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ABSTRACT

In-Context Learning (ICL), which formulates target tasks as prompt completion
conditioned on in-context demonstrations, has become the prevailing utilization
of LLMs. In this paper, we first disclose an actual predicament for this typical
usage that it can not scale up with training data due to context length restriction.
Besides, existing works have shown that ICL also suffers from various biases and
requires delicate calibration treatment. To address both challenges, we advocate
a simple and effective solution, kNN Prompting, which first queries LLM with
training data for distributed representations, then predicts test instances by sim-
ply referring to nearest neighbors. We conduct comprehensive experiments to
demonstrate its two-fold superiority: 1) Calibration-Free: kNN Prompting does
not directly align LLM output distribution with task-specific label space, instead
leverages such distribution to align test and training instances. It significantly out-
performs state-of-the-art calibration-based methods under comparable few-shot
scenario. 2) Beyond-Context: kNN Prompting can further scale up effectively
with as many training data as are available, continually bringing substantial im-
provements. The scaling trend holds across 10 orders of magnitude ranging from
2 shots to 1024 shots as well as different LLMs scales ranging from 0.8B to 30B.
It successfully bridges data scaling into model scaling, and brings new potentials
for the gradient-free paradigm of LLM deployment. Code is publicly available1.

1 INTRODUCTION
Maximum Context Length

Figure 1: kNN Prompting brings substantial im-
provements over standard ICL, and can contin-
ually scale up beyond the context with as many
data as are available. Conducted with GPT XL.

Large language models (LLMs), when scale up
to billions of parameters, have demonstrated re-
markable capabilities in a wide range of NLP
tasks (Radford et al., 2019; Brown et al., 2020).
However, such models are prohibitively expen-
sive to train with most of the research- or
consumer-level devices, though some of them are
already publicly available (Zhang et al., 2022).
As a result, it is now an emerging paradigm that
LLMs are hosted in a remote data center while
accessed by end users or applications via simple
API requests2. The typical usage of LLM un-
der such paradigm is In-Context Learning, where
LLM reads and completes a prompt sequence as
how it is pretrained on massive text corpora. The

∗Corresponding author.
1https://github.com/BenfengXu/KNNPrompting
2https://openai.com/api/, https://gpt3demo.com/
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prompt is constructed by concatenation of several training examples and a test instance, and the
prediction is obtained by mapping the LLM word continuations back to label space.

It is widely investigated and acknowledged that modern neural networks generally perform better
w.r.t. increased training data. Specifically, there exists a power law between expected model per-
formance and available data scale (Hestness et al., 2017; Rosenfeld et al., 2020). For ICL, it is also
empirically observed that the performance continually improves when more training examples are
prepended into the prompt (Brown et al., 2020). However, such improvements are quickly prevented
by the predicament of context length restriction, as language models are designed and trained to only
process sequences within a fixed length, which is in fact 1024 or 2048 tokens. In order to utilize
more training data, several works try to select the most relevant examples to compose the prompt
before querying LLM (Liu et al., 2022b; Rubin et al., 2022), but still only in-context examples can
actually participate the LLM inference while most training data are discarded beforehand, thus pro-
viding marginal data scaling benefits. Besides, their reliance on external retriever also incurs further
complications. As a consequence, such a situation poses a serious challenge for many practical
scenarios where more than a few training data are available.

Another vulnerability of ICL is the severe bias existed in the output distribution of LLMs, which
results in considerable performance degradation (Holtzman et al., 2021) and instability (Lu et al.,
2022) as shown in existing works. Accordingly, many have proposed various ways to calibrate the
output distribution (Zhao et al., 2021; Jiang et al., 2021; Min et al., 2022a). For example, Zhao
et al. (2021) measure such bias by probing LLM with a ”NA” example and record the according
prior. However, as LLMs are pretrained on general-domain natural language, its capability to com-
plete a fabricated prompt is essentially not aligned with downstream task-specific label space. As a
consequence, such calibration-based methods can only alleviate the bias to a limited extent.

In this paper, we advocate a simple and effective solution, kNN Prompting, to address both chal-
lenges. Specifically, we assign training data into a demonstration set and an anchor set. We append
each anchor example into the prompt and query LLM, then instead of aligning word continuations
with labels, we collect the language modeling probability as distributed representation and cache it
into a local datastore. At inference time, for each test instance, we similarly obtain its representation
and match it against the maintained datastore to make predictions. In general, the proposed frame-
work enables both calibration-free optimization because it avoids forced input-label alignment, and
beyond-context learning because the anchor set allows utilization of unlimited training data.

We conduct comprehensive experiments using 10 established text classification tasks to demonstrate
the significant superiority of kNN Prompting across various scenarios and against competitive op-
ponents: 1) Under few shot scenario where training data is very limited and fits in the context,
kNN Prompting outperforms state-of-the-art calibration-based methods by considerable margin (up
to +7.07). 2) Under low resource or fully supervised scenario where training data can not fit in the
context, kNN Prompting further exhibits its major advantage. It can effectively scale up with as
many training data as are available across 10 orders of magnitude (2 shots∼1024 shots, see Figure 1
for illustration) as well as different LLMs scales (0.8B∼30B). Specifically, with only 32 shots train-
ing data, it dramatically improves ICL by +13.58 in average score at its most, and achieves absolute
improvements up to +18.84 under fully supervised setting. We also provide formal explanation
on the intrinsic mechanism of effectiveness, as well as detailed analyses regarding its robustness
and choices of design. Accompanied with these appealing aspects, kNN Prompting is in general a
promising solution that bridges the benefits of data scaling into model scaling to take the gradient-
free paradigm of LLM deployment one step further.

2 BACKGROUND: IN-CONTEXT LEARNING

In this section, we formulate the task and recap the ICL baseline. Assuming a target task with
training data set T = {(xi, yi)}, and Y as its categorical label space. At inference time, the model
is asked to predict ytest given test instance xtest. We then denote an LLM θ that is pretrained with a
standard language modeling objective. At employment, it samely predicts a probability distribution
p(wt|w<t,θ) for the next token at t-th position conditioned on previous context w<t.

In-context learning first formulates training examples {(xi, yi)} in the format of input-label map-
ping via intuitive templates (see Appendix F for illustration), and concatenates them into a natural
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SST2 SUBJ MPQA AGNews CB CR DBPedia MR RTE TREC
Num. of Shots (TP) 20 (2%) 12 (1%) 39 (0%) 3 (0%) 2 (0%) 14 (4%) 1 (77%) 14 (4%) 4 (0%) 8 (1%)

MT 16 8 32 2 2 8 1 8 4 8

Table 1: Maximum number of training shots (per class) allowed by 1024 tokens of context. Calcu-
lated using GPT2 tokenizer. Inside the parentheses are Truncation Probability (TP, i.e., whether or
not truncated, restricted below 5%). We set MT for each task T in our experiments for simplicity.

language sequence along with the test instance to construct a prompt:
P = π(x1, y1)⊕ π(x2, y2)⊕ ...⊕ π(x|T |, y|T |)⊕ π(xtest, ∗) (1)

where π denotes template-based transformation (see Appendix for illustration) and ⊕ denotes con-
catenation operation. Note that π implies a verbalization process that maps label space Y to cor-
responding tokens V picked from the LM vocabulary. When queried by the prompt P , LLM will
try to mimic the prepended training examples in the context and predict a probability distribution
p(v|P,θ) for the next token v. We then map it back to label space Y as prediction:

ŷtest = argmax
y∈Y

(v|P,θ), y
π−→ v (2)

Figure 2: ICL improves with num. of training ex-
amples but is limited by context length restriction.

Figure 2 provides a pilot study showing that
when prompt P includes more demonstrations,
the performance consistently improves, which
is in accord with the power law of data scal-
ing investigated in many existing studies (Hest-
ness et al., 2017; Rosenfeld et al., 2020). How-
ever, this trend is then prevented by the context
length restriction. We provide more compre-
hensive statistics in Table 1 and Appendix A. In
conclusion, this situation poses an actual chal-
lenge in many scenarios where one would fur-
ther collect training examples from few-shots to
dozens and expect improved performance, but
the power law fails.

3 kNN PROMPTING

In this section, we introduce the kNN Prompt-
ing framework. For a training data set T , we
split and exploit it in two respective usage: T = D ∪ A, i.e., a demonstration set D = {(xdi , ydi )}
and an anchor set A = {(xai , yai )}. kNN Prompting consists of two stages namely meta test and
formal test, the overall framework is illustrated in Figure 3.

Meta Test We build a datastore that caches all anchor examples inA for later inference time usage.
For each xai , we respectively concatenate it into prompt P , where the prompt prefix is constructed
using the demonstration set the same as Equation 1:

Pi = π(xd1, y
d
1)⊕ π(xd2, yd2)⊕ ...⊕ π(xd|D|, y

d
|D|)⊕ π(x

a
i , ∗) (3)

By querying LLM using Pi, we obtain the distribution p(v|Pi,θ). Instead of mapping it back to
label space V , we cache the entire language modeling distribution as the key representation:

ki = p(v|Pi,θ) (4)
Accordingly, label yai is the value. The entire datastore thus consists of paired {ki, yai }, we denote
the set of keys as K.

