MCP-BENCH: BENCHMARKING TOOL-USING LLM AGENTS WITH COMPLEX REAL-WORLD TASKS VIA MCP SERVERS

Anonymous authorsPaper under double-blind review

000

001

002

004 005 006

007

008 009 010

011 012

013

014

015

016

017

018

019

021

023

025

026

027

028

029 030

031

033

034

035

036

037

040

041

042

043

044

045

046

047

048

051

052

ABSTRACT

We introduce MCP-BENCH, a benchmark for evaluating large language model (LLM) agent on realistic, multi-step tasks that demand tool use, cross-tool coordination, precise parameter control, and planning/reasoning for solving tasks. Built on the Model Context Protocol (MCP), MCP-BENCH connects LLMs to 28 representative live MCP servers spanning 250 tools across domains such as finance, traveling, scientific computing, and academic search. Unlike prior APIbased benchmarks, each MCP server provides a set of complementary tools designed to work together, enabling the construction of authentic, multi-step tasks with rich input-output coupling. Also, tasks in MCP-BENCH test agents' ability to retrieve relevant tools from fuzzy instructions without explicit tool names or execution step, plan multi-hop execution trajectories for complex objectives, ground responses in intermediate tool outputs, and orchestrate cross-domain workflows-capabilities not adequately evaluated by existing benchmarks that rely on explicit tool specifications, shallow few-step workflows, and isolated domain operations. We propose a multi-faceted evaluation framework covering tool-level schema understanding and usage, trajectory-level planning and task completion. Code and data: https://anonymous.4open.science/r/ mcp-bench-submission-0B56/.

1 Introduction

Recent advances in large language models (LLMs) have enabled a new generation of *tool-using agents* that can interpret natural language instructions, plan multi-step workflows, and interact with external tools to solve complex tasks (OpenAI, 2025c; Comanici et al., 2025; Anthropic, 2025; Yang et al., 2025; Kimi et al., 2025; Zeng et al., 2025; Chen et al., 2025). Such agents are increasingly deployed in real-world domains such as travel (Xie et al., 2024), healthcare (Saab et al., 2024; Mehandru et al., 2024), and finance (Xiao et al., 2024), where solving user queries requires chaining multiple tools, reasoning over structured outputs, and coordinating interdependent operations.

Despite rapid progress in LLM agents, existing benchmarks for tool use remain fundamentally limited. Early efforts such as ToolBench (Qin et al., 2024) and BFCL v3 (Patil et al., 2025a) aggregate large collections of APIs, but these APIs are designed for isolated functionality. As a result, tasks often reduce to few-step tool calls or rely on artificially stitched pipelines, since tool inputs and outputs rarely align naturally across APIs. τ -Bench (Yao et al., 2025) moves a step further by selecting a small set of APIs whose interfaces are relatively compatible, enabling cleaner compositions. However, its coverage is limited to only a handful of domains and tools, making it difficult to scale task diversity or capture the complexity of realistic multi-domain workflows. Together, these benchmarks fall short in modeling realistic dependency chains and stress-testing long-horizon planning. More recent benchmarks such as MCP-RADER (Gao et al., 2025) and MCPEval (Liu et al., 2025a) begin to leverage the Model Context Protocol (MCP) (Anthropic et al., 2024), which provides a standardized invocation schema across servers. However, these benchmarks remain narrow in scope. For example, MCP-RADER (Gao et al., 2025) and MCPEval (Liu et al., 2025a) cover only a few servers with at most several dozen tools, which limits task diversity and makes most workflows relatively short (e.g., single retrieval followed by a summary). Also, both existing API-based and MCP-based tool-using benchmarks lack testing of planning capability under fuzzy instructions: tasks typically specify detailed execution step explicitly, so agents are not challenged to infer which

056

058

060

061

062 063 064

065

066

067

068

069

071

072

073

074

075

076

077

078

079

081

082

083

084

085

087

880

090

091

092

094

095

096

098

099

100 101

102 103

105

107

Figure 1: MCP-Bench connects LLM agents to real-world MCP servers exposing 250 structured tools across domains such as finance, science, and research. Tasks are generated via LLM-based synthesis, then executed by the agent through multi-turn tool invocations. Each execution trajectory is evaluated using a combination of rule-based checks and LLM-as-a-Judge scoring, assessing agent performance in tool schema understanding, multi-hop planning, and real-world adaptability.

tools are appropriate when the instructions are underspecified. Furthermore, they omit evaluation of more complex scenarios such as *multi-goal objectives* (e.g., booking travel that requires coordinating flights, hotels, and local transport), *evidence-based reasoning with information grounding* (e.g., generating answers that cite intermediate tool results rather than hallucinating), and *cross-domain orchestration* (e.g., combining financial tools with news sources to explain stock movements). As summarized in Table 1, none of the existing benchmarks adequately reflect the complexity, fuzzy, and diversity inherent in real-world tool use.

To overcome these limitations, we introduce MCP-Bench, a large-scale benchmark that evaluates LLM agents in realistic, ecosystem-based tool-use scenarios. As illustrated in Figure 1, MCP-Bench connects agents to a diverse ecosystem of production-grade MCP servers exposing 250 structured tools across domains such as finance, science, and research. Each server provides *complementary* tools designed to work together (e.g., a scientific computing server integrating data loading, matrix operations, and visualization), while the MCP protocol ensures consistent invocation schemas across servers. This combination enables both realistic intra-server dependency chains and complex crossserver, multi-hop workflows. Tasks in MCP-Bench are generated automatically via an LLM-based synthesis pipeline. Dependency chains are first discovered from tool I/O signatures, then translated into natural language instructions. A quality filtering mechanism ensures solvability and realism. To assess agent in realistic scenarios, each task is rewritten into a fuzzy and instruction-minimal variant that retains the core objective but omits explicit tool references and execution steps. The example of the tasks in MCP-BENCH can be found in Table 2 and Table 8. Each task is executed by the agent through multi-turn interactions with MCP servers, and the resulting trajectories are evaluated with a two-tier framework: (1) rule-based checks for tool validity, schema compliance, runtime success, and dependency order, and (2) rubric-driven *LLM-as-a-Judge* scoring of task completion, tool usage, and planning effectiveness. To ensure stability, prompt shuffling and score averaging are applied.

Our contributions can be summarized as follows: ① A realistic tool-using benchmark that leverages MCP servers to expose 250 tools across 28 servers, enabling both intra-server dependency chains and cross-server orchestration. ② A structured task synthesis pipeline that generates both fuzzy instructions of complex, multi-hop tasks grounded in real tool semantics. ③ A robust evaluation framework combining rule-based execution checks with rubric-based LLM-as-a-Judge scoring, enabling comprehensive assessment of execution correctness and strategic reasoning. ④ A large-scale empirical study evaluating 20 state-of-the-art LLMs on 104 challenging tasks, revealing persistent

Table 1: Comparisons to existing tool-using benchmarks.

Benchmark	# Domains	# Tools	MCP Ecosystem	Information Grounding	Fuzzy Task Description	Complex Tasks with Massive Goals	Cross-domain Orchestration
ToolBench (Qin et al., 2024)	49	3451	X	X	Х	Х	Х
BFCL v3 (Patil et al., 2025a)	8	24	X	X	X	X	X
τ -Bench (Yao et al., 2025)	2	28	X	X	X	X	X
MCP-RADER (Gao et al., 2025)	9	42	✓	X	X	X	X
MCPEval (Liu et al., 2025a)	5	19	✓	×	×	X	X
MCP-Bench(Ours)	28	250	✓	✓	✓	✓	✓

Table 2: Example of task in MCP-BENCH.

Servers & Tools Servers: Paper Search, BioMCP Useful Tools: gene_getter, variant_searcher, variant_getter, article_searcher, article_getter, search_pubmed, search_arxiv, download_arxiv, read_arxiv_paper, search_biorxiv, download_biorxiv, read_biorxiv_paper, trial_searcher, trial_getter, trial_locations_getter, trial_references_getter, Task I V600E v600E v760E v600E v

Task Description

I'm working on a project about why melanoma patients with the BRAF V600E mutation so often become resistant to treatment, and I'm a bit stuck piecing everything together. I'd love to know:

• What we know about how common V600E is in the general population, and what ClinVar says about its pathogenicity • The five most influential research papers from the past year specifically on V600E-positive melanoma and resistance to vemurafenib or dabrafenib • Any Phase 2 or Phase 3 trials that are actively recruiting patients with V600E melanoma and testing new combinations or approaches to beat resistance • The key molecular mechanisms behind why V600E tumors stop responding to treatment • Serious adverse events from the FDA database for vemurafenib in melanoma (say, the 10 most recent reports) • Any functional annotations for V600E that explain how it affects BRAF protein activity. Could you pull all that together with real paper IDs, trial numbers, and data sources? I can't present vague information to my team—I need concrete evidence.

weaknesses in agentic capabilities in realistic and complex tool-using scenarios. By bridging the gap between isolated API benchmarks and real-world ecosystems, MCP-Bench provides the standardized and scalable platform for evaluating the agentic reasoning and tool-use capabilities of LLMs.

2 RELATED WORK

nci_organization_searcher,

paper_search, fetch, think

drug_getter,

Benchmarking LLMs. Recent benchmarks have steadily progressed from static evaluations to more interactive, real-world tasks. Early efforts such as MMLU (Hendrycks et al., 2021) and BIGbench (Srivastava et al., 2023) focused on single-turn or fixed-format evaluations, testing broad factual knowledge and reasoning via multiple-choice or free-form responses. HELM (Liang et al., 2023) introduced a multi-metric evaluation framework over static-text tasks to compare LLMs holistically across accuracy, calibration, fairness, and robustness. More recently, the focus has shifted to reasoning and agentic capabilities (Koh et al., 2024; Kokane et al., 2024; Zhang et al., 2025; Du et al., 2025; Wei et al., 2025). MMLU-Pro (Wang et al., 2024) increases difficulty via LLM-generated, reasoning-intensive items to reduce contamination. MT-Bench (Zheng et al., 2023) evaluates multiturn dialogue quality, measuring consistency and contextual coherence. AgentBench (Liu et al., 2024) assesses tool-based decision making in simulated environments. WebArena (Zhou et al., 2024) explores open-ended web navigation, while REALM-Bench (Geng & Chang, 2025) focuses on goal planning under dynamic disruptions. Despite these advances, most benchmarks still fall short of modeling realistic complex workflows where diverse tools should be composed, and intermediate outputs integrated across steps.

Evaluating Tool-using Capability. As tasks grow more complex, evaluation now targets reasoning, planning, and execution across tool interfaces. Mind2Web (Deng et al., 2023) used fixed browser-action APIs for think-to-act planning, and WebArena (Zhou et al., 2024) added self-hosted domains with embedded tools, yet both depend on hand-crafted toolsets. To broaden tool selection and coordination, subsequent benchmarks pursue broader tool coordination in distinct ways: τ-Bench (Yao et al., 2025) adds simulated users and pass^k end-state checks; BFCL v3 (Patil et al., 2025b) validates multi-turn API workflows via AST analysis; C³-Bench (Yu et al., 2025) stresses inter-tool dependency reasoning; and ComplexFuncBench (Zhong et al., 2025) adopts rubric-based, execution-verified scoring. Yet all still depend on bespoke toolsets, limiting realism. This gap motivates MCP-based benchmarks, which standardize LLM-tool interaction and auto-expose domain-aligned tools. MCP-RADAR (Gao et al., 2025) and MCPWorld (Yan et al., 2025) test tool selection, parameterization, and execution within MCP servers yet need manual setup. MCPEval (Liu et al., 2025b) also automates MCP-using task generation and evaluation with five MCP servers. Scalable, cross-server evaluation in MCP ecosystems with complex tasks remains open, motivating our direction.

3 MCP-Bench Formalization and Design Principles

Following Yao et al. (2023), we formalize our benchmark as a structured extension of the classical Partially Observable Markov Decision Process (POMDP), tailored to tool-using agents that operate across multiple external servers and tools. Our formulation includes two execution paradigms: (1) one-shot global planning, and (2) multi-turn planning and observation. Each benchmark task

Algorithm 1 Multi-turn Planning and Observation

162

163

164

166

167

168

169

170

171

172

173

174

175

176

181

182

183

185

187

188

189

190

191

192

193

194

195

196

197

199

200

201

202

203

204205

206

207

208

209

210

211

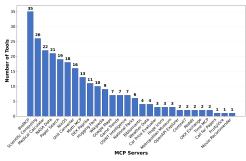
212

213

214

215

```
1: Input: Task instruction u, maximum steps T_{\max}
2: Output: Final answer answer, execution trajectory trajectory
3: function MULTITURNEXECUTE(u, T_{\text{max}})
       trajectory \leftarrow \{\}
                                                                ▶ Initialize execution trajectory
5:
       s_0 \leftarrow \texttt{Update}(u)
                                                                              for t=0 to T_{\rm max} do
6:
7:
           (continue_t, a_t) \leftarrow \pi_{plan}(s_t)
                                                                    8:
                                                                     o_t \leftarrow \pi_{\text{exec}}(a_t)
9:
                                           o_t \leftarrow \pi_{\text{compress}}(o_t)
10:
           trajectory \leftarrow trajectory \cup \{(a_t, o_t)\}
                                                                    s_{t+1} \leftarrow \text{Update}(s_t, o_t)
                                                                   ▶ Update agent internal state
11:
12:
           if continue_t = False then
13:
              break
                                                             ▶ Stop if agent signals termination
14:
       answer \leftarrow \pi_{\text{final}}(u, \text{trajectory})
                                                         ▶ Produce final answer from trajectory
       return (answer, trajectory)
15:
```


is represented as a POMDP tuple $(S, A, O, T, R, U, \Sigma)$, where: S is the global state space; A is the action space including both planning steps and tool invocations; \mathcal{O} is the observation space containing tool execution results and internal signals; $T: \mathcal{S} \times \mathcal{A} \to \mathcal{S} \times \mathcal{O}$ is the transition and observation function; $R: \mathcal{S} \to [0,1]$ is the reward function; \mathcal{U} denotes the task instruction space; and $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$ is the set of available MCP servers. To stress-test the agent's reasoning and tool-selection capabilities, we attach a set of distractor servers (10 in this paper) to each task, in addition to the MCP servers required for completion. This setup exposes the agent to over 100 extra tools per task. Each server $\sigma_i \in \Sigma$ exposes a set of tools \mathcal{T}_i , defining the complete tool set $\mathcal{T} = \bigcup_i \mathcal{T}_i$. A structured tool invocation is written as $a_{\text{tool}} = \langle \sigma_i, \text{ tool_name}, \text{ parameters} \rangle$. The full action space is $A = A_{\text{planning}} \cup A_{\text{tools}}$, and the observation space is $O = O_{\text{tools}} \cup O_{\text{state}}$. For the workflow of the agent, we adopt a multi-round decision process (Yao et al., 2023). At each round t, the agent generates a plan a_t conditioned on all previously observed outputs, then executes the tools in a_t , and updates its internal state. Note that each a_t could include the plan for executing multiple tools in parallel. This continues for up to $T_{\rm max}$ (20 in this paper) rounds or until the agent signals to stop. Final reasoning is performed after observing the complete trajectory. The full routine is detailed in Algorithm 1. In line 4-5, we initialize the execution trajectory trajectory, and the initial agent state s_0 from the task instruction u. In line 6-11, we iteratively plan and execute actions: the planning policy π_{plan} produces the current tool plan, the execution policy π_{exec} performs the planned actions, and the compression policy π_{compress} generates a concise summary of the observation. This compression step is crucial because some tools return very long outputs, and summarizing them prevents excessive context windows. The compressed observation is logged into trajectory, and the agent state is updated. In line 12-13, we check the termination signal continue and stop early if it is False. In line 14-15, the final answer is generated from the complete execution trajectory via π_{final} . The prompt used for the agent execution can be found in Section A.3. Detailed design principles and how MCP-BENCH reflects them can be found in Section A.1.

4 MCP-BENCH CONSTRUCTION

4.1 MCP SERVER COLLECTION

Our benchmark covers 28 representative MCP servers spanning eleven functional domains (Figure 2a). The largest categories are Media & Entertainment and Research & Knowledge (each 14.3%), followed by Finance, Science, and Software Development (each 10.7%). Smaller shares include Geography & Travel, Social & Intelligence, Mathematics, and Health (7.1% each), with niche domains such as Weather, Time, and Divination (3.6% each). In total, these servers provide 250 tools. Tool counts vary widely (Figure 2b), from single-tool servers (e.g., Call for Papers, FruityVice, Movie Recommender) to large multi-tool platforms such as BioMCP (35 tools), Scientific Computing (26 tools), and Medical Calculator (22 tools). This diverse ecosystem spans scientific computation, finance, content discovery, geospatial services, and specialized analytical utilities, ensuring broad capability coverage in MCP-BENCH. Details of the involved MCP servers and the descriptions of all tools can be found in Table 7.

- (a) Category distribution of MCP servers.
- (b) Tool distribution across servers.

Figure 2: Overview of MCP server ecosystem used in the MCP-BENCH.

4.2 TASK SYNTHESIS

A challenge in building tool-using agent benchmarks lies in transforming a collection of real-world MCP servers into high-quality tasks with realistic natural language descriptions. *Given tools spread across different servers, how can we construct meaningful, solvable, structurally grounded, but challenging tasks at scale?* We decompose this challenge into three key stages: dependency chain discovery, automatic quality filtering, and task description fuzzing. Examples of synthesized tasks can be found in Table 2 and Table 8. Besides the task synthesis pipeline, the tasks in MCP-BENCH also undergo human inspection to ensure their realism, executability, and the reasonability of the dependency chain analysis. We use o4-mini (OpenAI, 2025c) as the task synthesis LLM. All prompts used can be found in Section A.4. In total, we synthesized 56 tasks with a single server, 30 with 2 servers, and 18 with 3 servers. The single-server tasks span all servers in our benchmark. The two-server and three-server combinations for multi-server setting are listed in Table 9.

Dependency Chain Discovery and Task Generation. We start the task synthesis by analyzing dependency chains among the provided tools: sequences where each tool's outputs naturally flow into the next tool's inputs. These chains serve as structural scaffolds for task generation. We analyze both inherent dependencies arising from natural tool relationships and scenario-based dependencies constructed for meaningful workflows. For multi-server configurations, we emphasize cross-server dependencies to ensure genuine tool coordination across different data sources. This yields diverse structural patterns including linear workflows, parallel execution groups, and hybrid compositions. The task synthesis LLM are then asked to generate tasks based on the analysis results for dependency chains (see prompts in Section A.4). Also, the analysis results for the dependency chains are used in the evaluation phase as the reference for the LLM judge (see Section A.5).

Automatic Quality Filtering. Each generated task undergoes rigorous two-dimensional quality evaluation: *Solvability:* Whether the task can be completed using available tools. *Practical utility:* Whether the task addresses genuine user needs rather than contrived scenarios. Tasks failing the quality threshold (solvability: 9.0/10, utility: 5.0/10) are disgarded (see details in Section A.4). This ensures only high-quality tasks that meet our standards enter the final benchmark, maintaining benchmark integrity at the cost of reduced quantity.

Task Description Fuzzing. For tasks that pass quality filtering, the algorithm generates fuzzy task variants that state high-level goals without explicit operational details. These fuzzy descriptions transform structured instructions into natural business requests, requiring agents to infer appropriate tool sequences and execution strategies from the available dependency structures. For domains requiring precise inputs (e.g., scientific computation, unit conversion), the fuzzy variants critically preserve all numerical values and concrete parameters while adopting conversational language. This ensures tasks remain mathematically solvable while testing the agent's ability to bridge the gap between user intent and technical execution. Detailed prompt used for task description fuzzing can be found in Section A.4.

