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ABSTRACT

We introduce MCP-BENCH, a benchmark for evaluating large language model
(LLM) agent on realistic, multi-step tasks that demand tool use, cross-tool co-
ordination, precise parameter control, and planning/reasoning for solving tasks.
Built on the Model Context Protocol (MCP), MCP-BENCH connects LLMs to
28 representative live MCP servers spanning 250 tools across domains such as
finance, traveling, scientific computing, and academic search. Unlike prior API-
based benchmarks, each MCP server provides a set of complementary tools de-
signed to work together, enabling the construction of authentic, multi-step tasks
with rich input–output coupling. Also, tasks in MCP-BENCH test agents’ abil-
ity to retrieve relevant tools from fuzzy instructions without explicit tool names
or execution step, plan multi-hop execution trajectories for complex objectives,
ground responses in intermediate tool outputs, and orchestrate cross-domain
workflows—capabilities not adequately evaluated by existing benchmarks that
rely on explicit tool specifications, shallow few-step workflows, and isolated do-
main operations. We propose a multi-faceted evaluation framework covering
tool-level schema understanding and usage, trajectory-level planning and task
completion. Code and data: https://anonymous.4open.science/r/
mcp-bench-submission-0B56/.

1 INTRODUCTION

Recent advances in large language models (LLMs) have enabled a new generation of tool-using
agents that can interpret natural language instructions, plan multi-step workflows, and interact with
external tools to solve complex tasks (OpenAI, 2025c; Comanici et al., 2025; Anthropic, 2025; Yang
et al., 2025; Kimi et al., 2025; Zeng et al., 2025; Chen et al., 2025). Such agents are increasingly
deployed in real-world domains such as travel (Xie et al., 2024), healthcare (Saab et al., 2024;
Mehandru et al., 2024), and finance (Xiao et al., 2024), where solving user queries requires chaining
multiple tools, reasoning over structured outputs, and coordinating interdependent operations.

Despite rapid progress in LLM agents, existing benchmarks for tool use remain fundamentally lim-
ited. Early efforts such as ToolBench (Qin et al., 2024) and BFCL v3 (Patil et al., 2025a) aggregate
large collections of APIs, but these APIs are designed for isolated functionality. As a result, tasks
often reduce to few-step tool calls or rely on artificially stitched pipelines, since tool inputs and
outputs rarely align naturally across APIs. τ -Bench (Yao et al., 2025) moves a step further by
selecting a small set of APIs whose interfaces are relatively compatible, enabling cleaner composi-
tions. However, its coverage is limited to only a handful of domains and tools, making it difficult to
scale task diversity or capture the complexity of realistic multi-domain workflows. Together, these
benchmarks fall short in modeling realistic dependency chains and stress-testing long-horizon plan-
ning. More recent benchmarks such as MCP-RADER (Gao et al., 2025) and MCPEval (Liu et al.,
2025a) begin to leverage the Model Context Protocol (MCP) (Anthropic et al., 2024), which pro-
vides a standardized invocation schema across servers. However, these benchmarks remain narrow
in scope. For example, MCP-RADER (Gao et al., 2025) and MCPEval (Liu et al., 2025a) cover only
a few servers with at most several dozen tools, which limits task diversity and makes most work-
flows relatively short (e.g., single retrieval followed by a summary). Also, both existing API-based
and MCP-based tool-using benchmarks lack testing of planning capability under fuzzy instructions:
tasks typically specify detailed execution step explicitly, so agents are not challenged to infer which
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Figure 1: MCP-Bench connects LLM agents to real-world MCP servers exposing 250 structured
tools across domains such as finance, science, and research. Tasks are generated via LLM-based
synthesis, then executed by the agent through multi-turn tool invocations. Each execution trajectory
is evaluated using a combination of rule-based checks and LLM-as-a-Judge scoring, assessing agent
performance in tool schema understanding, multi-hop planning, and real-world adaptability.

tools are appropriate when the instructions are underspecified. Furthermore, they omit evaluation of
more complex scenarios such as multi-goal objectives (e.g., booking travel that requires coordinat-
ing flights, hotels, and local transport), evidence-based reasoning with information grounding (e.g.,
generating answers that cite intermediate tool results rather than hallucinating), and cross-domain
orchestration (e.g., combining financial tools with news sources to explain stock movements). As
summarized in Table 1, none of the existing benchmarks adequately reflect the complexity, fuzzy,
and diversity inherent in real-world tool use.