Formal Test At inference time, for each test instance xtest, we construct the same prompt as
Equation 1, and obtain distribution ptest = p(v|Ptest,θ). We then match the distribution against
cached K in the datastore, where standard KL divergence is used to measure the distance:

DKL(ptest||ki) =
∑
v

p(v|Ptest,θ) log
p(v|Ptest,θ)
p(v|Pi,θ)

(5)
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Figure 3: The overall framework of kNN Prompting

The predictions are calculated by aggregating its k nearest neighbors:

ŷpred = argmax
y∈Y

∑
i∈NNk(ptest,K)

1(yai = y) (6)

where NNk(∗,K) denotes the set of k nearest neighbors in K.

4 EXPERIMENTS

4.1 SETUP

We use 10 established text classification datasets, respectively SST2 (Socher et al., 2013),
SUBJ (Pang & Lee, 2004), MPQA (Wiebe et al., 2005), AGNews (Zhang et al., 2015),
CB (De Marneffe et al., 2019), CR (Hu & Liu, 2004), DBPedia (Zhang et al., 2015), MR (Pang
& Lee, 2005), RTE (Dagan et al., 2005) and TREC (Voorhees & Tice, 2000). For each dataset,
we devise intuitive prompt template (Appendix F), and other regarding statistics are listed in Ap-
pendix A. We investigate a wide range of LLM scales, including GPT2 (0.8B and 1.5B) (Radford
et al., 2019) and the OPT (Zhang et al., 2022) series (3B-30B). GPT2 XL is used for most analyses
unless explicitly indicated. We invariantly set the number of neighbors k to 3. There are no other
hyper-parameters as the entire framework is training-free. We run with 5 different random seeds for
Figure 5 and Figure 6, 10 seeds for all other results. Mean and standard deviation are reported.

4.2 DATA UTILITY

In this paper, we refer to data utility as whether and how performance scales up with increased
training data. It can be formally depicted by the power law (Hestness et al., 2017):

ε(m) ∝ αmβ (7)

wherem is the training data size, α is a constant scaling factor, β describes the exponential steepness,
and ε(∗) calculates the generalization error, i.e., test time performance. We referm to training shots,
i.e., number of examples per class throughout the paper. In the following sections, we investigate
various settings of m, respectively few shot (m ≤ MT ), low resource (m = 128), and the overall
scaling law (m ≤ 1024). We refer MT to the maximum training shots allowed in context for each
task T , the specific statistics can be found in Appendix A.

4.2.1 DATA UTILITY UNDER FEW SHOT SCENARIO

We first investigate kNN Prompting under few shot setting, i.e., m ≤ MT . We simply set |D| = 1
and use all other examples for A. We leave further exploration of split strategies to Appendix C.5.
In order to avoid context length restriction and maintain comparability to baselines as much as
possible, 6 out of 10 tasks where MT ≥ 8 are selected. The baselines are ICL and state-of-the-
art calibration-based augmentations. ContextualCalibration (Zhao et al., 2021) probs the prior bias
w.r.t. each category and accordingly calibrate the outputs, and NoisyChannel (Min et al., 2022a)
formulates ICL as computing input likelihood conditioned on labels. Results in Table 2 show that
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Setting&Method SST2 SUBJ MPQA CR MR TREC AVG

m = 2

ICL 59.8±5.9 51.4±7.6 60.2±14.2 57.3±5.5 64.7±11.5 50.0±3.4 57.24
Contextual Calibration 76.2±7.0 69.8±7.5 63.4±10.5 60.1±5.7 75.6±8.4 45.5±7.1 65.12
Noisy Channel 82.6±3.1 64.6±6.0 60.2±9.1 83.3±2.3 79.4±2.1 35.2±9.8 67.54
kNN Prompting 77.5±21.3 73.4±9.0 56.6±20.2 69.7±21.3 81.1±6.7 41.3±12.0 66.57
kNN Prompting (Partial) 77.8±18.9 68.9±10.3 53.3±22.5 66.7±22.7 81.6±6.3 40.2±8.3 64.73

m = 4

ICL 67.2±12.6 56.5±11.8 70.8±11.4 60.8±11.7 62.8±10.3 50.9±4.3 61.50
Contextual Calibration 70.8±11.2 60.0±8.1 70.5±9.0 59.6±6.7 70.0±7.0 43.6±4.5 62.43
Noisy Channel 80.9±3.1 60.5±8.7 66.4±6.0 83.9±2.3 79.0±2.9 40.9±9.3 68.58
kNN Prompting 87.1±6.2 73.5±7.7 66.4±11.7 71.2±17.7 82.9±3.0 51.6±11.2 72.14
kNN Prompting (Partial) 85.9±6.7 70.5±10.3 67.4±12.0 68.1±20.2 82.0±3.6 52.2±7.9 71.00

m = 8

ICL 57.8±5.6 66.2±13.0 77.2±11.0 66.0±11.5 61.5±6.5 50.9±6.1 63.27
Contextual Calibration 68.5±7.9 64.5±9.9 72.7±11.1 64.9±6.8 68.2±8.8 44.0±5.2 63.80
Noisy Channel 82.0±2.1 62.5±5.7 70.1±4.2 85.0±2.1 79.2±2.1 41.6±9.5 70.06
kNN Prompting 88.9±2.1 77.7±5.8 72.5±12.4 75.4±12.1 84.6±1.7 63.7±5.5 77.13
kNN Prompting (Partial) 88.9±2.3 69.2±11.1 67.8±15.9 72.8±12.7 84.3±2.2 54.6±3.7 72.92

m = 16

ICL 67.7±10.8 75.5†±11.4 77.6±7.6 73.3†±11.9 61.8†±5.6 52.0†±5.1 67.97
Contextual Calibration 75.7±7.1 59.7†±6.5 75.2±8.0 73.0†±7.6 73.1†±7.0 46.5†±6.2 67.21
Noisy Channel 84.4±1.4 62.4†±7.2 70.4±6.2 83.7†±3.3 79.6†±2.7 54.2†±7.8 72.44
kNN Prompting 88.8±1.6 80.9±4.0 68.2±7.6 80.1±4.7 84.8±2.7 70.0±3.9 78.80
kNN Prompting (Partial) 89.7±2.5 71.4±9.8 60.5±12.3 79.8±5.4 84.8±3.0 55.8±4.0 73.67

m = 32

ICL 66.5†±10.4 70.1†±9.6 77.4±8.2 67.7†±9.6 63.6†±8.7 52.0†±2.1 66.22
Contextual Calibration 76.9†±7.5 58.6†±9.2 76.5±7.9 78.5†±7.8 71.2†±7.4 44.3†±3.2 67.66
Noisy Channel 84.8†±0.9 61.1†±3.9 70.8±5.2 82.5†±2.4 80.0†±1.8 47.6†±9.1 71.14
kNN Prompting 89.0±1.9 83.2±3.9 69.3±7.9 77.8±5.6 85.0±2.0 73.5±3.9 79.64
kNN Prompting (Partial) 86.7±5.0 65.9±12.9 64.4±12.1 74.2±7.4 83.9±3.8 59.4±4.0 72.41

Table 2: Results under few-shot scenario. Calibration-based baselines are reproduced using their
released code34. † denotes necessary truncation. The overall scaling trend is accordingly visualized
in Figure 4 and Appendix C.1. Partial means only label-words distribution is utilized.

kNN Prompting significantly outperforms competitive baselines under strictly comparable settings
(m ≤ 8), specifically, +3.56 for 4 shot, and +7.07 for 8 shot.

Superiority of Whole LM Distribution Calibration-based methods (Zhao et al., 2021) as well
as standard ICL only access label words instead of whole LM distribution, which is inferior in
two aspects: 1) loss of information. LLM always generate distribution over all words in the entire
vocabulary, non-label words probabilities also reflect its understanding in certain perspectives; 2)
multiple label words competing with each other. There exist various choices for label words but no
oracle rules to select one, and alternative choices potentially compete with the selected label words,
distorting the label space distribution. This is also referred to as surface form competition (Holtzman
et al., 2021). In Table 2 we very this benefit by masking out non-label words (referred to as Partial).

4.2.2 DATA UTILITY BEYOND THE CONTEXT

We then investigate a major advantage of kNN Prompting, which is scaling up to more training
examples that otherwise would not fit in the context. We increase m to 128 and compare with: 1)
ICL Ensemble which is an intuitive alternative to scale ICL up, and has been adopted in previous
works (Jiang et al., 2020); 2) finetuning of standard PLM such as BERT or GPT Large, which could
produce meaningful results with such amount of data. For all methods, we append maximum MT

examples into prompt P . For ICL Ensemble, we split T into multiple non-overlap demonstration
sets T = D1 ∪ D2 ∪ ... ∪ DN to construct different prompts, and ensemble their predictions.

Results in Table 3 show that kNN Prompting continues to improve and outperform ICL and its
ensemble respectively by +16.96 and +16.08 (0.8B model, average score). Besides, the ensemble
baseline is also very inefficient, assuming MT = 8, we need to query 128/8 = 16 times for every
test instance, and this keeps growing linearly if we use more training data, eventually becomes
prohibitively inefficient and can not scale up either. kNN Prompting also outperforms FT when
the adopted LLM scales above 6B (82.73). By contrast, it would require LLM to scale above 30B
(82.45) using ICL Ensemble and even larger using standard ICL.