5 EVALUATION METHOD AND METRICS

We use a comprehensive evaluation framework combining rule-based metrics and LLM judge scoring. The rule-based component measures tool usage robustness across four dimensions—name validity, schema adherence, and runtime success—from execution traces. The LLM-as-a-Judge component assesses strategic quality in task completion, tool selection, and planning efficiency and effectiveness, using structured rubrics with prompt shuffling and score averaging to ensure fairness.

5.1 RULE-BASED EVALUATION

To assess the schema understanding and execution robustness of an agent's behavior, we evaluate its tool usage along dimensions of name validity, input schema adherence, and runtime success. Let $E = \{e_1, \dots, e_k\}$ be the set of all tool invocations during execution.

Tool Name Validity Rate. This metric assesses whether the agent selects tools that exist within the allowed set $\mathcal{T}_{\text{available}}$: $R_{\text{valid}} = \frac{|\{e \in E: \text{tool}(e) \in \mathcal{T}_{\text{available}}\}|}{|E|}$, where tool(e) returns the identifier of the tool invoked in event e. This metric penalizes hallucinations or invalid tool references and reflects the agent's grounding in tool availability.

Schema Compliance Rate. This metric measures whether each tool invocation provides correctly structured parameters that match the tool's expected input schema:

 $C_{\text{schema}} = \frac{|\{e \in E: \text{valid_tool}(e) \land \text{valid_schema}(e)\}|}{|\{e \in E: \text{valid_tool}(e)\}|}, \text{ where } \text{valid_tool}(e) \text{ is a Boolean function returning }$ True if $\text{tool}(e) \in \mathcal{T}_{\text{available}}, \text{ and } \text{valid_schema}(e) \text{ returns }$ True if the parameters in event e match the expected input schema of the tool. This ensures the agent understands the expected API argument formats and avoids malformed requests.}

Execution Success Rate. This metric quantifies the proportion of tool invocations that successfully return results without runtime failure: $R_{\text{success}} = \frac{|\{e \in E: \text{success}(e)\}|}{|E|}$, where success(e) returns True if the tool call in event e is executed without runtime errors and produces a valid result. A high success rate indicates robust interaction with external systems and proper error handling.

5.2 LLM-AS-A-JUDGE EVALUATION

To further assess the strategic quality of agent behavior beyond raw execution correctness, we employ an *LLM-as-a-Judge* framework. The evaluator is prompted to score agent performance across three core axes: task completion quality, tool selection/usage rationale, and planning effectiveness. Evaluations are grounded solely in observable evidence from the task definition, final solution, and execution trace. By default, the judge model used here is o4-mini (OpenAI, 2025c).

Rubrics-based Judge Prompt. The LLM judge is provided with the fuzzy task description given to the execution agent, the concrete task description before fuzzing (not provided to the agent being evaluated; see Section 4.2), the dependency analysis (not provided to the agent being evaluated; see Section 4.2), the agent's final solution, the total number of execution rounds, a summarized execution trace, and the list of available tools. It is explicitly instructed to remain impartial and evidence-driven, and to assign scores strictly based on proportional success. Scoring follows a structured rubric that decomposes each evaluation axis into multiple sub-dimensions (detailed in Section A.5). It assigns scores based on a structured rubric that breaks down each evaluation axis into multiple sub-dimensions (detailed in Section A.5). Each sub-dimension is rated on a scale from 1 to 10. The average score across the sub-dimensions yields the overall score for that axis, which is then normalized to the [0, 1] range for benchmarking.

Task Completion Quality assesses whether the agent delivers a correct, complete, and evidence-based solution. This includes evaluating how well the task goal is fulfilled (task fulfillment), whether all necessary subtasks are covered and supported by evidence (information grounding), and whether the response remains relevant and focused.

Tool Usage Quality evaluates the agent's effectiveness in employing tools. Sub-dimensions include suitability of chosen tools for each subtask (tool appropriateness) and the correctness and completeness of parameters provided to these tools (parameter accuracy).

Planning Effectiveness assesses the coherence and efficiency of multi-round execution. This includes whether inter-tool constraints are respected (dependency awareness) and whether the agent minimizes redundancy and exploits opportunities for parallel execution (parallelism and efficiency).

Prompt Shuffling and Score Averaging. Li et al. (2025) has shown that LLM judge can exhibit sensitivity to the ordering of rubric dimensions. To mitigate this issue, we adopt a prompt shuffling strategy that randomly permutes the order of major evaluation axes (e.g., Task Completion, Tool Selection, Planning Efficiency) as well as the sub-dimensions within each axis. Importantly, while the ordering is shuffled, the semantic content and phrasing of the rubrics remain unchanged to ensure fairness and consistency. By default, we perform five independent shufflings of the rubric prompt

Table 3: Leaderboard on MCP-BENCH, i.e., results of different models, averaged across settings with single server and multiple servers.

		Rule-based				LLM J	udge			
	Schema Understanding			Task Co	ompletion	Tool Usa	ige	Planning	Effectiveness	
Model	Valid Tool Name Rate	Schema Compliance	Execution Success	Task Fulfillment	Information Grounding	Tool Appropriateness	Parameter Accuracy	Dependency Awareness	Parallelism and Efficiency	Overall Score
llama-3-1-8b-instruct	96.1%	89.4%	90.9%	0.261	0.295	0.352	0.310	0.221	0.141	0.428
llama-3-2-90b-vision-instruct	99.6%	85.0%	90.9%	0.293	0.444	0.515	0.427	0.267	0.173	0.495
nova-micro-v1	96.0%	93.1%	87.8%	0.339	0.419	0.504	0.428	0.315	0.212	0.508
llama-3-1-70b-instruct	99.2%	90.5%	92.5%	0.314	0.432	0.523	0.451	0.287	0.191	0.510
mistral-small-2503	96.4%	95.6%	86.2%	0.373	0.445	0.537	0.446	0.349	0.232	0.530
gpt-4o-mini	97.5%	98.1%	93.9%	0.374	0.500	0.555	0.544	0.352	0.201	0.557
llama-3-3-70b-instruct	99.5%	93.8%	91.6%	0.349	0.493	0.583	0.525	0.355	0.262	0.558
gemma-3-27b-it	98.8%	97.6%	94.4%	0.378	0.530	0.608	0.572	0.383	0.249	0.582
gpt-4o	98.9%	98.3%	92.8%	0.394	0.542	0.627	0.587	0.405	0.272	0.595
gemini-2.5-flash-lite	99.4%	97.8%	94.3%	0.412	0.577	0.627	0.597	0.404	0.226	0.598
qwen3-30b-a3b-instruct-2507	99.0%	98.4%	92.3%	0.481	0.530	0.658	0.638	0.473	0.303	0.627
kimi-k2	98.8%	98.1%	94.5%	0.502	0.577	0.631	0.623	0.448	0.307	0.629
gpt-oss-20b	98.8%	99.1%	93.6%	0.547	0.623	0.661	0.638	0.509	0.309	0.654
glm-4.5	99.7%	99.7%	97.4%	0.525	0.682	0.680	0.661	0.523	0.297	0.668
qwen3-235b-a22b-2507	99.1%	99.3%	94.8%	0.549	0.625	0.688	0.712	0.542	0.355	0.678
claude-sonnet-4	100.0%	99.8%	98.8%	0.554	0.676	0.689	0.671	0.541	0.328	0.681
gemini-2.5-pro	99.4%	99.6%	96.9%	0.562	0.725	0.717	0.670	0.541	0.329	0.690
gpt-oss-120b	97.7%	98.8%	94.0%	0.636	0.705	0.691	0.661	0.576	0.329	0.692
03	99.3%	99.9%	97.1%	0.641	0.706	0.724	0.726	0.592	0.359	0.715
gpt-5	100.0%	99.3%	99.1%	0.677	0.828	0.767	0.749	0.649	0.339	0.749

for each task instance. Each shuffled prompt is submitted separately to the LLM judge, resulting in five sets of rubric-based scores. For each scoring run, we first average the sub-dimension scores within each axis and normalize them to the [0, 1] range. The final judgment score for the task is then computed as the average of the five independently obtained axis-level scores. This randomized multi-pass evaluation strategy substantially reduces the likelihood that evaluation outcomes are biased by prompt structure, and enhances the robustness and fairness of the LLM-based judgment process. Empirical results (Section A.8) show that this method lowers score variance, leading to more reliable and stable assessments.

6 BENCHMARK RESULTS

In this section, We present the experiment results and discussion for MCP-BENCH. Due to the page limitation, we put the discussion about the quality of our LLM Judge pipeline and the ablation studies for the prompt shuffling and score averaging strategy in Section A.8.

6.1 MAIN RESULTS

We evaluate 20 representative LLMs in our experiments: llama-3-1-8b-instruct (Meta, 2024a), llama-3-2-90b-vision-instruct Meta (2024b), llama-3-1-70b-instruct (Meta, 2024a), mistral-small-2503 (Mistral, 2025), nova-micro-v1 (Amazon, 2024), llama-3-3-70b-instruct (Meta, 2024c), gpt-4o-mini (OpenAI, 2024), gemma-3-27b-it (Google, 2025), gpt-4o (Hurst et al., 2024), gemini-2.5flash-lite (Comanici et al., 2025), kimi-k2 Kimi et al. (2025), gpt-oss-20b (OpenAI, 2025b), qwen3-30b-a3b-instruct-2507 (Yang et al., 2025), gpt-oss-120b (OpenAI, 2025b), glm-4.5 (Zeng et al., 2025), qwen3-235b-a22b-2507 (Yang et al., 2025), claude-sonnet-4 (Anthropic, 2025), gemini-2.5pro Comanici et al. (2025), o3 (OpenAI, 2025c), and gpt-5 (OpenAI, 2025a). Table 3 reports results averaged across settings with single server and multiple servers. We find that schema understanding capabilities remain consistently high for strong models, with o3, gpt-5, gpt-oss-120b, qwen3-235ba22b-2507, and gpt-4o all surpassing 98% in schema compliance and valid tool naming. However, substantial differences emerge in higher-level reasoning. The strongest models—gpt-5 (0.749), o3 (0.715), and gpt-oss-120b (0.692)—achieve the highest overall scores, reflecting both accurate tool use and robust planning effectiveness. By contrast, smaller models such as llama-3-1-8b-instruct (0.428) lag behind, showing weaker performance in dependency awareness and parallelism despite adequate execution success. These results highlight that while basic execution has largely converged, planning and reasoning capabilities remain the key differentiators among models. Table 4 and Table 5 provide a detailed comparison between single- and multi-server settings. We see that weaker models degrade noticeably once the number of servers increases. For example, llama-3-1-8b-instruct falls from an overall score of 0.438 in the single-server case to 0.415 with multiple servers, while nova-micro-v1 drops from 0.520 to 0.471. The main sources of decline lie in dependency awareness and parallelism, which become harder to sustain in distributed workflows. Interestingly, the drop is not always smooth—performance fluctuates across different server counts, suggesting that the mix of sequential dependencies and parallel orchestration stresses models in different ways. In contrast, strong systems such as gpt-5, o3, and qwen3-235b-a22b-2507 remain much more stable. gpt-5 holds the highest overall score around 0.75 across both settings, while o3 and qwen3-235b-

Table 4: Detailed results with different models on single-server setting.

ъ		Rule-based Schema Understanding			LLM Judge						
					Task Completion		Tool Usage		Planning Effectiveness		
Provider	Model	Valid Tool Name Rate	Schema Compliance	Execution Success	Task Fulfillment	Information Grounding	Tool Appropriateness	Parameter Accuracy	Dependency Awareness	Parallelism and Efficiency	Overall Score
Z.AI	glm-4.5	99.8%	99.8%	98.0%	0.531	0.691	0.721	0.701	0.543	0.311	0.685
Kimi	kimi-k2	99.1%	98.1%	95.9%	0.494	0.594	0.669	0.669	0.458	0.318	0.645
Anthropic	claude-sonnet-4	100.0%	99.8%	99.4%	0.542	0.652	0.716	0.706	0.530	0.330	0.684
Amazon	nova-micro-v1	96.1%	93.4%	91.0%	0.331	0.421	0.550	0.470	0.310	0.210	0.520
Mistral	mistral-small-2503	95.7%	96.1%	87.2%	0.390	0.450	0.574	0.484	0.358	0.238	0.544
Alibaba	qwen3-30b-a3b-instruct-2507 qwen3-235b-a22b-2507	98.8% 99.3%	98.5% 99.3%	92.6% 97.1%	0.489 0.544	0.539 0.644	0.711 0.741	0.691 0.751	0.501 0.578	0.311 0.388	0.647 0.702
Google	gemma-3-27b-it gemini-2.5-flash-lite gemini-2.5-pro	99.6% 99.6% 100.0%	97.6% 98.2% 99.8%	96.1% 96.9% 98.3%	0.378 0.398 0.554	0.538 0.598 0.736	0.648 0.669 0.760	0.618 0.629 0.700	0.394 0.410 0.551	0.262 0.220 0.341	0.599 0.611 0.704
Meta	llama-3-1-8b-instruct llama-3-2-90b-vision-instruct llama-3-1-70b-instruct llama-3-3-70b-instruct	96.8% 99.4% 99.6% 99.5%	90.4% 86.5% 90.8% 94.9%	92.0% 91.7% 93.0% 95.1%	0.263 0.292 0.329 0.358	0.303 0.464 0.449 0.518	0.377 0.571 0.570 0.638	0.337 0.481 0.510 0.608	0.224 0.280 0.304 0.379	0.142 0.170 0.192 0.289	0.438 0.514 0.530 0.590
OpenAI	gpt-4o-mini gpt-4o gpt-oss-20b gpt-oss-120b o3 gpt-5	97.6% 99.0% 98.7% 97.7% 99.2% 100.0%	98.9% 97.9% 99.5% 99.1% 99.9%	95.8% 93.6% 94.7% 95.8% 97.1% 99.5%	0.361 0.398 0.521 0.631 0.632 0.658	0.531 0.548 0.621 0.731 0.712 0.838	0.598 0.670 0.673 0.720 0.751 0.781	0.598 0.620 0.673 0.690 0.751 0.761	0.371 0.406 0.482 0.594 0.589 0.627	0.201 0.278 0.292 0.332 0.349 0.339	0.576 0.607 0.652 0.706 0.720 0.749

Table 5: Detailed results with different models on multi-server setting.

			Rule-based				LLM J	udge			
Provider		Schema Understanding		Task Co	Task Completion Tool Usage				Effectiveness		
	Model	Valid Tool Name Rate	Schema Compliance	Execution Success	Task Fulfillment	Information Grounding	Tool Appropriateness	Parameter Accuracy	Dependency Awareness	Parallelism and Efficiency	Overall Score
Z.AI	glm-4.5	99.5%	99.6%	96.7%	0.517	0.672	0.631	0.613	0.499	0.281	0.648
Kimi	kimi-k2	98.4%	98.2%	92.7%	0.511	0.556	0.584	0.568	0.436	0.294	0.610
Anthropic	claude-sonnet-4	100.0%	99.7%	98.0%	0.569	0.704	0.657	0.628	0.555	0.325	0.678
Amazon	nova-micro-v1	95.8%	92.7%	84.0%	0.349	0.416	0.449	0.378	0.321	0.214	0.493
Mistral	mistral-small-2503	97.2%	95.0%	85.1%	0.352	0.438	0.492	0.401	0.339	0.225	0.512
Alibaba	qwen3-30b-a3b-instruct-2507 qwen3-235b-a22b-2507	99.2% 98.8%	98.2% 99.3%	91.9% 92.1%	0.471 0.554	0.520 0.603	0.594 0.625	0.573 0.664	0.440 0.499	0.294 0.316	0.602 0.649
Google	gemma-3-27b-it gemini-2.5-flash-lite gemini-2.5-pro	97.9% 99.1% 98.7%	97.5% 97.4% 99.4%	92.4% 91.1% 95.1%	0.379 0.429 0.571	0.520 0.552 0.711	0.559 0.576 0.666	0.517 0.559 0.634	0.370 0.397 0.530	0.233 0.234 0.315	0.562 0.583 0.673
Meta	llama-3-1-8b-instruct llama-3-2-90b-vision-instruct llama-3-1-70b-instruct llama-3-3-70b-instruct	95.2% 99.8% 98.8% 99.4%	88.1% 83.1% 90.2% 92.5%	89.5% 89.9% 91.9% 87.4%	0.258 0.294 0.296 0.339	0.285 0.420 0.411 0.463	0.321 0.447 0.467 0.517	0.277 0.361 0.379 0.425	0.217 0.251 0.266 0.326	0.140 0.176 0.190 0.229	0.415 0.471 0.485 0.520
OpenAI	gpt-4o-mini gpt-4o gpt-oss-20b gpt-oss-120b og gpt-5	97.3% 98.8% 98.9% 97.8% 99.5% 100.0%	97.2% 98.8% 98.7% 98.4% 99.9% 99.5%	91.6% 91.9% 92.2% 91.9% 97.0% 98.7%	0.389 0.390 0.579 0.641 0.651 0.701	0.463 0.535 0.626 0.674 0.698 0.817	0.504 0.574 0.646 0.657 0.691 0.749	0.479 0.547 0.595 0.625 0.696 0.734	0.330 0.404 0.541 0.554 0.596 0.676	0.202 0.265 0.330 0.325 0.372 0.338	0.534 0.581 0.656 0.675 0.710 0.750

a22b-2507 consistently stay competitive above 0.70. These results underline that execution quality alone is no longer the bottleneck—the real differentiator is robustness to scaling, where top-tier models demonstrate clear advantages in handling long-horizon, cross-server tasks. Together, these results show that while modern LLMs have mastered execution fidelity, their ability to generalize to complex, adaptive, cross-server workflows is still limited. MCP-BENCH exposes this gap systematically, providing a rigorous benchmark for advancing agentic LLM capabilities.

DISCUSSION ON THE AGENT PERFORMANCE ON DIFFERENT CAPABILITIES AND INSIGHTS FROM MCP-BENCH

Score on Different Capabilities. Table 4 and Table 5 also provide a fine-grained breakdown of performance across six evaluation axes: task fulfillment, information grounding, tool appropriateness, parameter accuracy, dependency awareness, and parallelism efficiency. On task completion, frontier models such as gpt-5, o3, and gpt-oss-120b achieve the strongest results, exceeding 0.63 in fulfillment and 0.70 in grounding, whereas smaller systems like llama-3-1-8b-instruct and novamicro-v1 remain below 0.35 and 0.45 respectively, reflecting weaker semantic consistency. In tool selection, top-tier models again dominate: gpt-5, o3, and gemini-2.5-pro maintain appropriateness and parameter accuracy around or above 0.70, while weaker baselines plateau closer to 0.30-0.50. The sharpest disparities appear in planning effectiveness. gpt-5 sustains the highest dependency awareness (0.76) with competitive parallelism efficiency (0.34), closely followed by o3 (0.69 and 0.37) and qwen3-235b-a22b-2507 (0.54 and 0.31). By contrast, smaller models rarely exceed 0.30 on either dimension, underscoring planning as the most significant frontier capability that separates state-of-the-art agents from weaker baselines.

