).

Step 4. Now, by consecutively applying Claim 1 and Lemma 2, we get an upper bound on the
estimation error of the squared Fourier coefficients in L.

P
[ ⋂
S∈L

{∣∣∣ĥ(S)2 − ĥAFA(S)2∣∣∣ ≤ 4ϵ
}]
≥
∑
S∈L

P
[∣∣∣ĥ(S)2 − ĥAFA(S)2∣∣∣ ≤ 4ϵ

]
−|L|+ 1

≥ |L| − 2|L| exp
{
−m1m2ϵ

2

8

}
−|L|+ 1

≥ 1− 2|L| exp
{
−m1m2ϵ

2

8

}

This result naturally yields a bound on
∑

S∈L char(S, µ)
∣∣∣ĥ(S)2 − ĥAFA(S)2∣∣∣.

P
[∑
S∈L

char(S, µ)
∣∣∣ĥ(S)2 − ĥAFA(S)2∣∣∣ ≥ 4char(L, µ)ϵ

]
≤ P

[ ⋃
S∈L

{∣∣∣ĥ(S)2 − ĥAFA(S)2∣∣∣ ≥ 4ϵ
}]

≤ 2|L| exp
{
−m1m2ϵ

2

8

}
The last inequality is due to the union bound.

Step 5. Finally, using the fact that 4ϵ = τ2 and properly substituting to ensure 4char(L, µ)ϵ ≥
ϵ− τ2char(L̄, µ), we get

P
[∑
S∈L

char(S, µ)
∣∣∣ĥ(S)2 − ĥAFA(S)2∣∣∣ ≥ ϵ− τ2char(L̄, µ)]≤ 2|L| exp

{
− m1m2ϵ

2

128char(L, µ)2(1− 4char(L̄, µ))2

}
Hence, by Equation (15),

P
[
|µ(h)− µ̂AFA| ≥ ϵ

]
≤ 2|L| exp

{
− m1m2ϵ

2

128char(L, µ)2(1− 4char(L̄, µ))2

}
By the definition of the sample complexity, the probability in the RHS has to be less than a given δ.
Thus,

m1m2 ≥
128char(L, µ)2(1− 4char(L̄, µ))2

ϵ2
log

2|L|
δ

.

Since L ≥ 1 and m = m1 +m2 ≥ 2
√
m1m2, we conclude

m ≥ 8
√
2char(L, µ)(1− 4char(L̄, µ))

ϵ

√
log

2

δ
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Theorem 3 (Upper bounds for Group Fairness). Given ϵ ∈ (0, 1) and δ ∈ (0, 1], AFA yields an
(ϵ, δ)-PAC estimate of µGFair(h) if it has access to predictions of

O
(

1

ϵ2
log

4

δ

)
input samples.

Proof. Step 1. First, we aim to express the group fairness as a root of the second-order polynomial in
Proposition 5, and thus, to check when this approach is valid.

We observe that the discriminant of this second order polynomial is

∆ = (2p+ 1)2(2α− 1)2 + 8α(1− α)InfA − 1

= 4α2 + 4p2 − 4α− 4p+ 1 + 8α(1− α)InfA
= 4α2 + 4p2 − 4α− 4p+ 1 + 8α(1− α)

∑
S⊆J1,nK

ĥ2(S)

= 4α2 + 4p2 − 4α− 4p+ 1 + 8α(1− α)
∑
S∈L

ĥ2(S) + 8α(1− α)
∑
S ̸∈L

ĥ2(S)

≥ 4α2 + 4p2 − 4α− 4p+ 1 + 8α(1− α)
∑
S∈L

ĥ2(S)

≥ 4α2 + 4p2 − 4α− 4p+ 1 + 8|L|τ2α(1− α)
≥ 4α2 + 4p2 − 4α− 4p+ 1 + 32ϵα(1− α)

= 4(1− 8ϵ)(α− 1

2
)2 + 4(p− 1

2
)2 − (1− 8ϵ)

For ϵ > 1
8 , ∆ is positive. Thus, µGFair(h), i.e. the zero of a second-order polynomial, can be

expressed as

µGFair(h) =

−(1− 2α)(1− 2p) +

(
4α2 + 4p2 − 4α− 4p+ 1 + 8α(1− α)InfA

)0.5

4α(1− α)

Here, p = 1+ĥ(∅)
2 and InfA = InfA(h) =

∑
S⊆J1,nK, S∋A

ĥ(S)2.

Step 2. We consider the following estimator yielded by AFA1.