To overcome these limitations, we introduce MCP-Bench, a large-scale benchmark that evaluates
LLM agents in realistic, ecosystem-based tool-use scenarios. As illustrated in Figure 1, MCP-Bench
connects agents to a diverse ecosystem of production-grade MCP servers exposing 250 structured
tools across domains such as finance, science, and research. Each server provides complementary
tools designed to work together (e.g., a scientific computing server integrating data loading, matrix
operations, and visualization), while the MCP protocol ensures consistent invocation schemas across
servers. This combination enables both realistic intra-server dependency chains and complex cross-
server, multi-hop workflows. Tasks in MCP-Bench are generated automatically via an LLM-based
synthesis pipeline. Dependency chains are first discovered from tool I/O signatures, then translated
into natural language instructions. A quality filtering mechanism ensures solvability and realism. To
assess agent in realistic scenarios, each task is rewritten into a fuzzy and instruction-minimal variant
that retains the core objective but omits explicit tool references and execution steps. The example of
the tasks in MCP-BENCH can be found in Table 2 and Table 8. Each task is executed by the agent
through multi-turn interactions with MCP servers, and the resulting trajectories are evaluated with
a two-tier framework: (1) rule-based checks for tool validity, schema compliance, runtime success,
and dependency order, and (2) rubric-driven LLM-as-a-Judge scoring of task completion, tool usage,
and planning effectiveness. To ensure stability, prompt shuffling and score averaging are applied.

Our contributions can be summarized as follows: ① A realistic tool-using benchmark that leverages
MCP servers to expose 250 tools across 28 servers, enabling both intra-server dependency chains
and cross-server orchestration. ② A structured task synthesis pipeline that generates both fuzzy
instructions of complex, multi-hop tasks grounded in real tool semantics. ③ A robust evaluation
framework combining rule-based execution checks with rubric-based LLM-as-a-Judge scoring, en-
abling comprehensive assessment of execution correctness and strategic reasoning. ④ A large-scale
empirical study evaluating 20 state-of-the-art LLMs on 104 challenging tasks, revealing persistent

Table 1: Comparisons to existing tool-using benchmarks.

Benchmark # Domains # Tools MCP
Ecosystem

Information
Grounding

Fuzzy Task
Description

Complex Tasks with
Massive Goals

Cross-domain
Orchestration

ToolBench (Qin et al., 2024) 49 3451 ✗ ✗ ✗ ✗ ✗
BFCL v3 (Patil et al., 2025a) 8 24 ✗ ✗ ✗ ✗ ✗
τ -Bench (Yao et al., 2025) 2 28 ✗ ✗ ✗ ✗ ✗

MCP-RADER (Gao et al., 2025) 9 42 ✓ ✗ ✗ ✗ ✗
MCPEval (Liu et al., 2025a) 5 19 ✓ ✗ ✗ ✗ ✗

MCP-Bench(Ours) 28 250 ✓ ✓ ✓ ✓ ✓
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Table 2: Example of task in MCP-BENCH.

Servers & Tools Task Description

Servers: Paper Search, BioMCP
Useful Tools: gene_getter,
variant_searcher, variant_getter,
article_searcher, article_getter,
search_pubmed, search_arxiv,
download_arxiv,
read_arxiv_paper,
search_biorxiv,
download_biorxiv,
read_biorxiv_paper,
trial_searcher, trial_getter,
trial_locations_getter,
trial_references_getter,
drug_getter,
nci_organization_searcher,
paper_search, fetch, think

I’m working on a project about why melanoma patients with the BRAF
V600E mutation so often become resistant to treatment, and I’m a bit
stuck piecing everything together. I’d love to know:
• What we know about how common V600E is in the general popu-
lation, and what ClinVar says about its pathogenicity • The five most
influential research papers from the past year specifically on V600E-
positive melanoma and resistance to vemurafenib or dabrafenib • Any
Phase 2 or Phase 3 trials that are actively recruiting patients with
V600E melanoma and testing new combinations or approaches to beat
resistance • The key molecular mechanisms behind why V600E tu-
mors stop responding to treatment • Serious adverse events from the
FDA database for vemurafenib in melanoma (say, the 10 most recent
reports) • Any functional annotations for V600E that explain how it
affects BRAF protein activity. Could you pull all that together with
real paper IDs, trial numbers, and data sources? I can’t present vague
information to my team—I need concrete evidence.

weaknesses in agentic capabilities in realistic and complex tool-using scenarios. By bridging the gap
between isolated API benchmarks and real-world ecosystems, MCP-Bench provides the standard-
ized and scalable platform for evaluating the agentic reasoning and tool-use capabilities of LLMs.

2 RELATED WORK

Benchmarking LLMs. Recent benchmarks have steadily progressed from static evaluations to
more interactive, real-world tasks. Early efforts such as MMLU (Hendrycks et al., 2021) and BIG-
bench (Srivastava et al., 2023) focused on single-turn or fixed-format evaluations, testing broad
factual knowledge and reasoning via multiple-choice or free-form responses. HELM (Liang et al.,
2023) introduced a multi-metric evaluation framework over static-text tasks to compare LLMs holis-
tically across accuracy, calibration, fairness, and robustness. More recently, the focus has shifted to
reasoning and agentic capabilities (Koh et al., 2024; Kokane et al., 2024; Zhang et al., 2025; Du et al.,
2025; Wei et al., 2025). MMLU-Pro (Wang et al., 2024) increases difficulty via LLM-generated,
reasoning-intensive items to reduce contamination. MT-Bench (Zheng et al., 2023) evaluates multi-
turn dialogue quality, measuring consistency and contextual coherence. AgentBench (Liu et al.,
2024) assesses tool-based decision making in simulated environments. WebArena (Zhou et al.,
2024) explores open-ended web navigation, while REALM-Bench (Geng & Chang, 2025) focuses
on goal planning under dynamic disruptions. Despite these advances, most benchmarks still fall
short of modeling realistic complex workflows where diverse tools should be composed, and inter-
mediate outputs integrated across steps.