Insights from MCP-BENCH. The combined evidence from Table 3, Table 4, and Table 5 yields several insights into the strengths and weaknesses of current LLM agents:

432

439

445 446 448

449 450 451

452 453 454

455 456 457

458

459 460 461

466

467

474 475 476

473

477

480

479 481

478

482 483 484

485

Table 6: Average rounds and tool calls per task on different models.

Provider	Model	Single	e Server	Multip	le Servers	Overall Average		
11011461	1,10401	# Rounds	# Tool Calls	# Rounds	# Tool Calls	# Rounds	# Tool Calls	
Z.AI	glm-4.5	6.8	35.8	10.7	50.0	8.7	42.9	
Kimi	kimi-k2	3.8	20.2	4.0	21.1	3.9	20.6	
Anthropic	claude-sonnet-4	7.8	39.2	10.5	49.2	9.2	44.2	
Amazon	nova-micro-v1	9.0	48.7	12.7	67.4	10.8	58.1	
Mistral	mistral-small-2503	6.4	66.9	6.6	67.2	6.5	67.0	
Alibaba	qwen3-30b-a3b-instruct-2507 qwen3-235b-a22b-2507	3.7 3.6	22.7 14.9	4.4 4.4	25.4 18.0	4.0 4.0	24.1 16.4	
Google	gemma-3-27b-it gemini-2.5-flash-lite gemini-2.5-pro	7.2 9.9 6.5	40.2 72.0 31.3	8.4 12.9 10.0	44.5 101.7 43.5	7.8 11.4 8.2	42.3 86.8 37.4	
Meta	llama-3-1-8b-instruct llama-3-2-90b-vision-instruct llama-3-1-70b-instruct llama-3-3-70b-instruct	16.4 12.1 10.9 5.5	137.6 63.9 58.4 23.6	18.2 11.4 13.7 6.2	173.6 47.9 67.6 30.3	17.3 11.8 12.3 5.8	155.6 55.9 63.0 26.9	
OpenAI	gpt-4o-mini gpt-4o gpt-oss-20b gpt-oss-120b o3 gpt-5	12.9 5.3 3.9 5.6 4.5 8.1	56.9 20.3 26.6 37.7 23.0 76.5	15.4 6.3 5.0 8.3 8.0 10.6	64.4 23.3 36.9 48.3 33.7 81.9	14.2 5.8 4.4 7.0 6.3 9.2	60.6 21.8 31.7 43.0 28.3 78.9	

Schema understanding convergence. Low-level capabilities such as schema compliance and valid tool naming have largely converged across models. Even mid-scale systems achieve accuracy above 95%, suggesting that basic execution fidelity is no longer the primary bottleneck.

Scalability under multi-server settings. As the number of servers increases, task complexity rises, but the performance curves are not strictly monotonic. Strong models (e.g., o3, gpt-5) maintain relatively stable scores across single- and multi-server settings, while weaker/small models (e.g., llama-3-1-70b-instruct) show clear degradation with occasional fluctuations. This indicates that adaptation in multi-server scenario is a differentiating capability.

Gaps in higher-order reasoning. The largest separations appear in planning effectiveness. Top models demonstrate coherent structural reasoning, dependency awareness, and adaptive reflection, reaching around 0.72 on these sub-dimensions, whereas weaker models rarely exceed 0.30. This highlights that long-horizon reasoning and multi-hop coordination remain open challenges.

6.3 Number of Rounds and Tool Calls for Different Models Executing Tasks

Table 6 reports the average number of interaction rounds and tool calls required for different models to complete tasks in MCP-BENCH. The results highlight both the complexity of the benchmark and the efficiency differences across models. Tasks in MCP-BENCH are inherently multi-step and often involve chaining heterogeneous tools across servers, requiring both sequential reasoning and parallel orchestration. As a result, even strong models typically require several rounds of interaction and multiple tool calls, reflecting the non-trivial nature of the task distribution. Model-level differences are nevertheless clear. Smaller systems such as llama-3-1-8b-instruct consume the most resources, averaging 17.3 rounds and over 155 calls per task, while models like gemini-2.5-flash-lite also exhibit heavy reliance on repeated tool usage (86.8 calls on average). In contrast, stronger models such as gpt-40, o3, and qwen3-235b-a22b-2507 achieve comparable or higher success rates with much leaner execution, typically under 30-40 calls and 6-8 rounds. Frontier systems like gpt-5 and gpt-oss-120b strike a middle ground: they engage in deeper multi-step reasoning (7–9 rounds) but with more controlled call budgets (48–79 calls).

7 CONCLUSION

In this paper, we introduced MCP-BENCH, a large-scale benchmark for evaluating LLM agents in realistic, ecosystem-based tool-use scenarios. Built on MCP, MCP-BENCH connects agents to 28 production servers with 250 tools, enabling complex multi-hop workflows and cross-domain orchestration. Our automated task synthesis pipeline generates 104 challenging tasks with fuzzy instructions that require strong agentic capabilities to solve. Through our evaluation framework combining rule-based checks and LLM Judge scoring, we revealed that even state-of-the-art models struggle with different capabilities such as dependency chain compliance, tool selection under noisy environment, and long-horizon planning.

REFERENCES

- Amazon. Amazon nova foundation models, 2024. URL https://aws.amazon.com/ai/generative-ai/nova/.
- Anthropic. Introducing claude 4, 2025. URL https://www.anthropic.com/news/claude-4.
 - Anthropic et al. Model context protocol. GitHub repository, 2024. urlhttps://github.com/modelcontextprotocol.
 - Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan, Changqing Yu, Chao Wang, Cheng Zhu, et al. Minimax-m1: Scaling test-time compute efficiently with lightning attention. *arXiv* preprint arXiv:2506.13585, 2025.
 - Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. *arXiv* preprint arXiv:2507.06261, 2025.
 - Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su. Mind2Web: Towards a generalist agent for the web. Advances in Neural Information Processing Systems (NeurIPS), 36:28091-28114, Sept. 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/5950bf290a1570ea401bf98882128160-Paper-Datasets_and_Benchmarks.pdf.
 - Mingxuan Du, Benfeng Xu, Chiwei Zhu, Xiaorui Wang, and Zhendong Mao. Deepresearch bench: A comprehensive benchmark for deep research agents. *arXiv preprint arXiv:2506.11763*, 2025.
 - Xuanqi Gao, Siyi Xie, Juan Zhai, Shqing Ma, and Chao Shen. MCP-RADAR: A multi-dimensional benchmark for evaluating tool use capabilities in large language models. *arXiv preprint*, 2025. URL https://arxiv.org/abs/2505.16700.
 - Longling Geng and Edward Y Chang. REALM-Bench: A real-world planning benchmark for LLMs and multi-agent systems. *arXiv preprint*, 2025. URL https://arxiv.org/abs/2502.18836.
 - Google. Introducing gemma 3: The most capable model you can run on a single gpu or tpu, 2025. URL https://blog.google/technology/developers/gemma-3/.
 - Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring Massive Multitask Language Understanding. In *International Conference on Learning Representations (ICLR)*, Jan. 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.
 - Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.
 - Team Kimi, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv* preprint arXiv:2507.20534, 2025.
 - Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating multimodal agents on realistic visual web tasks. *arXiv preprint*, 2024. URL https://arxiv.org/abs/2401.13649.
 - Shirley Kokane, Ming Zhu, Tulika Awalgaonkar, Jianguo Zhang, Thai Hoang, Akshara Prabhakar, Zuxin Liu, Tian Lan, Liangwei Yang, Juntao Tan, et al. Spectool: A benchmark for characterizing errors in tool-use llms. *arXiv preprint*, 2024. URL https://arxiv.org/abs/2411.13547.

543

544

546

547

548

549

550

551

552

553

554

555

556

558 559

560 561

562

563

565 566

567

568 569

570

571 572

573

574

575

576

577 578

579

580

581

582 583

584

585

586

587 588

589

590

- 540 Qingquan Li, Shaoyu Dou, Kailai Shao, Chao Chen, and Haixiang Hu. Evaluating scoring bias in llm-as-a-judge. arXiv preprint arXiv:2506.22316, 2025. 542
 - Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Alexander Cosgrove, Christopher D Manning, Christopher Re, Diana Acosta-Navas, Drew Arad Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue WANG, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri S. Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan Andrew Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. Holistic evaluation of language models. Transactions on Machine Learning Research (TMLR), Aug. 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=iO4LZibEqW.
 - Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang. AgentBench: Evaluating LLMs as agents. In International Conference on Learning Representations (ICLR), Jan. 2024. URL https://openreview.net/forum?id=zAdUB0aCTQ.
 - Zhiwei Liu, Jielin Qiu, Shiyu Wang, and et al. MCPEval: Automatic MCP-based deep evaluation for AI agent models. arXiv preprint arXiv:2507.12806, 2025a.
 - Zhiwei Liu, Jielin Qiu, Shiyu Wang, Jianguo Zhang, Zuxin Liu, Roshan Ram, Haolin Chen, Weiran Yao, Huan Wang, Shelby Heinecke, Silvio Savarese, and Caiming Xiong. MCPEval: Automatic MCP-based deep evaluation for ai agent models. arXiv preprint, 2025b. URL https://arxiv.org/abs/2507.12806.
 - Nikita Mehandru, Brenda Y Miao, Eduardo Rodriguez Almaraz, Madhumita Sushil, Atul J Butte, and Ahmed Alaa. Evaluating large language models as agents in the clinic. NPJ digital medicine, 7(1):84, 2024.
 - Meta. Introducing llama 3.1: Our most capable models to date, 2024a. URL https://ai.meta. com/blog/meta-llama-3-1/.
 - Meta. Llama 3.2: Revolutionizing edge ai and vision with open, CHStomizable models, 2024b. URL https://ai.meta.com/blog/ llama-3-2-connect-2024-vision-edge-mobile-devices/.
 - Meta. Llama 3.3, 2024c. URL https://www.llama.com/docs/ model-cards-and-prompt-formats/llama3_3/.
 - 2025. URL https://mistral.ai/news/ Mistral. Mistral small 3.1, mistral-small-3-1.
 - OpenAI. Gpt-40 mini: Advancing cost-efficient intelligence, 2024. URL https://openai. com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.
 - OpenAI. Introducing gpt-5, 2025a. URL https://openai.com/index/ introducing-gpt-5/.
 - OpenAI. Introducing gpt-oss, 2025b. URL https://openai.com/index/ introducing-gpt-oss/.
 - Introducing o3 and o4-mini, 2025c. URL https://openai.com/index/ OpenAI. introducing-o3-and-o4-mini/.
 - Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agentic evaluation of large language models. In Forty-second International Conference on Machine Learning, 2025a.

- Shishir G Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and Joseph E. Gonzalez. The berkeley function calling leaderboard (BFCL): From tool use to agentic evaluation of large language models. In *International Conference on Machine Learning (ICML)*, May 2025b. URL https://openreview.net/forum?id=2GmDdhBdDk.
 - Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world apis. In *International Conference on Learning Representations (ICLR)*, 2024.
 - Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno, David Stutz, Ellery Wulczyn, Fan Zhang, Tim Strother, Chunjong Park, Elahe Vedadi, et al. Capabilities of gemini models in medicine. arXiv preprint, 2024. URL https://arxiv.org/abs/2404.18416.
 - Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Shoeb, Abubakar Abid, Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adri Garriga-Alonso, et al. Beyond the imitation game: Quantifying and extrapolating the capabilities of language models. *Transactions on machine learning research (TMLR)*, May 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=uyTL5Bvosj.
 - Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue, and Wenhu Chen. MMLU-pro: A more robust and challenging multi-task language understanding benchmark. In *Advances in Neural Information Processing Systems* (NeurIPS), 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/ad236edc564f3e3156e1b2feafb99a24-Paper-Datasets_and_Benchmarks_Track.pdf.
 - Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet challenging benchmark for browsing agents. *arXiv preprint arXiv:2504.12516*, 2025.
 - Yijia Xiao, Edward Sun, Di Luo, and Wei Wang. Trading Agents: Multi-agents llm financial trading framework. *arXiv preprint*, 2024. URL https://arxiv.org/abs/2412.20138.
 - Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and Yu Su. TravelPlanner: A benchmark for real-world planning with language agents. In *International Conference on Machine Learning (ICML)*, Jan. 2024. URL https://openreview.net/pdf/2aed87cf6c216af2dee382342dbd8c8d4355680e.pdf.
 - Yunhe Yan, Shihe Wang, Jiajun Du, Yexuan Yang, Yuxuan Shan, Qichen Qiu, Xianqing Jia, Xinge Wang, Xin Yuan, Xu Han, et al. MCPWorld: A unified benchmarking testbed for API, GUI, and hybrid computer use agents. *arXiv preprint*, 2025. URL https://arxiv.org/abs/2506.07672.
 - An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.
 - Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. In *International Conference on Learning Representations (ICLR)*, 2023.
 - Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik R Narasimhan. τ-Bench: Evaluating tool-augmented language agents through human-in-the-loop collaboration. In *International Conference on Learning Representations (ICLR)*, Jan. 2025. URL https://openreview.net/forum?id=roNSXZpUDN.
 - Peijie Yu, Yifan Yang, Jinjian Li, Zelong Zhang, Haorui Wang, Xiao Feng, and Feng Zhang. c^3 -Bench: The things real disturbing llm based agent in multi-tasking. *arXiv preprint*, 2025. URL https://arxiv.org/abs/2505.18746.
 - Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang, Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models. *arXiv preprint arXiv:2508.06471*, 2025.

 Jianguo Zhang, Thai Hoang, Ming Zhu, Zuxin Liu, Shiyu Wang, Tulika Awalgaonkar, Akshara Prabhakar, Haolin Chen, Weiran Yao, Zhiwei Liu, et al. ActionStudio: A lightweight framework for data and training of large action models. *arXiv preprint*, 2025. URL https://arxiv.org/abs/2503.22673.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E Gonzalez, and Ion Stoica. Judging LLM-as-a-judge with MT-Bench and Chatbot Arena. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems (NeurIPS), volume 36, pp. 46595-46623, Dec. 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf.

Lucen Zhong, Zhengxiao Du, Xiaohan Zhang, Haiyi Hu, and Jie Tang. ComplexFuncBench: Exploring multi-step and constrained function calling under long-context scenario. *arXiv* preprint, 2025. URL https://arxiv.org/abs/2501.10132.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic web environment for building autonomous agents. In *International Conference on Learning Representations (ICLR)*, Jan. 2024. URL https://openreview.net/forum?id=oKn9c6ytlx.

A APPENDIX

702

703 704

705

706

707

708

709

710

711 712

713

714 715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746 747

748 749

In this Appendix, we first discuss the key capabilities for tool-using LLM agents and how MCP-Bench reflects them (Section A.1). We demonstrate more details of used MCP servers in Section A.2. We then demonstrate the detailed prompts used in task execution, task synthesis, and evaluation in Section A.3, Section A.4, Section A.5, respectively. We then display examples of the input schema for tools involved and more details of the tasks in Section A.6 and Section A.7. We also have the discussion about the quality of our LLM Judge pipeline and the ablation studies for the prompt shuffling and score averaging strategy in Section A.8. Finally, we discuss the disclosure of LLM usages in this paper in Section A.9.

A.1 KEY CAPABILITIES FOR TOOL-USING LLM AGENTS AND HOW MCP-BENCH REFLECTS THEM

To perform effectively in tool-augmented environments, LLM agents should demonstrate several critical capabilities beyond standard language modeling.

Tool Schema Understanding and Compliance: Agents must faithfully interpret and satisfy complex invocation schemas that involve nested JSON structures, enumerated types, constrained value ranges, and mixtures of required and optional arguments. Success requires aligning natural language reasoning with precise formal specifications. MCP-Bench enforces strict schema validation across 250 tools of varying complexity—from simple scalar inputs to deeply nested hierarchical structures—ensuring that even subtle schema violations are detected. Illustrative examples of diverse input schemas are provided in Section A.6. Tool Retrieval and Selection under Fuzzy Instructions: Agents must identify the correct tools from large, heterogeneous tool spaces when confronted with ambiguous or underspecified task descriptions. This requires disambiguating semantic variants, coping with naming inconsistencies, and avoiding traps posed by superficially plausible but irrelevant tools. MCP-Bench stress-tests retrieval precision by attaching 10 distractor servers to every task, introducing 100+ additional tools per instance. Moreover, fuzzy task variants (Section 4.2) deliberately omit explicit tool names and detailed step descriptions, forcing agents to infer appropriate tools purely from contextual cues. Long-Horizon Planning and Cross-Server Orchestration with Massive Goals: Realistic applications demand multi-round workflows that span domains, maintain interdependent states across rounds, and sometimes pursue multiple goals simultaneously. Agents must manage sequential and parallel dependencies, coordinate heterogeneous outputs, and optimize efficiency through judicious orchestration. MCP-Bench includes both single-server and multi-server tasks with up to 20 execution rounds. Its evaluation framework explicitly measures structural coherence, dependency awareness, parallelism efficiency, and reflective adaptation (Section 5). Tasks include not only linear workflows but also complex compositions requiring concurrent interactions across multiple servers with multiple objectives. Information Grounding and Evidence-Based **Reasoning:** To avoid hallucination, agents must ground responses in actual tool outputs, maintain factual consistency across calls, and provide traceable evidence for their claims. MCP-Bench evaluates grounding by coupling execution history with rubric-based LLM judgments, rewarding answers that correctly cite tool outputs and penalizing unsupported reasoning (Section 5). Real-World Adaptability: Finally, agents must leverage broad world knowledge to interpret domain-specific semantics, robustly handle diverse tool behaviors, and synthesize heterogeneous outputs into coherent solutions. MCP-Bench spans 28 production-grade MCP servers covering domains from finance and healthcare to scientific computation and cultural heritage, ensuring that tasks reflect the diversity and unpredictability of real-world tool use.

A.2 DETAILS OF USED MCP SERVERS

In Table 7, we show the detailed descriptions for the involved MCP servers and the associated tools.

Table 7: Details of tools and descriptions in used MCP servers.

