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Abstract

Recent studies in Machine Learning (ML) for biological research focus on investi-
gating molecular properties to accelerate drug discovery. However, limited labeled
molecular data often hampers the performance of ML models. A common strategy
to mitigate data scarcity is leveraging auxiliary learning tasks to provide additional
supervision, but selecting effective auxiliary tasks requires substantial domain
expertise and manual effort, and their inclusion does not always guarantee perfor-
mance gains. To overcome these challenges, we introduce Automatic Auxiliary
Task Selection (AUTAUT), a fully automated framework that seamlessly retrieves
auxiliary tasks using large language models and adaptively integrates them through
a novel gradient alignment weighting mechanism. By automatically emphasizing
auxiliary tasks aligned with the primary objective, AUTAUT significantly enhances
predictive accuracy while reducing negative impacts from irrelevant tasks. Exten-
sive evaluations demonstrate that AUTAUT outperforms /0 auxiliary task-based
approaches and /8 advanced molecular property prediction models.

1 Introduction

Machine Learning (ML) continues to drive advancements across diverse scientific disciplines, with
biology standing out as a key beneficiary [28, 12} [11}163]]. Despite these advances, the limited avail-
ability of annotations in molecule datasets constrains the performance of ML models for molecular
property prediction 50,161} 126]. This limitation underscores the importance of strategies that enhance
learning efficiency with minimal annotated data, e.g., semi-supervised learning [66} [12], transfer
learning [49,[7], and few-shot learning [10, 46].

Among these strategies, a common approach is to introduce auxiliary learning tasks, such as predicting
molecular solubility to help estimate toxicity levels, so as to provide additional supervision from
related tasks with easily obtainable labels that improve primary molecular prediction tasks [41} [15].
By incorporating chemical, physical, structural, and toxicological profiles, these tasks help ML
models represent underlying data structures more effectively and enhance generalisation [44} |57]].
This approach has shown benefits in molecular property prediction, where the objective is to determine
key characteristics e.g., bioactivity, and organ-specific drug effects [32,51].

However, the process of constructing high-quality auxiliary tasks is complex and resource-intensive.
These tasks are typically derived from existing datasets [52,[20] or manually designed by domain
experts to align with the primary dataset [27,[13]]. In disciplines such as biology and chemistry, these
challenges are particularly pronounced due to the scarcity, cost, and time-intensive nature of acquiring
domain-specific knowledge [[63]]. As datasets grow in scale and complexity, manual evaluation of
task relevance becomes impractical, creating scalability bottlenecks [67]. Furthermore, effectively
incorporating auxiliary tasks into training frameworks remains an open problem [42] 27]]. A common
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Table 1: Model comparison of AUTAUT and related work. A model is self-contained if it does not
require additional datasets.
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approach is joint training, where the model is trained simultaneously on both primary and auxiliary
task labels to leverage additional supervision. The challenge lies in balancing the contributions
of auxiliary tasks such that they reinforce rather than interfere with the learning objectives of the
primary task [18]]. Auxiliary tasks should provide useful inductive biases without introducing noise
or misguiding the model [29,[17]. Poorly chosen or improperly integrated auxiliary tasks can dilute
learning signals, exacerbate overfitting, or degrade the primary task’s performance.

In this paper, we introduce Automatic Auxiliary Task Selection (AUTAUT), a novel framework that
automates the retrieval, selection, and adaptive integration of auxiliary task labels to enhance molecu-
lar property prediction. AUTAUT leverages the capabilities of Large Language Models (LLMs) to
identify relevant auxiliary task labels and employs an adaptive weighting strategy to dynamically
adjust their contributions to the primary task. Specifically, AUTAUT consists of three main com-
ponents: (1) Auxiliary Task Retrieval: AUTAUT employs the information retrieval capabilities of
LLMs to collect candidate auxiliary task labels from domain-specific databases or online resources.
(2) Auxiliary Task Selection: Using a multi-step prompting mechanism [9], AUTAUT investigates
the relevance of each candidate auxiliary task label to the primary task, ensuring that only the most
relevant tasks are selected. (3) Joint Training Strategy: The selected auxiliary task labels are incor-
porated into the training pipeline through a dynamic weighting strategy. This approach adjusts the
contribution of each auxiliary task during training, ensuring that they provide proper supervision
without overshadowing the primary task’s objectives. Importantly, by automating the process of
auxiliary task selection, AUTAUT eliminates the need for manual intervention and domain expertise,
making it particularly suitable for molecular property prediction tasks with limited annotations.

We evaluate AUTAUT on 9 molecular property prediction datasets, demonstrating its superiority over
10 auxiliary task-based methods and /8 state-of-the-art property prediction models. Ablation studies
further validate the effectiveness of AUTAUT s task selection and adaptive reweighting in improving
robustness, while also analyzing the impact of hyperparameters and different LLM choices.

2 Related Work

ML for Molecular Property Prediction. ML models have become integral to molecular property
prediction, leveraging their capacity to encode structural information and capture complex relation-
ships in molecular data [24,[11]. State-of-the-art methods include graph neural networks [53} [62]]
and transformers [435} 39]], which utilize molecular SMILES strings, structures, and other molecular
descriptors. Despite their success, these models often depend on large, annotated datasets, limiting
their applicability in data-scarce domains [63) 26]]. To overcome this limitation, approaches like
semi-supervised learning [66}12], and transfer learning [49, 7] have been proposed.

Additional Supervision from Auxiliary Tasks. Auxiliary tasks have proven to be an effective
strategy for enhancing the performance of the primary task by leveraging related, easier-to-obtain
labels [52l 27]. In the context of molecular property prediction, auxiliary tasks have included
predicting molecular fingerprints, physicochemical properties, and toxicity profiles [13} 44, [36].
These tasks enrich representation learning and improve generalization, particularly in data-scarce
scenarios [8} 40, I57]. However, current approaches often depend on manually curated auxiliary
tasks informed by domain knowledge [27} 163, 5]]. This manual curation introduces biases and limits
scalability, posing challenges when adapting to larger datasets or emerging domains where expert
annotations are unavailable [20}167].



Integration of Auxiliary Tasks. Furthermore, integrating auxiliary tasks into training frameworks
remains a significant challenge. Balancing their contributions and avoiding interference with the
primary task is complex [42| [18]. For example, Lyle et al.[35] investigate the effect of auxiliary
tasks on learned representations, and Liu ef al.[29] address the issue of conflicting gradients between
auxiliary tasks, which can hinder convergence. Poorly chosen auxiliary tasks can lead to adverse
outcomes such as overfitting or optimization divergence [17]].

Novel Capabilities of LLMs. The advent of LLMs has unlocked new possibilities for ML across
various domains, including molecular property prediction [64,38]. LLMs, with their vast pre-trained
knowledge and advanced reasoning capabilities, have been leveraged to augment feature extraction,
data annotation, and knowledge integration [4} [19]. Their ability to adapt across diverse contexts
makes them particularly appealing for applications where traditional ML approaches struggle with
data sparsity or require extensive domain expertise [21]].

Discussion. However, leveraging LLMs for auxiliary task retrieval is not only underexplored but
also inherently challenging. Identifying relevant auxiliary tasks requires reasoning over complex
domain-specific relationships, integrating structured and unstructured knowledge, and ensuring that
selected tasks contribute meaningfully to the primary learning objective. The non-trivial nature of this
problem stems from the need to balance task relevance, diversity, and generalization while avoiding
spurious correlations. Addressing these challenges is a key focus of our work.

Table [I| summarizes the key advantages of the proposed AUTAUT, comparing it with several state-of-
the-art methods. Notably, AUTAUT is the only fully automated framework that eliminates the need
for human intervention in designing or selecting auxiliary tasks and curating additional datasets. It
is entirely self-contained, relying solely on the LLM without requiring any external data. A more
detailed discussion is provided in Appendix [E]due to space constraints..

3 Proposed Framework: AUTAUT
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Figure 1: Overview of the AUTAUT framework. There are three main steps: (i) Auxiliary task
retrieval: AUTAUT leverages the information retrieval capabilities of LLMs to retrieve a diverse
set of obtainable auxiliary tasks from online resources or domain-specific databases. (ii) Auxiliary
task selection: AUTAUT guides LLMs to evaluate the relevance of each auxiliary task to the primary
task and select the most relevant ones. (iii) Joint training: AUTAUT employs a dynamic weighting
strategy to adjust the contribution of each auxiliary task during training, ensuring that they provide
meaningful supervision without diluting the primary task signal.



3.1 Preliminary

Let D denote the primary dataset, partitioned into training (Dygain), validation (Dyayp), and test
(Drest) subsets. Each molecule in D is represented as M = (X, Y), where X denotes the molecular
representation, such as a SELFIES string, or graph structure, and Y corresponds to its associated
property label, such as water solubility or toxicity.

The primary task, 7y, aims to learn a mapping function fp : X — ) that predicts molecular
properties using the training dataset Dira;y. The set of target molecular properties is denoted as
Yu = {Yu,, Yis,, ... }- Beyond the primary task, we consider a set of auxiliary tasks, 7., where
each task is defined by an auxiliary label Y}, associated with the same representations as in Dygan-
The corresponding training datasets, denoted as D=, , ., share molecular representations with Dygax
but have different property labels. The objective is to optimize the model parameters 6 to improve
primary task performance by leveraging both primary task labels )} and auxiliary task labels ),.

However, selecting useful auxiliary tasks is non-trivial. Not all auxiliary labels contribute positively to
the primary task, and in practical scenarios, predefined auxiliary task labels ), may not be available.
Thus, we tackle two challenges. The first challenge is to automatically identify and select beneficial
auxiliary task labels Vs C V.. The second challenge is to develop an effective joint training strategy
that integrates the selected auxiliary tasks into the primary learning process.

3.2 Overview of the Framework

Our proposed framework, AUTAUT, is illustrated in Figure |I} Given a user request specifying
the primary task (e.g., predicting molecular toxicity) and the primary dataset, which includes the
training dataset with labels, AUTAUT operates in three stages: First, AUTAUT automatically retrieves
potential auxiliary task labels from online resources or domain-specific databases. Second, AUTAUT
generates a brief summary describing the correlation between auxiliary task labels and the primary
task and selects a subset of auxiliary task labels based on the generated summary. Finally, it applies
a joint training strategy to integrate the selected auxiliary task labels into the primary task training
process, improving predictive performance. By following these steps, AUTAUT enables molecular
toxicity prediction with auxiliary task enhancement, without requiring manual efforts.

3.3 Automated Auxiliary Task Retrieval and Selection

This section outlines the methodology for designing prompts that enable LLMs to perform automated
auxiliary task label retrieval and selection. We emphasize that prompt engineering is not the primary
focus of this work, and the prompts used here are intentionally simple and minimally refined. See
Appendix [A] for our complete prompts and obtained outputs.

Auxiliary Task Retrieval. Given a molecular dataset D and the primary task labels ), a prompt is
designed to instruct LLMs to retrieve potential auxiliary task labels ),. The objective is to construct a
query Q that enables the LLM (fi1m) to generate a structured response A, where A = fiim(Q). The
response A represents a set of candidate auxiliary task labels ), relevant to the primary molecular
property prediction task.