3https://github.com/tonyzhaozh/few-shot-learning
4https://github.com/shmsw25/Channel-LM-Prompting, as there exists slightly difference

of prompt templates, we report their best template out of four.
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Models & Methods SST2 SUBJ MPQA AGNews CB CR DBPedia MR RTE TREC AVG
BERT Large FT 88.3±1.4 90.7±0.6 74.5±5.0 88.0±1.0 78.6±3.6 88.0±2.6 95.1±1.8 83.0±3.1 58.1±1.5 78.8±5.3 82.31
GPT Large FT 90.7±1.3 86.1±1.7 87.6±0.9 88.3±1.5 70.0±2.0 86.7±13.2 96.5±1.2 86.2±1.0 55.4±3.8 71.2±2.2 81.88

0.8B
ICL 63.4±7.3 58.9±8.7 70.5±5.2 61.7±15.4 45.0±9.1 83.3±13.7 59.9±11.5 77.0±15.7 53.6±3.1 54.4±1.7 62.77

ICL Ensemble 63.0±6.4 57.7±10.3 69.1±6.2 67.4±2.9 41.1±3.1 83.8±11.5 67.8±3.7 72.7±12.3 55.1±3.8 59.0±3.7 63.65
kNN Prompting 84.5±5.3 85.8±1.6 83.1±0.8 84.5±1.3 62.1±3.4 89.7±0.6 95.8±0.5 84.0±1.8 53.6±3.2 74.2±4.4 79.73

1.5B
ICL 81.3±5.4 64.1±11.3 75.2±8.8 72.7±18.5 60.7±2.8 66.2±16.7 83.5±3.8 72.2±13.9 53.0±1.7 54.2±4.9 68.31

ICL Ensemble 83.4±1.9 63.4±11.5 75.0±7.2 81.1±0.7 52.9±8.1 63.4±17.2 83.7±1.3 73.8±15.1 55.9±1.8 59.6±2.3 69.21
kNN Prompting 86.3±2.9 83.8±2.1 82.3±1.5 87.2±0.4 64.6±7.9 88.9±2.4 96.5±0.7 86.4±0.8 51.1±1.7 74.0±2.9 80.12

2.7B
ICL 89.9±4.5 77.7±5.8 84.5±2.1 78.8±4.0 51.1±6.1 92.6±0.6 88.8±1.3 92.5±1.0 52.4±4.2 64.6±3.0 77.29

ICL Ensemble 90.2±3.7 77.7±3.4 86.6±1.9 78.4±1.8 54.6±1.0 93.4±1.1 89.3±0.9 92.4±0.8 54.3±2.3 78.8±2.3 79.57
kNN Prompting 93.4±1.3 87.5±2.0 83.3±3.9 86.7±2.4 57.1±3.8 90.2±2.0 98.6±0.6 91.4±1.5 53.4±5.6 80.8±2.0 82.25

6B
ICL 92.7±1.8 81.6±4.6 86.2±1.9 68.8±8.2 52.5±9.7 92.0±2.6 89.8±0.9 91.6±1.1 55.0±1.6 62.0±7.3 77.19

ICL Ensemble 93.2±0.9 85.6±3.8 87.7±2.9 71.1±5.5 45.7±2.0 93.4±1.5 90.9±1.0 92.0±0.2 54.8±1.3 70.3±1.8 78.47
kNN Prompting 92.2±1.2 87.4±1.7 85.2±2.5 87.4±1.6 63.6±4.1 90.6±2.2 98.5±0.4 91.0±1.5 55.6±2.0 75.8±3.1 82.73

13B
ICL 89.0±4.3 91.3±2.4 78.4±7.2 78.1±5.6 53.2±4.4 93.4±1.1 92.2±2.4 89.9±2.2 55.8±3.0 55.5±6.1 77.68

ICL Ensemble 88.2±4.7 90.7±1.2 78.4±4.8 82.6±1.5 62.1±3.9 94.0±0.7 94.6±1.0 89.0±2.5 56.2±2.0 59.8±3.7 79.56
kNN Prompting 94.8±0.6 90.1±1.5 86.2±3.8 87.4±1.7 78.9±4.8 89.6±1.1 98.9±0.5 92.0±0.5 58.2±4.4 73.1±2.9 84.93

30B
ICL 90.8±4.1 83.5±8.7 80.7±1.9 74.8±4.6 64.6±8.3 87.7±3.9 93.3±0.4 93.4±1.0 61.6±2.7 71.7±2.7 80.21

ICL Ensemble 92.6±2.3 84.1±4.6 79.9±1.9 78.3±2.4 67.1±4.8 88.1±2.9 93.8±1.0 93.4±1.0 65.1±4.6 82.0±2.5 82.45
kNN Prompting 94.3±0.9 92.7±1.7 84.5±0.9 87.1±1.4 70.7±8.2 91.0±1.2 98.8±0.5 93.1±1.5 61.7±4.8 79.8±2.0 85.38

Table 3: Results under low resource scenario (m = 128). Compared with FT and ICL Ensemble.

Figure 4: Data scaling under few shot scenario.
Compared with calibration-based methods.

Figure 5: Data scaling under fully supervised
scenario. Conducted across various LLM scales.

4.2.3 CONTINUALLY SCALING UP TO THOUSANDS OF TRAINING DATA

We now fully scale data up to thousands of training examples and provide extensive results across
model scales to observe their overall scaling performance. Figure 5 shows kNN prompting can con-
tinually generalize across the tested range to provide effective data utility, re-enabling the power law
under gradient-free paradigm of LLM deployment. The full results can be found in Appendix C.2.
With only 32 shots training data, kNN prompting dramatically improves ICL by +13.58 in average
score at its most (0.8 B), and achieves absolute improvements up to +18.84 under fully supervised
setting. With the largest model OPT 30B, it achieves a best performance of 86.02.

Comparison to Demonstration Selection A line of related works try to utilize available train-
ing data by firstly retrieving the most relevant ones from the entire training set, then selectively
composing the prompt before querying LLM (Liu et al., 2022b; Rubin et al., 2022). We since re-
produce such methods according to Liu et al. (2022b). We employ state-of-the-art general-purpose
sentence encoders5 to represent test and training instance, and compute their cosine similarity, the
most similar MT examples are selected to construct prompt P . These retrieving models include
BM25 (Trotman et al., 2014), Sentence-BERT (Reimers & Gurevych, 2019), SimCSE (Gao et al.,
2021) and Trans-Encoder (Liu et al., 2022a).

Figure 6 shows that although such methods indeed exhibits marginal scaling benefits, they are
nowhere near competitive against kNN Prompting. Full results are listed in Appendix C.3. To fur-

5Note that Liu et al. (2022b) also employ RoBERTa model finetuned on SST2, but this overlaps with our
selected benchmark and does not generalize to other tasks beyond sentiment classification.

6



Published as a conference paper at ICLR 2023

Figure 6: cf. Demonstration Selection.

Method SST2 SUBJ MPQA
ICL Baseline 81.3±5.4 64.1±11.3 75.2±8.8
DemonSelection (upper) 92.6 (1‰) 86.0 (3‰) 87.5 (1‰)
kNN Prompting 88.2±1.0 88.4±1.8 84.1±1.2

MR CR TREC
ICL Baseline 72.2±13.9 66.2±16.7 54.2±4.9
DemonSelection (upper) 88.7 (1‰) 88.7 (1‰) 73.0 (1‰)
kNN Prompting 84.4±1.5 86.7±1.3 83.0±1.4

Table 4: Comparison to upper-bound of Demon-
stration Selection. 1‰ inside the parentheses means
the result can be achieved in 1 runs out of 1,000
searches.

ther solidify this conclusion, we push PromptCompose to an extreme situation trying to approximate
its upper-bound. As such methods ultimately resort to compose the prompt, it should be bounded
by the best composition scheme from finite compositions. We thus search for 1,000 prompts with
different examples and report their best run. In Table 4 we find kNN Prompting performs on par
with or even surpasses such upper-bound approximation. In conclusion, kNN Prompting essentially
makes better use of training examples than PromptCompose as the latter still only refer to in-context
examples during LLM inference while most training data are discarded beforehand.

4.3 ANALYSES AND EXPLANATION

4.3.1 ROBUSTNESS W.R.T. DIFFERENT TRAINING EXAMPLES

It is previously found that vanilla ICL suffers from severe instability (Zhao et al., 2021). Figure 7
is produced with 10 different seeds, which results in different choices and permutations of training
data. We show that kNN Prompting significantly improves the robustness. Besides, the perfor-
mance becomes more robust with increasing anchor set size. On 10 investigated tasks, the standard
deviation of kNN Prompting (3.83) is significantly smaller than ICL (9.14)6.

Figure 7: Robustness. Figure 8: Split strategy.

4.3.2 SPLIT STRATEGY BETWEEN DEMONSTRATIONS AND ANCHORS

For fully supervised scenario where m � MT , we can simply set |D| to its maximum MT . Oth-
erwise, we might need to deliberate the trade-off between the demonstration set and anchor set. In
Figure 13 we search through all possible combinations given that |A| + |D| ≤ MT . We see the
left part of the heatmap generally performs inferior, i.e., |A| ∈ {1, 2}. This means a larger |A|
contributes more to the performance while the choice for |D| is relatively more robust. The con-
clusion also corresponds to few shot results that anchor set yields better data utility than context
concatenation. More datasets are also provided in Appendix C.5.