Server Name	GitHub Repository	Tools	Description & Tools
Bibliomantic	https://github.com/d4nshields/	4	Description: I Ching divination service provide
	bibliomantic-mcp-server		ing traditional Chinese divination methods wit enhanced hexagram interpretation and statisti
			cal tracking. Tools: i_ching_divination (Per
			forms enhanced I Ching divination using tradi
			tional three-coin method with changing lines anal
			ysis), bibliomantic_consultation (Provides compre
			hensive bibliomantic consultation with full tra
			ditional I Ching elements and interpretations
			get_hexagram_details (Retrieves detailed hexa
			gram information including traditional Chines
			names, Unicode symbols, and rich commentary)
			server_statistics (Displays enhanced server usag
			statistics and performance metrics)
Math MCP	https://github.com/	13	Description: Mathematical computation service
	EthanHenrickson/math-mcp		providing essential arithmetic operations and sta
			tistical analysis functions for numerical data pro
			cessing and analysis. Tools: add (Performs ad
			dition of two numbers with precision handling
			subtract (Executes subtraction of second number
			from first with numerical accuracy), multiply (Cal
			culates multiplication of two numbers with over
			flow protection), division (Performs division wit
			zero-division error handling and precision cor
			trol), sum (Computes sum of any number of values in a list or array), mean (Calculates arith
			metic mean average of numerical data sets), me
			dian (Determines middle value of sorted numerica
			datasets), mode (Finds most frequently occurring
			value in numerical datasets), min (Identifies min
			imum value from lists of numbers), max (Deter
			mines maximum value from numerical datasets
			floor (Rounds numbers down to nearest integer us
			ing floor function), ceiling (Rounds numbers u
			to nearest integer using ceiling function), roun
			(Rounds numbers to nearest integer with standar
			rounding rules)
BioMCP	https://github.com/	14	Description: Comprehensive biomedical research
51011101	genomoncology/biomcp	1	platform integrating literature search, clinica
	31 1 1 1 1 1 1 1 1 1 1 1		trial data, and genetic variant analysis with A
			powered research planning and Google Deep
			Mind's AlphaGenome predictions. Tools: searc
			(Multi-database biomedical literature and clin
			cal trial search with structured thinking integra
			tion), fetch (Retrieves comprehensive details for
			specific biomedical records using unique ident
			fiers), think (Required structured sequential think
			ing tool for research strategy planning), art
			cle_searcher (Searches PubMed/PubTator3 for re
			search articles and preprints about genes an
			variants), article_getter (Fetches detailed article
			information including abstracts and full text
			trial_searcher (Comprehensive ClinicalTrials.go
			search with multiple filtering criteria), trial_gette
			(Retrieves all available clinical trial information
			tion by NCT ID), trial_protocol_getter (Fetche
			core protocol details including study design ar
			sponsor information), trial_references_getter (Re
			trieves all linked publications and background li
			erature for trials), trial_outcomes_getter (Fetch
			detailed outcome measures and results data
			trial_locations_getter (Retrieves study location
			with contact details and investigators), var
			ant_searcher (Searches MyVariant.info for go
			netic variant database records with population
			frequencies), variant_getter (Fetches compreher
			sive genetic variant details including consequence
			and annotations), alphagenome_predictor (Predict
			variant effects on gene regulation using Googl
			DeepMind's state-of-the-art AlphaGenome model
	https://github.com/iremert/	1	Description: Academic conference and event dis
Call for Papers			account complete for recognitions continue myblication
Call for Papers	call-for-papers-mcp		
Call for Papers			and presentation opportunities. Tools: get_even
Call for Papers			and presentation opportunities. Tools: get_event (Searches for academic conferences and event
Call for Papers			covery service for researchers seeking publicatio and presentation opportunities. Tools: get_event (Searches for academic conferences and event matching specific keywords with detailed submis sion information)

810 Table 7 continued from previous page Server Name GitHub Repository Description & Tools Tools 811 Car Price Evaluator Description: Brazilian automotive market anal-812 car-price-mcp-main ysis service providing current vehicle pric-813 ing data through FIPE (Fundação Instituto de Pesquisas Econômicas) API integration. 814 get_car_brands (Retrieves comprehensive list of all available car brands from FIPE database with brand 815 codes and names), search_car_price (Searches for 816 specific car models and their current market prices by brand name with detailed pricing informa-817 tion), get_vehicles_by_type (Fetches vehicles cat-818 egorized by type including cars, motorcycles, and 819 trucks with specifications) Context Description: Programming library documentation 820 service providing up-to-date documentation access through Context7's encrypted and secure library 821 system. Tools: resolve-library-id (Resolves pack-822 age or product names to Context7-compatible library IDs and returns matching libraries list), get-823 library-docs (Fetches current documentation for 824 libraries using exact Context7-compatible library 825 IDs with comprehensive API reference) DEX Paprika **Description:** Comprehensive decentralized exhttps://github.com/coinpaprika/ 826 dexpaprika-mcp change analytics platform providing real-time DeFi data, liquidity analysis, and trading insights across multiple blockchain networks. **Tools:** getNet-827 828 works (Required first step to retrieve all supported blockchain networks with network IDs like ethereum and solana), getNetworkDexes (Fetches 830 available decentralized exchanges on specific networks), getNetworkPools (Primary function to 831 get top liquidity pools on specific networks with 832 comprehensive pool data), getDexPools (Retrieves pools from specific DEX platforms on networks), 833 getPoolDetails (Provides detailed pool information 834 including liquidity, volume, and trading metrics), 835 getTokenDetails (Fetches comprehensive token information including price, market cap, and con-836 tract details), getTokenPools (Finds all liquidity 837 pools containing specific tokens for trading analysis), getPoolOHLCV (Retrieves historical OHLCV 838 price data essential for backtesting and technical 839 analysis), getPoolTransactions (Fetches recent pool transactions including swaps, additions, and re-840 movals), search (Cross-network search functionality for tokens, pools, and DEXes by name, symbol, 841 or address), getStats (Provides high-level DexPa-842 prika ecosystem statistics including total networks, DEXes, pools, and tokens) 843 FruityVice Description: Nutritional information service prohttps://github.com/ CelalKhalilov/fruityvice-mcp 844 viding comprehensive fruit nutrition data includ-845 ing vitamins, minerals, calories, and dietary information. Tools: get_fruit_nutrition (Retrieves detailed nutritional information for specified fruits in-847 cluding calories, carbohydrates, protein, fat, sugar, fiber, and vitamin content) 848 Description: Gaming industry analytics plat-Game Trends https://github.com/ 849 halismertkir/game-trends-mcp form providing real-time data on game popularity, sales trends, and promotional activi-850 ties across major gaming platforms. Tools: 851 get_steam_trending_games (Fetches real-time trending games from Steam with live data from 852 multiple sources), get_steam_top_sellers (Re-853 trieves current top-selling games from Steam platform with live sales data), get_steam_most_played 854 (Gets real-time most played games from Steam 855 with live player statistics from SteamCharts), get_epic_free_games (Fetches current and up-856 coming free games from Epic Games Store with 857 promotion details), get_epic_trending_games (Retrieves trending games from Epic Games 858 Store platform), get_all_trending_games (Provides 859 comprehensive real-time gaming data aggregated from all platforms including Steam and 860 Epic), get_api_health (Checks health status and 861 availability of the Gaming Trend Analytics API) 862

864 Table 7 continued from previous page Server Name GitHub Repository Description & Tools Tools 865 Google Maps Description: Comprehensive location services mcp-google-map platform integrating Google Maps API for geospa-867 tial queries, place discovery, navigation, and geographic data analysis. Tools: search_nearby (Searches for nearby places based on location with optional filtering by keywords, distance, 869 rating, and operating hours), get_place_details 870 (Retrieves detailed information about specific places including contact details, reviews, rat-871 ings, and operating hours), maps_geocode (Con-872 verts addresses or place names to precise geographic coordinates with latitude and longitude), 873 maps_reverse_geocode (Converts geographic co-874 ordinates to human-readable addresses with location context), maps_distance_matrix (Calculates 875 travel distances and durations between multiple 876 origins and destinations for different transportation modes), maps_directions (Provides detailed turn-by-turn navigation directions between two locations with comprehensive route information), maps_elevation (Retrieves elevation data showing 879 height above sea level for specific geographic loca-880 tions) Huge Icons Description: Comprehensive icon library ser-881 https://github.com/hugeicons/mcp-server vice providing access to thousands of high-quality 882 icons with search capabilities and platform-specific implementation guidance. Tools: list icons (Retrieves complete list of all available Huge-884 icons with metadata and categories), search_icons 885 (Searches for icons by name or tags using comma-separated queries for multiple icon dis-886 covery), get_platform_usage (Provides platformspecific usage instructions and implementation details for different development environments) 888 Hugging Face 10 Description: AI model hub integration service n/shrevaskarnik/ providing comprehensive access to machine learnhuggingface-mcp-server ing models, datasets, interactive spaces, research 890 papers, and curated collections. Tools: search-891 models (Searches Hugging Face Hub for AI models with filtering by task, library, and popular-892 ity), get-model-info (Retrieves detailed informa-893 tion about specific models including architecture, usage, and performance metrics), search-datasets 894 (Searches for machine learning datasets with fil-895 tering by task type and size), get-dataset-info (Fetches comprehensive dataset information in-896 cluding structure, licensing, and usage examples), search-spaces (Searches for interactive Spaces ap-897 plications and demos), get-space-info (Retrieves 898 detailed information about specific Spaces includ-899 ing functionality and source code), get-paper-info (Fetches information about specific research pa-900 pers linked to models), get-daily-papers (Retrieves list of daily curated research papers from Hug-901 ging Face), search-collections (Searches for cu-902 rated collections of related models and datasets), 903 get-collection-info (Fetches detailed information about specific collections including contents and 904 curation details) 905 OSINT Intelligence **Description:** Open Source Intelligence (OSINT) https://github.com/ himanshusanecha/ platform providing comprehensive cybersecurity 906 mcp-osint-server reconnaissance tools for domain analysis, network scanning, and intelligence gathering. Tools: 907 whois lookup (Performs domain registration in-908 formation queries including owner, registrar, and 909 DNS details), nmap_scan (Executes network scanning and port discovery for security assessment), 910 dnsrecon_lookup (Conducts DNS reconnaissance 911 to gather subdomain and DNS record information). dnstwist lookup (Analyzes domain similarity and 912 potential typosquatting threats), dig_lookup (Per-913 forms detailed DNS queries and record analysis), host_lookup (Gathers comprehensive host infor-914 mation and network details), osint overview (Pro-915 vides comprehensive intelligence overview and analysis summary) 916 917

Table 7 continued from previous page

Server Name	GitHub Repository	Tools	Description & Tools
Medical Calculator	https://github.com/vitaldb/	22	Description: Comprehensive medical calculation
	medcalc		platform providing evidence-based clinical deci-
			sion support tools for kidney function, cardiovas-
			cular risk assessment, drug dosing, and special-
			ized medical scoring systems. Tools: egfr_epi
			(Calculates estimated glomerular filtration rate us-
			ing 2021 EPI formula without race adjustment),
			egfr_epi_cr_cys (Computes eGFR using combined
			creatinine-cystatin C equation for enhanced accu-
			racy), bp_children (Calculates pediatric blood pres-
			sure percentiles based on age, height, and gen-
			der), bmi_bsa_calculator (Computes body mass
			index and body surface area with multiple for-
			mulas), crcl_cockcroft_gault (Determines creati-
			nine clearance using Cockcroft-Gault formula for
			drug dosing), map_calculator (Calculates mean
			arterial pressure from systolic and diastolic val-
			ues), chads2_vasc_score (Assesses stroke risk in
			atrial fibrillation patients using validated scor-
			ing system), prevent_cvd_risk (Predicts 10-year
			cardiovascular disease risk in patients aged 30-
			79), corrected_calcium (Adjusts calcium levels for
			abnormal albumin concentrations), qtc_calculator
			(Corrects QT interval for heart rate using multi-
			ple validated formulas), wells_pe_criteria (Objec-
			tifies pulmonary embolism risk using clinical cri-
			teria), ibw_abw_calculator (Calculates ideal and
			adjusted body weights using Devine formula),
			pregnancy_calculator (Determines pregnancy dates
			from last menstrual period or gestational age),
			revised_cardiac_risk_index (Estimates periopera-
			tive cardiac complications in noncardiac surgery),
			child_pugh_score (Assesses cirrhosis severity and
			mortality risk), steroid_conversion (Converts be-
			tween different corticosteroid equivalencies), cal-
			culate_mme (Computes total daily morphine mil-
			ligram equivalents for opioid prescriptions), main-
			tenance_fluids (Calculates pediatric IV fluid rates
			using 4-2-1 rule), corrected_sodium (Adjusts
			sodium levels in hyperglycemic patients using
			correction formulas), meld_3 (Calculates MELD
			3.0 score for liver transplant priority), framing-
			ham_risk_score (Estimates 10-year coronary heart
			disease risk), homa_ir (Calculates insulin resis-
Matuamalitan Myssarr		2	tance using homeostatic model assessment)
Metropolitan Museum	https://github.com/mikechao/	3	Description: Metropolitan Museum of Art dig-
	metmuseum-mcp		ital collection access service providing compre-
			hensive search and detailed information about art-
			works, artifacts, and cultural objects. Tools: list-
			departments (Retrieves complete list of all museum
			departments with organizational structure), search-
			museum-objects (Searches museum collection objects with filtering options and returns object IDs
			and total counts), get-museum-object (Fetches de-
			tailed information about specific museum objects
			by ID including images, provenance, and cultural
			context)
Movie Recommender	https://github.com/iremert/	1	Description: Intelligent movie recommendation
WIOVIC RECOMMENDED	movie-recommender-mcp	1	service providing personalized film suggestions
			based on keyword matching and content analysis
			algorithms. Tools: get_movies (Generates movie
			suggestions and recommendations based on user-
			provided keywords with relevance scoring and de-
			tailed film information)
			unca min information)

972 Table 7 continued from previous page Server Name GitHub Repository **Description & Tools** Tools 973 Description: US National Parks Service official National Parks 974 KvrieTangSheng/ data integration providing comprehensive informcp-server-nationalparks 975 mation about parks, facilities, alerts, and recreational opportunities across the national park sys-976 Tools: findParks (Searches for national parks based on state, name, activities, or other cri-977 teria with detailed filtering), getParkDetails (Re-978 trieves comprehensive information about specific national parks including descriptions, contact info, 979 and amenities), getAlerts (Fetches current park 980 alerts including closures, hazards, and important visitor information), getVisitorCenters (Gets infor-981 mation about visitor centers with operating hours 982 and services), getCampgrounds (Retrieves campground information including availability, ameni-983 ties, and reservation details), getEvents (Finds up-984 coming events at parks including programs, tours, and special activities) 985 OpenAPI Explorer Description: Universal API integration platform https://github.com/janwilmake/ 986 openapi-mcp-server providing dynamic OpenAPI specification explo-987 ration and interaction with various cloud services. social media platforms, developer tools, and en-988 terprise APIs. Tools: getApiOverview (Get an overview of an OpenAPI specification for services 989 including OpenAI, GitHub, Twitter/X, Cloudflare, 990 npm, Slack, Stripe, and many others - should be the first step when working with any API), callApi 991 (Execute API calls dynamically based on OpenAPI 992 specifications with automatic parameter validation and response handling) 993 NASA Data 2.1 Description: Comprehensive NASA data integrahttps://github.com/AnCode666/ 994 nasa-mcp tion platform providing access to astronomy im-995 agery, space weather data, planetary information, and satellite observations through official NASA 996 Tools: get_astronomy_picture_of_day 997 (Retrieves NASA's daily astronomy picture with explanations and metadata), get_asteroids_feed 998 (Fetches asteroid data based on closest approach 999 dates to Earth), get_asteroid_lookup (Looks up specific asteroids using NASA JPL small body 1000 system IDs), browse_asteroids (Browses compre-1001 hensive asteroid dataset with filtering capabilities), get_coronal_mass_ejection (Retrieves coronal 1002 mass ejection data with date range filtering), get_geomagnetic_storm (Fetches geomagnetic 1003 storm data with temporal analysis), get_solar_flare 1004 (Gets solar flare activity data with intensity get_solar_energetic_particle 1005 classifications), (Retrieves solar energetic particle data), get_magnetopause_crossing (Fetches 1007 magnetopause crossing event tion), get_radiation_belt_enhancement radiation belt enhancement event get_hight_speed_stream (Retrieves high-speed 1009 solar wind stream data), get_wsa_enlil_simulation 1010 (Fetches WSA+Enlil solar wind simulation 1011 results), get_notifications (Gets space weather notifications and alerts), 1012 get_earth_imagery (Retrieves Landsat 8 satel-1013 lite imagery for specific coordinates and dates), get_earth_assets (Gets information 1014 about available Earth imagery assets for locations), get_epic_imagery (Fetches images 1015 from Earth Polychromatic Imaging Camera), 1016 get_epic_imagery_by_date (Retrieves images for specific dates), get_epic_dates 1017 (Gets available dates for EPIC image collec-1018 tions), get_exoplanet_data (Queries NASA Exoplanet Archive with custom search pa-1019 get_mars_rover_photos (Fetches rameters). 1020 photos from Mars rovers by sol or Earth date), get_mars_rover_manifest (Retrieves mission 1021 manifests with rover status and photo statistics) 1022

Table 7 continued from previous page

Server Name	GitHub Repository	Tools	Description & Tools
NixOS NixOS	https://github.com/utensils/mcp-nixos	18	Description: Comprehensive NixOS ecosystem integration providing package management, configuration options, Home Manager support, macOS nix-darwin compatibility, and community flakes discovery. Tools: nixos_search (Searches NixOS packages, options, programs, or flakes with configurable result limits), nixos_info (Retrieves detailed information about specific NixOS packages or options with channel selection), nixos_channels (Lists all available NixOS channels with status information), nixos_stats (Gets comprehensive statistics for NixOS channels including package and option counts), home_manager_search (Searches Home Manager configuration options by name and description), home_manager_info (Fetches detailed information about specific Home Manager options with exact name matching), home_manager_statistics including total options and category breakdown), home_manager_list_options (Lists all Home Manager options by_prefix (Gets Home Manager options matching specific prefixes for category browsing), darwin_search (Searches nix-darwin macOS configuration options by name and description), darwin_info (Retrieves detailed information about specific prefixes for category browsing), darwin_info (Retrieves detailed information about specific nix-darwin options), darwin_stats (Gets nix-darwin statistics including option counts and categories), darwin_list_options (Lists all nix-darwin option categories with counts), darwin_options_by_prefix (Gets nix-darwin options matching specific prefixes), nixos_flakes_stats (Retrieves statistics about available NixOS flakes by name, description, owner, or repository), nixhub_package_versions (Gets version history and nixpkgs commit hashes for specific packages), nixhub_find_version (Finds specific package), nixhub_find_version (Finds specific package), nixhub_find_version (Finds specific package versions with smart search and in-
OKX Exchange	https://github.com/esshka/ okx-mcp	2	creasing limits) Description: OKX cryptocurrency exchange integration providing real-time trading data and historical price analysis for digital assets and trading pairs. Tools: get_price (Retrieves latest price information for OKX trading instruments with real-time market data), get_candlesticks (Fetches historical candlestick data for technical analysis and

1080 Table 7 continued from previous page Description & Tools Server Name GitHub Repository Tools 1081 Paper Search 19 Description: Comprehensive academic research 1082 paper-search-mcp platform integrating multiple scholarly databases 1083 for paper discovery, PDF retrieval, and fulltext analysis across diverse scientific disciplines. Tools: search_arxiv (Searches arXiv preprint repository with metadata and abstract retrieval), 1085 search_pubmed (Searches PubMed biomedical lit-1086 erature database with detailed paper information), search_biorxiv (Searches bioRxiv biol-1087 ogy preprint server with recent research find-1088 ings), search_medrxiv (Searches medRxiv med-1089 ical preprint repository for clinical research), search_google_scholar (Searches Google Scholar 1090 across all academic disciplines with citation metrics), search_iacr (Searches IACR ePrint Archive 1091 for cryptography and security research), down-1092 load_arxiv (Downloads PDF files from arXiv papers with local storage), download_pubmed (At-1093 tempts PDF download from PubMed with ac-1094 cess limitations notice), download_biorxiv (Downloads bioRxiv paper PDFs with DOI-based re-1095 trieval), download_medrxiv (Downloads medRxiv 1096 paper PDFs with automated file management), download_iacr (Downloads IACR ePrint paper PDFs with paper ID validation), read_arxiv_paper 1098 (Extracts and processes full text content from arXiv paper PDFs), read_pubmed_paper (Reads PubMed paper content with direct database ac-1100 cess limitations), read_biorxiv_paper (Extracts full text from bioRxiv papers with structured 1101 content analysis), read_medrxiv_paper (Processes 1102 medRxiv paper text with medical content parsing), read_iacr_paper (Extracts text from IACR 1103 papers with cryptography-specific formatting), 1104 search_semantic (Searches Semantic Scholar with advanced filtering by year and field), down-1105 load_semantic (Downloads papers from Seman-1106 tic Scholar using multiple identifier formats), read_semantic_paper (Reads and processes Se-1107 mantic Scholar papers with comprehensive text ex-1108 traction) Reddit Reddit social media platform 1109 https://github.com/dumyCq/ Description: mcp-reddit integration providing access to community 1110 discussions, trending content, and detailed 1111 post analysis with comment threading. Tools: fetch_reddit_hot_threads (Fetches trending hot 1112 threads from specified subreddits with configurable result limits), fetch_reddit_post_content (Retrieves 1113 detailed post content including comments with 1114 traversable comment tree structure and depth 1115 control) 1116 1117 1118 1119