Evaluating Tool-using Capability. As tasks grow more complex, evaluation now targets reasoning,
planning, and execution across tool interfaces. Mind2Web (Deng et al., 2023) used fixed browser-
action APIs for think-to-act planning, and WebArena (Zhou et al., 2024) added self-hosted domains
with embedded tools, yet both depend on hand-crafted toolsets. To broaden tool selection and coor-
dination, subsequent benchmarks pursue broader tool coordination in distinct ways: τ -Bench (Yao
et al., 2025) adds simulated users and passk end-state checks; BFCL v3 (Patil et al., 2025b) vali-
dates multi-turn API workflows via AST analysis; C3-Bench (Yu et al., 2025) stresses inter-tool de-
pendency reasoning; and ComplexFuncBench (Zhong et al., 2025) adopts rubric-based, execution-
verified scoring. Yet all still depend on bespoke toolsets, limiting realism. This gap motivates MCP-
based benchmarks, which standardize LLM–tool interaction and auto-expose domain-aligned tools.
MCP-RADAR (Gao et al., 2025) and MCPWorld (Yan et al., 2025) test tool selection, parameteri-
zation, and execution within MCP servers yet need manual setup. MCPEval (Liu et al., 2025b) also
automates MCP-using task generation and evaluation with five MCP servers. Scalable, cross-server
evaluation in MCP ecosystems with complex tasks remains open, motivating our direction.

3 MCP-BENCH FORMALIZATION AND DESIGN PRINCIPLES

Following Yao et al. (2023), we formalize our benchmark as a structured extension of the classical
Partially Observable Markov Decision Process (POMDP), tailored to tool-using agents that oper-
ate across multiple external servers and tools. Our formulation includes two execution paradigms:
(1) one-shot global planning, and (2) multi-turn planning and observation. Each benchmark task
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Algorithm 1 Multi-turn Planning and Observation

1: Input: Task instruction u, maximum steps Tmax

2: Output: Final answer answer, execution trajectory trajectory
3: function MULTITURNEXECUTE(u, Tmax)
4: trajectory← {} ▷ Initialize execution trajectory
5: s0 ← Update(u) ▷ Get initial state
6: for t = 0 to Tmax do
7: (continuet, at)← πplan(st) ▷ Generate current tool plan
8: ot ← πexec(at) ▷ Execute tools in the plan
9: ot ← πcompress(ot) ▷ Generate a compressed summary of the observation

10: trajectory← trajectory ∪ {(at, ot)} ▷ Log plan and observation
11: st+1 ← Update(st, ot) ▷ Update agent internal state
12: if continuet = False then
13: break ▷ Stop if agent signals termination
14: answer← πfinal(u, trajectory) ▷ Produce final answer from trajectory
15: return (answer,trajectory)

is represented as a POMDP tuple (S,A,O, T,R,U ,Σ), where: S is the global state space; A is
the action space including both planning steps and tool invocations; O is the observation space
containing tool execution results and internal signals; T : S × A → S × O is the transition and
observation function; R : S → [0, 1] is the reward function; U denotes the task instruction space;
and Σ = {σ1, σ2, . . . , σn} is the set of available MCP servers. To stress-test the agent’s reasoning
and tool-selection capabilities, we attach a set of distractor servers (10 in this paper) to each task,
in addition to the MCP servers required for completion. This setup exposes the agent to over 100
extra tools per task. Each server σi ∈ Σ exposes a set of tools Ti, defining the complete tool set
T =

⋃
i Ti. A structured tool invocation is written as atool = ⟨σi, tool_name, parameters⟩.

The full action space is A = Aplanning ∪ Atools, and the observation space is O = Otools ∪ Ostate.
For the workflow of the agent, we adopt a multi-round decision process (Yao et al., 2023). At each
round t, the agent generates a plan at conditioned on all previously observed outputs, then executes
the tools in at, and updates its internal state. Note that each at could includes the plan for execut-
ing multiple tools in parallel. This continues for up to Tmax (20 in this paper) rounds or until the
agent signals to stop. Final reasoning is performed after observing the complete trajectory. The full
routine is detailed in Algorithm 1. In line 4-5, we initialize the execution trajectory trajectory,
and the initial agent state s0 from the task instruction u. In line 6-11, we iteratively plan and ex-
ecute actions: the planning policy πplan produces the current tool plan, the execution policy πexec
performs the planned actions, and the compression policy πcompress generates a concise summary
of the observation. This compression step is crucial because some tools return very long outputs,
and summarizing them prevents excessive context windows. The compressed observation is logged
into trajectory, and the agent state is updated. In line 12-13, we check the termination signal
continue and stop early if it is False. In line 14-15, the final answer is generated from the com-
plete execution trajectory via πfinal. The prompt used for the agent execution can be found in Section
A.3. Detailed design principles and how MCP-BENCH reflects them can be found in Section A.1.