µ̂GFair(h) =

−(1− 2α)(1− 2p̂) +

(
4α2 + 4p̂2 − 4α− 4p̂+ 1 + 8α(1− α)ÎnfA

)0.5

4α(1− α)
,

where

p̂ =
1 + ĥAFA(∅)

2
, and ÎnfA =

∑
S∈L
S∋A

ĥAFA(S)
2 .

To simplify notations, we denote:

∆ = 4α2 + 4p2 − 4α− 4p+ 8α(1− α)InfA + 1 (16)

1Note that this estimator is independent of α or p, unlike the restrictive assumptions required in existing
works [Yan and Zhang, 2022].

23



∆̂ = 4α̂2 + 4p̂2 − 4α− 4p+ 8α(1− α)ÎnfA + 1 (17)

Step 3. We have,

P
[
|µ̂GFair − µGFair(h)| ≤ ϵ

]
≥ P

[
|p̂− p| ≤ 2α(1− α)ϵ

|1− 2α|

]
+P
[
|∆̂−∆| ≤ 2α(1− α)ϵ

]
−1

On the other hand,

P
[
|∆̂−∆| ≤ ϵ

]
≥ P

[
|p̂2 − p2| ≤ ϵ

12

]
+P
[
|p̂− p| ≤ ϵ

12

]
+P
[
|ÎnfA − InfA| ≤

ϵ

24α(1− α)

]
Similar to the previous proof and we apply using Two-sample Hoeffding on the first and third term
above, while we use the classical Hoeffding for the second term. Together they yield a sample

complexity upper bound of O

(
max

{
1
ϵ2 log

4
δ ,

1
ϵ

√
log 2

δ

})
, which is O( 1

ϵ2 log
4
δ ) for ϵ ∈ (0, 1)

and δ ∈ (0, 1].

C.2 Time complexity

Here, we prove that AFA outputs (ϵ, δ)-PAC estimates of robustness, individual fairness and group
fairness in time complexity poly

(
1
ϵ , n
)
:

Given the graph shown in Figure 2, at any level of the tree, the set of active nodes, denoted by Na

correspond to the nodes whose weights are at least τ
2 , and hence the ones being processed by AFA.

We have,

|Na|
τ2

4
≤
∑

S∈Na

|ĥ(S)|2

By Parseval identity,

∑
S∈Na

|ĥ(S)|2 ≤ 1

Hence,

|Na| ≤
4

τ2

On the other hand, since we end up with subsets of a single element, the total number of splits 2

leading to the final nodes is at most n.

Hence the total number of estimates AFA performs is at most 8n
τ2 , which is poly

(
1
ϵ , n
)

.

C.3 Manipulation-proof of AFA

Theorem 4 (Manipulation-proof of AFA). AFA achieves optimal manipulation-proof for estimating
statistical parity with manipulation-proof subclass of size 2n−2.

Proof. We are interested in hypotheses h for which µGFair(h) = µGFair(h
∗).

2The total number of splits corresponds to the depth of the tree in Figure 2.
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Let h∗ denote the model under audit and let h be any model that admits Fourier decomposition, we
have:

h =
∑
S⊆[n]

ĥ(S)ψS

=
∑
S⊆[n]
S ̸=∅

ĥ(S)ψS + ĥ(∅)ψ∅

=
∑
S⊆[n]

S ̸=∅,S∋A

ĥ(S)ψS +
∑
S⊆[n]

S ̸=∅,S ̸∋A

ĥ(S)ψS + ĥ(∅)ψ∅

On the other hand,

∀S : S ∋ A, ĥ(S) = h∗(S), ĥ(∅) = h∗(∅) =⇒ µGFair(h) = µGFair(h
∗)

Where the last line comes from the dependence of statistical parity on the Fourier coefficients of the
empty set and any subset that contains the protected feature (e.g, Formula 5).

Hence, the manipulation proof subclass is:

{
h :

∑
S⊆[n]

ĥ(S)ψS : ∀S ⊆ [n] : (S = ∅)∨ (S ∋ A) =⇒

ĥ(S) = ĥ∗(S)

}
, which has a size of 2n−2.

C.4 Lower Bound on Sample Complexity without Manipulation-proof

Theorem 5 (Lower bound without manipulation-proof). Let ϵ ∈ (0, 1), δ ∈ (0, 1/2]. We aim to obtain
(ϵ, δ)-PAC estimate of SP of model h ∈ H, where the hypothesis classH has VC dimension d. For any
auditing algorithm A, there exists an adversarial distribution realizable by the model to audit such
that with Ω̃( δ

ϵ2 ) samples, A outputs an estimate µ̂ of µGFair(h
∗) with P[|µ̂− µGFair(h

∗)| > ϵ] > δ.