1134 Table 7 continued from previous page Server Name GitHub Repository **Description & Tools** Tools 1135 Scientific Computing Description: Advanced scientific computing plathttps://github.com/ Aman-Amith-Shastry/scientific_ 1136 form providing comprehensive linear algebra opcomputation_mcp 1137 erations, vector calculus computations, and mathematical visualization tools with in-memory ten-1138 Tools: create_tensor (Creates sor storage. NumPy arrays with specified shapes and val-1139 ues in memory store), view_tensor (Returns im-1140 mutable view of stored tensors from memory), delete_tensor (Removes tensors from in-memory 1141 storage), add_matrices (Performs element-wise ad-1142 dition of two stored matrices), subtract_matrices 1143 (Performs element-wise subtraction of stored matrices), multiply_matrices (Executes matrix mul-1144 tiplication between stored tensors), scale_matrix (Scales stored tensor by scalar factor with op-1145 tional in-place operation), matrix_inverse (Com-1146 putes inverse of stored square matrices with singularity checks), transpose (Computes trans-1147 pose of stored tensors), determinant (Calculates 1148 determinant of stored square matrices), rank (Computes matrix rank of stored tensors), com-1149 pute_eigen (Calculates eigenvalues and eigenvec-1150 tors of square matrices), qr_decompose (Performs QR decomposition into orthogonal and upper tri-1151 angular matrices), svd_decompose (Executes Sin-1152 gular Value Decomposition into U, S, V components), find_orthonormal_basis (Finds orthonormal 1153 basis for column space using QR decomposition), 1154 change_basis (Transforms matrix to new coordinate basis), vector_project (Projects stored vector 1155 onto specified target vector), vector_dot_product 1156 (Computes dot product between two stored vectors), vector_cross_product (Calculates cross prod-1157 uct of stored 3D vectors), gradient (Computes sym-1158 bolic gradient of scalar functions), curl (Calculates symbolic curl of vector fields with optional 1159 point evaluation), divergence (Computes symbolic 1160 divergence of vector fields), laplacian (Calculates Laplacian operator for scalar or vector fields), di-1161 rectional_deriv (Computes directional derivative 1162 along specified vector direction), plot_vector_field (Visualizes 3D vector fields with customizable 1163 bounds), plot_function (Plots 2D/3D mathematical 1164 functions from symbolic expressions) Time MCP 1165 Description: Time zone conversion and world https://github.com/dumyCq/ clock service providing accurate time informa-1166 tion and conversions across different time zones globally. Tools: get_current_time (Get current 1167 time in specific timezones using IANA timezone 1168 names), convert_time (Convert time between time-1169 zones with source and target timezone specifica-1170 Unit Converter Description: Comprehensive unit conversion serhttps://github.com/zazencodes/unit-converter-mcp 1171 vice supporting multiple measurement categories including temperature, angle, length, energy, force, 1172 pressure, power, speed, area, mass, volume, data 1173 storage, density, time, and batch quantities. Tools: convert_temperature (Temperature conversion be-1174 tween Celsius, Fahrenheit, and Kelvin), con-1175 vert_angle (Angle conversion between degrees, radians, and gradians), convert_length (Length con-1176 version across metric and imperial units), convert_energy (Energy conversion including joules, 1177 calories, and BTU), convert_force (Force conver-1178 sion between newtons, pounds-force, and more), convert_pressure (Pressure conversion across mul-1179 tiple units), convert power (Power conversion in-1180 cluding watts and horsepower), convert speed 1181 (Speed conversion between various velocity units), convert area (Area conversion across square units). 1182 convert mass (Mass and weight conversion), con-1183 vert volume (Volume conversion for liquids and solids), convert computer data (Digital storage 1184 conversion), convert density (Density conversion across different units), convert_time (Time dura-1185 tion conversion), convert_batch (Batch processing 1186 for multiple conversions), convert_weight (Legacy weight conversion function) 1187

Table 7 continued from previous page 1188 GitHub Repository Server Name **Description & Tools** Tools 1189 Weather Data Description: Comprehensive weather infor-1190 weather mcc mation service providing current conditions, forecasting, location search, and real-time me-1191 teorological data for global locations. 1192 get_current_weather_tool (Retrieves weather information including temperature, condi-1193 tions, humidity, and wind data for specific cities), 1194 get_weather_forecast_tool (Provides weather forecasts for 1-10 days with detailed meteorological 1195 predictions), search_locations_tool (Searches for 1196 locations by name with detailed geographic information), get_live_temp (Legacy tool for current 1197 temperature retrieval with backward compatibility 1198 Wikipedia Description: Comprehensive Wikipedia content https://github.com/Rudra-ravi/ 1199 wikipedia-mcp access and analysis service providing advanced 1200 article search, content extraction, and knowledge discovery with structured data analysis capabili-1201 ties. Tools: search_wikipedia (Searches Wikipedia 1202 for articles matching specific queries with relevance ranking and metadata), get_article (Retrieves 1203 full content of Wikipedia articles with complete 1204 text and formatting), get_summary (Generates concise article summaries with key information 1205 extraction), summarize_article_for_query (Creates 1206 query-tailored summaries focusing on specific aspects of articles), summarize_article_section (Pro-1207 vides focused summaries of specific article sections 1208 with contextual information), extract_key_facts (Extracts structured key facts and data points from 1209 articles with categorization), get_related_topics 1210 (Discovers related topics and articles through link analysis and category exploration), get_sections 1211 (Lists all sections and subsections of articles with 1212 hierarchical structure), get_links (Retrieves all internal and external links with link context and rele-1213 vance scoring) 1214 1215

A.3 Details of the Used Prompt for the Task Execution Agent

In this section, we show the detailed prompt used for the task execution agent in MCP-BENCH.

Strategic Planning Prompt

Purpose: Strategic decision-making and tool planning for multi-round execution

 You are a strategic decision-making expert for a multi-tool AI agent using the provided tools to perform the task.

TASK: "{task}"

CURRENT ROUND: {round_num}
AVAILABLE TOOLS ACROSS SERVERS:

{tool_list}

DECISION AND PLANNING:

1. Assess if the original task is fully completed

 2. If not complete, decide if another round would provide significant value3. If continuing, plan PARALLEL tool executions for this round

PARALLEL EXECUTION PLANNING (IF CONTINUING):

Plan ALL tool calls for this round to execute in PARALLEL
 ALL tools in this round will run simultaneously without dependencies

• EARLY EXECUTION PRINCIPLE: Plan all necessary tool calls that don't require dependencies

• AVOID REDUNDANT CALLS: Don't repeat successful tools unless specifically needed

 BUILD ON PREVIOUS RESULTS: Use information from previous rounds
 FOCUS ON INDEPENDENT TASKS: Plan tools that can work with currently available information

REQUIRED JSON RESPONSE FORMAT:

Final Solution Generation Prompt

ORIGINAL TASK: "{task}"

across multiple MCP servers.

	ACCUMULATED INFORMATION AND RESULTS: {accumulated_information}
	TASK REQUIREMENTS:
	Based on the original task and all the information gathered from multiple servers, provide a final, comprehensive, and well-structured answer that directly addresses the user's request.
	Synthesize the key findings and present them in a clear, organized manner that shows how the different server capabilities were combined.
	SYNTHESIS GUIDELINES:
	Extract and consolidate key information from all execution rounds
	Highlight how different tools and servers contributed to the solution
	Present findings in a logical, structured format
	Address all aspects of the original task
	Provide clear, actionable conclusions where appropriate
	Tro rad trong actionated to not appropriate
Ī	Content Summarization Prompt
Ī	Purpose: Compress large execution results to reduce token usage
	You are a helpful assistant. I need your help to extract key information from content.
	·
	Summarize the following content to less than {threshold} tokens while preserving all important information:
	CONTENT: {content}
	CHMMA DIZED CONTENT.
	SUMMARIZED CONTENT:
	SUMMARIZATION REQUIREMENTS:
	SUMMARIZATION REQUIREMENTS: • Preserve all critical findings and results
	SUMMARIZATION REQUIREMENTS: • Preserve all critical findings and results • Maintain factual accuracy
	SUMMARIZATION REQUIREMENTS: • Preserve all critical findings and results • Maintain factual accuracy • Keep important numerical data and specific details
	SUMMARIZATION REQUIREMENTS: • Preserve all critical findings and results • Maintain factual accuracy

Purpose: Generate multi-round execution results into final comprehensive answer

A multi-round execution process has completed with {total_executions} total tool calls

You are an expert solution synthesizer for multi-tool AI agent execution.

Task Generation Prompt

A.4 DETAILS OF THE USED PROMPT FOR TASK SYNTHESIS

Purpose: Generate complex tasks with deep tool dependencies

In this section, we show the detailed prompt used for task synthesis in MCP-BENCH.

1350

1351 1352

1353 1354 1355

1356 1357

1358

1403

You are a task designer for testing AI agents with MCP tools. 1359 1360 STEP 1: ANALYZE AND CREATE TOOL DEPENDENCIES Analyze these available tools and CREATE meaningful dependencies for your task scenario: 1363 {tool descriptions} 1364 Consider both: 1365 A) INHERENT dependencies (tool's natural input/output relationships) Which tools naturally produce data others consume 1367 • Standard workflow patterns (search \rightarrow fetch \rightarrow analyze) B) SCENARIO-BASED dependencies (create logical connections for your task), for ex-1369 1370 • Tool A's result determines WHICH tool to use next 1371 Tool B's output sets PARAMETERS for Tool C 1372 1373 Tool D validates or contradicts Tool E's findings 1374 · Parallel tools whose results must be COMBINED 1375 • Iterative loops where results trigger RE-ANALYSIS 1376 Record your dependency analysis in a "dependency_analysis" field that describes: · Key tool chains and data flow Critical decision points 1380 Parallel vs sequential requirements 1381 • Cross-server dependencies (for multi-server tasks) 1382 For multi-server tasks ({server_name}), create CROSS-SERVER dependencies: Server A data influences Server B queries 1384 Cross-validation between different data sources 1385 One server's limits trigger fallback to another 1386 1387 1388 STEP 2: DESIGN ONE COMPLEX TASK 1389 Based on your dependency analysis, create ONE task that: 1390 Create MAXIMUM complexity requiring massive tool calls 1391 Must use tools from all available servers 1392 • Must consider inter-servers dependency if more than 1 server available 1393 You may create the tasks with the following properties if suitable: 1394 • Deep dependency chains where Tool B needs Tool A's output, Tool C needs B's output, 1395 etc. Multiple decision branches based on intermediate results • Iterative refinement: initial findings lead to deeper investigation 1399 • Cross-validation: use multiple tools to verify critical findings 1400 Data transformation: output from one tool needs processing before next tool 1401 • Conditional workflows: if condition X, then workflow Y, else workflow Z 1402

1405	CRITICAL DATA REQUIREMENTS:
1406	1. ALL tasks MUST be self-contained and executable WITHOUT any external depen-
1407 1408	dencies
1409	2. NEVER reference external resources like:
1410	 URLs (like "https://api.example.com" or any external API)
1411	 Local files (like "user-management.yaml" or "config.json")
1412	Databases or external systems
1413	• "Our API", "our system", "our database"
1414	3. ALL data must come from either:
1415	 The provided tools themselves (what they can generate/fetch/calculate)
1416 1417	 Concrete values you specify in the task (numbers, names, parameters)
1418	4. NEVER use vague references:
1419	"user-provided parameters" or "user-specified"
1420	"fetched from database" or "retrieved from external source"
1421	"based on user preferences" or "according to input"
1422	"specified location/value" or "to be determined"
1423	5. ALWAYS provide concrete values:
1424 1425	• Specific numbers (e.g., "analyze heat exchanger with inlet temp 80°C, outlet 60°C, flow
1426	rate 0.5 kg/s")
1427	Named entities (e.g., "analyze weather in San Francisco" not "specified city") Figure 1. NOT and 1. NOT
1428	 For locations: Use city names, landmark names, or general areas, NOT specific street addresses
1429	GOOD: "San Francisco", "Times Square", "Central Park area", "downtown Seattle"
1430	- BAD: "123 Main Street", "456 Park Avenue", specific house numbers or street ad-
1431	dresses
1432 1433	• Exact thresholds (e.g., "alert if efficiency drops below 85%" not "desired threshold")
1434	 ALWAYS USE relative dates/times (e.g., "next 7 days", "past 3 months", "upcoming week" not "January 2024" or "2024-01-15")
1435	6. If the task involves analysis, provide ALL input data in the task description:
1436 1437	For calculations: provide all numbers, formulas, and units needed
1438	For searches: provide specific search terms and criteria
1439	For comparisons: provide specific items with their properties
1440	For optimization: provide current values and target metrics
1441	
1442	REQUIREMENTS:
1443	1. MUST require multiple tools in a specific sequence
1444 1445	2. Tool B should need output from Tool A (dependency chain)
1446	3. Include decision points based on intermediate results
1447	4. Be realistic and valuable for business/research purposes
1448	5. Define expected analysis and output format
1449	6. Task must be immediately executable - agent should never need to ask for more informa-
1450 1451	tion
1452	7. Task should be executable and solvable by using the provided tools. You need to pay
1453	attention to the function and the output of the provided tools.
1454	
1455	

OUTPUT FORMAT:

1461 Outp

Output ONLY a JSON object (not an array). ALWAYS USE relative dates/times:

```
{
  "task_id": "task_XXX",
  "task_description": "detailed task that leverages the identified
    tool dependencies",
  "dependency_analysis": "Your analysis from STEP 1 - describe the
    key dependencies, tool chains, decision points, and data flow
    patterns that this task requires"
}
```

Focus on creating a task that CANNOT be completed without understanding tool dependencies.

Task Quality Assessment Prompt

Purpose: Evaluate task quality on solvability and utility dimensions

Evaluate this task's quality on two dimensions:

Task Description: {task_description}

Fuzzy Description (what the agent sees):

 $\{fuzzy_description\}$

Available Tools: {tool_descriptions}

EVALUATION CRITERIA:

1. **SOLVABILITY** (1-10):

• 10: All required data is provided, tools perfectly match needs, clear success criteria

 • 8-9: Task is clearly solvable with the given tools, minor ambiguities acceptable

4-5: Significant gaps in tool coverage or data requirements
1-3: Task cannot be meaningfully completed with available tools

Consider:
• Are all necessary tools available?

 Is all required data provided (no external dependencies)?

 • Can the agent achieve the stated goal with these tools based on the function and output of the tools?

• 6-7: Mostly solvable but some steps may be challenging or unclear

• Are success criteria clear and measurable?

2. UTILITY (1-10):

10: Critical business/research value, addresses real-world problem perfectly
8-9: Strong practical value, useful for decision-making or operations

• 6-7: Moderate value, interesting but not critical

4-5: Limited practical value, mostly academic exercise
1-3: Trivial or artificial task with no real-world application

Consider:

• Does this address a real business or research need?

Does this address a real business or research need?

• Would the results be actionable and valuable?

• Is the complexity justified by the outcome?

• Does it test meaningful agent capabilities?

OUTPUT FORMAT:

 _

Provide scores and brief feedback in JSON format:

```
{
  "solvability_score": <number 1-10>,
  "utility_score": <number 1-10>,
  "solvability_feedback": "Brief explanation of solvability
      assessment",
  "utility_feedback": "Brief explanation of utility assessment"
}
```

Task Description Fuzzing Prompt

Purpose: Convert detailed tasks into natural, conversational user requests

Convert this detailed task into a NATURAL, CONVERSATIONAL USER REQUEST that truly tests the agent's reasoning ability.

Original detailed task:

{detailed_task}

Available tools: {len(tools)} tools (but don't mention them in the fuzzy version)

CRITICAL: CREATE A GENUINELY NATURAL REQUEST

ABSOLUTELY FORBIDDEN:

- ANY structured language that looks like a task description
- Phrases like "I need to analyze", "I want to compare", "Please evaluate"
- ANY specific server/platform names (arXiv, PubMed, Yahoo Finance, Google Maps, etc.)
- ANY tool names or technical implementation details
- Lists, enumerations, or step-by-step instructions
- Formal task language ("perform", "conduct", "execute", "implement")

INSTEAD, CREATE A NATURAL CONVERSATION:

- Start with context or a problem the user is facing
- Use conversational openers: "I'm trying to figure out...", "Been wondering about...", "Got a situation here..."
- Include uncertainty: "not sure if", "maybe", "possibly", "might be"
- Add personal context: "for my project", "my boss asked", "I'm curious about"
- Express the need through a story or scenario, not a task list

HIDE THE TASK STRUCTURE COMPLETELY:

Don't say: "I need to analyze financial metrics for AAPL, GOOGL, and MSFT" **Say instead:** "I've been thinking about rebalancing my portfolio and I'm curious how tech giants like AAPL, GOOGL, and MSFT have been doing lately. Which one would you say looks strongest right now?"

Don't say: "Search for recent papers on CRISPR and summarize the key findings" **Say instead:** "I'm giving a presentation next week about gene editing. What's the latest buzz around CRISPR? Any breakthrough discoveries I should know about?"

Don't say: "Calculate the thermal efficiency and optimize the heat exchanger parameters" **Say instead:** "We've got this heat exchanger running at 80°C inlet, 60°C outlet with 0.5 kg/s

flow. It doesn't seem very efficient to me. Can you help me figure out what's going on and maybe how to improve it?"

1569 1570

PRESERVE CRITICAL DATA NATURALLY:

1571 1572

• Embed specific values conversationally: "around 150 or so", "somewhere near San Fran-

1573 1574

• Use approximate language when appropriate: "roughly", "about", "somewhere between" • Keep exact values only when truly necessary (calculations, IDs, etc.)

1575 1576

{calculation_requirements}

MAKE IT SOUND LIKE A REAL PERSON:

1578 1579

• Use contractions: "I'm", "don't", "can't", "what's"

1580 1581

• Include filler words sparingly: "actually", "basically", "you know"

 Show emotion or urgency when appropriate: "really need to know", "been bugging me" • Ask questions naturally: "What do you think?", "Does that make sense?", "Am I overthinking this?"

1584 1585

EXAMPLES OF NATURAL FUZZY DESCRIPTIONS:

1586 1587

Example 1 (Finance):

1590 1591

"So I've been watching my tech stocks lately and honestly, I'm not sure if I should hold or sell. AAPL, GOOGL, and MSFT make up most of my portfolio. With everything going on in the market, which one do you think has the best outlook? I'm particularly worried about their debt levels and cash flow situation. Need some real data to back up any decision here, not just gut feelings."

1592 1593

Example 2 (Research):

1594 1595 1596

"I'm preparing for a journal club presentation and everyone's been talking about these new CRISPR developments. What's actually new in the past few months? I keep hearing about off-target effects being solved but can't find solid evidence. Would really appreciate concrete findings from recent studies, not just hype."