6Calculated using Table 8 statistics with 32 shot setting, 0.8B model
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ICL Pred
𝑘NN

Prompting

Acc 83.5 97.8

B film (✘) album

C book (✘) artist

D building (✘) nature

E building (✘) nature

A book (✘) artist

A
(Test)

Derek Landy (born October 23 1974) is an Irish author and 
screenwriter best known for the Skulduggery Pleasant series of 
children's books.

ICL Pred
Golden
Label

distance↓

𝑘NN
(Anchor)

Adrian Dawson (born 26 January 1971) is a British author of thriller 
and horror fiction currently best known for his 2010 debut novel 
Codex ... ... non-fiction rather than fiction for such subject matter.

book (✘) artist 0.1355

Michelle Harrison (born 1979 Grays Essex England) is a British author 
whose debut novel 13 Treasures won the Waterstone‘s Children’s Book 
Prize … …Young-adult fiction book is Unrest and was released in 2012.

book (✘) artist 0.2267

Barry Kingham Oakley (born 24 February 1931) is an Australian writer. artist (✓) artist 0.2932

Figure 9: t-SNE (van der Maaten & Hinton, 2008) for anchors and test cases. Cases are randomly
selected given that kNN Prompting outperforms ICL. DBPedia is an ontology classification task.

4.3.3 QUALITATIVE ANALYSES AND REASONS OF EFFECTIVENESS

We first formally organize the explanation as follows according to Figure 9:

• The output language modeling (LM) distribution of LLM is essentially not well aligned with task-
specific label space, resulting in inferior performance (83.5 test accuracy) of default ICL.

• If we similarly perform inference on anchor set, we would expect to get approximately 83.5 anchor
accuracy by assuming i.i.d. data distribution. However, we are already aware of each of their
golden labels, which actually gives 100 anchor accuracy.

• LM distribution is inferior for making direct predictions, but superior for matching examples
because it entails distributional, delicate and comprehensive representations generated by LLM.
kNN Prompting leverages such representations (83.5 accuracy) only for matching, and refer to
their golden labels (100 accuracy) for predicting, thus successfully transfer part of the knowledge
originating from anchor labels to test instances.

In the visualization, the representations generally exhibit partially clustered pattern, we can identify
proportional examples that get entangled with different categories and crowded together (Case A, C,
D), these confusing cases are likely to cause erroneous predictions in ICL and corresponds to under-
performed 83.5 accuracy as mentioned above. Specifically, caseA is an abstract about a novelist and
should belong to category artist, but it is easily confused with category book using ICL because the
context did mention books. By contrast, kNN Prompting can correctly predict by referring to similar
anchors that are also about novelists and their books (as listed in the table). Some of the anchors
are also incorrectly predicted as book, but it no longer matters because kNN Prompting only use
the distribution for nearest neighbor search but refer to golden labels for prediction. Besides, as we
can clearly know how the prediction is made, i.e., which anchor examples are referred, the proposed
method also exhibits explainability as a further advantage.

5 RELATED WORKS

Large language models, since firstly scaled up to hundreds of billions parameters by Brown et al.
(2020) and followed by several others (Rae et al., 2021; Zhang et al., 2022; Chowdhery et al.,
2022; Cohen et al., 2022; Smith et al., 2022), have become the most prominent direction of NLP
area. Although these models exhibit surprisingly powerful and even emergent capabilities in a wide
range of NLP tasks (Wei et al., 2022b; Hendrycks et al., 2020; Srivastava et al., 2022), they are
prohibitively expensive for most researchers or users to train or even hold. In-Context Learning,
which suits LLM to various tasks while requires no training, therefore becomes the typical usage as
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is popularized by Brown et al. (2020). Similar ideas of formulating target tasks into natural language
sequences can also be found in earlier works (Trinh & Le, 2018; Raffel et al., 2020).

To better exploit LLM for various scenarios, it becomes a crucial problem to develop augmented
methods for ICL (Dong et al., 2022). Xie et al. (2022) provide theoretical explanations that formalize
ICL as Bayesian inference. Dai et al. (2022) reveal that ICL can be seen as implicit finetuning where
LLM produces meta-gradients from in-context demonstrations to adapt the model behavior. Wei
et al. (2022a) and Sanh et al. (2022) propose instruction tuning, which further pretrains LLM with
a collection of downstream tasks in a shared prompting format. Min et al. (2022b) and Chen et al.
(2022b) introduce meta-learning to better adapt LMs to ICL. Wei et al. (2022c) and Kojima et al.
(2022) propose to augment the demonstrations with human-aided reasoning steps or hints, which
surprisingly improved the performance for arithmetics and other reasoning tasks. Closely related
to this work, Liu et al. (2022b) and Rubin et al. (2022) propose to compose prompt P by selecting
most similar training examples. Zhao et al. (2021) and Min et al. (2022a) propose to calibrate ICL
prediction via either probing the bias or reversing the conditional prediction formulation.

kNN is a classical machine learning algorithm (Fix & Hodges, 1989) well known for its simplicity
and inspired a wide range of application (Papernot & McDaniel, 2018; Orhan, 2018). In the field of
NLP, Kaiser et al. (2017) construct a differentiable memory module for nearest neighbor searching
which improves generalization to rare events. Similar idea has also been explored for generation
tasks (Guu et al., 2018), such as dialog generation (Weston et al., 2018), machine translation (Khan-
delwal et al., 2021), etc. Wang et al. (2022) and Chen et al. (2022a) propose to retrieve similar
training examples and incorporate them into the input to jointly train the model. While Khandelwal
et al. (2020) and Shi et al. (2022) consider unsupervised corpus as datastore, retrieve and interpolate
them with the current step language modeling probability. The retrieved corpus can also serve as
references for knowledge intensive tasks, but the retriever would need explicitly training for such
purpose (Lewis et al., 2020; Borgeaud et al., 2022; Izacard et al., 2022). Different from these works,
kNN Prompting is suitably situated in the gradient-free paradigm of LLM deployment, which avoids
calibration treatment and effectively bridges data scaling into model scaling.

6 DISCUSSION

Under the existing ICL paradigm, it is often impossible to take advantage of both the capability of
LLM and the data utility of finetuning, i.e., model scaling and data scaling. kNN Prompting finds
an effective solution to promise them both. Nevertheless, we assume its data utility should still
be inferior to the specialized finetuning of LLMs, if given sufficient computation resources in an
ideal setting. We believe that it is a very important and promising direction to further approach this
upper-bound and expect to raise more interests in future works.

A potential concern for retrieval-based models is their efficiency, especially when corpus level data-
store is utilized. kNN Prompting is free of such concerns as it considers training data, which is in
manageable scale. Under few shot scenario, kNN Prompting even reduces computational costs at
deployment time compared to standard ICL. It works well with one shot demonstrations as experi-
mented in Section 4.2.1, while the anchor examples are queried for only once and cached locally. By
contrast, existing methods only perform better when all examples are prepended in a single prompt.
This advantage is rather important as we need to repeatedly query the prompt in practical usage
of LLM service, and longer prompt results in linearly more monetary costs if charged by token
numbers or super-linearly more computational costs if measured by FLOPS.

7 CONCLUSION

In this paper, we propose kNN Prompting as a simple and effective solution to advance gradient-free
deployment of LLM inference. Motivated as calibration-free optimization, kNN Prompting signifi-
cantly outperforms state-of-the-art calibration-based methods under comparable few shot scenario.
While its major advantage is further revealed when training data increases and can not fit in the
context. kNN Prompting can effectively scale up with as many training data as are available, suc-
cessfully bridging the utility of data scaling into model scaling. The proposed framework endeavors
to realize more effective, efficient and applicable utilization of large language models in realistic
scenarios, and hopefully could inspire further research interests toward the same goal.
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ETHICAL CONSIDERATIONS

This work is built upon the ICL paradigm and involves querying LLM for responses. These models
might generate contents with potential ethical risks regarding fairness and bias (Bommasani et al.,
2021; Blodgett et al., 2020), depending on specific downstream tasks. Although the scope of this
paper remains on how to better exploit LLM for task performance, it is worth further discussion
to combine the proposed framework in conjunction with well-established methods that can mea-
sure (Nadeem et al., 2021) and mitigate (Nadeem et al., 2021; Gupta et al., 2022) such ethical risks.
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A DATASET STATISTICS: MAX SHOT IN CONTEXT

We provide detailed statistics about the number of maximum shots in Table 5, i.e.,MT for each task,
corresponding to Table 1 in the main manuscript.