Proof. LetH be a hypothesis class of VC dimension VC(H), we start with case VC(H) ∈ 2N.

Let Z = {ζ1, . . . , ζd, ζd+1, · · · , ζ2d} ⊆ X a subspace shattered byH, let N be our querying budget.

Step 1: Construction of adversarial distribution. Let Z+ = {ζ1, . . . , ζd} and Z− =
{ζd+1, . . . , ζ2d}.
We define the adversarial distribution as the distribution satisfying:

D =

{
x|X+ ∼ U{Z+}
x|X− ∼ U{Z−}

For any i ∈ J1 , 2dK and given the iid assumption, any z ∼ Z+ will be denoted z+ and similarly any
z ∼ Z− will be denoted z−.

Consider hypotheses H0 and H1 that chooses h∗ randomly from {0, 1}Z :

• H0: picks h∗ such that for all i ∈ J1 , dK independently:

h∗(zi) :=

{
1 with probability 1

2 − ϵ
0 with probability 1

2 + ϵ
(18)

and for all i ∈ Jd+ 1 , 2dK (independently):

h∗(zi) :=

{
1 with probability 1

2 + ϵ

0 with probability 1
2 − ϵ

(19)
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• H1: picks h∗ such that for all i ∈ J1 , dK independently:

h∗(zi) :=

{
1 with probability 1

2 + ϵ

0 with probability 1
2 − ϵ

(20)

and for all i ∈ Jd+ 1 , 2dK (independently):

h∗(zi) :=

{
1 with probability 1

2 − ϵ
0 with probability 1

2 + ϵ
(21)

If h∗ is chosen under hypothesis Hi, the probability that involves h∗ will be denoted Pi.

The case where VC(H) ∈ 2N + 1 reduces to VC(H) ∈ 2N by giving a delta mass distribution to
ζ2d+1 on the subspace shattered byH.

Step 2: Bounding demographic parity by bounding p and InfA

In order to get a lower bound for estimating statistical parity, we express it in terms of the probability
of positives and the randomized influence function.

P
[
µ̂− µ(h∗) > ϵ

]
≥ P

[
p̂− p(h∗) > cαϵ

]
︸ ︷︷ ︸

Term I

+P
[
ÎnfA − InfA(h

∗) > cα,1ϵ
2 + cα,2

]
︸ ︷︷ ︸

Term II

, (22)

where cα = 4α(1−α)(12−
√
6)

11(1−2α) , cα,1 = 1 + 1
2α(1−α) and cα,2 =

√
2
3

1
2α2(1−α)2 .

Step 2.a: Bounding the Term I. Turning an estimation problem into a testing problem. Under
hypothesis H0, we have:

P0

[
p̂− p(h∗) ≥ ϵ

2

]
≥ P0

[
p̂ ≥ 2α− 11

2
, p(h∗) ≤ 2α− 1

2
− ϵ

2

]
≥ P0

[
p̂ ≥ 2α− 1

2

]
+ P0

[
p(h∗) ≤ 2α− 1

2
− ϵ

2

]
− 1

Under hypothesis H1, we have:

P1

[
p̂− p(h∗) ≤ ϵ

2

]
≥ P1

[
p̂ ≥ 2α− 1

2
, p(h∗) ≥ 2α− 1

2
+
ϵ

2

]
≥ P1

[
p̂ <

2α− 1

2

]
+ P1

[
p(h∗) ≥ 2α− 1

2
+
ϵ

2

]
− 1

Since

P
[
p̂− p(h∗) ≥ ϵ

2

]
=

1

2
P0

[
p̂− p(h∗) ≥ ϵ

2

]
+

1

2
P1

[
p̂− p(h∗) ≥ ϵ

2

]
Using the fact that P[A ∩B] ≥ P[A] + P[B]− 1, we have:

P
[
p̂− p(h∗) ≥ ϵ

2

]
≥ 1

2

(
P0

[
p̂ ≥ 2α− 1

2

]
+ P1

[
p̂ <

2α− 1

2

]
(23)

+ P0

[
p(h∗) ≤ 2α− 1

2
− ϵ

2

]
+ P1

[
p(h∗) ≥ 2α− 1

2
+
ϵ

2

]
− 2

)
(24)

By Le Cam’s lemma:

P0

[
p̂ ≥ 2α− 1

2

]
+ P1

[
p̂ <

2α− 1

2

]
≥ 1− TV (P0 ∥ P1) (25)
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Concentration of p(h∗). To lower bound the remaining term in (24), we prove Lemma 3.