1597 1598 1599

Example 3 (Technical):

1602

"We're having issues with our heat exchanger setup - running at 80°C in, 60°C out, flow rate's about 0.5 kg/s. My manager thinks we're wasting energy but I need to prove it with actual numbers. Can you work out what our current efficiency is and maybe suggest what parameters we should tweak? Need solid calculations to convince them to approve changes."

1603 1604

CRITICAL: END NATURALLY WITH EVIDENCE REQUIREMENTS WOVEN INTO THE CONVERSATION:

1605 1606

Instead of: "Please provide evidence-based analysis with concrete data"

1608

Say: "I really need actual data on this - can't go to my boss with just opinions. Whatever you find, make sure it's backed up by real numbers or solid sources, okay?"

1609 1610

ALWAYS USE relative dates/times (e.g., "next 7 days", "past 3 months", "upcoming week" not "January 2024" or "2024-01-15")

1611 1612 Return ONLY the natural, conversational fuzzy description - make it sound like a real person asking for help, not a robot executing a task.

1613 1614 1615

A.5 DETAILS OF LLM JUDGE

1616 1617 1618

In this section, we show the detailed prompt used for the LLM judge in our benchmark.

LLM Judge Prompt

System Role:

task execution.

evaluation should be:

User:

1620

16211622

1623

1624

1625

1626

1627

1628

1629

1630

1631 1632

1633

1634

1635

i	the fuzzy task may differ but still be valid.
	"{concrete_task_description}"
	DEPENDENCY ANALYSIS:
	Note: This analysis was generated during task creation to help understand tool dependencies.
	The agent did NOT see this analysis. It is provided as reference for evaluation purposes.
	{dependency_analysis} FINAL SOLUTION: "{final_solution}"
	TOTAL ROUNDS: {total_rounds}
	EXECUTION SUMMARY:
	{execution_summary}
	AVAILABLE TOOLS ({num_tools} tools):
	{available_tools}
	Task Completion Rubric (1–10 per subdimension)
	1. Task Fulfillment
	• 1–3: Perfectly completes 10–30% of requirements.
	• 4–6: Perfectly completes 40–60% of requirements.
	• 7–8: Perfectly completes 70–80% of requirements.
	• 9–10: Perfectly completes 90–100% of requirements.
	2. Grounding
	• 1–3: 10–30% of claims are perfectly grounded in tool outputs.
	• 4–6: 40–60% of claims are perfectly grounded in tool outputs.
	• 7–8: 70–80% of claims are perfectly grounded in tool outputs.
	• 9–10: 90–100% of claims are perfectly grounded in tool outputs.
,	Tool Usage Rubric (1–10 per subdimension)
	1. Tool Appropriateness
	• 1–3: 10–30% of tools were perfectly selected for their subtasks.
	• 4–6: 40–60% of tools were perfectly selected for their subtasks.
	• 7–8: 70–80% of tools were perfectly selected for their subtasks.
	• 9–10: 90–100% of tools were perfectly selected for their subtasks.
	2. Parameter Accuracy
	• 1–3: 10–30% of tool calls have perfectly accurate and complete parameters.
	• 4–6: 40–60% of tool calls have perfectly accurate and complete parameters.
	31

You are an impartial evaluator judging the quality of an AI agent's multi-server tool-based

You must assign scores only based on evidence from the task, solution, and tool usage. Your

Note: The agent did NOT see this concrete version. It only saw the task above. The task

visible for the agent is the fuzzy version of the concrete task. The agent's interpretation of

• Objective (avoid being influenced by language fluency or formatting)

CONCRETE TASK REFERENCE (For evaluation context only):

• Robust against bias (ignore narrative style, verbosity, or formatting polish)

• Justified (include specific reasons tied to each score)

TASK PRESENTED TO AGENT: "{task}"

1676

1677 1678 1679

1. Dependency Awareness	
• 1–3: 10–30% of dependency chains are perfectly executed.	
• 4–6: 40–60% of dependency chains are perfectly executed.	
• 7–8: 70–80% of dependency chains are perfectly executed.	
• 9–10: 90–100% of dependency chains are perfectly executed.	
2. Parallelism and Efficiency	
• 1–3: More than 70% redundant calls OR less than 30% of parallelizable tasks executed in parallel.	were
• 4–6: 40–60% redundant calls OR 40–60% of parallelizable tasks were execu parallel.	ted in
• 7–8: 20–30% redundant calls AND 70–80% of parallelizable tasks were execuparallel.	ited in
• 9–10: Less than 10% redundant calls AND 90–100% of parallelizable tasks wer cuted in parallel.	e exe-
PERCENTAGE-BASED SCORING SYSTEM:	
How to Calculate Scores:	
For each dimension, calculate the DEFECT RATE:	
• Defect Rate = (Number of Issues / Total Opportunities) × 100% Then map defect rate to score:	
• 0–10% defects → Score 9–10 (Excellent to Perfect)	
• 10–30% defects → Score 7–9 (Good performance)	
• 30–50% defects → Score 5–7 (Average performance)	
• 50–70% defects → Score 3–5 (Poor performance)	
• 70–100% defects \rightarrow Score 0–3 (Failed)	
How to Score:	
1. When evaluating percentages, be EXTREMELY STRICT about what counts as "per executed"	rfectly
2. "Perfectly" means ALL of the following must be true:	
 Correct tool selection (not just "works" but OPTIMAL choice) 	
• Complete and accurate parameters (not just valid, but IDEAL)	
• Zero redundancy (no repeated or unnecessary calls)	
Proper error handling (graceful recovery from ANY failure) The state of the s	
Efficient execution (parallel when possible, minimal rounds)	
Concise output (no verbose explanations unless requested)	
3. If ANY of the above is missing, that portion is NOT perfectly executed (counts as 0	
4. Example: Task completed correctly but with 1 redundant call = that portion is 0% p	erfect
KEY PRINCIPLES: 1. ALWAYS calculate as percentage, NOT absolute numbers	
2. 10 errors in 100 calls (10%) = same score as 1 error in 10 calls (10%)	
3. Consider the OPPORTUNITY COUNT for each dimension:	
 Tool calls: How many total calls were made? Parallelization: How many tasks COULD have been parallel?	
32	

• 7–8: 70–80% of tool calls have perfectly accurate and complete parameters.

• 9–10: 90–100% of tool calls have perfectly accurate and complete parameters.

PLANNING EFFECTIVENESS AND EFFICIENCY RUBRIC (1–10 PER SUBDIMENSION)