SST2 SUBJ MPQA AGNews CB CR DBPedia MR RTE TREC
Num. of Classes 2 2 2 4 3 2 14 2 2 6

Average Length of Templates 19.1 34.9 10.4 59.5 90.8 29.0 71.6 32.7 79.8 17.6

1024 Toks Max Shots (TP) 20 (2%) 12 (1%) 39 (0%) 3 (0%) 2 (0%) 14 (4%) 1 (77%) 14 (4%) 4 (0%) 8 (1%)
MT 16 8 32 2 2 8 1 8 4 8

2048 Toks Max Shots (TP) 44 (5%) 25 (1%) 81 (3%) 7 (1%) 6 (2%) 28 (4%) 1 (0%) 27 (2%) 10 (4%) 17 (5%)
MT 32 16 32 4 4 16 1 16 8 16

Table 5: Dataset statistics and the maximum shots (per class) that a context of 1024 tokens or 2048
tokens can allow. We provide maximum shots under 5% Truncation Probability (TP) restriction as
well as the actual MT taken in this paper, which is set from {1, 2, 4, 8, 16, 32} for simplicity.

B MORE ANALYSES

B.1 DISTANCE MEASUREMENT

We investigate euclidean distance as an alternative distance measurement, which has also been ex-
plored in Khandelwal et al. (2020). We take the contextual representation h of LLM, and denotes
their distance as DL2(htest,hi). Table 6 shows that both methods are effective but DKL (Equa-
tion 5) based on LM distribution p is a superior measurement. Actually, p is a projection of h
through the word embedding, we think this procedure exploits the well-structured word embeddings
of LLM to provide more disentangled representations, thus can better serves as the anchor space.

Measurements SST2 SUBJ MPQA AGNews CB CR DBPedia MR RTE TREC AVG
In-Context Learning 81.3±5.4 64.1±11.3 75.2±8.8 72.7±18.5 60.7±2.8 66.2±16.7 83.5±3.8 72.2±13.9 53.0±1.7 54.2±4.9 68.31
Contextual Repr + DL2 84.1±8.5 73.0±8.4 75.2±8.8 82.0±0.8 60.4±8.1 78.0±11.7 95.1±1.0 82.6±5.0 53.3±2.4 70.3±4.4 75.40 (+7.09)
LM Distribution + DKL 87.7±3.5 77.0±3.5 75.2±8.8 86.2±1.8 58.9±2.2 88.2±3.5 94.1±2.3 83.9±2.4 53.6±3.0 64.8±4.2 76.97 (+8.66)

Table 6: Comparison for alternative distance measurement.

B.2 RELIANCE ON PRIOR KNOWLEDGE

Conclusion We further explore the robustness of kNN Prompting regarding the reliance of prior
knowledge on target distribution. We show that among the investigated baselines, ICL and Con-
textualCalibration (Zhao et al., 2021) are greatly impacted by prior knowledge of test distribution,
while kNN Prompting and NoisyChannel (Min et al., 2022a) are much more robust.

Experimental Setting We investigate various combinations of prior distribution by controlling the
imbalance ratio λtrain and λtest. For every setting, we include 5 binary classification tasks (SST2,
MPQA, SUBJ, MR, CR) and run with 10 random seeds, we report the average score of these results.
Specifically, λtrain = 0.125 means one category (positive) accounts for 12.5% of the entire train
set, and λtrain = 1.5 corresponds to the balanced setting. We investigate both λtrain < 0.5 and
λtest < 0.5, which results in three different settings.

ContextualCalibration explicitly include a prior distribution, at such imbalanced scenario, one can
either use the default assumption (pos : neg = 1 : 1, as designed in the original paper) or use the
observed assumption from train set (pos : neg = λtrain/(1 − λtrain)). We respectively refer to
them as Balanced Prior and Trainset Prior. Note that test distribution is unaccessible so we can
not use it. Other methods (ICL, NoisyChannel and kNN Prompting) do not technically incorporate
any prior knowledge. So they are not concerned with this investigation dimension.

Analyses The results are reported in Table 7. For ICL, LLM naturally suffers from the bias learned
in pretraining stage, thus is vulnerable to any different prior distributions. The performance greatly
degrades in Setting B (-22.06) and Setting C (-22.17).
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For ContextualCalibration, technically, it necessarily requires a prior distribution to rectify the LLM
predicted label word probabilities. If the prior knowledge does not match the (unaccessible) test dis-
tribution, its performance will be greatly degraded. Specifically, if Balanced Prior is consistent with
test distribution, the method performs well (Setting A, -1.77), otherwise, the performance degrades
(Setting B, -20.24 and Setting C, -12.65). Similarly, if Trainset Prior Assumption is consistent
with test distribution, the method performs well (Setting C, +8.65), otherwise, the performance
degrades (Setting B, -20.24 and Setting A, -18.92).

For NoisyChannel, its performance is rather robust (-2.60/-0.63/-7.87 respectively in
Setting A,B,C). By re-formulating ICL into computing conditional probability of the input given
the output, it is indeed an effective way to calibrate the task prediction.

For the proposed kNN Prompting, technically, it does not incorporate any prior knowledge of train
or test distribution. Both the construction of datastore and the retrieving then predicting procedure
do not vary w.r.t. different prior knowledge of distribution. The proposed method can robustly adapt
to all imbalanced settings, including imbalanced trainset, testset and both. There is basically no
performance degradation (-1.3/-2.6/+0.05 respectively in Setting A,B,C, where -1.3/-2.6 can be
considered within ordinary fluctuation).

Methods 0.125 0.25 0.375 0.5 (Balanced) AVG MaxDrop

Setting A. λtrain < 0.5, λtest = 0.5

ICL 62.4 64.2 65.7 68.2 65.15 -5.85
ContextualCalibration w/ Balanced Prior 74.0 69.7 68.5 70.3 70.64 -1.77
ContextualCalibration w/ Trainset Prior 51.4 71.5 80.2 70.3 68.36 -18.92
NoisyChannel 70.0 70.9 71.9 72.6 71.33 -2.60
kNN Prompting 79.0 80.1 80.5 80.3 79.98 -1.29

Setting B. λtrain = 0.5, λtest < 0.5

ICL 45.9 53.4 60.9 67.9 57.04 -22.06
ContextualCalibration w/ Balanced Prior 50.0 57.2 64.2 70.2 60.42 -20.24
ContextualCalibration w/ Trainset Prior 50.0 57.2 64.2 70.2 60.42 -20.24
NoisyChannel 72.1 72.2 71.8 72.4 72.14 -0.63
kNN Prompting 77.1 78.0 78.7 79.7 78.38 -2.62

Setting C. λtrain = λtest < 0.5

ICL 45.8 50.0 58.6 67.9 55.57 -22.17
ContextualCalibration w/ Balanced Prior 63.0 57.6 61.7 70.2 63.13 -12.65
ContextualCalibration w/ Trainset Prior 87.8 84.5 78.8 70.2 80.33 +8.56
NoisyChannel 64.6 68.6 70.8 72.4 69.10 -7.87
kNN Prompting 79.8 80.7 80.3 79.7 80.12 +0.05

Table 7: Reliance on prior knowledge. All reported results are averaged across 5 datasets, and we
further report average performance across all imbalance ratios. λtrain/test denotes the subsampled
ratio. MaxDrop measures the performance degradation compared to ordinary balanced setting (λ∗ =
0.5), where the best is bolded and no drop is highlighted in pink.

B.3 EMPIRICAL CHOICE OF k

In Figure 10 we search for different choices of k on MPQA, and found that it is generally a rather
robust choice within the wide range [3, |A|/2− 1].

B.4 ROBUSTNESS UNDER IMBALANCED SCENARIO

We further test the robustness of kNN Prompting under imbalanced label scenario. Take binary
classification like SST2 as example, we simulate imbalance ratio by controlling one of the category
proportionally to {0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625} of the entire training set, where
0.5 corresponds to the ordinary balanced scenario. We keep the test set intact, which results in a
challenging out-of-distribution (OOD) setting. Results in Figure 11 reveal the vulnerability of the
proposed method. Under imbalanced setting, kNN Prompting is overwhelmed by the large quantity
of anchors from the majority class where it is simply far more easier to find closer neighbors.
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Figure 10: Empirical choices of k. Conducted on SST2, SUBJ and MPQA respectively (left to
right).

Figure 11: Robustness under imbalanced scenario. Left: few-shot scenario (32). Right: fully-
supervised scenario (1024).

To address such performance degradation under challenging imbalanced scenario, we propose a
simple normalization trick: we average the anchor representations to produce one centered anchor
for each class, the resulting anchor is thus more representative and also avoids quantity distrac-
tion. Such an adaptation works surprisingly well with no loss of performance even under ordinary
balanced setting.

C COMPLETE RESULTS

C.1 DATA SCALING CURVE UNDER FEW-SHOT SCENARIO

We provide scaling curve w.r.t. each specific dataset in Figure 12, corresponding to Table 2 and
Figure 4 in the main manuscript.
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Figure 12: Scaling curve under few shot setting for each specific dataset. The baselines are strictly
comparable under m ≤ 8, some baselines might be truncated when m ≥ 16.