The prompt consists of two main components: (1) Instruction: Provides general guidance to the
LLM, specifying its role in the retrieval process (e.g., expertise in chemistry, finance, biology, efc.).
(2) Message: A direct and clear request for the LLM to identify potential auxiliary task labels based
on the given context (e.g., molecular properties or computational tools). This approach yields a
computable auxiliary task label set ),. An example prompt and a partial response from the LLM
are provided in Appendix demonstrating that even basic prompts can generate meaningful and
relevant auxiliary tasks. We provide the details of collected molecular properties in Table [}

Auxiliary Task Selection. After retrieving the potential auxiliary task label set ),, the next step
evaluates the relevance of each auxiliary task label to the primary task labels ). To achieve this,
AUTAUT employs a multi-step prompting mechanism [48), 159, 9] that refines the LLM’s responses
and summarizes the correlations to quantify the alignment between the objectives of the auxiliary and
primary task labels.



The multi-step prompting mechanism proceeds as follows: (S7) The LLM retrieves relevant in-
formation about the auxiliary task labels ), from online resources or domain-specific databases,
ensuring that essential domain-specific details are gathered. (S2) The LLM processes the retrieved
information and generates a brief summary of each auxiliary task label. These summaries incorporate
domain-specific knowledge or information from the previous step. (S3) The LLM selects the top K
auxiliary task labels Vs C ), that are most relevant to the primary task labels ), ensuring that only
the most useful auxiliary tasks are integrated into training. An example prompt and a partial response
from the LLM are presented in Appendix[A.2] To improve the consistency of the LLM’s behavior
during auxiliary task selection, we set the LLM’s hyperparameter temperature to 0.2. The final set of
selected auxiliary tasks is shown in Table 3]

The selected auxiliary task labels )5 form the foundation for enhancing primary task performance
in the subsequent joint training phase. By automating this process, AUTAUT identifies and selects
auxiliary tasks without requiring manual curation or extensive domain-specific expertise.

3.4 Learning to Learn from Selected Auxiliary Tasks

The primary task aims to learn a function fy with parameters 6 that predicts molecular properties Yy
from molecular representations. At its core, this is an optimization problem where the objective is to
maximize the likelihood of the primary task:

LM(Q) = - logp(DTRAIN|9) - 10gp(9), (1

where p(Drran|0) represents the likelihood of the training data, and p(6) is prior knowledge over
model parameters.

Besides, selected auxiliary task labels )s provide additional signals by acting as informative con-
straints on the optimization landscape. Given an auxiliary task k, its corresponding objective is:

El; (0) = —log p(D]TcRAIN 0) —logp(0). 2
By incorporating auxiliary tasks, the overall training objective is redefined as:

K
L(0, ) = L(0) + Y arLl(0), 3)
k=1

where o, represents the contribution of auxiliary task k, and o are trainable parameters that dynami-
cally adjust during training. Since auxiliary tasks vary in their usefulness, their weights should reflect
their contribution to improving the primary task. A well-chosen auxiliary task should exhibit gradient
alignment with the primary task. Auxiliary tasks with higher alignment are assigned greater weight
during training, allowing the model to focus on tasks that reinforce relevant learning signals.

Theorem 1 (Subspace Alignment for Optimization). If the gradient of the primary task loss V L (0)
lies entirely within the subspace S spanned by auxiliary task gradients, then the auxiliary tasks fully
support primary task optimization:

K
IVLw(0) = arVLE®)|| = 0. 4)
k=1

This result ensures that when auxiliary tasks are properly weighted, they can serve as effective
surrogates for the primary task and contribute directly to its optimization (proof in Appendix [B.T].

Optimizing auxiliary task weights. To dynamically update the auxiliary weights o, we minimize the
Fisher divergence between the primary task gradient and the surrogate prior induced by the auxiliary
tasks:

min Eg.,s ||V log p(Tu|0) — V log pa (6)]3. )
This optimization ensures that the auxiliary task contributions are continuously refined based on their
alignment with the primary task.

Theorem 2 (Generalization Bounds with Auxiliary Tasks). Incorporating well-aligned auxiliary
tasks reduces the hypothesis class complexity, which we formalize via the Rademacher complexity
R (H). This leads to improved generalization:

E(0) <E(0) + - Ru(Ha), (6)



where £ (0) is the empirical error, Hy is the hypothesis class augmented with auxiliary tasks, and ¢
is a constant.

This bound highlights that by adjusting auxiliary task weights effectively, we constrain the hypothesis
space, leading to better generalization and improved predictive performance (proof in Appendix [B.2).

Training procedure. The training process consists of three phases. First, in the weight initialization
phase, the auxiliary task weights o are initialized based on affinity scores derived from gradient
alignment. The model is then trained on DAy to establish a baseline. Next, during dynamic weight
adaptation, the auxiliary task weights are iteratively updated using gradient alignment and validation
performance on Dy, p. The update follows the rule:

ol = ol — 3V, [V log p(Tul6) — V1og pa(6)]12, %)

where £ is the learning rate for task weights. Finally, in the model fine-tuning phase, after the task
weights stabilize, the model parameters 6 are optimized with fixed auxiliary task weights. The final
model is evaluated on Drggr to assess improvements in molecular property prediction. Algorithm I]
provides an overview of the AUTAUT’s complete pipeline. Further implementation details are
available in Appendix [C} Appendix [D]provides a computation complexity analysis and some training
information. Overall, AUTAUT achieves a balance between improved learning efficiency and
computational cost, making it a scalable approach for molecular property prediction tasks.

4 Experiments

4.1 Datasets

This paper selects various datasets from a widely used benchmark, MoleculeNet [52], to examine the
effectiveness of our algorithm for molecular property prediction. We include 6 representative datasets
for the property classification tasks, BBBP, BACE, CLINTOX, Tox21, TOXCAST, and SIDER, and
3 for the property regression tasks, ESOL, FREESOLV, and L1P0O. Note that these datasets do not
have features duplicated with the auxiliary tasks collected in Table ] We follow the previous work
to adopt scaffold splitting [17] to divide the datasets into training, validation, and test sets, where
molecules are partitioned based on their core scaffolds to ensure structurally dissimilar compounds
appear in different splits. Appendix [F]presents additional details about the datasets and splits.

4.2 Competing Models

We compare AUTAUT with 10 auxiliary tasks selection approaches, using 3 base ML models (in-
cluding GCN [23]], GIN [55]] and GRAPHORMER [60]). The 10 auxiliary task selection competing
methods including beam search method [37], grouping-based methods and methods (including
TAG [8], TASK2VEC [[1], and MOLGROUP [17])) follow the pre-training and fine-tuning pipeline.
Moreover, we select Unweighted Averages(UA), GRADNORM [3], MTDNN [25], GS-META [68]],
and INSTRUCTMOL [51]]. Furthermore, we present the results of the Pretrain-Finetune (PF) strat-
egy [I15], where the model is first trained on PCQM4Mv?2 [[14] and then finetuned on the down-
stream dataset. In addition, we compare AUTAUT with 18 advanced molecular property prediction
models to demonstrate its effectiveness and generalization. Such as GCN, GIN, GRAPHORMER,
D-MPNN [58]], ATTENTIONFP [54]], MGCN [34], N-GRAM [31]], PRETRAINGNN [15], GPT-
GNN [16], GROVERg,s: [39], GROVER| zrge, 3D-INFOMAX [43], GRAPHM VP [33]], MOL-
CLR [47], UNI-MoL [65] GEM [6], PIN-TUNING [30] and LAC [56]. Details about these compet-
ing methods and other experimental settings can be found in Appendix [E} [} Our code and data are
available at https://github. com/zhiqiangzhongddu/AUTAUT.

4.3 Main Results

AUTAUT surpasses auxiliary task selection methods. Table [2|compares AUTAUT with 10 auxil-
iary task selection methods across 9 molecular property prediction tasks and three ML models. The
results consistently highlight AUTAUT’s superior performance, showcasing its ability to effectively
select and integrate auxiliary tasks to enhance downstream predictions.

AUTAUT achieves the highest performance on classification tasks, delivering a 6.4% improvement
on BBBP with GCN and a 5.1% improvement on BACE with GRAPHORMER. These significant
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Table 2: Performance of ML models with different auxiliary task selection methods on molecular
prediction tasks. For classification tasks, we calculate the ROC-AUC, while for regression tasks, we
use RMSE as the evaluation metric. The number in the bracket is the standard deviation of 5 runs.

| CLASSIFICATION (ROC-AUC % 1) | REGRESSION (RMSE |)