4 MCP-BENCH CONSTRUCTION

4.1 MCP SERVER COLLECTION

Our benchmark covers 28 representative MCP servers spanning eleven functional domains (Fig-
ure 2a). The largest categories are Media & Entertainment and Research & Knowledge (each
14.3%), followed by Finance, Science, and Software Development (each 10.7%). Smaller shares
include Geography & Travel, Social & Intelligence, Mathematics, and Health (7.1% each), with
niche domains such as Weather, Time, and Divination (3.6% each). In total, these servers provide
250 tools. Tool counts vary widely (Figure 2b), from single-tool servers (e.g., Call for Papers,
FruityVice, Movie Recommender) to large multi-tool platforms such as BioMCP (35 tools), Scien-
tific Computing (26 tools), and Medical Calculator (22 tools). This diverse ecosystem spans scien-
tific computation, finance, content discovery, geospatial services, and specialized analytical utilities,
ensuring broad capability coverage in MCP-BENCH. Details of the involved MCP servers and the
descriptions of all tools can be found in Table 7.
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(a) Category distribution of MCP servers. (b) Tool distribution across servers.
Figure 2: Overview of MCP server ecosystem used in the MCP-BENCH.

4.2 TASK SYNTHESIS

A challenge in building tool-using agent benchmarks lies in transforming a collection of real-world
MCP servers into high-quality tasks with realistic natural language descriptions. Given tools spread
across different servers, how can we construct meaningful, solvable, structurally grounded, but
challenging tasks at scale? We decompose this challenge into three key stages: dependency chain
discovery, automatic quality filtering, and task description fuzzing. Examples of synthesized tasks
can be found in Table 2 and Table 8. Besides the task synthesis pipeline, the tasks in MCP-BENCH
also undergo human inspection to ensure their realism, executability, and the reasonability of the de-
pendency chain analysis. We use o4-mini (OpenAI, 2025c) as the task synthesis LLM. All prompts
used can be found in Section A.4. In total, we synthesized 56 tasks with a single server, 30 with
2 servers, and 18 with 3 servers. The single-server tasks span all servers in our benchmark. The
two-server and three-server combinations for multi-server setting are listed in Table 9.

Dependency Chain Discovery and Task Generation. We start the task synthesis by analyzing
dependency chains among the provided tools: sequences where each tool’s outputs naturally flow
into the next tool’s inputs. These chains serve as structural scaffolds for task generation. We analyze
both inherent dependencies arising from natural tool relationships and scenario-based dependencies
constructed for meaningful workflows. For multi-server configurations, we emphasize cross-server
dependencies to ensure genuine tool coordination across different data sources. This yields diverse
structural patterns including linear workflows, parallel execution groups, and hybrid compositions.
The task synthesis LLM are then asked to generate tasks based on the analysis results for dependency
chains (see prompts in Section A.4). Also, the analysis results for the dependency chains are used
in the evaluation phase as the reference for the LLM judge (see Section A.5).

Automatic Quality Filtering. Each generated task undergoes rigorous two-dimensional quality
evaluation: Solvability: Whether the task can be completed using available tools. Practical utility:
Whether the task addresses genuine user needs rather than contrived scenarios. Tasks failing the
quality threshold (solvability: 9.0/10, utility: 5.0/10) are disgarded (see details in Section A.4).
This ensures only high-quality tasks that meet our standards enter the final benchmark, maintaining
benchmark integrity at the cost of reduced quantity.

Task Description Fuzzing. For tasks that pass quality filtering, the algorithm generates fuzzy task
variants that state high-level goals without explicit operational details. These fuzzy descriptions
transform structured instructions into natural business requests, requiring agents to infer appropriate
tool sequences and execution strategies from the available dependency structures. For domains
requiring precise inputs (e.g., scientific computation, unit conversion), the fuzzy variants critically
preserve all numerical values and concrete parameters while adopting conversational language. This
ensures tasks remain mathematically solvable while testing the agent’s ability to bridge the gap
between user intent and technical execution. Detailed prompt used for task description fuzzing can
be found in Section A.4.

5 EVALUATION METHOD AND METRICS

We use a comprehensive evaluation framework combining rule-based metrics and LLM judge scor-
ing. The rule-based component measures tool usage robustness across four dimensions—name
validity, schema adherence, and runtime success—from execution traces. The LLM-as-a-Judge
component assesses strategic quality in task completion, tool selection, and planning efficiency and
effectiveness, using structured rubrics with prompt shuffling and score averaging to ensure fairness.

5
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5.1 RULE-BASED EVALUATION

To assess the schema understanding and execution robustness of an agent’s behavior, we evaluate
its tool usage along dimensions of name validity, input schema adherence, and runtime success. Let
E = {e1, . . . , ek} be the set of all tool invocations during execution.