Models & Methods SST2 SUBJ MPQA AGNews CB CR DBPedia MR RTE TREC AVG

0.8B

In-Context Learning 63.4±7.3 58.9±8.7 70.5±5.2 61.7±15.4 45.0±9.1 83.3±13.7 59.9±11.5 77.0±15.7 53.6±3.1 54.4±1.7 62.77
m = 32 82.0±6.9 82.8±1.2 70.5±5.2 82.2±0.9 56.8±7.3 87.5±3.0 93.7±1.1 83.0±2.5 53.6±4.0 71.5±6.2 76.35
m = 64 84.2±5.4 84.6±0.7 81.2±3.0 83.3±1.9 59.3±6.0 90.3±1.4 95.2±0.8 82.2±2.9 53.8±1.7 72.4±4.1 78.66
m = 128 84.5±5.3 85.8±1.6 83.1±0.8 84.5±1.3 62.1±3.4 89.7±0.6 95.8±0.5 84.0±1.8 53.6±3.2 74.2±4.4 79.73
m = 256 85.8±4.0 86.0±2.5 83.2±1.3 86.5±1.3 62.1±3.4 89.5±0.4 96.1±0.9 82.8±0.9 53.5±3.3 81.0±2.5 80.66
m = 512 85.5±4.2 86.7±1.5 83.0±2.4 86.3±0.7 62.1±3.4 89.1±1.0 96.4±0.8 83.5±4.1 52.8±3.4 82.4±2.9 80.80
m = 1024 85.5±4.5 87.6±1.4 84.8±1.0 87.6±0.6 62.1±3.4 87.5±1.0 96.7±0.7 83.6±2.3 54.1±2.6 86.7±1.5 81.61

1.5B

In-Context Learning 81.3±5.4 64.1±11.3 75.2±8.8 72.7±18.5 60.7±2.8 66.2±16.7 83.5±3.8 72.2±13.9 53.0±1.7 54.2±4.9 68.31
m = 32 87.7±3.5 77.0±3.5 75.2±8.8 86.2±1.8 58.9±2.2 88.2±3.5 94.1±2.3 83.9±2.4 53.6±3.0 64.8±4.2 76.97
m = 64 87.2±2.8 82.5±1.2 83.0±4.0 86.2±1.1 62.9±6.1 89.1±1.6 95.5±1.4 84.3±1.9 49.1±3.2 68.9±2.9 78.86
m = 128 86.3±2.9 83.8±2.1 82.3±1.5 87.2±0.4 64.6±7.9 88.9±2.4 96.5±0.7 86.4±0.8 51.1±1.7 74.0±2.9 80.12
m = 256 89.1±1.6 85.0±2.2 83.4±1.5 87.5±1.7 64.6±7.9 89.3±0.9 97.3±0.3 85.6±2.0 52.7±3.3 78.1±3.3 81.27
m = 512 89.0±1.5 87.6±1.6 83.7±1.2 88.4±1.5 64.6±7.9 90.1±1.0 97.6±0.5 85.1±1.6 52.9±1.8 80.5±1.8 81.94
m = 1024 88.2±1.0 88.4±1.8 84.1±1.2 89.1±1.2 64.6±7.9 86.7±1.3 97.8±0.6 84.4±1.5 53.3±4.2 83.0±1.4 81.96

2.7B

In-Context Learning 89.9±4.5 77.7±5.8 84.5±2.1 78.8±4.0 51.1±6.1 92.6±0.6 88.8±1.3 92.5±1.0 52.4±4.2 64.6±3.0 77.29
m = 32 89.9±4.5 82.3±4.4 84.5±2.1 84.4±1.2 50.0±5.4 89.9±3.2 97.0±0.7 91.2±2.6 52.8±1.9 75.1±5.5 79.72
m = 64 91.4±2.1 84.9±3.7 80.8±6.0 86.2±1.7 57.1±3.3 91.0±1.7 97.7±0.8 91.5±1.9 51.6±3.4 79.1±2.8 81.14
m = 128 93.4±1.3 87.5±2.0 83.3±3.9 86.7±2.4 57.1±3.8 90.2±2.0 98.6±0.6 91.4±1.5 53.4±5.6 80.8±2.0 82.25
m = 256 92.9±2.0 87.7±1.7 83.3±2.4 86.4±1.3 57.1±3.8 91.6±1.5 99.0±0.2 90.5±1.7 53.5±3.2 81.2±2.5 82.32
m = 512 91.9±1.0 89.4±1.0 83.8±2.3 88.1±2.1 57.1±3.8 91.3±1.2 99.1±0.4 91.2±1.4 54.3±1.6 83.1±4.0 82.93
m = 1024 91.7±2.3 90.5±1.5 83.7±2.2 89.1±1.2 57.1±3.8 89.8±1.0 99.1±0.3 90.9±1.2 57.7±3.0 86.7±2.3 83.64

6B

In-Context Learning 92.7±1.8 81.6±4.6 86.2±1.9 68.8±8.2 52.5±9.7 92.0±2.6 89.8±0.9 91.6±1.1 55.0±1.6 62.0±7.3 77.19
m = 32 92.7±1.8 85.5±2.9 86.2±1.9 83.0±1.5 65.0±1.6 91.0±2.5 97.4±0.6 91.8±0.7 55.2±3.2 71.2±5.2 81.90
m = 64 92.7±0.8 87.2±2.0 85.2±3.9 85.1±1.4 66.4±6.6 90.5±2.8 98.1±0.5 91.1±1.4 51.6±4.4 72.3±1.3 82.02
m = 128 92.2±1.2 87.4±1.7 85.2±2.5 87.4±1.6 63.6±4.1 90.6±2.2 98.5±0.4 91.0±1.5 55.6±2.0 75.8±3.1 82.73
m = 256 92.9±0.8 90.5±1.2 84.9±0.9 86.4±2.0 63.6±4.1 90.7±0.7 99.0±0.2 91.4±1.0 56.2±2.4 76.6±1.5 83.22
m = 512 93.5±1.3 90.8±0.9 85.5±1.7 88.6±0.8 63.6±4.1 90.4±1.4 99.0±0.2 90.3±1.0 59.4±2.0 81.6±1.4 84.27
m = 1024 93.0±1.1 90.6±1.6 85.5±1.4 89.5±1.7 63.6±4.1 88.3±1.6 98.9±0.5 90.4±1.5 57.0±2.7 81.5±0.9 83.82

13B

In-Context Learning 89.0±4.3 91.3±2.4 78.4±7.2 78.1±5.6 53.2±4.4 93.4±1.1 92.2±2.4 89.9±2.2 55.8±3.0 55.5±6.1 77.68
m = 32 89.0±4.3 91.1±1.1 78.4±7.2 84.5±2.2 77.9±4.1 89.5±4.6 97.3±0.7 91.1±1.4 56.8±3.2 71.4±4.1 82.69
m = 64 94.8±0.8 90.8±2.1 86.3±2.7 86.0±1.1 77.5±5.1 91.8±1.1 98.1±0.7 91.1±2.1 57.7±4.1 70.5±2.7 84.47
m = 128 94.8±0.6 90.1±1.5 86.2±3.8 87.4±1.7 78.9±4.8 89.6±1.1 98.9±0.5 92.0±0.5 58.2±4.4 73.1±2.9 84.93
m = 256 94.5±0.9 90.5±1.6 85.3±0.7 87.2±1.8 78.9±4.8 91.2±1.9 99.5±0.2 92.0±1.4 59.3±1.5 74.8±4.1 85.31
m = 512 94.5±0.8 91.2±2.1 86.3±0.9 86.9±1.5 78.9±4.8 90.5±1.3 99.3±0.3 92.7±0.3 64.1±4.8 75.9±4.1 86.03
m = 1024 94.5±0.4 91.6±2.4 87.0±2.1 88.5±1.0 78.9±4.8 88.1±1.3 99.3±0.2 91.6±0.3 63.0±3.6 76.1±6.2 85.87

30B

In-Context Learning 90.8±4.1 83.5±8.7 80.7±1.9 74.8±4.6 64.6±8.3 87.7±3.9 93.3±0.4 93.4±1.0 61.6±2.7 71.7±2.7 80.21
m = 32 90.8±4.1 91.3±0.6 80.7±1.9 84.1±1.2 70.0±9.9 89.0±3.5 98.3±0.2 94.5±1.1 59.5±3.6 77.6±2.3 83.56
m = 64 93.6±1.6 91.9±1.4 85.5±1.8 85.3±2.1 69.3±7.6 91.6±1.6 98.3±0.2 94.1±0.6 60.2±6.0 81.0±2.9 85.08
m = 128 94.3±0.9 92.7±1.7 84.5±0.9 87.1±1.4 70.7±8.2 91.0±1.2 98.8±0.5 93.1±1.5 61.7±4.8 79.8±2.0 85.38
m = 256 94.4±0.4 93.8±1.1 84.1±1.1 87.6±0.9 70.7±8.2 90.3±1.0 99.1±0.3 93.7±0.6 62.1±2.5 82.1±1.9 85.80
m = 512 94.1±0.3 94.1±1.4 85.6±1.5 87.9±1.9 70.7±8.2 89.8±1.5 99.1±0.3 93.2±1.1 61.8±2.6 83.8±1.8 86.01
m = 1024 94.1±0.6 93.9±0.8 85.4±0.7 87.9±2.3 70.7±8.2 88.4±1.1 99.1±0.2 93.4±1.6 61.0±4.0 86.2±1.5 86.02

Table 8: Full results for data scaling, corresponds to Figure 5. Some ICL results are reused7.