DATASETS BBBP BACE CLINTOX Tox21 TOXCAST SIDER ESOL FREESOLV Liro

# MOLUCULES 2,039 1,513 1,478 7,831 8,575 1,427 1,128 642 4,200

# TASKS 1 1 2 12 617 27 1 1 1
GCN 63.4510.05 74.831018  56.28+0.00 74.6310.06 65.38+0.30 62.2410.27 | 3.165+0.007  3.752+0.013  1.672+0.008
+BEAM SEARCH 66.0840.02 68.421003 58.3240.08 75.30+0.01 66.454+0.22 62.87+025 | 3.205+0.020 3.415+0.018 1.68510.012
+TAG 64.65+0.02  72.10x0.02  57.1240.06 71.78+0.01  65.084021 62.6310.23 | 3.34040.035 3.885+0.055 1.72240.014
+TASK2VEC 68.254+0.01  75.3840.03 49.55+0.07 70.2040.01 63.6240.20 62.25+0.23 | 3.278+0.042 3.43740.030 1.742+0.016
+MTDNN 66.63+0.02  70.1240.03 53.251008 71.95+0.01 64.531025 61.9510.26 | 3.17240.055 3.42040.040 1.715+0.015
+UA 60.3810.01  62.4840.03 51.95:00s 70.9510.01 62.7510.24 60.18+0.22 | 3.42840.072 4.210x0.060 1.810+0.017
+GRADNORM 61.55+0.01  65.1240.04 53.451007 59.88+0.05 62.051023 59.2010.22 | 3.558+0.082  4.410+0.065 1.855+0.018
+PF 57.1210.03  65.2240.05 56.45:0.04 S51.1210.02 60.8810.21 58.6210.20 | 3.65840.075 4.50810.072  1.90210.021
+MOLGROUP 68.4240.02 77.6810.02 60.184+0.03 76.1240.01 66.9540.23 63.1240.25 | 3.12540.025 3.24540.020 1.702+40.012
+GS-META 66.7240.02 75714041  63.2340.06 75.2340.08 65.941021 63.221060 | 3.035+0.013 3.44410.061 1.839+0.027
+INSTRUCTMOL | 68.5040.04 80.2140.18 64.0210.05 76.6940.04 66.9440.48 64.3040.72 | 2.612+0.03a  2.10840.046  1.252+0.018
+AUTAUT 69.7210.01  83.1040.02 81.0040.03 77.5510.01 68.051019 64.62:024 | 1.88540.008 1.97540.022 1.28510.010
GIN 66.8210.00  77.45+0.21 56.48+0.1s  75.321017  62.3510.05 60.25:0.20 | 2.895+0.012  3.865+0.018  1.69210.011
+BEAM SEARCH 67.7840.02 81.924004 76.95+0.12 77.0540.02 65.2840.00 62.57+022 | 2.943 410028 3.375+0.022 1.68810.014
+TAG 61.2540.02  72.151+0.03 58.2510.06 72.08+0.01 64.384021 61.75+0.21 | 3.27540.060 4.00240.018 1.752+0.015
+TASK2VEC 68.4840.01 75.1040.03 48.6240.04 69.1240.01 63.6240.24 60.38+0.26 | 3.232+0.045 3.45240.032 1.775+0.017
+MTDNN 66.9210.03 70.3510.03 53.28+0.07 72.3210.01 64.581025 61.921026 | 3.182+0.052 3.46810.042 1.72210.014
+UA 60.75+0.01  62.18+0.03 52.18+0.0s 71.2210.01 62.58+0.23 59.821+0.22 | 3.44240.065 4.315+0.053 1.82210.010
+GRADNORM 61.68+0.02 65.3810.04 53.58+008 60.2510.05 62.084023 58.5510.23 | 3.60240.080 4.508+0.062 1.878+0.020
+PF 57.3840.03  65.5810.05 56.3840.04 51.3840.02 60.924022 58.381021 | 3.69540.07s 4.608+0.070 1.93240.021
+MOLGROUP 69.88+0.01  83.1240.02 81.2540.04 77.7240.01 67.55+0.22 64.2840.24 | 1.88240.030 1.95240.025 1.288+0.011
+GS-META 66.4640.00 79.4640.00 73.541012 76.2710.08 66.141031 62.961025 | 2.06010.012 3.84810.02a 1.43440.011
+INSTRUCTMOL | 69.8710.02 81.9940.04 76.16+0.06 77.91+0.02 68444014 64.2540.62 1.87840.010  1.960+0.022  1.289+0.026
+AUTAUT 70.5810.01 83.6210.02 82.5240.04 78.3210.01 69.381022 65.08:025 | 1.87040.025 1.90040.020 1.27010.010
GRAPHORMER 67.0540.04  79.1840.13 78424012 75.554018 67.1240.05 70.08+0.21 | 2.102+0.012 1.79540.010 1.282+0.010
+BEAM SEARCH 67.7840.03 81.1240.03 78.2240.00 77.08+0.01 67.8240.21 70.55+024 | 2.22540.040 1.8254+0.015 1.32240.014
+TAG 61.5210.02  72.2540.00  59.3510.07 72.5510.01 66.2510.23 69.25:0.25 | 2.28540.060 1.86510.020 1.37510.018
+TASK2VEC 68.5240.01  75.1840.04 48.85+0.03 69.2510.01 65.1240.22 67.55+0.27 | 2.275+0.040 1.85240.020 1.362+0.015
+MTDNN 67.08+0.02  70.5210.03 53.52:0.07 72451001 65.551t025 68.121026 | 2.202+0.042 1.87510.018 1.335+0.012
+UA 60.8210.01  62.2240.03 52.52+0.08 71.5210.01 63.521022 66.72+0.24 | 2.455+0.050 2.0551+0.020 1.432+0.016
+GRADNORM 62.0240.02  65.5240.04 53.821007 60.5240.05 62.824023 65.5240.25 | 2.605+0.070 2.205+0.040  1.525+0.020
+PF 57.5210.03 65.82+0.05 56.5210.04 51.521002 61.221022 64.82:0.23 | 2.65510.080 2.305:0.0s0 1.62510.018
+MOLGROUP 69.7240.01  83.1540.02 81.5240.04 77.75+0.01 68.85+0.22 70.5540.27 | 1.90240.030 1.805+0.010 1.292+0.010
+GS-META 68.1240.00 81.0610.10 80.0010.11  77.2940.00 67.904020 70.1410.25 | 2.06440.035 1.88140.016 1.330+0.019
+INSTRUCTMOL | 68.99 1002 83.5240.02 81.41:0.02 78.05+0.04 69.03+0.07 70.49+0.23 1.90140.014 1.811+0.002  1.230+0.009
+AUTAUT 70.3210.01  83.7240.02 82.55i0.04 78.5210.01 69.381021 71551026 | 1.87240.025 1.77240.015  1.26210.010

gains highlight AUTAUT’s ability to identify meaningful task relationships and leverage them
effectively for prediction. For regression tasks, AUTAUT consistently achieves the lowest RMSE
values across all datasets, reflecting its strong predictive performance and ability to generalize
effectively across diverse molecular datasets. Moreover, the low standard deviations observed
across five runs underscore AUTAUT’s robustness and reliability. Its adaptive weighting strategy
effectively balances contributions from auxiliary tasks, mitigating overfitting and ensuring consistent
improvements in prediction accuracy.

AUTAUT demonstrates superior molecular property prediction performance. Table [3]bench-
marks AUTAUT against 18 state-of-the-art molecular property prediction methods on 9 datasets. The
results consistently demonstrate AUTAUT’s superiority, establishing it as an effective and practical
solution for molecular property prediction. AUTAUT achieves competitive performances across all
datasets. These results emphasize AUTAUT’s strong generalization capabilities and its ability to
outperform competitive baselines. In addition, AUTAUT exhibits remarkable robustness, as evidenced
by its low standard deviation across tasks, further reinforcing its reliability in practical applications.
These characteristics, combined with its consistently superior performance, establish AUTAUT as an
effective solution for diverse molecular property prediction tasks.

4.4 Analysis

LLM-selected auxiliary tasks are chemically meaningful and stable across runs. Table[3in
the Appendix presents the auxiliary tasks selected by the LLM across datasets. We observe that key
molecular descriptors, such as LogP, TPSA, and Molecular Weight, are the tasks of choice across
repeated runs and diverse prediction tasks. This indicates that LLMs can infer chemically meaningful
and task-relevant patterns from textual cues, without relying on handcrafted templates or molecular
priors. The selections are also sensitive to the target task. For instance, polarity-related properties are
more frequently selected for solubility prediction highlighting task-specific adaptation. To reduce



Table 3: Performance on molecular property prediction tasks. For classification tasks, we calculate
the ROC-AUC, while for regression tasks, we use RMSE as the evaluation metric. The number in the
bracket is the standard deviation of 5 runs. 71 indicates higher is better and | indicates lower is better.

| CLASSIFICATION (ROC-AUC % 1) | REGRESSION (RMSE |)

DATASETS BBBP BACE CLINTOX Tox21 TOXCAST SIDER ESOL FREESOLV Liro

GCN 63.4540.05 74.8310.18 56.2840.00 74.63+0.06 65.38+0.30 62.2440.27 | 3.165+0.007 3.75240.013 1.672+0.008
GIN 66.8240.09 77.45+0.21 56.48101s 75321017 62.3510.05 60.2510.20 | 2.8954+0.012  3.865+0.018 1.69210.011
GRAPHORMER 67.05+0.04 79.18+0.13 78424012 75.55+018 67.1240.05 70.0810.21 | 2.102+0.012 1.795+0.010 1.282+0.010
D-MPNN 70.834+0.42  81.19+0551 90.9540.63 76.244047 64.97+02a4 57.31+04s5 | 1.04510.070 2.080+0.000 0.685+0.015
ATTENTIONFP 64.15:1.48 78244031 80.51to26 77.00+r0.35 63.5210314 60.1216.03 | 0.880+0.025 2.075+0.150 0.720+0.002
MGCN 65.27+0.43 73.011061 89.511+1220 77.154050 66.031048 58.02+1.93 | 1.10010.060 2.800+0.100 0.730+0.012
N-GRAM 70.1540.52  78.09+1.37  75.9542.97 77.214045 62.041060 58.944550 | 1.15040.045 2.850+0.110 0.735+0.013
PRETRAINGNN | 68.91+0.08 83.97+0.6a 72.95+0.61 77.45+0.38 63.01+0.87 62.034504 | 1.10040.050 2.75040.010 0.740+0.004
GPT-GNN 63.964123 71.981067 65.041100 77.124060 62.0010.45 58471400 | 1.20010.070 3.000+0.150 0.800-+0.020

GROVER;se 65.0240.10 81.0140.20 74.924060 77.314041 62.97+070 61.01+550 | 1.085+0.075 2.27040.050 0.820+0.012
GROVER  srce 60.041031 80.99+036 74.0ltoss 77.10x0.45 63.991050 60.0216.00 | 0.980r0.080 2.180+0.0a5 0.815+0.000
3D-INFOMAX 67.0241.23 84.014131 78034143 77.25+032 65.964080 62.041590 | 0.950+0.030 2.600+0.080 0.800+0.016
GRAPHMVP 71.984+1.48 83.0240.70 85.0340.00 77.40+0.25 65.941060 63.01+530 | 0.890+0.030 2.33040.250 0.830+0.006

MoLCLR 71.51+1.96 83.484052 88.97+1.10 77.351034 66981070 64.054570 | 0.94040120 2.58010.220 0.650+0.007
UNI-MoL 72.83+0.4s 86.524039 89.9741.00 77.5040.22 67.031060 65.941550 | 0.78540.100 1.62040.050 0.605+0.011
GEM 72.2140.328  85.4940.07 91.984145 77.55+0.15 66.98+041 66.97+0.48 | 0.800+0.025 1.87040.000 0.660+0.010
PIN-TUNING 70.87+0.61 81.2140.20 89.81+1.44 77.2040.27 66.924098 66.3640581 | 0.84510204 1.93540.104 0.67310.112
LAC 72441095 83471011 92.114119  77.661061 67.014034 67.024065 | 0.79440.100 1.82740.121  0.65710.108
AUTAUT ‘ 73.041058 86.03411.14 92.314123 78.2040.12 67.541076 67.5310.82 ‘ 0.760+0.035 1.600+0.040 0.580+0.012
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Figure 2: Auxiliary-task weights (left axes) and training-loss trajectories (right axes) for two datasets.

generation variance and improve reproducibility, we set the LLM’s temperature to 0.2, which helps
the model produce consistent outputs while remaining responsive to different task contexts.

Auxiliary task influence is correctly inferred. Figure[2]shows the evolution of the learned auxiliary
weights (ay) throughout the training process. AUTAUT progressively increases the contribution
of auxiliary tasks that correctly align with the main prediction objective, while suppressing the
influence of others. This results in more targeted supervision and faster convergence, as reflected
in the consistently lower training loss compared to the baseline without adaptive integration. The
adaptive weighting mechanism plays a critical role in filtering out noisy gradients and preventing
negative transfer, which is particularly important when auxiliary tasks vary in relevance.

Auxiliary task selection and adaptive weighting complement each other. Naively introducing
auxiliary tasks, especially without proper selection or weighting, can hamper model performance due
to conflicting or irrelevant supervision signals. As UA draws auxiliary targets uniformly at random
from Table ] and attaches them to the backbone with equal weight. Its results in Table [2] support
this observation: random auxiliary tasks significantly reduce performance, with regression tasks like
FREESOLV and LIPO being particularly affected. Applying task-specific weighting (e.g., GRAD-
NORM) mitigates the drop by suppressing noisy gradients, but still fails to match the performance
of our full method. Ablation analysis in Figure 3a] confirms that both components are necessary:
selection ensures the relevance of auxiliary tasks to the primary objective, while weighting adjusts
their influence during training to prevent negative transfer. The strongest gain is achieved only when
both mechanisms are applied together, highlighting their complementary nature.
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Figure 3: Ablation study.