Tool Name Validity Rate. This metric assesses whether the agent selects tools that exist within the
allowed set Tavailable: Rvalid = |{e∈E:tool(e)∈Tavailable}|

|E| , where tool(e) returns the identifier of the tool
invoked in event e. This metric penalizes hallucinations or invalid tool references and reflects the
agent’s grounding in tool availability.

Schema Compliance Rate. This metric measures whether each tool invocation provides correctly
structured parameters that match the tool’s expected input schema:

Cschema = |{e∈E:valid_tool(e)∧valid_schema(e)}|
|{e∈E:valid_tool(e)}| , where valid_tool(e) is a Boolean function returning

True if tool(e) ∈ Tavailable, and valid_schema(e) returns True if the parameters in event e match the
expected input schema of the tool. This ensures the agent understands the expected API argument
formats and avoids malformed requests.

Execution Success Rate. This metric quantifies the proportion of tool invocations that successfully
return results without runtime failure: Rsuccess =

|{e∈E:success(e)}|
|E| , where success(e) returns True if

the tool call in event e is executed without runtime errors and produces a valid result. A high success
rate indicates robust interaction with external systems and proper error handling.

5.2 LLM-AS-A-JUDGE EVALUATION

To further assess the strategic quality of agent behavior beyond raw execution correctness, we em-
ploy an LLM-as-a-Judge framework. The evaluator is prompted to score agent performance across
three core axes: task completion quality, tool selection/usage rationale, and planning effectiveness.
Evaluations are grounded solely in observable evidence from the task definition, final solution, and
execution trace. By default, the judge model used here is o4-mini (OpenAI, 2025c).

Rubrics-based Judge Prompt. The LLM judge is provided with the fuzzy task description given
to the execution agent, the concrete task description before fuzzing (not provided to the agent being
evaluated; see Section 4.2), the dependency analysis (not provided to the agent being evaluated;
see Section 4.2), the agent’s final solution, the total number of execution rounds, a summarized
execution trace, and the list of available tools. It is explicitly instructed to remain impartial and
evidence-driven, and to assign scores strictly based on proportional success. Scoring follows a
structured rubric that decomposes each evaluation axis into multiple sub-dimensions (detailed in
Section A.5). It assigns scores based on a structured rubric that breaks down each evaluation axis
into multiple sub-dimensions (detailed in Section A.5). Each sub-dimension is rated on a scale from
1 to 10. The average score across the sub-dimensions yields the overall score for that axis, which is
then normalized to the [0, 1] range for benchmarking.

Task Completion Quality assesses whether the agent delivers a correct, complete, and evidence-
based solution. This includes evaluating how well the task goal is fulfilled (task fulfillment), whether
all necessary subtasks are covered and supported by evidence (information grounding), and whether
the response remains relevant and focused.

Tool Usage Quality evaluates the agent’s effectiveness in employing tools. Sub-dimensions include
suitability of chosen tools for each subtask (tool appropriateness) and the correctness and complete-
ness of parameters provided to these tools (parameter accuracy).

Planning Effectiveness assesses the coherence and efficiency of multi-round execution. This in-
cludes whether inter-tool constraints are respected (dependency awareness) and whether the agent
minimizes redundancy and exploits opportunities for parallel execution (parallelism and efficiency).

Prompt Shuffling and Score Averaging. Li et al. (2025) has shown that LLM judge can exhibit
sensitivity to the ordering of rubric dimensions. To mitigate this issue, we adopt a prompt shuffling
strategy that randomly permutes the order of major evaluation axes (e.g., Task Completion, Tool Se-
lection, Planning Efficiency) as well as the sub-dimensions within each axis. Importantly, while the
ordering is shuffled, the semantic content and phrasing of the rubrics remain unchanged to ensure
fairness and consistency. By default, we perform five independent shufflings of the rubric prompt

6
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Table 3: Leaderboard on MCP-BENCH, i.e., results of different models, averaged across settings
with single server and multiple servers.

Model

Rule-based LLM Judge

Overall Score
Schema Understanding Task Completion Tool Usage Planning Effectiveness

Valid Tool Schema Execution Task Information Tool Parameter Dependency Parallelism
Name Rate Compliance Success Fulfillment Grounding Appropriateness Accuracy Awareness and Efficiency