19



Published as a conference paper at ICLR 2023

C.2 DATA SCALING RESULTS UNDER FULLY SUPERVISED SCENARIO

We provide comprehensive results of kNN Prompting across data scales and LLM scales in Table 8,
corresponding to Figure 5 in the main manuscript.

C.3 FULL RESULTS OF COMPARISON TO PROMPTCOMPOSE

We provide the full results of comparison between kNN Prompting and PromptCompose in Table 9,
corresponding to Figure 6 in the main manuscript. The employed sentence encoder can be found at
https://huggingface.co/models8910.

Setting & Methods SST2 SUBJ MPQA AGNews CB CR DBPedia MR RTE TREC AVG
m =MT In-Context Learning 81.3±5.4 64.1±11.3 75.2±8.8 72.7±18.5 60.7±2.8 66.2±16.7 83.5±3.8 72.2±13.9 53.0±1.7 54.2±4.9 68.31

m = 32

BM25 68.4±3.7 63.6±3.0 75.2±8.8 69.0±3.6 65.0±6.5 55.2±1.0 80.7±1.3 59.4±1.4 53.0±2.3 65.5±2.8 65.50
SBERT 71.0±4.9 67.5±1.6 75.2±8.8 82.3±2.1 62.9±2.9 57.8±1.9 83.8±1.2 57.7±4.3 51.2±3.1 58.4±6.7 66.78
SimCSE 68.1±4.5 69.8±3.1 75.2±8.8 80.7±2.9 66.4±2.3 55.9±2.8 82.3±1.9 57.3±2.4 52.8±1.7 54.5±1.8 66.31
Trans-Encoder 67.9±3.8 70.9±4.1 75.2±8.8 77.7±2.5 61.4±6.0 56.7±1.7 82.8±2.0 57.3±4.3 52.7±2.0 59.3±3.9 66.21
kNN Prompting 87.7±3.5 77.0±3.5 75.2±8.8 86.2±1.8 58.9±2.2 88.2±3.5 94.1±2.3 83.9±2.4 53.6±3.0 64.8±4.2 76.97

m = 64

BM25 69.7±2.9 67.7±2.5 79.4±2.0 71.7±1.9 68.6±4.1 54.7±1.1 83.4±2.0 58.7±1.5 52.0±1.6 65.9±5.6 67.18
SBERT 71.8±3.4 71.6±3.8 80.2±1.5 84.6±2.2 66.8±6.8 59.8±1.8 84.6±0.8 57.6±1.6 52.8±3.6 63.7±4.7 69.37
SimCSE 68.4±4.7 69.7±2.6 81.6±0.6 83.1±2.2 71.4±4.6 57.9±2.6 84.8±2.1 57.3±2.0 52.3±3.6 58.1±1.8 68.46
Trans-Encoder 69.3±4.3 73.0±1.2 82.0±2.2 79.3±2.0 69.3±3.4 57.9±2.7 85.6±1.2 57.9±1.4 52.1±4.5 60.1±2.6 68.65
kNN Prompting 87.2±2.8 82.5±1.2 83.0±4.0 86.2±1.1 62.9±6.1 89.1±1.6 95.5±1.4 84.3±1.9 49.1±3.2 68.9±2.9 78.86

m = 128

BM25 69.1±0.5 66.8±2.7 75.2±6.2 77.5±1.4 71.4±0.0 56.4±1.2 85.5±1.7 59.8±2.0 54.5±1.3 72.3±4.9 68.87
SBERT 71.7±1.9 71.9±1.7 79.6±3.6 85.3±2.0 69.6±0.0 58.8±0.8 87.2±0.9 60.1±2.3 53.3±2.3 64.9±2.1 70.24
SimCSE 70.9±2.2 71.6±3.2 81.6±2.6 84.5±1.7 73.2±0.0 58.5±2.2 87.0±2.1 58.7±1.4 53.4±3.2 59.6±3.3 69.89
Trans-Encoder 69.0±1.3 75.5±2.2 82.6±1.9 82.9±0.6 73.2±0.0 56.1±0.8 87.0±1.4 57.1±1.3 52.9±3.1 63.9±2.3 70.02
kNN Prompting 86.3±2.9 83.8±2.1 82.3±1.5 87.2±0.4 64.6±7.9 88.9±2.4 96.5±0.7 86.4±0.8 51.1±1.7 74.0±2.9 80.12

m = 256

BM25 72.0±3.9 72.3±1.4 78.8±3.2 77.3±3.0 71.4±0.0 57.1±0.8 88.2±1.9 58.4±1.6 53.8±2.8 76.6±3.1 70.60
SBERT 69.9±1.8 72.3±0.8 82.2±2.5 86.3±1.2 69.6±0.0 58.8±1.5 88.5±0.9 59.8±2.6 52.3±2.4 69.1±0.8 70.89
SimCSE 71.4±3.7 73.7±1.6 82.9±0.8 85.5±1.4 73.2±0.0 59.7±1.2 89.1±1.7 57.8±2.2 51.1±2.6 64.3±1.5 70.87
Trans-Encoder 70.0±1.0 76.6±1.4 82.1±2.0 84.1±1.2 73.2±0.0 58.0±1.0 89.9±1.3 58.1±1.2 52.0±2.4 70.9±2.2 71.49
kNN Prompting 89.1±1.6 85.0±2.2 83.4±1.5 87.5±1.7 64.6±7.9 89.3±0.9 97.3±0.3 85.6±2.0 52.7±3.3 78.1±3.3 81.27

m = 512

BM25 74.6±2.0 71.8±1.3 79.0±2.3 81.3±1.7 71.4±0.0 58.4±1.1 88.7±1.9 59.7±1.1 53.7±2.3 82.9±1.1 72.14
SBERT 71.6±2.8 74.3±1.2 83.1±2.2 89.1±1.9 69.6±0.0 59.2±3.0 88.6±1.5 58.8±2.1 51.8±3.0 73.8±1.9 72.00
SimCSE 73.6±2.0 75.5±3.1 83.9±1.6 86.6±1.6 73.2±0.0 59.1±1.0 90.4±1.3 59.2±2.4 50.2±2.3 69.1±2.1 72.07
Trans-Encoder 73.1±3.6 78.9±1.7 84.2±1.1 87.1±1.7 73.2±0.0 57.7±1.1 89.6±1.2 58.4±2.5 52.1±3.7 74.1±2.3 72.84
kNN Prompting 89.0±1.5 87.6±1.6 83.7±1.2 88.4±1.5 64.6±7.9 90.1±1.0 97.6±0.5 85.1±1.6 52.9±1.8 80.5±1.8 81.94

m = 1024

BM25 76.9±1.8 74.9±2.7 79.3±2.2 83.6±1.3 71.4±0.0 56.9±1.0 90.2±1.6 60.3±2.7 52.7±1.0 85.0±1.2 73.12
SBERT 73.9±1.6 76.6±2.3 83.7±1.2 90.0±1.6 69.6±0.0 58.1±1.1 91.1±1.2 59.6±0.9 52.8±1.8 75.7±2.0 73.12
SimCSE 73.5±3.0 74.5±1.8 84.6±1.1 88.7±1.1 73.2±0.0 57.5±1.0 91.6±0.8 59.8±1.3 53.1±1.0 69.4±1.3 72.59
Trans-Encoder 73.4±2.2 78.4±1.6 82.9±0.8 87.8±2.3 73.2±0.0 55.9±0.8 91.7±0.8 59.5±3.2 54.8±2.0 76.6±0.7 73.42
kNN Prompting 88.2±1.0 88.4±1.8 84.1±1.2 89.1±1.2 64.6±7.9 86.7±1.3 97.8±0.6 84.4±1.5 53.3±4.2 83.0±1.4 81.96

Table 9: Full results for comparison to PromptCompose, corresponding to Figure 6. Some ICL
results are reused (MPQA, 32 shot), see footnote in caption of Table 8 for explanation.

C.4 BENEFITS OF WHOLE LM DISTRIBUTION UNDER FULLY SUPERVISED SCENARIO

We provide comparison between whole and partial LM distribution also on fully supervised scenario
in Table 10. The conclusion remains invariant with few shot scenario as demonstrated in Table 2.

Methods SST2 SUBJ MPQA AGNews CB CR DBPedia MR RTE TREC AVG
ICL 81.3±5.4 64.1±11.3 75.2±8.8 72.7±18.5 60.7±2.8 66.2±16.7 83.5±3.8 72.2±13.9 53.0±1.7 54.2±4.9 68.31

kNN Prompting 88.2±1.0 88.4±1.8 84.1±1.2 89.1±1.2 64.6±7.9 86.7±1.3 97.8±0.6 84.4±1.5 53.3±4.2 83.0±1.4 81.96
kNN Prompting (Partial) 87.7±1.4 69.3±8.9 83.4±1.1 84.5±1.2 63.2±6.0 84.1±2.7 96.8±0.6 84.7±1.8 49.0±2.9 65.7±3.5 76.84

Table 10: Comparison between whole and partial LM distribution on fully supervised scenario.