The number of selected auxiliary tasks (KX) balance informativeness and noise. The perfor-
mance of AUTAUT depends on the number of selected auxiliary tasks, K. As shown in Figure [3b}
using too few tasks (e.g., K = 3) underutilizes auxiliary supervision, while larger values (e.g.,
K = 8 or 10) introduce redundant or noisy signals. Yet, we find that K = 5 consistently yields the
best results across datasets, providing a strong balance between task diversity and relevance. The
sensitivity to K is more pronounced in regression tasks such as FREESOLv, ESOL, and L1pPO, where
auxiliary signal quality is critical. In contrast, classification tasks like BBBP and BACE are more
robust to variation in K. These results highlight that AUTAUT requires only minimal hyperparameter
tuning tailored to the primary task in order to prevent underfitting or negative transfer.

All major LLMs produce useful task suggestions and improve over baseline. We evaluate
the robustness of AUTAUT across three LLMs: GPT-4, Gemini 2.0, and LLaMA 3. As shown in
Figure 3¢ all variants consistently outperform the no-auxiliary-task baseline across all 9 datasets,
confirming the general effectiveness of LLM-guided auxiliary supervision. GPT-4 yields the most
stable performance overall and serves as our default configuration. Gemini 2.0 occasionally surpasses
GPT-4, particularly on datasets like CLINTOX, TOX21, and FREESOLV, where its selected tasks,
such as Eccentricity and TPSA, better align with regression or toxicity objectives. In contrast,
LLaMA 3 tends to select a smaller and more conservative set of descriptors, achieving slightly
lower but still competitive results. These findings show that while the choice of LLM can influence
auxiliary task quality, our framework remains model-agnostic and effective across different foundation
models—even in the absence of domain-specific pretraining or external chemical knowledge.

Furthermore, to isolate the effect of the LLM from that of the optimization procedure, we report
the selected auxiliary tasks by different LLMs and the learned weights in Table[5} Across datasets,
physicochemical descriptors such as LogP, Topological Polar Surface Area, and Number of Hydrogen
Bond Donors are selected with both high frequency (k) and relatively large weights (w), indicating
that the LLM repeatedly identifies domain-relevant features and that the optimizer further amplifies
their contributions. Dataset-specific descriptors (e.g., Balaban J Index or Labute Approximate Surface
Area) appear less frequently and receive smaller weights, suggesting complementary but secondary
roles. The overall consistency of top-k tasks across GPT-4, Llama 3, and Gemini 2.0 supports that the
improvement observed in Figure[3a]originates from the semantic alignment introduced by the LLM,
rather than from random variation or optimization alone. These results further confirm that the LLM
mainly contributes to identifying semantically relevant auxiliary tasks, while adaptive weighting
refines their relative importance during training.

Aucxiliary tasks outperform static feature inclusion. We further compare the effect of integrating
selected molecular descriptors as static input features versus treating them as auxiliary prediction tasks.
Table[/|in the Appendix shows that feature inclusion leads to marginal or inconsistent improvements,
while modeling the same descriptors as supervised tasks with adaptive weighting yields substantial
gains across all models and datasets. This highlights that auxiliary information is more effective
when used as structured supervision rather than passive input, reinforcing our design choice to treat
descriptors as tasks rather than features. More discussions are provided in Appendix [G]



5 Concluding Remarks

This paper introduces AUTAUT, a fully automated framework that leverages LLMs to retrieve
auxiliary tasks and integrates them via adaptive weighting to improve molecular property prediction.
AUTAUT outperforms /0 auxiliary task methods and /8 advanced prediction models, with empirical
analysis highlighting the complementary roles of task selection and adaptive weighting strategy.
Future work will explore incorporating domain-specific knowledge into the retrieval process and
extending AUTAUT to other scientific domains such as materials science.

Broader Impact. This work presents an automated framework for selecting and integrating aux-
iliary tasks in molecular property prediction using LLMs. By reducing reliance on manual feature
engineering and expert-curated descriptors, AUTAUT lowers the barrier to applying auxiliary-task-
based learning in data-scarce scientific domains. This may accelerate applications in drug discovery,
materials design, and environmental modeling, particularly in settings where annotated data is expen-
sive or limited. However, as AUTAUT depends on LLM-generated auxiliary task candidates, there is
potential for biased or irrelevant suggestions, especially if the LLM has been exposed to skewed or
incomplete chemical knowledge during pretraining. Misguided task selection could propagate into
downstream predictions, especially in safety-critical domains like pharmacology. Responsible use of
AUTAUT should include validation of selected tasks and awareness of LLM limitations.

Limitations. While AUTAUT achieves strong performance across molecular datasets, it has several
limitations. First, it assumes that auxiliary tasks are computable and available in standard chemin-
formatics toolkits (e.g., RDKit); tasks requiring experimental data or rare descriptors are excluded.
Second, although the method is fully automated, it relies on LLM outputs, which may vary with
prompt phrasing, temperature settings, or model version. Although we observe stability across five
runs, reproducibility across future LLM updates may require prompt standardization or model pinning.
Moreover, our experiments are limited to MoleculeNet-style benchmarks. The generalization of
AUTAUT to other domains (e.g., materials science, systems biology) remains to be validated. Lastly,
the gradient alignment strategy assumes that auxiliary tasks can be meaningfully aligned with the
primary task, which may not hold in more complex or noisy multi-modal settings.
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are well-aligned with the paper’s
actual contributions. The paper proposes a fully automated framework for auxiliary task
selection and adaptive integration using large language models and gradient alignment.
These contributions are consistently reflected in the method section, theoretical analysis,
and empirical results. The scope and limitations are appropriately bounded.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes limitations and future work discussions in Section [3]
and throughout the text. It acknowledges the dependency on the quality of LLMs, the
computational cost of query generation, and the fact that results are only demonstrated on
MoleculeNet-style datasets. The discussion is honest and appropriately scoped for research.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper presents two formal theorems, each clearly stating assumptions and
objectives (e.g., gradient alignment aiding optimization and generalization). Full proofs are
provided in the appendix. Notations and conditions are well-defined, and references to prior
theory are appropriately cited.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides extensive implementation details (Section 4] Appendix [Al
Appendix [C| Appendix [E} Appendix [F), including prompts, model variants, training curves,
hyperparameter choices, and ablation setups. Auxiliary task sources and LLM settings (e.g.,
temperature) are documented. The provided supplemental material supports the reproduction
of the main claims.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper uses public datasets (e.g.., MoleculeNet, PCQM4Myv2), and code and
scripts are promised to be released upon publication, with implementation details included
in the appendix. A GitHub link (https://github.com/zhiqiangzhongddu/AUTAUT) is
suggested in the supplemental material for reproducibility.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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10.

11.

12.

Justification: The experimental design, dataset splits, model architecture, optimizer settings,
hyperparameter ranges, and evaluation metrics are all clearly specified (Appendix [E] Ap-
pendix [F). Extensive ablations and LLM variations are provided to show robustness across
settings.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Results are averaged over five runs with standard deviation reported (see
Table 2] Table[3] and ablation figures in Section[4.4). Variability is due to random seeds and
LLM outputs. The methodology for reporting is clearly stated, including consistent use of
standard deviation as error bars.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix [F]reports training on 8 NVIDIA A100 GPUs and estimates wall-
clock time for each experiment. LLM calls are limited to task retrieval and executed once
per run. The total compute cost is moderate and disclosed.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research follows NeurIPS Code of Ethics. All datasets are public, no
sensitive data is used, and LLMs are queried through standard APIs under accepted terms of
use. No human subjects or private data are involved.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper (Section[5) discusses both potential positive impacts (lowering barri-
ers to applying auxiliary-task-based learning in molecular discovery) and risks (over-reliance
on LLMs or domain hallucinations). It also acknowledges limitations in generalization
beyond molecules.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any high-risk model or dataset with potential misuse
concerns. The use of LLMs is confined to narrow auxiliary-task queries, and no generative
models or sensitive data are released.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets (e.g., MoleculeNet, PCQM4Mv2) are cited with their original
licenses. Third-party libraries and LLMs (e.g., OpenAl GPT-4, Llama 3) are used under
documented terms of service and cited properly.
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13.

14.

15.

16.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Any new datasets, code, or generated descriptions are documented and accom-
panied by usage instructions and license information in the linked project file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve any human participants or crowdsourcing.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects are involved; therefore, IRB approval is not applicable.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The use of LLMs is central to the method (automatic auxiliary task retrieval
and selection). This usage is clearly described in the methodology and experimental setup,
including prompt design and temperature setting.
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A Prompts

A.1 Auxiliary Task Retrieval Prompt

Auxiliary task retrieval converzation:
(For better visualization, complete converzation details can be found in our GitHub project.)

Instruction: You are now an expert in computational chemistry and machine learning for molecular
property prediction. Your task is to provide detailed and accurate information about computable
molecular properties.

Message 1: Find all available computable molecular properties.

Response: Computable molecular properties refer to properties of molecules that can be calculated
or predicted using computational chemistry, cheminformatics, or machine learning techniques.
These properties can be derived from the molecular structure and are used in various applications
like drug discovery, material science, and chemical engineering. Below is a categorised list of
computable molecular properties:

1. Physical and Chemical Properties

* Molecular weight
* LogP

2. Geometric and Structural Properties

 Radius of gyration
* 3D molecular shape descriptors

3. Topological Properties

 Topological polar surface area (TPSA)
* Shannon entropy
If you are looking for tools to compute these properties, some commonly used software includes:
¢ RDK:it (cheminformatics)
* MOPAC (semi-empirical quantum chemistry)

Message 2: [ want to use RDKit to compute the properties of molecules. Find those computable
properties using RDKit.

Response: RDKit provides a comprehensive set of functions to compute molecular properties.
Here is a categorized list of computable properties using RDKit:

1. Physical and Chemical Properties

* Molecular weight: rdkit.Chem.Descriptors.ExactMolWt
* LogP: rdkit.Chem.Crippen.MolLogP

2. Geometric and Structural Properties

 Radius of gyration: rdkit.Chem.Descriptors3D.RadiusOfGyration

You can compute these properties using Python by importing the relevant RDKit modules. For
example: ...
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Table 4: Details of collected molecular properties.

Indicates overall polar atom content.

Number of Aromatic Rings

Ring descriptors

Count of rings with conjugated pi-electron systems exhibiting aromaticity.
Important for molecular stability and interactions.

Aliphatic Rings Count

Ring descriptors

Number of non-aromatic (saturated or partially saturated) rings in the molecule.
Affects molecular flexibility and properties.