This proves result 31.

Similar to the proof of the first result, by Hoeffding inequality,

P1

[
p+(h∗) >

α

2
− ϵ

2

]
≤ 2 exp

(
− dϵ2

2α2

)
P1

[
p−(h∗) >

1− α
2
− ϵ

2

]
≤ 2 exp

(
− dϵ2

2(1− α)2
)

The proof of result 32 concludes by proceeding with the remaining steps in the same manner as the
previous proof.

P0

[
p(h∗) ≤ 2α− 1

2
− ϵ

2

]
≥ 1− 2 exp

(
− dϵ2

32α2

)
− 2 exp

(
− dϵ2

2(1− α)2
)

(26)

P1

[
p(h∗) ≥ 2α− 1

2
+
ϵ

2

]
≥ 1− 2 exp

(
− dϵ2

32α2

)
− 2 exp

(
− dϵ2

2(1− α)2
)

(27)

By symmetry of the statistical test we have the result in 32.

Step 2.b: Bounding Term II. Similar to step 2.a, we have:

P
[
|ÎnfA − InfA(h

∗)| ≥ ϵ

2

]
=

1

2
P0

[
|ÎnfA − InfA(h

∗)| ≥ ϵ

2

]
+

1

2
P1

[
|ÎnfA − InfA(h

∗)| ≥ ϵ

2

]
We deduce

P
[
ÎnfA − InfA(h

∗) ≥ ϵ

2

]
≥ 1

2

(
P0

[
ÎnfA ≥

1

2

]
+ P1

[
ÎnfA <

1

2

]
+ (28)

P0

[
InfA(h

∗) ≤ 1

2
− ϵ

2

]
+ P1

[
InfA(h

∗) ≥ 1

2
+
ϵ

2

]
− 2

)
(29)

By Le Cam’s lemma, we have:

P0

(
InfA(h

∗) >
1

2

)
+ P1

(
InfA(h

∗) ≤ 1

2

)
≥ 1− TV (P0 ∥ P1)

Concentration of InfA(h∗). To lower bound the remaining term in (29), we prove Lemma 4.

Under hypothesis H0, we have:

P0

[
ÎnfA − InfA(h

∗) ≥ ϵ2

2

]
≥ P0

[
ÎnfA ≥

1

2
, InfA(h

∗) ≤ 1

2
− ϵ2

2

]
≥ P0

[
ÎnfA ≥

1

2

]
+ P0

[
InfA(h

∗) ≤ 1

2
− ϵ2

2

]
− 1

Under hypothesis H1, we have:

P1

[
ÎnfA − InfA(h

∗) ≥ ϵ

2

]
≥ P1

[
ÎnfA ≥

1

2
, InfA(h

∗) ≥ 1

2
− ϵ

2

]
≥ P1

[
ÎnfA <

1

2

]
+ P1

[
InfA(h

∗) ≥ 1

2
− ϵ

2

]
− 1
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Step 3: Upper bounding the statistical distances Let’s show that H0 and H1 are hard to distin-
guish. In other words, let’s show that DKL(P0||P1) = O(ϵ2)

The quantity DKL

(
P0||P1

)
depends on how the algorithm A interacts with the oracle O(h∗)

and construct a brick of history denoted by Hist. We can observe that this quantity is exactly
DKL

(
P0(y|(x, y) ∈ Hist, x)||P1(y|(x, y) ∈ Hist, x)

)
averaged on the whole available querying

set. More formally, we prove Lemma 5 that states

DKL

(
P0||P1

)
=

N∑
i=1

E

[
DKL

(
P0(yi|(x, y) ∈ Hist

i−1, xi)

∣∣∣∣∣∣∣∣P1(yi|(x, y) ∈ Hist
i−1, xi)

)]
.