llama-3-1-8b-instruct 96.1% 89.4% 90.9% 0.261 0.295 0.352 0.310 0.221 0.141 0.428
llama-3-2-90b-vision-instruct 99.6% 85.0% 90.9% 0.293 0.444 0.515 0.427 0.267 0.173 0.495
nova-micro-v1 96.0% 93.1% 87.8% 0.339 0.419 0.504 0.428 0.315 0.212 0.508
llama-3-1-70b-instruct 99.2% 90.5% 92.5% 0.314 0.432 0.523 0.451 0.287 0.191 0.510
mistral-small-2503 96.4% 95.6% 86.2% 0.373 0.445 0.537 0.446 0.349 0.232 0.530
gpt-4o-mini 97.5% 98.1% 93.9% 0.374 0.500 0.555 0.544 0.352 0.201 0.557
llama-3-3-70b-instruct 99.5% 93.8% 91.6% 0.349 0.493 0.583 0.525 0.355 0.262 0.558
gemma-3-27b-it 98.8% 97.6% 94.4% 0.378 0.530 0.608 0.572 0.383 0.249 0.582
gpt-4o 98.9% 98.3% 92.8% 0.394 0.542 0.627 0.587 0.405 0.272 0.595
gemini-2.5-flash-lite 99.4% 97.8% 94.3% 0.412 0.577 0.627 0.597 0.404 0.226 0.598
qwen3-30b-a3b-instruct-2507 99.0% 98.4% 92.3% 0.481 0.530 0.658 0.638 0.473 0.303 0.627
kimi-k2 98.8% 98.1% 94.5% 0.502 0.577 0.631 0.623 0.448 0.307 0.629
gpt-oss-20b 98.8% 99.1% 93.6% 0.547 0.623 0.661 0.638 0.509 0.309 0.654
glm-4.5 99.7% 99.7% 97.4% 0.525 0.682 0.680 0.661 0.523 0.297 0.668
qwen3-235b-a22b-2507 99.1% 99.3% 94.8% 0.549 0.625 0.688 0.712 0.542 0.355 0.678
claude-sonnet-4 100.0% 99.8% 98.8% 0.554 0.676 0.689 0.671 0.541 0.328 0.681
gemini-2.5-pro 99.4% 99.6% 96.9% 0.562 0.725 0.717 0.670 0.541 0.329 0.690
gpt-oss-120b 97.7% 98.8% 94.0% 0.636 0.705 0.691 0.661 0.576 0.329 0.692
o3 99.3% 99.9% 97.1% 0.641 0.706 0.724 0.726 0.592 0.359 0.715
gpt-5 100.0% 99.3% 99.1% 0.677 0.828 0.767 0.749 0.649 0.339 0.749

for each task instance. Each shuffled prompt is submitted separately to the LLM judge, resulting
in five sets of rubric-based scores. For each scoring run, we first average the sub-dimension scores
within each axis and normalize them to the [0, 1] range. The final judgment score for the task is
then computed as the average of the five independently obtained axis-level scores. This random-
ized multi-pass evaluation strategy substantially reduces the likelihood that evaluation outcomes are
biased by prompt structure, and enhances the robustness and fairness of the LLM-based judgment
process. Empirical results (Section A.8) show that this method lowers score variance, leading to
more reliable and stable assessments.

6 BENCHMARK RESULTS

In this section, We present the experiment results and discussion for MCP-BENCH. Due to the
page limitation, we put the discussion about the quality of our LLM Judge pipeline and the ablation
studies for the prompt shuffling and score averaging strategy in Section A.8.

6.1 MAIN RESULTS

We evaluate 20 representative LLMs in our experiments: llama-3-1-8b-instruct (Meta, 2024a),
llama-3-2-90b-vision-instruct Meta (2024b), llama-3-1-70b-instruct (Meta, 2024a), mistral-small-
2503 (Mistral, 2025), nova-micro-v1 (Amazon, 2024), llama-3-3-70b-instruct (Meta, 2024c), gpt-
4o-mini (OpenAI, 2024), gemma-3-27b-it (Google, 2025), gpt-4o (Hurst et al., 2024), gemini-2.5-
flash-lite (Comanici et al., 2025), kimi-k2 Kimi et al. (2025), gpt-oss-20b (OpenAI, 2025b), qwen3-
30b-a3b-instruct-2507 (Yang et al., 2025), gpt-oss-120b (OpenAI, 2025b), glm-4.5 (Zeng et al.,
2025), qwen3-235b-a22b-2507 (Yang et al., 2025), claude-sonnet-4 (Anthropic, 2025), gemini-2.5-
pro Comanici et al. (2025), o3 (OpenAI, 2025c), and gpt-5 (OpenAI, 2025a). Table 3 reports results
averaged across settings with single server and multiple servers. We find that schema understanding
capabilities remain consistently high for strong models, with o3, gpt-5, gpt-oss-120b, qwen3-235b-
a22b-2507, and gpt-4o all surpassing 98% in schema compliance and valid tool naming. However,
substantial differences emerge in higher-level reasoning. The strongest models—gpt-5 (0.749), o3
(0.715), and gpt-oss-120b (0.692)—achieve the highest overall scores, reflecting both accurate tool
use and robust planning effectiveness. By contrast, smaller models such as llama-3-1-8b-instruct
(0.428) lag behind, showing weaker performance in dependency awareness and parallelism despite
adequate execution success. These results highlight that while basic execution has largely converged,
planning and reasoning capabilities remain the key differentiators among models. Table 4 and Ta-
ble 5 provide a detailed comparison between single- and multi-server settings. We see that weaker
models degrade noticeably once the number of servers increases. For example, llama-3-1-8b-instruct
falls from an overall score of 0.438 in the single-server case to 0.415 with multiple servers, while
nova-micro-v1 drops from 0.520 to 0.471. The main sources of decline lie in dependency aware-
ness and parallelism, which become harder to sustain in distributed workflows. Interestingly, the
drop is not always smooth—performance fluctuates across different server counts, suggesting that
the mix of sequential dependencies and parallel orchestration stresses models in different ways. In
contrast, strong systems such as gpt-5, o3, and qwen3-235b-a22b-2507 remain much more stable.
gpt-5 holds the highest overall score around 0.75 across both settings, while o3 and qwen3-235b-
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Table 4: Detailed results with different models on single-server setting.