Heterocycles Count

Name | Category | Brief Description
. A Total mass of a molecule calculated as the sum of atomic weights of all atoms,
Molecular Weight Constitutional g . . . o
providing fundamental information about molecular size and mass distribution.
Heavy Atom A Sum of atomic weights of all non-hydrogen atoms in the molecule, useful for
. Constitutional .
Molecular Weight comparing core molecular frameworks.
Number of Valence A Total number of electrons in the outer shells of all atoms, crucial for understanding
Constitutional . . -
Electrons chemical bonding and reactivity patterns.
Total Formal Charge Constitutional Sum of all formall c}}arges on atoms in the molecule, indicating overall molecular
charge state and ionic character.
Topological Polar Topological Sum of surfaces of all polar atoms (mainly oxygen and nitrogen), correlating with
Surface Area polog drug absorption, including intestinal absorption and blood-brain barrier penetration.
Labute Approximate . Approximate molecular surface area calculated using Labute’s method, useful
Topological . X . . .
Surface Area for predicting physical properties and molecular interactions.
. Topological index based on molecular connectivity, indicating molecular
Balaban J Index ‘ Topological branching and cyclicity. Higher values suggest more branched structures.
Bertz Complexity Topological Iltflreasure of mqleqular complexity considering both size and branching patterns.
igher values indicate more complex molecular structures.
LoaP Electronic Logarithm of octanol-water partition coefficient, predicting molecular
g lipophilicity and membrane permeability. Key for drug absorption.
.. . Measure of total polarizability of a molecule, related to molecular volume and
Molar Refractivity Electronic . . S . X
electronic properties. Important for predicting optical behavior.
EState VSAI Electronic Sum of van der Waals surface areas of atoms with electrotopological state values
in first range. Relates electronic state to molecular surface.
Number of Hydrogen Hvdrogen bondin Count of NH and OH groups capable of donating hydrogen bonds. Critical for
Bond Donors ydrog g predicting molecular interactions and drug-like properties.
NHOH Group Count Hydrogen bonding Total qumber of nitrogen and oxygen atoms with attached hydrogens, indicating
potential hydrogen bond donor sites.
NO Group Count ‘ Hydrogen bonding Total count of nitrogen and oxygen atoms, regardless of hydrogen attachment.

Ring descriptors

Number of rings containing at least one heteroatom (non-carbon). Important for
biological activity and drug-like properties.

Number of Rotatable Bonds

Molecular flexibility

Count of single bonds that can freely rotate, excluding those in rings. Key
indicator of molecular flexibility and oral bioavailability.

Fraction of Csp3
Carbon Atoms

Molecular flexibility

Ratio of sp3 hybridized carbons to total carbon count. Higher values indicate more
3D character and better drug-like properties.

Molecular Volume in A3

3D descriptors

Three-dimensional space occupied by the molecule, calculated using van der
‘Waals radii. Important for molecular packing and interactions.

Asphericity

3D descriptors

Measure of how much molecular shape deviates from perfect sphere. Higher
values indicate more elongated or irregular shapes.

Eccentricity

3D descriptors

Ratio of the longest to shortest molecular axis. Indicates degree of molecular
elongation in 3D space.

Radius of Gyration

3D descriptors

Average distance of molecular mass from its center of mass. Describes
molecular size and mass distribution in 3D.

Inertial Shape Factor

3D descriptors

Ratio of principal moments of inertia, describing overall 3D shape and mass
distribution. Distinguishes rod-like from disk-like molecules.

QED

Drug-likeness

Quantitative Estimate of Drug-likeness, combining multiple molecular
properties into a single score (0-1). Higher values indicate more drug-like
characteristics.
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A.2 Auxiliary task selection Prompt

Auxiliary task selection prompt:
(For better visualization, converzation details can be found in our GitHub project. )

Instruction: You are now an expert in computational chemistry and machine learning for molecular
property prediction. Your task is to provide detailed and accurate information about computable
molecular properties.

Message 1: Search available information about these properties and write a brief summary for
each property.
Response: Here is a brief explanation of each property RDKit can compute:

1. Physical and Chemical Properties

* Molecular weight: Total mass of a molecule calculated as the sum of atomic weights
of all atoms, providing fundamental information about molecular size and mass
distribution.

* LogP: Logarithm of octanol-water partition coefficient, predicting molecular
lipophilicity and membrane permeability. Key for drug absorption.

2. Geometric and Structural Properties

* Radius of gyration: Average distance of molecular mass from its center of mass.
Describes molecular size and mass distribution in 3D.

3. Topological Properties

 Topological polar surface area (TPSA): Sum of surfaces of all polar atoms (mainly
oxygen and nitrogen), correlating with drug absorption, including intestinal absorp-
tion and blood-brain barrier penetration.

Message 2: For the primary task [TASK] (TASK DESCRIPTION), you assess the relevance
between retrieved properties and the primary task with affinity scores, based on domain-specific
knowledge and the summarised information.

Response: ...

Message 3: For the primary task [TASK] (TASK DESCRIPTION), you recommend which [K]
properties as auxiliary tasks to improve the machine learning model performance on the primary
task. You provide: a list of [ K] selected auxiliary tasks and the affinity score of each auxiliary task
to the primary task [TASK].

Response: ...

A.3 Discussion of selected auxiliary tasks

TableE]presents the auxiliary tasks selected by different LLMs (GPT-4, LLaMA 3, and Gemini 2.0)
across each molecular prediction dataset. Across all models, we observe consistent selection of chem-
ically relevant descriptors such as LogP, Topological Polar Surface Area, and Number of
Hydrogen Bond Donors, confirming their general importance for molecular property prediction.

For classification datasets like BBBP and Tox21, all three LLMs prioritize physicochemical and
toxicity-related descriptors. Notably, LogP and TPSA appear in nearly all runs, underscoring their
relevance to tasks involving membrane permeability and drug-likeness. In contrast, for regression
datasets such as ESOL, FREESOLV, and L1PO, the selected auxiliary tasks increasingly include
3D structural properties like Molecular Volume in A3, Radius of Gyration, Eccentricity,
and Asphericity, which are crucial for modeling continuous-valued properties.

Comparing across LLMs, we find that GPT-4 selections are more stable, with strong alignment
to domain-relevant properties across all datasets. LLaMA 3 maintains good coverage of core
features, but introduces additional diversity in its selections, occasionally replacing QED or TPSA
with alternatives like Balaban J Index or Heavy Atom Molecular Weight. Gemini 2.0 shows
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Table 5: Illustration of selected auxiliary tasks. The numbers in parentheses (k, w) indicate the
number of times each task was chosen out of five repeats (k), and its average learned weight (w).

Dataset

| K| LLM

| LLM Selected Auxiliary Tasks

BBBP

GPT-4

Topological Polar Surface Area (5, 0.28), LogP (5, 0.27), Number of Hydrogen Bond Donors (5, 0.24),
Molecular Weight (5, 0.21), QED (5, 0.20)

Llama 3

Topological Polar Surface Area (5, 0.26), LogP (5, 0.25), Number of Hydrogen Bond Donors (5, 0.21),
Balaban J Index (4, 0.13), NO Group Count (3, 0.11), QED (2, 0.09),
Molecular Weight (1, 0.04)

Gemini 2.0

Topological Polar Surface Area (5, 0.27), LogP (5, 0.26), Number of Hydrogen Bond Donors (3, 0.23),
Molecular Weight (4, 0.13), QED (3, 0.10), Balaban J Index (2, 0.07),
Heavy Atom Molecular Weight (1, 0.03)

BACE

GPT-4

LogP (5, 0.291), Topological Polar Surface Area (5, 0.259), Number of Hydrogen Bond Donors (5, 0.229),
Molar Refractivity (5, 0.219), QED (5, 0.151)

Llama 3

LogP (5, 0.26), Topological Polar Surface Area (5, 0.25), Molar Refractivity (5, 0.22), Heavy Atom Molecular
Weight (3, 0.13), EState VSA1 (2, 0.08), Number of Hydrogen Bond Donors (2, 0.07), QED (1, 0.03)

Gemini 2.0

LogP (5, 0.27), Topological Polar Surface Area (5, 0.26), Number of Hydrogen Bond Donors (4, 0.17),
Molar Refractivity (4, 0.15), QED (3, 0.09), Total Formal Charge (1, 0.03), NO Group Count (1, 0.02)

ClinTox

GPT-4

LogP (5, 0.277), Topological Polar Surface Area (5, 0.242), Number of Hydrogen Bond Donors (5, 0.243),
QED (3, 0.190), Bertz Complexity (3, 0.150), Fraction of Csp3 Carbon (2, 0.110),
Molecular Weight (1, 0.08), Number of Aromatic Rings (1, 0.09)

Llama 3

LogP (5, 0.25), Topological Polar Surface Area (5, 0.23), Bertz Complexity (4, 0.13), NHOH Group Count (3, 0.11),
Balaban J Index (3, 0.10), Number of Hydrogen Bond Donors (2, 0.09), QED (2, 0.09)

Gemini 2.0

LogP (5, 0.26), Topological Polar Surface Area (4, 0.15), QED (3, 0.12),
Bertz Complexity (3, 0.10), Molecular Weight (2, 0.08), Aliphatic Rings Count (2, 0.08),
NHOH Group Count (1, 0.04)

Tox21

GPT-4

LogP (5, 0.23), Topological Polar Surface Area (5, 0.22), Number of Hydrogen Bond Donors (5, 0.21),
Bertz Complexity (5, 0.19), NO Group Count (5, 0.18)

Llama 3

LogP (5, 0.21), Topological Polar Surface Area (35, 0.20), NO Group Count (5, 0.18),
Number of Hydrogen Bond Donors (4, 0.15), EState VSA1 (3, 0.10), Bertz Complexity (2, 0.07)

Gemini 2.0

LogP (5, 0.22), Number of Hydrogen Bond Donors (3, 0.20), QED (3, 0.12),
Eccentricity (2, 0.09), NO Group Count (2, 0.09), Fraction of Csp3 Carbon Atoms (2, 0.08), TPSA (1, 0.04)

ToxCast

GPT-4

LogP (5, 0.21), Topological Polar Surface Area (5, 0.20), QED (5, 0.19),
Number of Hydrogen Bond Donors (4, 0.14), Balaban J Index (3, 0.09), Number of Rotatable Bonds (3, 0.08)

Llama 3

LogP (5, 0.22), Balaban J Index (4, 0.14), Labute Approximate Surface Area (4, 0.13),
EState VSALI (3, 0.11), Topological Polar Surface Area (2, 0.07), QED (2, 0.06), Rotatable Bonds (1, 0.03)

Gemini 2.0

LogP (5, 0.21), Topological Polar Surface Area (4, 0.11), Balaban J Index (3, 0.08),
Rotatable Bonds (3, 0.08), Labute Approximate Surface Area (2, 0.05), QED (2, 0.06), TPSA (1, 0.02)

SIDER

GPT-4

LogP (5, 0.20), Topological Polar Surface Area (5, 0.18), QED (4, 0.12),
Number of Hydrogen Bond Donors (4, 0.12), Number of Rotatable Bonds (4, 0.10), Molecular Weight (3, 0.08)

Llama 3

LogP (5, 0.19), Topological Polar Surface Area (4, 0.12), Aliphatic Rings Count (4, 0.10),
Fraction of Csp3 Carbon Atoms (3, 0.08), Number of Hydrogen Bond Donors (2, 0.07), QED (2, 0.06)

Gemini 2.0

Topological Polar Surface Area (5, 0.19), LogP (3, 0.18), Number of Hydrogen Bond Donors (4, 0.12),
QED (3, 0.09), Molecular Weight (2, 0.06), Aliphatic Rings Count (1, 0.03)

ESOL

GPT-4

LogP (5, 0.19), Molecular Weight (5, 0.18), Topological Polar Surface Area (5, 0.17),
Molecular Volume in A? (5,0.17), QED (1, 0.05), Fraction of Csp3 Carbon Atoms (1, 0.04),
Radius of Gyration (1, 0.03), Eccentricity (1, 0.03), Asphericity (1, 0.03)