 Claims: How many factual statements were made? Dependencies: How many dependency relationships exist? NORMALIZE by complexity - don't punish complex tasks: Simple task: 1 error/5 steps (20% defect) = Score 7 Complex task: 4 errors/20 steps (20% defect) = Score 7 CRITICAL: Apply the STRICTEST interpretation of "perfectly executed". If the doubt, score lower. CONCRETE SCORING EXAMPLES WITH PROPORTIONS: Task Fulfillment: Completed 19/20 requirements (5% defect rate) = Score 9 Completed 19/20 requirements (20% defect rate) = Score 8 Completed 12/20 requirements (40% defect rate) = Score 6 Completed 8/20 requirements (60% defect rate) = Score 4 Tool Appropriateness: 19/20 tools optimal (5% defect rate) = Score 9 16/20 tools optimal (20% defect rate) = Score 8 12/20 tools optimal (40% defect rate) = Score 6 8/20 tools optimal (60% defect rate) = Score 6 8/20 tools optimal (60% defect rate) = Score 4 Parallelism & Efficiency: 9/10 parallelizable tasks done in parallel (10% missed) = Score 9 8/10 parallelizable tasks done in parallel (40% missed) = Score 8 6/10 parallelizable tasks done in parallel (60% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 6 19/20 claims supported by evidence (5% unsupported) = Score 8 19/20 claims supported by evidence (40% unsupported) = Score 8 12/20 claims supported by evidence (60% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 6 8/20 claims supported by evidence (50% unsupported) = Score 6 8/20 claims supported by evidence (50% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 6<!--</th--><th>D</th>	D
 Dependencies: How many dependency relationships exist? NORMALIZE by complexity - don't punish complex tasks: Simple task: 1 error/5 steps (20% defect) = Score 7 Complex task: 4 errors/20 steps (20% defect) = Score 7 CRITICAL: Apply the STRICTEST interpretation of "perfectly executed". If the doubt, score lower. CONCRETE SCORING EXAMPLES WITH PROPORTIONS: Task Fulfillment: Completed 19/20 requirements (5% defect rate) = Score 9 Completed 16/20 requirements (20% defect rate) = Score 8 Completed 12/20 requirements (40% defect rate) = Score 6 Completed 8/20 requirements (40% defect rate) = Score 6 Completed 8/20 requirements (60% defect rate) = Score 4 Tool Appropriateness: 19/20 tools optimal (5% defect rate) = Score 8 12/20 tools optimal (60% defect rate) = Score 8 12/20 tools optimal (60% defect rate) = Score 6 8/20 tools optimal (60% defect rate) = Score 4 Parallelism & Efficiency: 9/10 parallelizable tasks done in parallel (10% missed) = Score 9 8/10 parallelizable tasks done in parallel (40% missed) = Score 8 6/10 parallelizable tasks done in parallel (60% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 6 19/20 claims supported by evidence (5% unsupported) = Score 9 16/20 claims supported by evidence (5% unsupported) = Score 8 12/20 claims supported by evidence (60% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 8 60/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (5% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6	Parameters: How many total parameters across all calls? Claims: How many factual statements many made?
4. NORMALIZE by complexity - don't punish complex tasks: • Simple task: 1 error/5 steps (20% defect) = Score 7 • Complex task: 4 errors/20 steps (20% defect) = Score 7 • Complex task: 4 errors/20 steps (20% defect) = Score 7 CRITICAL: Apply the STRICTEST interpretation of "perfectly executed". If the doubt, score lower. CONCRETE SCORING EXAMPLES WITH PROPORTIONS: Task Fulfillment: • Completed 19/20 requirements (5% defect rate) = Score 9 • Completed 19/20 requirements (20% defect rate) = Score 8 • Completed 12/20 requirements (40% defect rate) = Score 6 • Completed 8/20 requirements (60% defect rate) = Score 4 Tool Appropriateness: • 19/20 tools optimal (5% defect rate) = Score 9 • 16/20 tools optimal (20% defect rate) = Score 8 • 12/20 tools optimal (40% defect rate) = Score 6 • 8/20 tools optimal (60% defect rate) = Score 6 • 8/20 tools optimal (60% defect rate) = Score 4 Parallelism & Efficiency: • 9/10 parallelizable tasks done in parallel (10% missed) = Score 9 • 8/10 parallelizable tasks done in parallel (20% missed) = Score 6 • 4/10 parallelizable tasks done in parallel (60% missed) = Score 6 • 4/10 parallelizable tasks done in parallel (60% missed) = Score 6 • 19/20 claims supported by evidence (5% unsupported) = Score 9 • 16/20 claims supported by evidence (20% unsupported) = Score 8 • 12/20 claims supported by evidence (60% unsupported) = Score 6 • 8/20 claims supported by evidence (60% unsupported) = Score 6 • 8/20 claims supported by evidence (60% unsupported) = Score 6 • 8/20 claims supported by evidence (5% defect rate) = Score 6 • 8/100 parameters perfect (5% defect rate) = Score 8 • 60/100 parameters perfect (60% defect rate) = Score 6 • 40/100 parameters perfect (60% defect rate) = Score 6 • 40/100 parameters perfect (60% defect rate) = Score 6 • 40/100 parameters perfect (60% defect rate) = Score 6 • 60/100 parameters perfect (60% defect rate) = Score 6 • 60/100 parameters perfect (60% defect rate) = Score 6 • 60/100 parameters perfect (60% defect rate) = Sco	•
• Simple task: 1 error/5 steps (20% defect) = Score 7 • Complex task: 4 errors/20 steps (20% defect) = Score 7 CRITICAL: Apply the STRICTEST interpretation of "perfectly executed". If the doubt, score lower. CONCRETE SCORING EXAMPLES WITH PROPORTIONS: Task Fulfillment: • Completed 19/20 requirements (5% defect rate) = Score 9 • Completed 16/20 requirements (20% defect rate) = Score 8 • Completed 12/20 requirements (40% defect rate) = Score 6 • Completed 8/20 requirements (60% defect rate) = Score 4 Tool Appropriateness: • 19/20 tools optimal (5% defect rate) = Score 9 • 16/20 tools optimal (20% defect rate) = Score 8 • 12/20 tools optimal (40% defect rate) = Score 6 • 8/20 tools optimal (60% defect rate) = Score 6 • 8/20 tools optimal (60% defect rate) = Score 4 Parallelism & Efficiency: • 9/10 parallelizable tasks done in parallel (10% missed) = Score 9 • 8/10 parallelizable tasks done in parallel (20% missed) = Score 8 • 6/10 parallelizable tasks done in parallel (60% missed) = Score 6 • 4/10 parallelizable tasks done in parallel (60% missed) = Score 9 • 16/20 claims supported by evidence (5% unsupported) = Score 9 • 16/20 claims supported by evidence (20% unsupported) = Score 6 • 8/20 claims supported by evidence (40% unsupported) = Score 6 • 8/20 claims supported by evidence (40% unsupported) = Score 6 • 8/20 claims supported by evidence (5% unsupported) = Score 6 • 8/20 claims supported by evidence (5% unsupported) = Score 6 • 8/20 claims supported by evidence (5% unsupported) = Score 6 • 8/20 claims supported by evidence (5% unsupported) = Score 6 • 8/20 claims supported by evidence (5% unsupported) = Score 6 • 8/20 claims supported by evidence (5% unsupported) = Score 6 • 8/20 claims supported by evidence (5% unsupported) = Score 6 • 8/20 claims supported by evidence (5% defect rate) = Score 6 • 8/20 claims supported by evidence (60% unsupported) = Score 6 • 8/20 claims supported by evidence (60% defect rate) = Score 6 • 8/20 claims supported by evidence (60% defect rate) = Score 6 • 8/20 claims su	
• Complex task: 4 errors/20 steps (20% defect) = Score 7 CRITICAL: Apply the STRICTEST interpretation of "perfectly executed". If the doubt, score lower. CONCRETE SCORING EXAMPLES WITH PROPORTIONS: Task Fulfillment: • Completed 19/20 requirements (5% defect rate) = Score 9 • Completed 16/20 requirements (20% defect rate) = Score 8 • Completed 12/20 requirements (40% defect rate) = Score 6 • Completed 8/20 requirements (60% defect rate) = Score 4 Tool Appropriateness: • 19/20 tools optimal (5% defect rate) = Score 9 • 16/20 tools optimal (5% defect rate) = Score 8 • 12/20 tools optimal (60% defect rate) = Score 6 • 8/20 tools optimal (60% defect rate) = Score 6 • 8/20 tools optimal (60% defect rate) = Score 4 Parallelism & Efficiency: • 9/10 parallelizable tasks done in parallel (10% missed) = Score 9 • 8/10 parallelizable tasks done in parallel (20% missed) = Score 8 • 6/10 parallelizable tasks done in parallel (60% missed) = Score 6 • 4/10 parallelizable tasks done in parallel (60% missed) = Score 4 Grounding: • 19/20 claims supported by evidence (5% unsupported) = Score 9 • 16/20 claims supported by evidence (20% unsupported) = Score 8 • 12/20 claims supported by evidence (40% unsupported) = Score 6 • 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: • 95/100 parameters perfect (5% defect rate) = Score 9 • 80/100 parameters perfect (40% defect rate) = Score 8 • 60/100 parameters perfect (40% defect rate) = Score 6 • 40/100 parameters perfect (60% defect rate) = Score 6 • 40/100 parameters perfect (5% defect rate) = Score 6 • 40/100 parameters perfect (5% defect rate) = Score 6 • 40/100 parameters perfect (5% defect rate) = Score 6 • 40/100 parameters perfect (5% defect rate) = Score 6 • 40/100 parameters perfect (5% defect rate) = Score 6 • 50/100 parameters perfect (60% defect rate) = Score 6 • 40/100 parameters perfect (60% defect rate) = Score 6 • 40/100 parameters perfect (60% defect rate) = Score 6 • 50/100 parameters perfect (60% defect rate) = Score 6 • 40/100 par	
CRITICAL: Apply the STRICTEST interpretation of "perfectly executed". If the doubt, score lower. CONCRETE SCORING EXAMPLES WITH PROPORTIONS: Task Fulfillment: • Completed 19/20 requirements (5% defect rate) = Score 9 • Completed 16/20 requirements (20% defect rate) = Score 8 • Completed 12/20 requirements (40% defect rate) = Score 6 • Completed 8/20 requirements (60% defect rate) = Score 4 Tool Appropriateness: • 19/20 tools optimal (5% defect rate) = Score 8 • 12/20 tools optimal (20% defect rate) = Score 8 • 12/20 tools optimal (60% defect rate) = Score 6 • 8/20 tools optimal (60% defect rate) = Score 4 Parallelism & Efficiency: • 9/10 parallelizable tasks done in parallel (10% missed) = Score 9 • 8/10 parallelizable tasks done in parallel (20% missed) = Score 8 • 6/10 parallelizable tasks done in parallel (60% missed) = Score 6 • 4/10 parallelizable tasks done in parallel (60% missed) = Score 6 • 4/10 parallelizable tasks done in parallel (60% missed) = Score 6 • 19/20 claims supported by evidence (5% unsupported) = Score 9 • 16/20 claims supported by evidence (20% unsupported) = Score 8 • 12/20 claims supported by evidence (40% unsupported) = Score 6 • 8/20 claims supported by evidence (60% unsupported) = Score 6 • 8/20 claims supported by evidence (60% unsupported) = Score 6 • 8/20 claims supported by evidence (5% defect rate) = Score 9 • 80/100 parameters perfect (5% defect rate) = Score 9 • 80/100 parameters perfect (60% defect rate) = Score 6 • 40/100 parameters perfect (60% defect rate) = Score 6 • 60/100 parameters perfect (40% defect rate) = Score 6 • 70RMAT NOTE: Text output when JSON not required = NO PENALTY (0% deFORMAT NOTE: Missing JSON when explicitly required = Count as failed requested to the surface of the surfac	
doubt, score lower. CONCRETE SCORING EXAMPLES WITH PROPORTIONS: Task Fulfillment: Completed 19/20 requirements (5% defect rate) = Score 9 Completed 16/20 requirements (20% defect rate) = Score 8 Completed 12/20 requirements (40% defect rate) = Score 6 Completed 8/20 requirements (60% defect rate) = Score 4 Tool Appropriateness: 19/20 tools optimal (5% defect rate) = Score 9 16/20 tools optimal (20% defect rate) = Score 8 12/20 tools optimal (60% defect rate) = Score 6 8/20 tools optimal (60% defect rate) = Score 4 Parallelism & Efficiency: 9/10 parallelizable tasks done in parallel (10% missed) = Score 9 8/10 parallelizable tasks done in parallel (20% missed) = Score 8 6/10 parallelizable tasks done in parallel (60% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 4 Grounding: 19/20 claims supported by evidence (5% unsupported) = Score 9 16/20 claims supported by evidence (20% unsupported) = Score 8 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 6 8/20 claims supported by evidence (5% defect rate) = Score 6 8/100 parameters perfect (5% defect rate) = Score 8 6/0/100 parameters perfect (5% defect rate) = Score 8 6/0/100 parameters perfect (20% defect rate) = Score 6 6/0/100 parameters perfect (40% defect rate) = Score 6 6/0/100 parameters perfect (40% defect rate) = Score 6 6/0/100 parameters perfect (40% defect rate) = Score 6 6/0/100 parameters perfect (40% defect rate) = Score 6 6/0/100 parameters perfect (5% defect rate) = Score 6 6/0/100 parameters perfect (5% defect rate) = Score 6 6/0/100 parameters perfect (5% defect rate) = Score 6 6/0/100 parameters perfect (5% defect rate) = Score 6 6/0/100 parameters perfect (5% defect rate) = Score 6 6/0/100 parameters perfect (5% defect rate) = Score 6 6/0/100 parameters perfect (5% defect rate) = Score 6 6/0/100 parameters perfect (5% defect rate) = Score 6	<u> </u>
Task Fulfillment: Completed 19/20 requirements (5% defect rate) = Score 9 Completed 16/20 requirements (20% defect rate) = Score 8 Completed 12/20 requirements (40% defect rate) = Score 6 Completed 8/20 requirements (60% defect rate) = Score 4 Tool Appropriateness: 19/20 tools optimal (5% defect rate) = Score 9 16/20 tools optimal (20% defect rate) = Score 8 12/20 tools optimal (40% defect rate) = Score 6 8/20 tools optimal (40% defect rate) = Score 4 Parallelism & Efficiency: 9/10 parallelizable tasks done in parallel (10% missed) = Score 9 8/10 parallelizable tasks done in parallel (20% missed) = Score 8 6/10 parallelizable tasks done in parallel (40% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 8 6/10 claims supported by evidence (5% unsupported) = Score 9 16/20 claims supported by evidence (40% unsupported) = Score 8 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (5% defect rate) = Score 8 60/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% de FORMAT NOTE: Missing JSON when explicitly required = Count as failed requencemember: Most real-world executions should score 4-6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4-5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage	
 Completed 19/20 requirements (5% defect rate) = Score 9 Completed 16/20 requirements (20% defect rate) = Score 8 Completed 12/20 requirements (40% defect rate) = Score 6 Completed 8/20 requirements (60% defect rate) = Score 4 Tool Appropriateness: 19/20 tools optimal (5% defect rate) = Score 9 16/20 tools optimal (20% defect rate) = Score 8 12/20 tools optimal (60% defect rate) = Score 6 8/20 tools optimal (60% defect rate) = Score 4 Parallelism & Efficiency: 9/10 parallelizable tasks done in parallel (10% missed) = Score 9 8/10 parallelizable tasks done in parallel (20% missed) = Score 8 6/10 parallelizable tasks done in parallel (60% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 4 Grounding: 19/20 claims supported by evidence (5% unsupported) = Score 9 16/20 claims supported by evidence (20% unsupported) = Score 8 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 6 8/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters pe	CONCRETE SCORING EXAMPLES WITH PROPORTIONS:
 Completed 12/20 requirements (40% defect rate) = Score 6 Completed 8/20 requirements (60% defect rate) = Score 4 Tool Appropriateness: 19/20 tools optimal (5% defect rate) = Score 9 16/20 tools optimal (20% defect rate) = Score 8 12/20 tools optimal (40% defect rate) = Score 6 8/20 tools optimal (60% defect rate) = Score 4 Parallelism & Efficiency: 9/10 parallelizable tasks done in parallel (10% missed) = Score 8 6/10 parallelizable tasks done in parallel (20% missed) = Score 8 6/10 parallelizable tasks done in parallel (60% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 4 Grounding: 19/20 claims supported by evidence (5% unsupported) = Score 8 12/20 claims supported by evidence (20% unsupported) = Score 8 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (40% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% deformat NOTE: Missing JSON when explicitly required = Count as failed requiremember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	
 Completed 8/20 requirements (60% defect rate) = Score 4 Tool Appropriateness: 19/20 tools optimal (5% defect rate) = Score 9 16/20 tools optimal (20% defect rate) = Score 8 12/20 tools optimal (40% defect rate) = Score 6 8/20 tools optimal (60% defect rate) = Score 4 Parallelism & Efficiency: 9/10 parallelizable tasks done in parallel (10% missed) = Score 8 6/10 parallelizable tasks done in parallel (20% missed) = Score 8 6/10 parallelizable tasks done in parallel (60% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 4 Grounding: 19/20 claims supported by evidence (5% unsupported) = Score 8 12/20 claims supported by evidence (20% unsupported) = Score 8 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (40% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% de FORMAT NOTE: Missing JSON when explicitly required = Count as failed required Remember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	• Completed 16/20 requirements (20% defect rate) = Score 8
 Completed 8/20 requirements (60% defect rate) = Score 4 Tool Appropriateness: 19/20 tools optimal (5% defect rate) = Score 9 16/20 tools optimal (20% defect rate) = Score 8 12/20 tools optimal (40% defect rate) = Score 6 8/20 tools optimal (60% defect rate) = Score 4 Parallelism & Efficiency: 9/10 parallelizable tasks done in parallel (10% missed) = Score 8 6/10 parallelizable tasks done in parallel (20% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 6 19/20 claims supported by evidence (5% unsupported) = Score 8 12/20 claims supported by evidence (20% unsupported) = Score 8 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (40% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% de FORMAT NOTE: Missing JSON when explicitly required = Count as failed requiremember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	• Completed 12/20 requirements (40% defect rate) = Score 6
Tool Appropriateness: 19/20 tools optimal (5% defect rate) = Score 9 16/20 tools optimal (20% defect rate) = Score 8 12/20 tools optimal (40% defect rate) = Score 6 8/20 tools optimal (60% defect rate) = Score 4 Parallelism & Efficiency: 9/10 parallelizable tasks done in parallel (10% missed) = Score 9 8/10 parallelizable tasks done in parallel (20% missed) = Score 8 6/10 parallelizable tasks done in parallel (60% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 4 Grounding: 19/20 claims supported by evidence (5% unsupported) = Score 9 16/20 claims supported by evidence (20% unsupported) = Score 8 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (40% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 50RMAT NOTE: Text output when JSON not required = NO PENALTY (0% deformant NOTE: Missing JSON when explicitly required = Count as failed requiremember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes	
 16/20 tools optimal (20% defect rate) = Score 8 12/20 tools optimal (60% defect rate) = Score 6 8/20 tools optimal (60% defect rate) = Score 4 Parallelism & Efficiency: 9/10 parallelizable tasks done in parallel (10% missed) = Score 9 8/10 parallelizable tasks done in parallel (20% missed) = Score 8 6/10 parallelizable tasks done in parallel (40% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 4 Grounding: 19/20 claims supported by evidence (5% unsupported) = Score 9 16/20 claims supported by evidence (20% unsupported) = Score 8 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% deformant NOTE: Missing JSON when explicitly required = Count as failed required Remember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	Tool Appropriateness:
 12/20 tools optimal (40% defect rate) = Score 6 8/20 tools optimal (60% defect rate) = Score 4 Parallelism & Efficiency: 9/10 parallelizable tasks done in parallel (10% missed) = Score 9 8/10 parallelizable tasks done in parallel (20% missed) = Score 8 6/10 parallelizable tasks done in parallel (40% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 4 Grounding: 19/20 claims supported by evidence (5% unsupported) = Score 9 16/20 claims supported by evidence (20% unsupported) = Score 8 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% de FORMAT NOTE: Missing JSON when explicitly required = Count as failed requirencemember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	•
 8/20 tools optimal (60% defect rate) = Score 4 Parallelism & Efficiency: 9/10 parallelizable tasks done in parallel (10% missed) = Score 9 8/10 parallelizable tasks done in parallel (20% missed) = Score 8 6/10 parallelizable tasks done in parallel (40% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 4 Grounding: 19/20 claims supported by evidence (5% unsupported) = Score 9 16/20 claims supported by evidence (20% unsupported) = Score 8 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (40% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 50/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (5% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (50% defect rate) = Score 6 40/100 parameters perfect (50% defect rate) = Score 6 40/100 parameters perfect (50% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 8 60/100 parameters perfect (60% defect rate) = Score 8 60/100 parameters perfect (60% defect rate) = Score 8	
Parallelism & Efficiency: 9/10 parallelizable tasks done in parallel (10% missed) = Score 9 8/10 parallelizable tasks done in parallel (20% missed) = Score 8 6/10 parallelizable tasks done in parallel (40% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 4 Grounding: 19/20 claims supported by evidence (5% unsupported) = Score 9 16/20 claims supported by evidence (20% unsupported) = Score 8 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (40% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% de FORMAT NOTE: Missing JSON when explicitly required = Count as failed requiremember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes	• 12/20 tools optimal (40% defect rate) = Score 6
 9/10 parallelizable tasks done in parallel (10% missed) = Score 9 8/10 parallelizable tasks done in parallel (20% missed) = Score 8 6/10 parallelizable tasks done in parallel (40% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 4 Grounding: 19/20 claims supported by evidence (5% unsupported) = Score 9 16/20 claims supported by evidence (20% unsupported) = Score 8 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (40% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% de FORMAT NOTE: Missing JSON when explicitly required = Count as failed requiremember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	
 8/10 parallelizable tasks done in parallel (20% missed) = Score 8 6/10 parallelizable tasks done in parallel (40% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 4 Grounding: 19/20 claims supported by evidence (5% unsupported) = Score 9 16/20 claims supported by evidence (20% unsupported) = Score 8 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 8 60/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (40% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% de FORMAT NOTE: Missing JSON when explicitly required = Count as failed requiremember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	
 6/10 parallelizable tasks done in parallel (40% missed) = Score 6 4/10 parallelizable tasks done in parallel (60% missed) = Score 4 Grounding: 19/20 claims supported by evidence (5% unsupported) = Score 9 16/20 claims supported by evidence (20% unsupported) = Score 8 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (40% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% de FORMAT NOTE: Missing JSON when explicitly required = Count as failed required Remember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	
 4/10 parallelizable tasks done in parallel (60% missed) = Score 4 Grounding: 19/20 claims supported by evidence (5% unsupported) = Score 9 16/20 claims supported by evidence (20% unsupported) = Score 8 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (40% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% deFORMAT NOTE: Missing JSON when explicitly required = Count as failed required Remember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	
Grounding: 19/20 claims supported by evidence (5% unsupported) = Score 9 16/20 claims supported by evidence (20% unsupported) = Score 8 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (40% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% de FORMAT NOTE: Missing JSON when explicitly required = Count as failed requ Remember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes	
 19/20 claims supported by evidence (5% unsupported) = Score 9 16/20 claims supported by evidence (20% unsupported) = Score 8 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (40% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% de FORMAT NOTE: Missing JSON when explicitly required = Count as failed required Remember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	
 12/20 claims supported by evidence (40% unsupported) = Score 6 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (40% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% de FORMAT NOTE: Missing JSON when explicitly required = Count as failed required remember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	
 8/20 claims supported by evidence (60% unsupported) = Score 4 Parameter Accuracy: 95/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (40% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% deFORMAT NOTE: Missing JSON when explicitly required = Count as failed required Remember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	• 16/20 claims supported by evidence (20% unsupported) = Score 8
Parameter Accuracy: • 95/100 parameters perfect (5% defect rate) = Score 9 • 80/100 parameters perfect (20% defect rate) = Score 8 • 60/100 parameters perfect (40% defect rate) = Score 6 • 40/100 parameters perfect (60% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% de FORMAT NOTE: Missing JSON when explicitly required = Count as failed required Remember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: • Default to 4–5 unless you have strong evidence for higher • Count ONLY truly perfect executions toward the percentage • Be your most critical self - find flaws first, then acknowledge successes	• 12/20 claims supported by evidence (40% unsupported) = Score 6
 95/100 parameters perfect (5% defect rate) = Score 9 80/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (40% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% de FORMAT NOTE: Missing JSON when explicitly required = Count as failed requiremember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	• 8/20 claims supported by evidence (60% unsupported) = Score 4
 80/100 parameters perfect (20% defect rate) = Score 8 60/100 parameters perfect (40% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% de FORMAT NOTE: Missing JSON when explicitly required = Count as failed requiremember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	
 60/100 parameters perfect (40% defect rate) = Score 6 40/100 parameters perfect (60% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% de FORMAT NOTE: Missing JSON when explicitly required = Count as failed requiremember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	• • • • • • • • • • • • • • • • • • • •
 40/100 parameters perfect (60% defect rate) = Score 4 FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% de FORMAT NOTE: Missing JSON when explicitly required = Count as failed requiremember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	
FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% de FORMAT NOTE: Missing JSON when explicitly required = Count as failed required Remember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: • Default to 4–5 unless you have strong evidence for higher • Count ONLY truly perfect executions toward the percentage • Be your most critical self - find flaws first, then acknowledge successes	
FORMAT NOTE: Missing JSON when explicitly required = Count as failed required Remember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: • Default to 4–5 unless you have strong evidence for higher • Count ONLY truly perfect executions toward the percentage • Be your most critical self - find flaws first, then acknowledge successes	
Remember: Most real-world executions should score 4–6. Scores of 8+ should be TIONAL. FINAL REMINDER BEFORE SCORING: • Default to 4–5 unless you have strong evidence for higher • Count ONLY truly perfect executions toward the percentage • Be your most critical self - find flaws first, then acknowledge successes	
 FINAL REMINDER BEFORE SCORING: Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	Remember: Most real-world executions should score 4–6. Scores of 8+ should be E
 Default to 4–5 unless you have strong evidence for higher Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	
 Count ONLY truly perfect executions toward the percentage Be your most critical self - find flaws first, then acknowledge successes 	
Be your most critical self - find flaws first, then acknowledge successes	
- If you is considering a score above 7, ie-examine for Aiv i imperfection	
• Server count is IRRELEVANT - using more servers is NOT better	

CRITICAL EVALUATION REQUIREMENTS:

- You MUST map each score to the exact percentage ranges in the rubrics.
 Task Completion and Tool Selection MUST be evaluated against the CONCRETE TASK
- REFERENCE, not the fuzzy task.

 3. Planning Effectiveness should be evaluated based on the PROPORTION of dependencies
- Planning Effectiveness should be evaluated based on the PROPORTION of dependencies correctly handled, not the absolute number of steps executed or exact conformance to the dependency analysis.
- First calculate the actual percentage of completion/success, then assign the corresponding score range.
- 5. IMPORTANT: Focus on completion RATIOS not absolute numbers completing 7/10 steps (70%) should score similarly to completing 14/20 steps (70%), regardless of task complexity.

 Please score based on COMPLETION PERCENTAGES and PROPORTIONAL SUCCESS, not absolute numbers of tools called or steps executed. Return your evaluation scoring and reasoning in this exact JSON format:

```
"task_fulfillment_reasoning": "Explain how well the agent fulfilled the detailed task objectives, referencing specific content from the CONCRETE TASK DESCRIPTION and what percentage was completed.",

"grounding_reasoning": "Explain how well the agent's outputs were
```

grounded in actual tool results versus unsupported claims.",
"tool_appropriateness_reasoning": "Explain whether the tools
selected were appropriate for each subtask requirement.",
"parameter_accuracy_reasoning": "Explain the accuracy and
completeness of parameters used in tool calls, noting any

missing required parameters or incorrect values.",
"dependency_awareness_reasoning": "Explain how well the agent
understood and respected task dependencies (what percentage of
dependencies were handled correctly), refer to the provided
dependency analysis section.",

"parallelism_efficiency_reasoning": "Explain the efficiency of execution, including use of parallelism and avoiding redundancy, refer to the provided dependency analysis section .",

"task_fulfillment": X,
"grounding": X,

"tool_appropriateness": X,
"parameter_accuracy": X,

"dependency_awareness": X,
"parallelism_and_efficiency": X

Return *only* the JSON object.

|831 |832 |833

1837

1879 1880

1881 1882

1883 1884 1885

1886

1887

1888

1889

A.6 EXAMPLES OF THE INPUT SCHEMA FOR TOOLS INVOLVED.

1838 Input Schema Example 1: Blood Pressure Percentiles in Medical Calculator 1839 1840 Tool: bp_children **Input Schema:** 1841 1842 1843 "type": "object", 1844 "properties": { 1845 "years": { "type": "integer", 1846 "minimum": 1, 1847 "maximum": 17, 1848 "description": "Age in years" 1849 1850 "months": { "type": "integer", 1851 "minimum": 0, 1852 "maximum": 11, 1853 "description": "Additional months of age" 1854 }, "height": { 1855 "type": "integer", 1856 "minimum": 50, 1857 "maximum": 250, 1858 "description": "Height in centimeters" 1859 }, 1860 "sex": { "type": "string", "enum": ["male", "female"], 1861 1862 "description": "Patient gender" 1863 1864 "systolic": { "type": "integer", 1865 "minimum": 50, 1866 "maximum": 250, 1867 "description": "Systolic blood pressure in mmHg" 1868 1869 "diastolic": { "type": "integer", 1870 "minimum": 30, 1871 "maximum": 150, 1872 "description": "Diastolic blood pressure in mmHg" 1873 1874 1875 "required": ["years", "months", "height", "sex", "systolic", " diastolic"] 1876 } 1877 1878

Input Schema Example 2: Multi-parameter eGFR in Kidney Function Calculator

```
Tool: egfr_epi_cr_cys
Input Schema:

{
    "type": "object",
    "properties": {
        "scr": {
            "type": "number",
            "minimum": 0.1,
```

```
1890
                   "maximum": 50.0,
1891
                   "multipleOf": 0.01,
1892
                   "description": "Serum creatinine level in mg/dL (0.1-50.0)"
1893
1894
                "scys": {
1895
                   "type": "number",
                  "minimum": 0.1,
1896
                  "maximum": 10.0,
1897
                   "multipleOf": 0.01,
1898
                   "description": "Serum cystatin C level in mg/L (0.1-10.0)"
1899
1900
                "age": {
                   "type": "integer",
1901
                   "minimum": 18,
1902
                   "maximum": 120,
1903
                   "description": "Patient age in years (18-120)"
1904
1905
                "male": {
                   "type": "boolean",
1906
                   "description": "True if patient is male, False if female"
1907
1908
1909
              "required": ["scr", "scys", "age", "male"],
1910
              "additionalProperties": false
1911
            }
1912
1913
```

Input Schema Example 3: Tensor Creation in Scientific Computing

```
Tool: create_tensor
```

1914 1915

1916

1917

1918 1919 1920

1921

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938 1939

1940

1941

1942

```
Input Schema:
    "type": "object",
    "properties": {
      "shape": {
        "type": "array",
        "items": {
          "type": "integer",
          "minimum": 1,
          "maximum": 10000
        },
        "minItems": 1,
        "maxItems": 10,
        "description": "Tensor shape as list of integers (max 10
            dimensions) "
      "values": {
        "type": "array",
        "items": {
          "type": "number"
        "minItems": 1,
        "maxItems": 1000000,
        "description": "Flat list of floats to fill the tensor"
      "name": {
        "type": "string",
        "pattern": "^[a-zA-Z][a-zA-Z0-9_]*$",
        "minLength": 1,
        "maxLength": 50,
```

Input Schema Example 4: Matrix Basis Change in Linear Algebra

```
Tool: change_basis Input Schema:
```

```
"type": "object",
  "properties": {
    "name": {
      "type": "string",
      "pattern": "^[a-zA-Z][a-zA-Z0-9_]*$",
      "description": "Name of matrix in tensor store"
    "new_basis": {
      "type": "array",
      "items": {
        "type": "array",
        "items": {
          "type": "number"
        "minItems": 1,
        "maxItems": 1000
      },
      "minItems": 1,
      "maxItems": 1000,
      "description": "2D array where columns are new basis
         vectors"
   }
  "required": ["name", "new_basis"],
  "additionalProperties": false
}
```

Input Schema Example 5: Multi-Domain Search in Biomedical Research

```
Tool: article_searcher Input Schema:
```

```
1998
                   "anyOf": [
1999
2000
                       "type": "array",
2001
                       "items": {
2002
                         "type": "string",
2003
                         "pattern": "^[A-Z][A-Z0-9]*$",
                         "minLength": 2,
2004
                         "maxLength": 20
2005
                       }
2006
                     },
2007
                     {"type": "string", "pattern": ^{A-Z}[A-Z0-9]*,
2008
                     {"type": "null"}
2009
                   "description": "Gene symbols (uppercase alphanumeric)"
2010
2011
                "variants": {
2012
                   "anyOf": [
2013
2014
                       "type": "array",
                       "items": {
2015
                         "type": "string",
2016
                         "pattern": "^(p\\.|c\\.|g\\.|m\\.)?[A-Z]?[0-9]+[
2017
                             A-Z*]?$"
2018
                       }
2019
                     },
                     {"type": "string"},
2020
                     {"type": "null"}
2021
                   ],
2022
                   "description": "Genetic variants (HGVS notation)"
2023
                 "include_preprints": {
2024
                   "type": "boolean",
2025
                   "default": true,
2026
                   "description": "Include preprints from bioRxiv/medRxiv"
2027
2028
                "page": {
2029
                   "type": "integer",
                   "minimum": 1,
2030
                   "maximum": 1000,
2031
                   "default": 1,
2032
                   "description": "Page number (1-based)"
2033
2034
                "page_size": {
                   "type": "integer",
2035
                   "minimum": 1,
2036
                   "maximum": 100,
2037
                   "default": 10,
2038
                   "description": "Results per page"
2039
2040
              "additionalProperties": false
2041
            }
2042
2043
2044
```

A.7 DETAILS OF THE TASKS

2045

2046

2047

2048204920502051

In this section, we demonstrate more examples of the tasks in MCP-BENCH (Table 8) and list the combinations of the servers to construct the tasks (Table 9).