The next step is to upper bound this quantity: At iteration I, we distinguish between two separate
cases:

• If xi ∈ Hist
i−1, then A will always output the same value under both hypotheses H0 and H1,

which was sent by oracle O(h∗). Hence,

DKL

(
P0(yi|(x, y) ∈ Hist

i−1, xi)∥P1(yi|(x, y) ∈ Hist
i−1, xi)

)
= 0

• If xi /∈ Hist
i−1, we have the following table that summarizes all possibilities under hypotheses

H0 and H1, conditioning on X+:

H\y 1 0
H0

1
2 −

ϵ
2

1
2 + ϵ

2

H1
1
2 + ϵ

2
1
2 −

ϵ
2

And under hypotheses H0 and H1, conditioning on X−:

H\y 1 0
H0

1
2 + ϵ

2
1
2 −

ϵ
2

H1
1
2 −

ϵ
2

1
2 + ϵ

2

From the two tables, we deduce the overall result by expanding over each protected group
(e.g, X−,X+)

H\y 1 0
H0

1
2 + (1−2α)ϵ

2
1
2 −

(1−2α)ϵ
2

H1
1
2 −

(1−2α)ϵ
2

1
2 + (1−2α)ϵ

2

We end up with a binary entropy upper bound:

DKL

(
P0(yi|(x, y) ∈ Hist

i−1, xi)

∣∣∣∣∣∣∣∣P1(yi|(x, y) ∈ Hist
i−1, xi)

)
= kl

(
1

2
+
(1− 2α)ϵ

2
,
1

2
− (1− 2α)ϵ

2

)
Fact 1. For a, b ∈ ( 14 ,

3
4 ) : DKL(a, b) ≤ 3(b− a)2

Hence,

DKL

(
P0(yi|(x, y) ∈ Hist

i−1, xi)

∣∣∣∣∣∣∣∣P1(yi|(x, y) ∈ Hist
i−1, xi)

)
≤ 3(1− 2α)2ϵ2

DKL(P0||P1) ≤ 3N(1− 2α)2ϵ2 (30)

By Pinsker’s inequality;

28




P0

(
p(h∗) >

1

2

)
+ P1

(
p(h∗) ≤ 1

2

)
≥ 1−

√
1

2
DKL(P0||P1)

P0

(
InfA(h

∗) >
1

2

)
+ P1

(
InfA(h

∗) ≤ 1

2

)
≥ 1−

√
1

2
DKL(P0||P1)

By using result from (30),
P0

(
p(h∗) >

1

2

)
+ P1

(
p(h∗) ≤ 1

2

)
≥ 1−

√
3N(1− 2α)2ϵ2

2

P0

(
InfA(h

∗) >
1

2

)
+ P1

(
InfA(h

∗) ≤ 1

2

)
≥ 1−

√
3N(1− 2α)2ϵ2

2

Results in (31) and (32) further yield

P
[
p̂− p(h∗) ≥ ϵ

2

]
≥ 1

2
− 2 exp

(
− dϵ2

32α2

)
− 2 exp

(
− dϵ2

2(1− α)2
)
−
√

3N

2

|1− 2α|ϵ
2

≥ 1

2
− 4 exp

(
− dϵ2

8M2
α

)
−
√

3N

2

|1− 2α|ϵ
2

,

where Mα = max(α, 1− α).
Further, (33) and (34) yield

P
[
ÎnfA − InfA(h

∗) ≥ ϵ

2

]
≥ 5

2
− 4 exp

(
− dϵ

2

)
− 4 exp

(
− dϵ

18

)
−
√

3N(1− 2α)2ϵ2

8

≥ 5

2
− 8 exp

(
− dϵ

18

)
−
√

3N(1− 2α)2ϵ2

8

Finally, solving the inequality

3− 4 exp
−dϵ2

18
−
√

3N(1− 2α)2ϵ2

8
≥ δ

yields the sample complexity to be N ≤ 8
3(1−2α)2ϵ2

(
δ − 3 + 4 exp (−dϵ2

18 )

)2

.

29



C.5 Additional Technical Lemmas

Lemma 3.

P0

[
p(h∗) ≤ 2α− 1

2
− ϵ

2

]
≥ 1− 2 exp

(
− dϵ2

32α2

)
− 2 exp

(
− dϵ2

2(1− α)2
)

(31)

P1

[
p(h∗) ≥ 2α− 1

2
+
ϵ

2

]
≥ 1− 2 exp

(
− dϵ2

32α2

)
− 2 exp

(
− dϵ2

2(1− α)2
)

(32)

Proof.

p(h∗) = P
[
h∗(x) = 1

]
= αP

[
h∗(x) = 1

∣∣∣X+
]
+ (1− α)P

[
h∗(x) = 1

∣∣∣X−
]

=
α

d

d∑
i=1

1{h∗(zi)=1} +
1− α
d

d∑
i=1

1{h∗(zd+i)=1}

p(h∗) = p+(h∗) + p−(h∗)

Where p+(h∗) = α
d

∑d
i=1 1{h∗(zi)=1} and p−(h∗) = 1−α

d

∑d
i=1 1{h∗(zd+i)=1}

Under H0 (resp. H1), d
αp

+(h∗) is the sum of d Bernoulli variables of mean 1
2 − ϵ (resp. 1

2 + ϵ).
Under H0 (resp. H1), d

1−αp
+(h∗) is the sum of d Bernoulli variables of mean 1

2 + ϵ (resp. 1
2 − ϵ).