Provider Model

Rule-based LLM Judge

Overall Score
Schema Understanding Task Completion Tool Usage Planning Effectiveness

Valid Tool Schema Execution Task Information Tool Parameter Dependency Parallelism
Name Rate Compliance Success Fulfillment Grounding Appropriateness Accuracy Awareness and Efficiency

Z.AI glm-4.5 99.8% 99.8% 98.0% 0.531 0.691 0.721 0.701 0.543 0.311 0.685

Kimi kimi-k2 99.1% 98.1% 95.9% 0.494 0.594 0.669 0.669 0.458 0.318 0.645

Anthropic claude-sonnet-4 100.0% 99.8% 99.4% 0.542 0.652 0.716 0.706 0.530 0.330 0.684

Amazon nova-micro-v1 96.1% 93.4% 91.0% 0.331 0.421 0.550 0.470 0.310 0.210 0.520

Mistral mistral-small-2503 95.7% 96.1% 87.2% 0.390 0.450 0.574 0.484 0.358 0.238 0.544

Alibaba qwen3-30b-a3b-instruct-2507 98.8% 98.5% 92.6% 0.489 0.539 0.711 0.691 0.501 0.311 0.647
qwen3-235b-a22b-2507 99.3% 99.3% 97.1% 0.544 0.644 0.741 0.751 0.578 0.388 0.702

Google
gemma-3-27b-it 99.6% 97.6% 96.1% 0.378 0.538 0.648 0.618 0.394 0.262 0.599
gemini-2.5-flash-lite 99.6% 98.2% 96.9% 0.398 0.598 0.669 0.629 0.410 0.220 0.611
gemini-2.5-pro 100.0% 99.8% 98.3% 0.554 0.736 0.760 0.700 0.551 0.341 0.704

Meta

llama-3-1-8b-instruct 96.8% 90.4% 92.0% 0.263 0.303 0.377 0.337 0.224 0.142 0.438
llama-3-2-90b-vision-instruct 99.4% 86.5% 91.7% 0.292 0.464 0.571 0.481 0.280 0.170 0.514
llama-3-1-70b-instruct 99.6% 90.8% 93.0% 0.329 0.449 0.570 0.510 0.304 0.192 0.530
llama-3-3-70b-instruct 99.5% 94.9% 95.1% 0.358 0.518 0.638 0.608 0.379 0.289 0.590

OpenAI

gpt-4o-mini 97.6% 98.9% 95.8% 0.361 0.531 0.598 0.598 0.371 0.201 0.576
gpt-4o 99.0% 97.9% 93.6% 0.398 0.548 0.670 0.620 0.406 0.278 0.607
gpt-oss-20b 98.7% 99.5% 94.7% 0.521 0.621 0.673 0.673 0.482 0.292 0.652
gpt-oss-120b 97.7% 99.1% 95.8% 0.631 0.731 0.720 0.690 0.594 0.332 0.706
o3 99.2% 99.9% 97.1% 0.632 0.712 0.751 0.751 0.589 0.349 0.720
gpt-5 100.0% 99.1% 99.5% 0.658 0.838 0.781 0.761 0.627 0.339 0.749

Table 5: Detailed results with different models on multi-server setting.

Provider Model

Rule-based LLM Judge

Overall Score
Schema Understanding Task Completion Tool Usage Planning Effectiveness

Valid Tool Schema Execution Task Information Tool Parameter Dependency Parallelism
Name Rate Compliance Success Fulfillment Grounding Appropriateness Accuracy Awareness and Efficiency

Z.AI glm-4.5 99.5% 99.6% 96.7% 0.517 0.672 0.631 0.613 0.499 0.281 0.648

Kimi kimi-k2 98.4% 98.2% 92.7% 0.511 0.556 0.584 0.568 0.436 0.294 0.610

Anthropic claude-sonnet-4 100.0% 99.7% 98.0% 0.569 0.704 0.657 0.628 0.555 0.325 0.678

Amazon nova-micro-v1 95.8% 92.7% 84.0% 0.349 0.416 0.449 0.378 0.321 0.214 0.493

Mistral mistral-small-2503 97.2% 95.0% 85.1% 0.352 0.438 0.492 0.401 0.339 0.225 0.512

Alibaba qwen3-30b-a3b-instruct-2507 99.2% 98.2% 91.9% 0.471 0.520 0.594 0.573 0.440 0.294 0.602
qwen3-235b-a22b-2507 98.8% 99.3% 92.1% 0.554 0.603 0.625 0.664 0.499 0.316 0.649