Llama 3

LogP (5, 0.17), Molecular Weight (5, 0.16), Topological Polar Surface Area (5, 0.15),
Molecular Volume in A® (4, 0.10), Eccentricity (2, 0.05), Inertial Shape Factor (2, 0.04), QED (1, 0.03)

Gemini 2.0

LogP (5, 0.16), Molecular Weight (5, 0.15), Topological Polar Surface Area (4, 0.10),
Molecular Volume in A? (3, 0.08), Radius of Gyration (2, 0.05), Eccentricity (2, 0.05),
Asphericity (2, 0.05), Inertial Shape Factor (1, 0.03), QED (1, 0.03)

FreeSolv

GPT-4

LogP (5, 0.19), QED (5, 0.18), Topological Polar Surface Area (4, 0.12),
Molecular Volume in A® (4, 0.12), Molar Refractivity (4, 0.10), Radius of Gyration (3, 0.08)

Llama 3

LogP (5, 0.18), QED (4, 0.12), Topological Polar Surface Area (4, 0.12),
Molecular Volume in A® (3, 0.09), Molar Refractivity (3, 0.08), Eccentricity (2, 0.05)

Gemini 2.0

LogP (5, 0.17), Molecular Volume in A” (4, 0.11), QED (3, 0.08),
Topological Polar Surface Area (3, 0.08), Fraction of Csp3 Carbon Atoms (2, 0.06),
Molar Refractivity (2, 0.06), Radius of Gyration (1, 0.03)

Lipo

GPT-4

LogP (5, 0.18), Molecular Weight (5, 0.17), Topological Polar Surface Area (4, 0.13), Number of Hydrogen
Bond Donors (4, 0.13), Molar Refractivity (4, 0.12), Fraction of Csp3 Carbon (2, 0.06), Radius of Gyration (1, 0.03)

Llama 3

LogP (5, 0.16), Molecular Weight (5, 0.16), Molar Refractivity (4, 0.11),
Topological Polar Surface Area (3, 0.09), Number of Hydrogen Bond Donors (2, 0.06),
Heavy Atom Molecular Weight (2, 0.05), Fraction of Csp3 Carbon Atoms (1, 0.03)

Gemini 2.0

LogP (5, 0.15), Molecular Weight (5, 0.15), Molar Refractivity (4, 0.11), Topological Polar Surface Area (3, 0.08),
Number of Hydrogen Bond Donors (2, 0.05), Fraction of Csp3 Carbon Atoms (2, 0.05), Eccentricity (1, 0.03)

greater variability and less task consistency, particularly in regression settings such as FREESOLV
and ESOL, where it selects more diverse and occasionally less relevant 3D shape descriptors. This
aligns with the drop in performance observed in Figure

Despite the inherent stochasticity of LLM outputs, the consistency in repeatedly selected descriptors
(shown by the frequencies in parentheses) confirms that all models—especially GPT-4—are capable
of capturing task-relevant molecular knowledge. These results support our claim that LLM-guided
auxiliary task selection is both feasible and chemically meaningful, and also highlight that LLM
quality impacts the robustness of selection.
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Costs of LLM Usages. Our automatic auxiliary—task pipeline made 137 calls to GPT-4, two
retrieval and three selection requests for each of the 9 target datasets in each of the five training
runs. And 135 additional calls to Gemini 2.0 for the ablation in Figure[3c] A GPT-4 request needed
21.3 £+ 2.4 s on average, while a Gemini 2.0 request required 7.8 & 1.1s. Using the research-tier
prices ($ 0.06 / 1 K prompt tokens and $ 0.12 / 1 K completion tokens for GPT-4; USD 0.02/1 K
prompt tokens and USD 0.02 / 1 K completion tokens for Gemini 2.0) and the logged token counts
of roughly 1 K prompt + 1 K completion tokens per call, the GPT-4 portion cost about $23 and the
Gemini portion about $9. The total large-language-model expenditure is therefore approximately $32,
or $3.6 per downstream dataset across all five runs. GPT-4 accounts for most of the bill because it
retrieves and ranks all auxiliary tasks and their textual descriptions; Gemini 2.0 is used only to show
that a less expensive model can replace GPT-4 without a measurable drop in accuracy. Llama 3 runs
on our GPUgs, so it incurs no additional cost beyond electricity.

B Proof

B.1 Proof of Theorem[]

Let VLy(6) € R? denote the gradient of the primary task loss, and let {V.LF(8)} < | represent the
gradients of the auxiliary task losses. These auxiliary gradients span a subspace S C R,

Step 1: Gradient Representation. Since S is the span of the auxiliary task gradients, any vector
in S can be expressed as a linear combination of these gradients:

K
> apVLE(D) €8, (8)
k=1

where o = {a, ..., ax} are the auxiliary task weights. If VL, (0) € S, then there exist coefficients

{Bk} such that:

K
VLu(0) = BVLE(D). )
k=1

Step 2: Exact Reconstruction of V£ (0). The primary task gradient can be optimally recon-
structed using the auxiliary task gradients if there exist weights {ay } such that:

K
> aRVLE(B) = VLy(9). (10)
k=1

In this case, the reconstruction error is zero:

K
IVLu(0) = > arVLE®)]| = 0. (11)
k=1

This implies that the auxiliary tasks fully capture the primary task gradient, leading to complete
alignment.

Step 3: Decomposition with Orthogonal Components. If V. (6) ¢ S, it can be decomposed
into two components:

VLw(0) = vLhio) + v (o), (12)

where:

. VEIU,I(H) € S is the projection of VLy(6) onto S,
* VLE(0) L S is the orthogonal component.

The best approximation of V.Ly,(#) within S is given by its projection:

K
S apveko) = veho). (13)
k=1
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The reconstruction error in this case is:
IV Ly (6 Zakvﬂf ) =IVLy ()] > 0. (14)

The presence of V£ (#) implies that the auxiliary task gradients cannot fully reconstruct the primary
task gradient, reducing their effectiveness.

Step 4: Implications for Optimization. When VL, (0) € S, we obtain:
IV L (6 Z arVLE(0) (15)

Thus, the auxiliary tasks provide complete grad1ent information for optimizing the primary task,
resulting in:

» Improved convergence rates, as optimization follows an aligned gradient trajectory.

* Reduced variance, since the primary task gradient is entirely captured by the auxiliary tasks.

Conversely, if VL (0) # 0, the orthogonal component introduces misalignment in the optimization
process, leading to:

» Slower convergence, as optimization is influenced by gradients that do not fully capture the
primary task.

* Potential suboptimal solutions, since the primary task is not entirely represented in the
auxiliary gradient space.

Conclusion. The auxiliary tasks contribute maximally to primary task optimization when
VLyu(0) € S, ensuring full alignment with the optimization trajectory. When this condition holds,
the auxiliary tasks effectively serve as surrogates for the primary task, guiding learning efficiently.
However, when VL (6) # 0, the mismatch introduces misalignment, emphasizing the need for
selecting auxiliary tasks whose gradients best align with the primary task gradient.

O
B.2 Proof of Theorem 2]

Step 1: Generalization Error Definition. The generalization error £(0) is the difference between
the expected loss on the data distribution and the empirical loss on the training set:

£(0) = E(x,y)~p,, [((fo(X — —Z€ fo(X (16)

where £(-, -) is the loss function, D,,, represents the primary task data distribution, and n is the number
of training samples.

Step 2: Auxiliary Tasks and the Hypothesis Class. Incorporating auxiliary tasks 7; modifies the
training objective by introducing a set of trainable weights o that dynamically adjust the contribution
of auxiliary task losses:

K
L(0,0) = Ly(0) + Y arLE(0). (17)

This formulation does not change the hypothesis class itself but adjusts the optimization trajectory by
guiding parameter updates through gradient alignment.

Step 3: Rademacher Complexity with Dynamic Weighting. The Rademacher complexity R, ()
measures the expressive capacity of the function class:

sup *Zdzfg 1 . (18)

Rn(H): 7 foeH T
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Unlike traditional multi-task learning, which may increase R,,(H) by introducing additional objec-
tives, your framework does not expand the hypothesis space but rather optimizes within the same
space using dynamically weighted gradients.

The key effect of auxiliary tasks in your framework is that it improves gradient alignment, ensuring
that updates to 6 are more consistent with the primary task objective. This leads to:

Rn(Ha) < Ru(H), 19)

where H,, denotes the function class learned with dynamically weighted auxiliary tasks.

Step 4: Generalization Bound. From statistical learning theory, the generalization error satisfies:
E(0) <E(0) +c- Rn(Ha), (20)

where:

« & (0) is the empirical error minimized during training.

* R, (Hea) is the Rademacher complexity of the function class trained with auxiliary task
reweighting.

* cis a constant dependent on the Lipschitz continuity of £(-, -).

Since dynamic weighting ensures auxiliary tasks contribute positively through gradient alignment, it
lowers the effective complexity of the hypothesis class while improving empirical performance.

Conclusion. The auxiliary task reweighting strategy in AUTAUT improves generalization by
enhancing gradient alignment rather than modifying the hypothesis class itself. This leads to better
generalization bounds without introducing unnecessary complexity.

O

C Algorithm

The proposed algorithm, AUTAUT, optimizes the primary task by leveraging auxiliary tasks through
a structured three-phase learning procedure. The key idea is to dynamically integrate auxiliary
supervision to refine the learning process while ensuring that auxiliary tasks positively contribute
to the primary task. To achieve this, AUTAUT systematically retrieves auxiliary tasks, adapts their
influence during training, and fine-tunes the model for optimal performance.

AUTAUT begins by retrieving a set of potential auxiliary task labels using a pre-trained LLM. This
step identifies molecular property prediction tasks that are related to the primary task, which are then
ranked based on their gradient alignment with the primary task. Only the most relevant auxiliary
tasks are retained, and their initial weights are set according to their alignment scores. This step
ensures that the model does not incorporate noisy or misleading auxiliary signals.

During training, AUTAUT jointly optimizes the primary and auxiliary tasks. The model parameters
are updated based on the primary task gradient, combined with weighted gradients from the selected
auxiliary tasks. The auxiliary task weights are not fixed but rather adapted dynamically using a
gradient-based Fisher divergence minimization strategy. This allows AUTAUT to progressively
emphasize auxiliary tasks that contribute positively while down-weighting those that introduce
conflicting gradients. The auxiliary task weights are constrained to a probability simplex, ensuring a
balanced contribution of tasks.

Once training stabilizes, the final fine-tuning phase optimizes the model exclusively on the primary
task while keeping the auxiliary task weights fixed. This prevents auxiliary supervision from
dominating the optimization and ensures that the learned model parameters generalize well to unseen
data.