P0

[
p+(h∗) >

α

2
− ϵ

4

]
≤ 2 exp

(
− dϵ2

32α2

)
P0

[
p−(h∗) >

ϵ

2
− 1− α

2

]
≤ 2 exp

(
− dϵ2

2(1− α)2
)

On the other hand,

P0

[
p(h∗) ≤ 2α− 1

2
− ϵ

2

]
≥ P0

[
p+(h∗) ≤ α

2
− ϵ

4
, p−(h∗) ≤ ϵ

2
− 1− α

2

]
≥ P0

[
p+(h∗) ≤ α

2
− ϵ

4

]
+ P0

[
p−(h∗) ≤ ϵ

2
− 1− α

2

]
− 1

≥ 1− 2 exp
(
− dϵ2

32α2

)
− 2 exp

(
− dϵ2

2(1− α)2
)

Lemma 4 (Concentration of Influence Function).

P0

[
InfA(h

∗) ≤ 1 + ϵ

2

]
≥ 3− 4 exp

(
− dϵ

2

)
− 4 exp

(
− dϵ

18

)
(33)

P1

[
InfA(h

∗) >
1− ϵ
2

]
≥ 3− 4 exp

(
− dϵ

2

)
− 4 exp

(
− dϵ

18

)
(34)

Proof.

InfA(h
∗) = P

[
h∗(x) ̸= h∗(x′)

∣∣∣x ∈ X+, x′ ∈ X−
]

= P
[
h∗(x) = 1, h∗(x′) = 0

∣∣∣x ∈ X+, x′ ∈ X−
]
+ P

[
h∗(x) = 0, h∗(x′) = 1

∣∣∣x ∈ X+, x′ ∈ X−
]
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= P
[
h∗(x) = 1

∣∣∣x ∈ X+
]
P
[
h∗(x) = 0

∣∣∣x ∈ X−
]
+ P

[
h∗(x) = 0

∣∣∣x ∈ X+
]
P
[
h∗(x) = 1

∣∣∣x ∈ X−
]

=
1

d2

∑
1≤i,j≤d

1{h∗(zi)=1}1{h∗(zd+j)=0} +
1

d2

∑
1≤i,j≤d

1{h∗(zi)=0}1{h∗(zd+j)=1}

InfA(h
∗) = Inf+A,1(h

∗)Inf−A,0(h
∗) + Inf+A,0(h

∗)Inf−A,1(h
∗)

Where, Inf+A,1(h
∗) = 1

d

∑d
i=1 1{h∗(zi)=1}

Inf−A,0(h
∗) = 1

d

∑d
i=1 1{h∗(zd+i)=0},

Inf+A,0(h
∗) = 1

d

∑d
i=1 1{h∗(zi)=0},

Inf−A,1(h
∗) = 1

d

∑d
i=1 1{h∗(zd+i)=1}.

• Under H0 (resp. H1), Inf+A,1(h
∗)) is the sum of d Bernoulli variables of mean 1

2 − ϵ (resp.
1
2 + ϵ).

• Under H0 (resp. H1), Inf−A,0(h
∗) is the sum of d Bernoulli variables of mean 1

2 − ϵ (resp.
1
2 + ϵ).

• Under H0 (resp. H1), Inf+A,0(h
∗) is the sum of d Bernoulli variables of mean 1

2 + ϵ (resp.
1
2 − ϵ).

• Under H0 (resp. H1), Inf−A,1(h
∗) is the sum of d Bernoulli variables of mean 1

2 + ϵ (resp.
1
2 − ϵ).