Table 8: More examples of task in MCP-BENCH.

Servers & Tools

2052

2053 2054

2055

2058

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073 2074

2075

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2092 2093

Servers: Google Maps, Weather Data, National Parks Useful Tools: findParks, getParkDetails, getAlerts, getCampgrounds, getVisitorCenters, maps_geocode, maps_distance_matrix, maps_directions, maps_elevation, search_nearby, get_weather_forecast_tool, getEvents, maps_reverse_geocode, get_place_details, get_current_weather_tool

Task Description

Hey there—I'm gearing up for a quick three-day camping getaway to Yosemite from San Jose and, to be honest, I'm feeling a bit swamped by all the options and details. I'd love to zero in on the three best campgrounds that actually have real comforts think showers, drinking water, maybe even Wi-Fi-are definitely open on my dates and aren't under any alerts or closures right now. Once I've got that shortlist, can you help me figure out roughly how far and how long it takes to drive from San Jose to each of those spots? I'm planning to settle into one as my "base camp," so for that primary site it'd be great to know the nearest visitor center's hours and exactly how to get there—like turn-by-turn directions, plus the distance and travel time. Also, what's the elevation at that main campground? Since I want to pack smart, I really need a solid three-day weather outlook for Yosemite—nothing vague, just the highs, lows and general conditions for the next few days. And, just in case I run out of snacks or cooking supplies, is there a grocery or convenience store within about five kilometers of that first campground? I can't just wing this trip, so any real numbers or solid reference points you can dig up would be awesome—no vague guesses, please. Thanks! Please ensure all findings are supported by concrete data and verifiable sources. I need specific numbers and evidence, not generalizations.

Servers: Hugging Face, Paper Search, Wikipedia
Useful Tools: search-models, get-model-info, search-datasets, search_arxiv, download_arxiv, read_arxiv_paper, search_pubmed, search_wikipedia, get_article, get_summary, extract_key_facts, search-spaces, get-space-info, search_biorxiv, download_biorxiv, read_biorxiv_paper, get_sections, get_links

I'm working on a project where I need to pick the very best newsarticle classifier out there right now—specifically the one built for that 4-category news dataset (world, sports, business, tech). My boss wants me to find a publicly available, open-source model that has the highest F1 score, and then see if any fresh paper from the last three months has pushed the bar another 5 percentage points higher. If a recent research write-up really beats the community model by at least 5 points in F1, I'd like to know what architectural tweak or training trick they used so I can apply it to the top model we found. If not, we'll just roll with that open-source champion as is. Also, I need a quick, plain-English refresher on what a microaveraged F1 score actually means and how it's calculated—got to explain it clearly to stakeholders. Could you dig into this for me, pull together the model ID and its reported F1, track down any paper from roughly the past three months with its own F1, compare them, and then recommend next steps? Really need solid numbers and clear references so I'm not just guessing. Thanks! Please ensure all findings are supported by concrete data and verifiable sources. I need specific numbers and evidence, not generalizations.

Table 8 continued from previous page

Servers & Tools

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

Task Description

Servers: Google Maps, National Parks
Useful Tools: findParks,
getParkDetails, getAlerts, getEvents,
getCampgrounds, getVisitorCenters,
maps_geocode,
maps_reverse_geocode,
get_place_details, search_nearby,
maps_directions,
maps_distance_matrix,
maps_elevation

I've been itching to head out of Denver for a 5-day camping trip sometime in the next week, but I'm kind of torn on which national park makes the most sense. Ideally it's no more than about a 200 km drive, offers solid hiking and camping, and has a visitor center where I can catch any talks or events going on that week. I'm also really curious about spending nights at camp spots that vary in elevation-maybe one high ridge, one mid-level meadow and one lower valley—just to see how the landscape and weather change. On top of that, I don't want to be stuck cooking at every stop, so it'd be awesome to know what town is nearest each campsite and where I can grab a good meal—not just any greasy spoon, but something rated at least four stars, and I need to know how long the drive is and exactly how to get there. In the middle of the trip I'd like to base myself at a visitor center for a couple of nights to break things up and dive into any ranger-led programs. Could you put together a day-by-day itinerary for the upcoming week that does all of that—picks the best park within a reasonable drive from Denver, highlights three campsites that maximize elevation differences, flags any alerts or events happening, finds the nearest town restaurants with ratings and drive times, and then lays out morning/afternoon/evening plans for each of the five days? I really need actual data on this—can't go wandering off with just vague advice. Whatever you find, please back it up with real numbers or solid sources, okay? Please ensure all findings are supported by concrete data and verifiable sources. I need specific numbers and evidence, not generalizations.

Servers: NixOS, Context7 Useful Tools: nixos_search, nixos_info, nixos_channels, nixos_stats, home_manager_search, home_manager_info, home_manager_stats, home_manager_list_options, home_manager_options_by_prefix, darwin_search, darwin_info, darwin_stats, darwin_list_options, darwin_options_by_prefix, nixos_flakes_stats, nixos_flakes_search, nixhub_package_versions, nixhub_find_version, search_context, get context entry

I've been banging my head trying to get a Flask-based web app running in a totally reproducible way across our team's setups. We need Python 3.10, Flask itself, Redis, and Docker all coming from the same Nix channel (we're on 25.05), plus config snippets that play nicely with Home Manager on Linux laptops and nixdarwin on macOS. On top of that, my lead wants a tiny excerptlike 500 words or so-on how Flask routing works to stick in our README. What would really help is if you could pull together: • A quick snapshot of the 25.05 channel (how big it is, broadly speaking) • The exact Nix package names and versions for python3, flask, redis, and docker, ideally with the commit or revision that pins them • The main Home Manager options we should set for Python and Docker, with their descriptions • The equivalent nix-darwin settings so my mac-using teammate can just drop them in • Whether there's a Poetry flake out there we can lean on (or a note if none exist) • And finally, about 500 tokens' worth of official Flask routing docs so I can paste it straight into our project guide If you could wrap all of that up as a single JSON I can hand off to my team, that'd save me hours of guesswork—and give me the hard data I need to prove this setup will actually work everywhere. Thanks! Please ensure all findings are supported by concrete data and verifiable sources. I need specific numbers and evidence, not generalizations.

Table 8 continued from previous page

Servers & Tools

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2204

Task Description

Servers: Metropolitan Museum, Wikipedia **Useful Tools:**

search-museum-objects, get-museum-object, list-departments, search_wikipedia, get_article, get_summary, get_sections, get_links, get_related_topics, extract_key_facts, summarize_article_section, summarize_article_for_query I'm putting together a small art-history spotlight on seating in New Kingdom Egypt—specifically what's on view at the Met—and I'm a bit stuck on how to pull everything together. My professor wants me to pick out an example piece from the Met's Egyptian section, but I'm not even sure what they call that department or how to find chairs with pictures in their collection. Once I have a few candidates, I need to know their dates (make sure they're really New Kingdom) and exactly what they're made of. If there aren't enough chairs, I might have to slip in a stool or footrest to hit at least two examples, and then choose the one with the most elaborate materials list as my main focus. After that, I have to see what Wikipedia says about Ancient Egyptian furniture—grab the article summary, pull out the top five insights specifically about New Kingdom pieces, and boil down the "Construction and materials" bit into a quick blurb. It'd also help to know a handful of related topics I could mention for extra context. Finally, I need to check if my chosen Met object uses any materials that don't show up in those Wikipedia facts—those could be neat anomalies to point out. I really need actual Met IDs, image links, periods, materials lists, the Wikipedia summary, key New Kingdom facts, that short construction/materials paragraph, related topics, and a note on any unmatched materials. Can you help me track it all down? I can't go to my professor with guesses—gotta have real data or solid sources. Please ensure all findings are supported by concrete data and verifiable sources. I need specific numbers and evidence, not generalizations.

Servers: Scientific Computing, Math MCP

Useful Tools: compute_eigen, svd_decompose, determinant, rank, matrix_inverse, create_tensor, multiply_matrices, gradient, add, multiply, sum, mean, vector_dot_product, vector_project, scale_matrix, qr_decompose, subtract I'm working on a mini portfolio analysis for a class project and could use some help untangling the math. I've got three assets with expected returns of 0.08, 0.12 and 0.10, and I estimated their covariance matrix as:

[0.04 0.006 0.014 0.006 0.09 0.02 0.014 0.02 0.16]

When I peeked at the determinant, I worried it might be zero or really small, so I thought I might gently bump the whole matrix by 0.1% until it's safely nonzero. After that, I'd like to get its eigenvalues and eigenvectors, figure out the largest and smallest eigenvalue, and compute the condition number. If it turns out to be over 100, I'll need to go the SVD route and build a pseudoinverse; otherwise a regular inverse should do. Once I've got whichever inverse is appropriate, I want to multiply it by the return vector [0.08, 0.12, 0.10] to see what portfolio weights pop out. I'm also curious to project the return vector onto the principal eigenvector (the one tied to the biggest eigenvalue) and then verify my weights sum to 1 by dotting them with [1,1,1]. Could you walk me through all of that and give me the actual numbers? Specifically: • The nonzero determinant after any tiny scaling • The condition number • Whether you ended up using an inverse or a pseudoinverse • The full inverse (or pseudoinverse) matrix • The final weight vector • The projected return onto that top eigenvector • And the dot-product sum of the weights I really need concrete figures—no hand-waving-because I have to show this to my professor and can't just say "it works out." Thanks!

Table 8 continued from previous page

Servers & Tools

2214

2215

2216

2218

2219

2220

2222

2223

2224

2225

2226

2227

2228

2231

2232

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2251

2252

2254

2255

2256

2257

2258

2259

2262

2265

Task Description

Servers: Medical Calculator, Fruity Vice, BioMCP
Useful Tools: bmi_bsa_calculator, egfr_epi_cr_cys, crcl_cockcroft_gault, prevent_cvd_risk, chads2_vasc_score, corrected_sodium, corrected_calcium, maintenance_fluids, steroid_conversion, get_fruit_nutrition, think, search, fetch, article_searcher, article_getter, qtc_calculator, wells_pe_criteria, map_calculator

I'm looking after a 60-year-old woman who has type 2 diabetes, high blood pressure and high cholesterol, and I'm trying to pull together a full picture of her cardiometabolic and nutritional statusbut I'm not totally confident I've got it all right. She's roughly 80 kg and 165 cm tall, so I want to know her BMI and body surface area. For her kidney function, her creatinine is 1.2 mg/dL and cystatin C is 1.1 mg/L—do you think we should use the 2021 CKD-EPI creatinine-cystatin C equation to get her eGFR? And then I'd like a Cockcroft-Gault estimate of her creatinine clearance too. On top of that, I need to figure out her 10-year risk of cardiovascular disease—she's 60, female, total cholesterol is 240 mg/dL, HDL is 40 mg/dL, systolic blood pressure around 150 mmHg, she's diabetic, a current smoker, already on antihypertensives and a statin. I'm thinking PREVENT might be appropriate, but I need that percentage so I can decide if she really belongs on high-intensity statin therapy per the latest AHA/ACC thresholds. While we're crunching scores, could you also work out her CHA₂DS₂-VASc? She's got hypertension and diabetes, no heart failure, no prior stroke or vascular disease, and of course she's female. I'd also like to correct her serum sodium—measured at 138 mEq/L with a glucose of 250 mg/dL—and adjust her calcium, which is 8.0 mg/dL when albumin is 2.5 g/dL. I've been asked to set her maintenance IV fluid rate by the 4-2-1 rule for an 80 kg patient, and to convert her current prednisone dose of 5 mg/day into a dexamethasone equivalent. Finally, for her diet, I want to recommend a heart-healthy, low-glycemic plan—could you pull the nutrition facts for one medium apple and one medium banana? In the end, I really need a concise summary with all the hard numbers-BMI, BSA, eGFR, creatinine clearance, CVD risk percent, statin recommendation, CHA2DS2-VASc score, corrected sodium and calcium, fluid rate, steroid conversion and the apple/banana nutrition info—so I can justify everything to my team with solid data, not just gut feeling. Please ensure all findings are supported by concrete data and verifiable sources. I need specific numbers and evidence, not generalizations.

Servers: Google Maps, Weather Data, National Parks
Useful Tools: findParks,
getParkDetails, getAlerts,
getVisitorCenters, getCampgrounds,
getEvents, maps_geocode,
maps_distance_matrix,
maps_reverse_geocode,
maps_directions, maps_elevation,
search_nearby,
get_current_weather_tool,
get_weather_forecast_tool,
get_place_details

I'm trying to plan a week-long hiking and camping loop that starts and ends in Denver, and I'm hoping you can really nerd out with me on the details. I want to hit a few of the best parks in Colorado, Utah or Wyoming that have both solid trails and campgrounds, then narrow it down to the three closest ones by drive time so I'm not losing half my day on the road. From there, I'd love a day-by-day agenda for the next seven days that not only tells me which park I'm at and when, but also flags any active alerts or if there's more than a 50% chance of rain that day (so we could switch things around if it looks dicey). On top of that, I need to know what the visitor center hours are, where I can actually secure a campsite or catch an event, plus a quick weather snapshot each morning and night. If there's a nearby town or landmark, I want to know about hotels in, say, a 20 km radius too—just in case I decide to splurge one night. And for each driving leg, could you give me the distance, drive time, a rough idea of elevation change, and turn-by-turn directions? I really need actual numbers backed up by real data—no hand-wavy guesses—because I'm sharing this with friends who expect concrete facts. Thanks!

Table 9: MCP server combinations used in MCP-BENCH.

2271

2272

2273

2274

2277

2278

2279

2281

2282

2285

2287

2289

2290

2291

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316 2317

2318

2319

2320

2321

Server Count Server Combination Paper Search, BioMCP Wikipedia, NASA Data Google Maps, National Parks NixOS, Context7 Google Maps, Weather Data DEX Paprika, OKX Exchange Metropolitan Museum, Wikipedia 2 Scientific Computing, Math MCP Hugging Face, Paper Search National Parks, Weather Data Unit Converter, Math MCP Game Trends, Reddit Scientific Computing, Unit Converter Wikipedia, Paper Search Reddit, DEX Paprika Google Maps, Weather Data, National Parks Hugging Face, Paper Search, Wikipedia Paper Search, Call for Papers, Wikipedia Medical Calculator, FruityVice, BioMCP 3 Metropolitan Museum, Huge Icons, Wikipedia Scientific Computing, BioMCP, Math MCP Medical Calculator, Wikipedia, FruityVice

A.8 ABLATION STUDIES ON LLM JUDGE PIPELINE

To assess the effectiveness of prompt shuffling and score averaging in our LLM judge pipeline, we conduct ablation study on it in this section. The results also reflect the overall quality of our LLM judge pipeline.

NASA Data, Google Maps, Wikipedia

OpenAPI Explorer, Paper Search, Hugging Face

Coefficient of Variation among Different LLMs. To quantify the stability of LLM judge under different pipeline designs, we compute the coefficient of variation (CV) for each judge pipeline across a suite of 50 benchmark tasks. These tasks are synthesized using two real-world

Model Context Protocol (MCP) servers: Web-Search and Time. The WebSearch server supports information retrieval and summarization, while the Time server provides temporal reasoning and calendar tools. Each task is scored by three LLMs—o4-mini (OpenAI, 2025c), gpt-40 (Hurst et al., 2024), gpt-40-mini (OpenAI, 2024),—with same LLM judge pipeline. We extract the task completion score (on a 0–10 scale) for CV computation. Specifically, for

Table 10: Ablation study on prompt shuffling and score averaging.

Method	Coefficient of Variation among Different LLMs (\$\dpreau\$)	Human Agreement Score (†)	
w/o Prompt Shuffling and Score Averaging	16.8%	1.24 out of 2	
w/ Prompt Shuffling and Score Averaging	15.1%	1.43 out of 2	

each task t, we calculate its coefficient of variation as $CV_t = \frac{\sigma_t}{\mu_t} \times 100\%$, where $\mu_t = \frac{1}{k} \sum_{j=1}^k s_j$

and $\sigma_t = \sqrt{\frac{1}{k} \sum_{j=1}^k (s_j - \mu_t)^2}$, with s_j denoting the task completion score assigned by model j, and k the number of models. The final reported CV is the mean over all tasks: $\text{CV} = \frac{1}{n} \sum_{t=1}^n \text{CV}_t$, where n=50 is the number of benchmark tasks. As shown in Table 1, removing prompt shuffling and score averaging results in a CV of 16.8%, while enabling them reduces the CV to 15.1%, indicating improved consistency across LLMs.

Human Agreement Score. We further evaluate the alignment between LLM judges and human preferences. Three human annotators independently reviewed score in different dimensions produced by each judge pipeline and rated their agreement on a 3-point scale: 0 for disagreement, 1 for partial agreement, and 2 for full agreement. The final human agreement score is the average across all annotators and tasks. As shown in Table 10, the pipeline without prompt shuffling and score averaging achieves an average agreement of 1.24 out of 2, while the pipeline with prompt perturbation

improves this score to 1.43, showing that strategy also impacts human-perceived evaluation quality. Also, the results indicate that our LLM judge pipeline aligns well with human judgment, achieving performance substantially above partial agreement and trending toward full agreement.

A.9 DISCLOSURE OF LLM USAGE

LLMs were used in this paper to assist with grammar and wording improvements.