The complete training procedure is outlined in Algorithm[I] The algorithm follows three structured
phases:

1. Retrieval and Initialization, where relevant auxiliary tasks are selected based on LLM
retrieval and gradient alignment.
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Algorithm 1 AUTAUT: Optimizing Primary Task with Auxiliary Task Integration

N =

AN A

11:
12:
13:
14:
15:

16:
17:
18:
19:

20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:

31:
32:
33:
34:
35:
36:
37:

Input: Primary task dataset Dygary, auxiliary task dataset DER Amn» pre-trained LLM fi1m
Parameters: Learning rates ¢, 3; convergence threshold §; maximum epochs F, fine-tuning
epochs Efpe
Output: Optimized model parameters 6*
Phase 1: Retrieval and Initialization
Query LLM to retrieve potential auxiliary task labels:
ya — fLLM (DTRAIN)
Compute gradient alignment scores for tasks in Y, w.r.t. Drgan
Vs < Top-K auxiliary task labels selected based on alignment scores
Initialize task weights o proportionally to alignment scores
Initialize model parameters 6
Phase 2: Joint Training with Adaptive Weighting
for epoche = 1to E do
for iteration t = 1 to 7" do
Compute primary task gradient: g, < V log p(Drrax|01—1)
Compute auxiliary task gradients: g < V log p(D¥  nl0i—1) VE
Update model parameters: 6; < 6;_1 — ¢;( — gp — > 1, k1)
Adaptive Task Weight Optimization
if not converged(cx) then
Update task weights via Fisher divergence minimization: o <+ o —
BV ||V log p(Drra|0:) — V log pa (61) H%
Project a onto simplex A > Ensure o, >0, ), ap =1
end if
end for
Evaluate model on validation set Dyayp
if validation performance plateaus or shows marginal improvement then
break
end if
end for
Phase 3: Fine-Tuning
for epoch e = 1 to Ffy,e do
Fix auxiliary task weights o
Update model parameters: 6 < 6 — €;( — V log p(Drra|6) — Zszl oV log p(Dkiaix10))
Evaluate model on validation set Dyap.p
if validation performance plateaus or shows marginal improvement then
break
end if
end for
Return: Optimized model parameters 6*

2. Joint Training with Adaptive Weighting, where model parameters and auxiliary task weights
are updated iteratively using gradient alignment and Fisher divergence minimization.

3. Fine-Tuning, where the model is optimized on the primary task with fixed auxiliary task
weights to ensure stable generalization.

By integrating these steps, AUTAUT automatically learns an effective task weighting strategy,
reducing the reliance on manual task selection while enhancing the predictive performance of the
primary task.

D

Computational Complexity Analysis

AUTAUT consists of three phases: retrieval and initialization, joint training with adaptive weighting,
and fine-tuning. The computational complexity is primarily determined by the auxiliary task selection
process, the gradient-based joint training, and the adaptive weight optimization.
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D.1 Phase 1: Retrieval and Initialization

Retrieving auxiliary tasks using an LLM query has a complexity of O(1) if the LLM response time
is independent of dataset size. However, if retrieval involves searching a database of IV, potential
auxiliary tasks, the complexity is O(N,). Computing gradient alignment for auxiliary task selection
requires evaluating the cosine similarity between the primary task gradient and each auxiliary task
gradient, which results in a cost of O(N, D), where D is the number of model parameters. Selecting
the top K auxiliary tasks incurs a sorting cost of O(N, log N, ). Thus, the total complexity for
retrieval and initialization is:

O(N.D + N,log N,). 1)

D.2 Phase 2: Joint Training with Adaptive Weighting

Each training iteration involves computing gradients for both the primary and auxiliary tasks, requiring
O(D) operations per task. Since there are K selected auxiliary tasks, the total cost per iteration
is O((K 4 1)D). Updating model parameters using stochastic gradient descent (SGD) incurs an
additional O(D) cost per step. Computing gradient alignment scores requires dot products between
the primary task gradient and K auxiliary gradients, adding an extra O(K D) per iteration. Updating
auxiliary task weights via Fisher divergence minimization requires computing weight gradients and
projecting onto a simplex, which contributes another O(K D). Over E epochs with T iterations per
epoch, the total complexity for joint training is:

O(ET(KD + D + KD)) = O(ETKD). (22)

D.3 Phase 3: Fine-Tuning

Fine-tuning updates only the primary task parameters with fixed auxiliary task weights, resulting in a
per-iteration complexity of O(D). Over Eg,, fine-tuning epochs, the total complexity is:

O(EneTD). (23)

D.4 Overall Complexity

Summing the complexity of all phases, the total computational cost of AUTAUT is:
O(NoD + Nglog N,) + O(ETKD) 4+ O(EgineT D). (24)
If Ffne =~ E, this simplifies to:
O(N,D + N,log N, + ETKD). (25)

D.5 Comparative Analysis

For comparison, standard single-task learning has complexity O(ET D), while traditional multi-
task learning with fixed auxiliary tasks has complexity O(ET K D) but lacks dynamic weighting.
AUTAUT introduces additional costs from auxiliary task retrieval and weight adaptation but avoids
the need for manual task selection.

D.6 Scalability Considerations

If K < D (i.e., a small number of auxiliary tasks), AUTAUT remains comparable in complexity to
standard multi-task learning. If N, is large, auxiliary task selection may be costly, but it is a one-time
process and does not impact training iterations. Since gradient-based weight updates scale linearly
with K, AUTAUT remains computationally feasible for moderate values of K.

In Table [6] we report the number of model parameters, GPU memory usage, and average execution
time of ML models with and without AUTAUT across 5 runs. In practice, the additional computational
burden from auxiliary task integration is minimal.

Overall, AUTAUT achieves a balance between improved learning efficiency and computational cost,
making it a scalable approach for molecular property prediction tasks.
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Table 6: Training information.

Model | Dataset | #Param | GPUMem (MB) | Time (min) Baseline | Time (min) +AUTAUT
BACE 296,833 534 2.37 247
BBBP 296,833 536 3.14 3.23
ClinTox 296,962 536 2.30 2.37
Tox21 298,252 532 12.17 12.64
GCN ToxCast 376,297 538 18.75 19.44
SIDER 300,187 562 242 2.50
ESOL 296,833 508 1.77 1.84
FreeSolv 296,833 506 1.00 1.04
Lipo 296,833 536 6.44 6.68
BACE 496,005 546 231 2.39
BBBP 496,005 548 3.08 3.19
ClinTox 496,134 548 2.28 2.36
Tox21 497,424 542 12.00 12.47
GIN ToxCast 575,469 546 18.69 19.34
SIDER 499,359 570 241 2.53
ESOL 496,005 518 1.76 1.83
FreeSolv 496,005 512 0.99 1.03
Lipo 496,005 550 6.38 6.64
BACE 7,944,160 10,957 10.59 11.12
BBBP 7,944,160 10,997 14.48 15.07
ClinTox | 7,946,740 10,997 10.45 10.88
Tox21 7,972,540 10,898 59.31 60.56
Graphormer | ToxCast | 9,533,440 10,998 92.52 94.28
SIDER 8,011,240 11,478 11.02 11.57
ESOL 7,944,160 10,417 7.81 7.96
FreeSolv | 7,944,160 10,338 3.90 4.05
Lipo 7,944,160 11,018 31.02 32.50

E Related Work Discussion

Aucxiliary task selection related work:

1.

Beam Search [37]]. Beam Search is a task selection method that incrementally builds a set
of auxiliary tasks by scoring candidates based on intermediate performance gains. It selects
the top-scoring sequence of tasks using beam width exploration.

Important settings: It adopts all collected auxiliary tasks as shown in Table[d] Selection is
performed by evaluating model performance on the validation set at each expansion step.

. TAG [8]]. TAG (Task Affinity Grouping) clusters tasks by computing pairwise gradient

similarities and forming groups to minimize negative interference. It selects task groups
with high internal compatibility.

Important settings: It uses all collected auxiliary tasks as shown in Table {f] and forms a
group that includes the primary task. Task affinity is computed via cosine similarity of
gradient vectors.

. Task2vec [1]. Task2vec represents tasks as embedding vectors derived from the Fisher

Information Matrix and selects auxiliary tasks based on embedding proximity.

Important settings: It adopts all collected auxiliary tasks as shown in Table d]and uses em-
bedding similarity to rank and select top- K tasks closest to the primary task in representation
space.

. MolGroup [17]. MolGroup groups tasks by jointly optimizing group assignments and

shared representations using a bi-level optimization framework.
Important settings: It adopts all collected auxiliary tasks as shown in Table[dand learns task
groupings end-to-end during training.

. GS-Meta [68]]. GS-Meta (Graph Sampling-based Meta-Learning) learns task-specific

initializations using meta-learning, adapting quickly to new tasks with few updates.
Important settings: We adopt the auxiliary datasets and molecular property relation graph
provided in their official implementation.

. InstructMol [51]]. InstructMol leverages instruction-based supervision by encoding auxil-

iary task semantics through natural language prompts during pretraining.
Important settings: We adopt the auxiliary datasets provided in their official implementation.

Adaptive multi-task learning models:
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1. MTDNN [25]. MTDNN (Multi-task Deep Neural Network) trains on all tasks simultane-
ously and learns to balance them via a shared backbone and a task discriminator.
Important settings: It uses the same number of randomly selected auxiliary task set as
AUTAUT (as shown in Table[5)). The task discriminator is trained to identify relevant tasks
dynamically during training.

2. Unweighted Averages (UA). UA is a naive baseline where all auxiliary task losses are
included with equal weight. It assumes uniform contribution from each auxiliary task.
Important settings: It uses the same number of randomly selected auxiliary task set as
AUTAUT (as shown in Table[5)), but without adaptive weighting.

3. GradNorm [3]. GradNorm adjusts task-specific learning rates to balance gradient magni-
tudes across tasks, aiming for balanced training dynamics.
Important settings: It uses the same number of randomly selected auxiliary task set as
AUTAUT (as shown in Table[5) and dynamically reweights task losses by normalizing their
gradient norms.

4. Pretrain-Finetune (PF) [[15]. PF is a two-stage pipeline that first pretrains the model on a
large source dataset and then fine-tunes it on the target task without auxiliary tasks.
Important settings: The model is pretrained on PCQM4Myv?2 [[14] and then fine-tuned on
each downstream dataset individually.

Discussion. Table[I|summarizes the key differences between AUTAUT and prior auxiliary-task-
based methods. Most existing approaches, including TAG, TASK2VEC, GRADNORM, and MTDNN,
rely on manually curated auxiliary tasks or require detailed task descriptions and additional datasets.
While some methods (e.g., GS-META, MOLGROUP) support automatic task selection or adaptive
weighting, they still depend heavily on external supervision or relation graphs to guide selection.

In contrast, AUTAUT is the only method that achieves both automatic auxiliary task retrieval and
automatic task selection without requiring any human-generated task lists, labels, or external datasets.
Furthermore, it uniquely integrates selected tasks using a gradient alignment-based adaptive weighting
mechanism, which dynamically adjusts the importance of each auxiliary task during training. This
combination enables AUTAUT to operate entirely without manual input or domain knowledge, setting
it apart as the first fully automated framework for auxiliary task discovery and integration in molecular
property prediction.

This design significantly lowers the barrier for deploying auxiliary-task-based learning in domains
where expert-curated auxiliary signals are unavailable or difficult to define, highlighting AUTAUT’s
scalability and practical utility.

F Experimental Settings

Datasets. We conduct experiments on the MoleculeNet benchmark [52], a widely used dataset
collection designed to evaluate molecular property prediction models. MoleculeNet includes a diverse
range of tasks spanning physicochemical properties, bioactivity, toxicity, and side effects, providing a
comprehensive testbed for assessing the effectiveness of our algorithm. For our evaluation, we select
9 representative datasets covering classification and regression tasks, described as follows:

1. BBBP. The Blood-Brain Barrier Penetration (BBBP) dataset contains binary classification
labels indicating whether a molecule can permeate the blood-brain barrier. This property is
crucial for designing central nervous system drugs and understanding their pharmacokinetics.