Applying Hoeffding inequality under hypothesis H0 gives:

P0

[
Inf+A,1(h

∗) >
1

2
− ϵ

2

]
≤ 2 exp

(
− dϵ2

2

)
(35)

P0

[
Inf−A,0(h

∗) >
1

2
− ϵ

2

]
≤ 2 exp

(
− dϵ2

2

)
(36)

From 35 and 36, we deduce:

P0

[
Inf+A,1(h

∗)Inf−A,0(h
∗) ≤

(1
2
− ϵ

2

)2]
≥ 2− 4 exp

(
− dϵ2

2

)
(37)

Similar, the upper bound of the second part is:

P0

[
Inf+A,0(h

∗)Inf−A,1(h
∗) ≤

(1
2
+
ϵ

2

)2]
≥ 2− 4 exp

(
− dϵ2

18

)
(38)

Combining results 37 and38 yields result 33. By the symmetry of the hypotheses H0 and H1, we
obtain the second result.

Lemma 5.

DKL

(
P0||P1

)
=

N∑
i=1

E

[
DKL

(
P0(yi|(x, y) ∈ Hist

i−1, xi)

∣∣∣∣∣∣∣∣P1(yi|(x, y) ∈ Hist
i−1, xi)

)]

Proof. By definition,
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DKL(P0||P1) =
∑

Q∈Hist
N

P0(Q) log
P0(Q)
P1(Q)

=
∑

Q∈Hist
N

Q={(x1,y1),...(xN ,yN )}

P0(Q) log
∏N

i=1 P0(yi|(x, y) ∈ Hist
i−1, xi)PA(xi|(x, y) ∈ Hist

i−1)∏N
i=1 P1((yi|(x, y) ∈ Hist

i−1, xi)PA(xi|(x, y) ∈ Hist
i−1)

=
∑

Q∈Hist
N

Q={(x1,y1),...(xN ,yN )}

P0(Q)
N∑
i=1

log
P0(yi|(x, y) ∈ Hist

i−1, xi)

P1((yi|(x, y) ∈ Hist
i−1, xi)

=

N∑
i=1

∑
Q∈Hist

N

Q={(x1,y1),...(xi,yi)}

P0(Q) log
P0(yi|(x, y) ∈ Hist

i−1, xi)

P1((yi|(x, y) ∈ Hist
i−1, xi)

=

N∑
i=1

∑
{(x1,y1),...(xi,yi)}

P0(yi|(x, y) ∈ Hist
i−1, xi)P0((x, y) ∈ Hist

i−1, xi) log
P0(yi|(x, y) ∈ Hist

i−1, xi)

P1((yi|(x, y) ∈ Hist
i−1, xi)

=

N∑
i=1

∑
{(x1,y1),...(xi−1,yi−1),xi}

P0((x, y) ∈ Hist
i−1, xi)

∑
yi

P0(yi|(x, y) ∈ Hist
i−1, xi) log

P0(yi|(x, y) ∈ Hist
i−1, xi)

P1((yi|(x, y) ∈ Hist
i−1, xi)

=

N∑
i=1

∑
Hi−1,xi

P0((x, y) ∈ Hi−1, xi)DKL

(
P0(yi|(x, y) ∈ Hi−1, xi)

∣∣∣∣∣∣∣∣P1(yi|(x, y) ∈ Hi−1, xi)

)

Hence,

DKL

(
P0||P1

)
=

N∑
i=1

E

[
DKL

(
P0(yi|(x, y) ∈ Hi−1, xi)

∣∣∣∣∣∣∣∣P1(yi|(x, y) ∈ Hi−1, xi)

)]

D Extensions to Multi-class Classification

If {a1, · · · , an} denotes the set of categories such that for all i ̸= j ∈ {1, · · · , n},Xi,j =
h−1({ai, aj}), and Ah the set:

Ah =
⋃
i ̸=j

{
hi,j : Xi,j → {ai, aj}, hi,j(Xi,j) = h(Xi,j)

}
Based on the result in Proposition 5 the Fourier pattern of multicalibration is as follows:

µRob(h) = max
g∈Ah

P−1
ĝ (0)

This adaptation is evaluated empirically to assess how well AFA performs in this setting.

E Experimental Details

All our computations are performed on an 11th Gen Intel® Core™ i7-1185G7 processor (3.00 GHz,
8 cores) with 32.0 GiB of RAM.