7In Table 8, there are few cases where kNN Prompting gets identical results with ICL baseline. This happens
when MT =32, which leaves |A| = 0 as we have invariably set |D| = MT . To avoid exploiting exceptional
split strategies for such specific case, we simply re-use the Underperformed ICL baseline results. In general,
this only occurs on MPQA (when m = 32) and SST2 (when m = 32 and LLM > 2.7B, 2048 tokens context),
and should have few impact on the overall results and conclusion. Similar situation happens in Table 9

8https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
9https://huggingface.co/cambridgeltl/trans-encoder-bi-simcse-bert-base

10https://huggingface.co/princeton-nlp/unsup-simcse-bert-base-uncased
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Figure 13: Split of Demonstration and Anchor Set. |A|+ |D| ≤MT .

C.5 SPLIT STRATEGY OF DEMONSTRATION AND ANCHOR SET

We provide results on more datasets regarding the investigation of split strategy in Figure 13, corre-
sponding to Section 4.3.2.

D COMPARISON TO FINETUNING UNDER FULLY SUPERVISED SCENARIO

We compare kNN Prompting to standard PLM finetuning in a more extensive data scale. For
finetuning baselines in both Table 3 and Figure 14, we set hyper-parameters following previous
works (Schick & Schütze, 2021). We set learning rate to 1e-5, batch size to 16, and training steps
to 125, 250 or 500, respectively for m ∈ {32, 64}, {128, 256}, {512, 1024}. For CB, AGNews and
RTE, batch size is adjusted to 8, for DBPedia, batch size is adjusted to 4 to avoid OOM. We observe
that with the same model scale, kNN Prompting is superior than finetuning under the low resource
setting, but inferior under fully supervised setting. This indicates its data utility factor α is still
smaller than finetuning. However, the main advantage of kNN Prompting comes with LLM, which
significantly outperforms the finetuning baseline without any gradient-based optimization. We have
also discussed this in Section 6.

E MORE CASE STUDY

We provide more case study, respectively on SST2, TREC, AGNews and MR (Figure 15, 17, 16
and 18).
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Figure 14: Comparison to finetuning baseline.

ICL Pred
𝑘NN

Prompting
Acc 81.3 88.2

B positive (✘) negative

C positive (✘) negative

D positive (✘) negative

E positive (✘) negative

A positive (✘) negative

A (Test) looks and feels like a project better suited for the small screen . ICL Pred
Golden 
Label distance ↓

𝑘NN
(Anchor)

see `` simone , '' and consider a dvd rental instead positive (✘) negative 0.000348

it 's a thin notion positive (✘) negative 0.000395

last-minute positive (✘) negative 0.000430

Figure 15: Case study on SST2, all 5 test instances are randomly selected given that kNN Prompting
outperforms ICL.

ICL Pred
𝑘NN

Prompting
Acc 54.2 83.0

B entity (✘) human

C number (✘) entity

D number (✘) expression

E entity (✘) human

A entity (✘) description

A (Test) What is amitriptyline ? ICL Pred Golden Label distance ↓

𝑘NN
(Anchor)

What is digitalis ? human (✘) description 0.0687

What is BPH ? number (✘) expression 0.0748

What is agent orange ? number (✘) description 0.0938

Figure 16: Case study on TREC, all 5 test instances are randomly selected given that kNN Prompting
outperforms ICL.
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ICL Pred
𝑘NN

Prompting

Acc 72.7 89.1

B technology (✘) business

C technology (✘) business

D technology (✘) business

E world (✘) sports

A technology (✘) business

A
(Test)

Oil Falls From Record on Concern High Prices May Slow Growth. 
Crude oil fell from yesterday #39;s record of \\$54.88 a barrel in New 
York amid concern that sustained high prices may slow economies and 
reduce demand for energy.

ICL Pred
Golden
Label distance ↓

𝑘NN
(Anchor)

Oil futures rise toward \\$US54. "Crude oil futures in New York rose to 
a record-high settlement overnight for the fifth straight session, closing 
just below \\$US54 a barrel, reflecting real and perceived threats to 
global oil supply."

technology (✘) business 0.0146

Update 13: Oil Prices Little Changed on Norway News. Crude oil 
futures were little changed Tuesday as oil workers in Norway said they 
will end their four-month strike after the government ordered them 
back on the job.

world (✘) business 0.0186

Oil Rebounds After Iraq Pipeline Attack. Oil prices rose on Friday as a 
sabotage attack on Iraqi oil infrastructure reignited concern about the 
reliability of crude exports from the country despite a peace deal to 
end an uprising in Najaf.

world (✘) business 0.0432

Figure 17: Case study on AGNews, all 5 test instances are randomly selected given that kNN
Prompting outperforms ICL.

ICL Pred
𝑘NN

Prompting
Acc 72.2 84.4

B positive (✘) negative

C positive (✘) negative

D positive (✘) negative

E positive (✘) negative

A positive (✘) negative

A (Test) "it's not a bad premise , just a bad movie ." ICL Pred
Golden
Label distance ↓

𝑘NN
(Anchor)

"as it abruptly crosscuts among the five friends , it fails to lend 
the characters\' individual stories enough dramatic resonance 
to make us care about them ."

positive (✘) negative 0.0004465

"the three leads produce adequate performances , but what\'s 
missing from this material is any depth of feeling ." positive (✘) negative 0.00052309

"morrissette has performed a difficult task indeed - he\'s taken 
one of the world\'s most fascinating stories and made it dull , 
lifeless , and irritating ."

positive (✘) negative 0.00061444

Figure 18: Case study on MR, all 5 test instances are randomly selected given that kNN Prompting
outperforms ICL.

F PROMPT TEMPLATE

See Table 11 for the used templates (Adopted from Lu et al. (2022)). They are intuitively designed
and the proposed method should be robust with choices of templates.
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Task Template Label Space

SST2 Review: contains no wit , only labored gags negative, positive
Sentiment: negative
Review: the film is powerful , accessible and funny .
Sentiment:

SUBJ Input: the script isn’t very good ; not even someone as gifted as hoffman ( the actor ) can make it
work .

subjective, objective

Type: subjective
Input: he must do this in secret so that the parents and school personnel know nothing of his plan .
Type:

MPQA Review: would not find it at all strange negative, positive
Sentiment: negative
Review: as small ( yet acceptable ) as possible
Sentiment:

AGNews Input: Carlyle Looks Toward Commercial Aerospace (Reuters). ”Reuters - Private investment firm
Carlyle Group, which has a reputation for making well-timed and occasionally controversial plays
in the defense industry, has quietly placed its bets on another part of the market.

world, sports,
business,
technology

Type: technology
Input: Superstar Kewell remains centre of attention. Socceroo forward Harry Kewell loosens up by
tossing around a ball at Bondi beach yesterday. Photo: Craig Golding. There were half a dozen
Socceroos standing on a raised platform in Sydney #39;s
Type:

CB Premise: It was a complex language. Not written down but handed down. One might say it was
peeled down.

False, True, Neither

Hypothesis: the language was peeled down
Prediction: False
Premise: A: so I don’t know if I wasn’t drug tested based on that or because the man who hired
me didn’t request the drug test, because I know that my company does drug testing on occasion. B:
Right. Well, for instance, does the company you worked for before have the right or do they have
the ability to say, hey, we’ve already drug tested her and she came up negative. A: Well, no, I don’t
think they can force another company to not drug test me just by saying that I didn’t, I mean,
Hypothesis: they can force another company to not drug test her
Prediction:

CR Review: it ’s not as stylized as a sony or samsung . negative, positive
Sentiment: negative
Review: i went out and got the canon today .
Sentiment:

DBPedia Input: Geoffrey D. Falksen (born July 31 1982) is an American steampunk writer. company, school,
Type: artist artist, athlete,
Input: Monster Night is a 2006 film directed by Leslie Allen and Lorenzo Doumani. politics,
Type: transportation,

building, nature,
village, animal,
plant, album, film,
book

MR Review: ”you might say tykwer has done all that heaven allows , if you wanted to make as anti-
kieslowski a pun as possible . suffice to say its total promise is left slightly unfulfilled .”

negative, positive

Sentiment: negative
Review: an alternately raucous and sappy ethnic sitcom . . . you’d be wise to send your regrets .
Sentiment:

RTE Premise: A man is due in court later charged with the murder 26 years ago of a teenager whose
case was the first to be featured on BBC One’s Crimewatch. Colette Aram, 16, was walking to her
boyfriend’s house in Keyworth, Nottinghamshire, on 30 October 1983 when she disappeared. Her
body was later found in a field close to her home. Paul Stewart Hutchinson, 50, has been charged
with murder and is due before Nottingham magistrates later.”

false, true

Hypothesis: Paul Stewart Hutchinson is accused of having stabbed a girl.
Prediction: false
Premise: For women earning 22,000 a year, the total pay accumulated after six months maternity
leave would be just 5,300 in the UK and 5,850 in Ireland. Entitlements in Germany would also be
relatively low, at 5,900, along with those in France, Spain and the Netherlands, all at 6,750. At the
other end of the scale, pay received after six months leave in Italy would be 9,150 while in Denmark
and Norway it would be as much as 11,000.
Hypothesis: Maternity leave varies in Europe.
Prediction:

TREC Question: How did serfdom develop in and then leave Russia ? description, entity,
Type: description expression, human,
Question: What is Shakespeare ’s nickname ? location, number
Type:

Table 11: Templates for ICL. These are minimum cases with only one demonstration example for
illustration.
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