2. BACE. The BACE dataset provides both quantitative (IC50 values) and qualitative (binary
classification) binding data for inhibitors of human -secretase 1 (BACE-1), a key target for
Alzheimer’s disease treatment.

3. CLINToOX. The ClinTox dataset compares FDA-approved drugs with those that failed
clinical trials due to toxicity. It presents a binary classification challenge for identifying
toxic compounds early in drug discovery.

4. Tox21. The “Toxicology in the 21st Century” (Tox21) initiative compiles a dataset of
qualitative toxicity measurements for 12 biological targets, including nuclear receptors and
stress response pathways. It serves as a multi-label classification problem for assessing
compound toxicity.
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5. TOXCAST. An extension of Tox21, the ToxCast dataset contains in vitro high-throughput
screening data for thousands of environmental and pharmaceutical compounds, spanning
over 600 toxicity-related assays.

6. SIDER. The Side Effect Resource (SIDER) dataset aggregates information on adverse drug
reactions (ADRs) for marketed drugs. The dataset categorizes side effects into 27 system
organ classes, making it a multi-label classification task.

7. ESOL. The ESOL dataset comprises solubility measurements (log solubility in mol/L)
for small organic molecules in water. Predicting solubility is a fundamental task in drug
formulation and molecular design.

8. FREESOLV. The FreeSolv dataset provides both experimental and calculated hydration-free
energy values for small molecules in water. This dataset is valuable for studying solvation
effects and molecular interactions in aqueous environments.

9. Lr1po. Lipophilicity, quantified by the octanol/water distribution coefficient (logD at pH 7.4),
is a critical property influencing drug absorption, membrane permeability, and solubility.
This dataset provides experimentally measured logD values for a variety of drug-like
compounds.

Data Split. To ensure a rigorous evaluation, we follow prior work [6} 65] and adopt scaffold splitting
to divide datasets into training, validation, and test sets with an 80%-10%-10% ratio. Unlike random
splitting, scaffold splitting is a more challenging and realistic partitioning strategy, as molecules
in different subsets do not share structural scaffolds [65]. This setup better simulates real-world
scenarios where models must generalize to structurally novel compounds [52]]. Zhou et al.[65]] also
highlight that chirality considerations in RDKit scaffold generation significantly impact the resulting
partitions. For fair comparisons, we select the checkpoint with the best validation loss for final
evaluation and report the corresponding test set performance.

Auxiliary Task-Based ML Models. We compare AUTAUT against three categories of auxiliary
task-based learning approaches:

1. (i) Search-based methods: Beam search [37] iteratively explores auxiliary task candidates
based on a scoring criterion, training the model for a few epochs at each step to improve
efficiency.

2. (ii) Grouping-based methods: TAG [8], Task2vec [1], and MolGroup [17] employ gradient-
based strategies to compute pairwise affinities and group similar tasks for joint training.
3. (iii) Train-on-all approaches: Methods such as Unweighted Averages (UA), GradNorm [3]],

and MTDNN [25] train models on all available tasks without explicit selection. MTDNN
further applies a task discriminator to select relevant tasks dynamically.

Additionally, we evaluate the Pretrain-Finetune (PF) strategy [L5]], where models are first pretrained
on PCQM4Myv2 [[14] and then fine-tuned on downstream tasks. Appendix [E]provides a comprehensive
discussion of these competing methods.

General ML Models. To assess the robustness and effectiveness of AUTAUT, we benchmark it
against 18 state-of-the-art molecular property prediction models, spanning GNN-based, Transformer-
based, and self-supervised learning approaches:

* GNN-based models:

1. GCN [23]]: Graph Convolutional Networks use spectral graph convolutions to aggregate
local neighborhood information and are among the earliest GNN architectures applied
to molecular graphs.

2. GIN [55]: Graph Isomorphism Networks are designed to be as powerful as the
Weisfeiler-Lehman graph isomorphism test, using sum aggregators to distinguish
graph structures.

3. D-MPNN [58]: Directed Message Passing Neural Networks pass messages along
directed edges, better capturing bond directionality in molecular graphs.

4. MGCN [34]: Multi-level Graph Convolutional Networks incorporate quantum interac-
tions between atoms using multiple levels of molecular representations.

¢ Transformer-based models:
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1. GRAPHORMER [60]]: A graph Transformer architecture that encodes both structural
and positional information using attention mechanisms tailored for molecular graphs.

2. ATTENTIONFP [54]: Attentive Fingerprint uses attention to weight atom features for
molecular representations, capturing both local and global chemical context.

¢ Other molecular prediction models:

1. N-GRrRAM [31]: Represents molecules as bag-of-substructure n-gram graphs, enabling
unsupervised molecular representation without requiring large labeled datasets.

2. PRETRAINGNN [15]): Pre-training GNNs on large molecular datasets using node and
edge prediction tasks, followed by fine-tuning on downstream tasks.

3. GPT-GNN [16]: A generative pre-training approach for GNNs using node sequence
prediction to capture graph-level semantics in a self-supervised fashion.

4. GROVERGg,se [39]: Uses a self-supervised Transformer encoder pre-trained on mil-
lions of molecules with atom-level and graph-level objectives.

5. GROVER| jgge: A larger variant of GROVER with more parameters and deeper
architecture, achieving stronger performance on data-rich tasks.

6. 3D-INFOMAX [43]: Learns joint representations of molecular graphs and their 3D
structures via mutual information maximization across views.

7. GRAPHMVP [33]]: A multi-view pre-training method that integrates 2D and 3D
molecular views using contrastive learning and cross-modal prediction.

8. MOLCLR [47]]: Uses contrastive learning over augmented molecular graphs to learn
invariant and transferable molecular representations.

9. UNI-MoL [65]: A universal framework for 3D molecular pretraining that models
atomic coordinates and predicts spatial properties using SE(3)-equivariant layers.

10. GEM [6]: Geometry-Enhanced Models integrate both molecular topology and geomet-

ric structure to capture spatial inductive biases.

11. PIN-TUNING [30]]: Introduces a parameter-efficient tuning strategy for few-shot molec-
ular property prediction using prompt-injected features.

12. LAC [56]: Learns from curriculum-based training, progressively increasing task
complexity to stabilize learning and improve generalization in molecular prediction.

For a fair comparison, AUTAUT adopts GEM as the base molecular property prediction model,
ensuring that any improvements stem from auxiliary task selection rather than model architecture.

Implementation Details. All experiments are conducted on 8 NVIDIA A100 GPUs. We use
the Adam optimizer [22] with a weight decay of 1e—16 for all models. A ReduceL.ROnPlateau
schedulelﬂ is applied with a patience of 10 epochs to dynamically adjust the learning rate. For
baseline auxiliary selection methods, we adopt the official reimplementations provided by Huang
et al.[17]. For AUTAUT, we fix the number of selected auxiliary tasks at K = 5, with a detailed
ablation study on the impact of K in Section Our code and data are available at https:
//github.com/zhiqiangzhongddu/AUTAUT,

G Additional Results

To better understand the impact of how auxiliary molecular information is integrated, we conduct
a controlled experiment comparing three configurations: (1) a baseline model trained only on the
primary task; (2) a model that appends selected molecular descriptors (e.g., LogP, TPSA) as static
input features (+Feature); and (3) our full AUTAUT, which treats these descriptors as auxiliary
prediction tasks with adaptive weighting. All three configurations use the same primary datasets and
backbone models (GCN, GIN, and GRAPHORMER).

As shown in Table[7] adding descriptors as input features leads to marginal or inconsistent improve-
ments. In some cases, performance even drops slightly—for instance, on GCN for BBBP, ROC-AUC
decreases from 63.45% to 63.39%. This suggests that static features may introduce redundant or
weakly aligned information that does not reliably enhance the main learning objective.

"https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.
ReducelLROnPlateau.html
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Table 7: Performance of ML models using selected auxiliary labels as tasks or features. For
classification tasks, we calculate the ROC-AUC, while for regression tasks, we use RMSE as the
evaluation metric. The number in the bracket is the standard deviation of 5 runs.

CLASSIFICATION (ROC-AUC % 1)

REGRESSION (RMSE |)

DATASETS BBBP BACE CLINTOX Tox21 ToxCAST SIDER ESOL FREESOLV Liro

# MOLUCULES 2,039 1,513 1,478 7,831 8,575 1,427 1,128 642 4,200

# TASKS 1 1 2 12 617 27 1 1 1
GCN 63.4510.05 74.8310.18  56.2840.09 74.6310.06 65.381030 62.241027 | 3.16510.007  3.752+0.013  1.67210.008
+FEATURE 63.3940.06 74914021 56214011 74.5840.05 65.424028 623041025 | 3.15440.000 3.76510.011  1.679+0.010
+AUTAUT 69.7240.00  83.10+0.02  81.00+0.03 77.55+0.01 68.0540.19 64.624024 | 1.885+0.028 1.975+0.022 1.285+0.010
GIN 66.82+0.00 77.4540.21 56.48+0.18  75.3240.17 62.3540.05 60.25+10.20 | 2.895+0.012 3.865+0.018 1.69240.011
+FEATURE 67.3240.00 77.95t021 56.9810.18 75.821017 62.851005 60.75+t0.20 | 2.395+0.012 3.365+0.018 1.19210.011
+AUTAUT 70.58+0.01 83.6210.02 82.5240.04 78.32+0.01 69.3840.22  65.0810.25 | 1.8704+0.025 1.900+0.020 1.270+0.010
GRAPHORMER | 67.0510.04 79.1810.13 78.4240.12  75.55:018 67.1210.05 70.0810.21 | 2.10210.012  1.79510.010 1.28210.010
+FEATURE 67.2510.04  79.3810.13  78.6210.12  75.751018  67.3230.05 70.2810.21 | 2.30210.012  1.99510.010 1.48210.010
+AUTAUT 70.3240.01  83.7210.02 82.55+0.0a 78.5210.01 69.38+021 71.5510.26 | 1.87210.025 1.77210.015 1.26210.010

In contrast, modeling the same descriptors as auxiliary tasks with adaptive weighting yields substantial
and consistent gains. Across all datasets and architectures, AUTAUT significantly outperforms both
the baseline and the +Feature variant. For example, on GIN, AUTAUT reduces RMSE on FREESOLV
from 3.865 to 1.900, and improves ROC-AUC on BACE from 77.45% to 83.62%. These results
highlight that auxiliary tasks provide richer supervision by contributing task-specific gradients that
guide optimization more effectively than raw inputs.

This comparison underscores a central design insight: how auxiliary information is incorporated
matters as much as what information is used. Static features are passively encoded and do not benefit
from task-level supervision or relevance modulation. In contrast, our formulation enables the model
to learn explicit auxiliary objectives and dynamically adjust their influence during training through
gradient-based alignment. This not only improves convergence but also reduces the risk of negative
transfer from irrelevant signals.

Together, these findings validate the importance of treating auxiliary descriptors as supervised
tasks—rather than static inputs—when designing molecular property prediction models.
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