E.1 Uniformly Random Sampling (I.I.D.) estimators (Uniform)

Random estimators use i.i.d. sampling in order to estimate each distributional property. We note that
group fairness estimation requires a different sampling strategy and interaction with the black-box
oracle of h.
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Robustness. The true robustness is defined as:

µRob(h) = P
x∼D

y∼Nρ(x)

[h(x) ̸= h(y)]

Random estimator samples i.i.d. points from D, which we denote as S. Thus, the estimator can be
written as

̂µRob(h) =
1

|S|
∑
x∈S

y∼Nρ(x)

1h(x) ̸=h(y)

Individual Fairness. Likewise, individual fairness estimation given by random estimator is:

̂µIFair(h) =
1

|S|
∑
x∈S

y∼Nρ,l(x)

1h(x)̸=h(y)

Group Fairness. Let S+ denote a set of samples from the first protected group and S− a set of
samples from the second protected group. Group Fairness (with demographic parity measure) is
defined as:

̂µGFair(h) =
1

|S+|
∑
x∈S+

1h(x)=1 −
1

|S−|
∑
x∈S−

1h(x)=1

E.2 Baseline Algorithms

We assess AFA on statistical parity by comparing its performance in sample complexity and running
time to the methodologies investigated by Yan and Zhang [2022]. In their method, auditing has an
additional step: approximating the model through reconstruction before plugging in the estimator.
Those methodologies use active learning algorithms for approximating the black-box model i.e, CAL
algorithm [Cohn et al., 1994], along with its variant for property active estimation µ-CAL, and its
randomized version.

Furthermore, efficient AFA is employed to find significant Fourier coefficients within subsets con-
taining the protected attribute, this model forces search over within subsets containing the protected
attribute. In other words, AFA focuses on half of the buckets 2n−1 (buckets that contain the protected
attribute), where n is the dimension of the input space.

E.3 Additional Experimental Results

Table 4: Estimation error for individual fairness across models and datasets. Bold numbers mean
lower error.

Dataset COMPAS Student

Model LR MLP RF LR MLP RF

Uniform 0.050 0.072 0.070 0.12 0.08 0.173
AFA 0.002 0.035 0.048 0.079 0.057 0.050

Individual fairness. For individual fairness, the perturbation parameter l is a free parameter for
which Hamming distance measures individual similarity. The parameter l answers the question: What
degree of similarity should the model refrain from distinguishing? Hence, a good auditor would have
the same performance for all possible parameter values l. To evaluate that, we fix ρ = 0.30 and
compare AFA and random estimator performances for a range of values of parameter l. Experiment
details are summarized in Table 5.

As Figure 4 shows, AFA always outperform random estimator for the property of individual fairness
for all different values of perturbation parameter l.
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Table 5: A summary of theoretical results: This table summarizes the expression of the estimation for
each property with query complexity and computational complexity. Bold refers to the best method.

l-parameter AFA µIFair error random µIFair error

11 0.123 0.267
10 0.119 0.254
7 0.141 0.244
5 0.169 0.230
3 0.166 0.222

(a) l = 11 (b) l = 10

(c) l = 7 (d) l = 5

(e) l = 3

Figure 4: Comparison of AFA and random estimator on COMPAS dataset for different values of
perturbation parameter l.
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Figure 5: Error (left) and running time (right) of auditors in estimating statistical parity of logistic
regression for Student Performance dataset.

Statistical parity. We evaluate SP for the Student Performance dataset, with gender as the protected
attribute. Figure 5 shows that AFA’s error converges faster to the zero value compared to Uniform.

We empirically evaluate the Fourier Pattern for multicalibration by training a logistic regression
model on the DRUG dataset, where gender is considered the protected attribute. Figure 6 shows the
consistency of AFA performance when the black-box model has multiple outcomes.
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Figure 6: Error (left) and running time (right) of different auditors in estimating statistical parity of
logistic regression for Drugs Consumption dataset.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction explain clearly the current work done in auditing
distributional properties and an extension to verifying those properties.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We emphasize the limitations of the work in the conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All the proofs are given in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Reproducibility for experimental results is explained in section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the data and code with sufficient instructions
to reproduce the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setting in section 5, we provide details about the black-box
model for which we estimate robustness, individual fairness, and group fairness. For group
fairness we have multiple baselines derived from the work of previous studies, details about
those experiments can be found in the bibliography.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In section 5, we explain statistical significance of experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All our computations are performed on an 11th Gen Intel® Core™ i7-1185G7
processor (3.00 GHz, 8 cores) with 32.0 GiB of RAM.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our study focuses on accurately auditing the model’s properties. Our proposed
model avoids conflicts with societal issues and allows regulatory authorities to maintain
accurate estimations of distributional properties. Moreover, it provides firms and companies,
whose model is audited, a high degree of freedom to manipulate (manipulation-proof) their
decision rules to align with their stakes.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss both potential positive societal impacts and negative societal
impacts of the work in Appendix ??.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Data and baselines are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New assets are well explained theoretically and experimentally.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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