Google
gemma-3-27b-it 97.9% 97.5% 92.4% 0.379 0.520 0.559 0.517 0.370 0.233 0.562
gemini-2.5-flash-lite 99.1% 97.4% 91.1% 0.429 0.552 0.576 0.559 0.397 0.234 0.583
gemini-2.5-pro 98.7% 99.4% 95.1% 0.571 0.711 0.666 0.634 0.530 0.315 0.673

Meta

llama-3-1-8b-instruct 95.2% 88.1% 89.5% 0.258 0.285 0.321 0.277 0.217 0.140 0.415
llama-3-2-90b-vision-instruct 99.8% 83.1% 89.9% 0.294 0.420 0.447 0.361 0.251 0.176 0.471
llama-3-1-70b-instruct 98.8% 90.2% 91.9% 0.296 0.411 0.467 0.379 0.266 0.190 0.485
llama-3-3-70b-instruct 99.4% 92.5% 87.4% 0.339 0.463 0.517 0.425 0.326 0.229 0.520

OpenAI

gpt-4o-mini 97.3% 97.2% 91.6% 0.389 0.463 0.504 0.479 0.330 0.202 0.534
gpt-4o 98.8% 98.8% 91.9% 0.390 0.535 0.574 0.547 0.404 0.265 0.581
gpt-oss-20b 98.9% 98.7% 92.2% 0.579 0.626 0.646 0.595 0.541 0.330 0.656
gpt-oss-120b 97.8% 98.4% 91.9% 0.641 0.674 0.657 0.625 0.554 0.325 0.675
o3 99.5% 99.9% 97.0% 0.651 0.698 0.691 0.696 0.596 0.372 0.710
gpt-5 100.0% 99.5% 98.7% 0.701 0.817 0.749 0.734 0.676 0.338 0.750

a22b-2507 consistently stay competitive above 0.70. These results underline that execution quality
alone is no longer the bottleneck—the real differentiator is robustness to scaling, where top-tier
models demonstrate clear advantages in handling long-horizon, cross-server tasks. Together, these
results show that while modern LLMs have mastered execution fidelity, their ability to generalize to
complex, adaptive, cross-server workflows is still limited. MCP-BENCH exposes this gap system-
atically, providing a rigorous benchmark for advancing agentic LLM capabilities.

6.2 DISCUSSION ON THE AGENT PERFORMANCE ON DIFFERENT CAPABILITIES AND
INSIGHTS FROM MCP-BENCH

Score on Different Capabilities. Table 4 and Table 5 also provide a fine-grained breakdown of
performance across six evaluation axes: task fulfillment, information grounding, tool appropriate-
ness, parameter accuracy, dependency awareness, and parallelism efficiency. On task completion,
frontier models such as gpt-5, o3, and gpt-oss-120b achieve the strongest results, exceeding 0.63
in fulfillment and 0.70 in grounding, whereas smaller systems like llama-3-1-8b-instruct and nova-
micro-v1 remain below 0.35 and 0.45 respectively, reflecting weaker semantic consistency. In tool
selection, top-tier models again dominate: gpt-5, o3, and gemini-2.5-pro maintain appropriateness
and parameter accuracy around or above 0.70, while weaker baselines plateau closer to 0.30–0.50.
The sharpest disparities appear in planning effectiveness. gpt-5 sustains the highest dependency
awareness (0.76) with competitive parallelism efficiency (0.34), closely followed by o3 (0.69 and
0.37) and qwen3-235b-a22b-2507 (0.54 and 0.31). By contrast, smaller models rarely exceed 0.30
on either dimension, underscoring planning as the most significant frontier capability that separates
state-of-the-art agents from weaker baselines.

Insights from MCP-BENCH. The combined evidence from Table 3, Table 4, and Table 5 yields
several insights into the strengths and weaknesses of current LLM agents:
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Table 6: Average rounds and tool calls per task on different models.
Provider Model Single Server Multiple Servers Overall Average

# Rounds # Tool Calls # Rounds # Tool Calls # Rounds # Tool Calls
Z.AI glm-4.5 6.8 35.8 10.7 50.0 8.7 42.9

Kimi kimi-k2 3.8 20.2 4.0 21.1 3.9 20.6

Anthropic claude-sonnet-4 7.8 39.2 10.5 49.2 9.2 44.2

Amazon nova-micro-v1 9.0 48.7 12.7 67.4 10.8 58.1

Mistral mistral-small-2503 6.4 66.9 6.6 67.2 6.5 67.0

Alibaba qwen3-30b-a3b-instruct-2507 3.7 22.7 4.4 25.4 4.0 24.1
qwen3-235b-a22b-2507 3.6 14.9 4.4 18.0 4.0 16.4

Google
gemma-3-27b-it 7.2 40.2 8.4 44.5 7.8 42.3
gemini-2.5-flash-lite 9.9 72.0 12.9 101.7 11.4 86.8
gemini-2.5-pro 6.5 31.3 10.0 43.5 8.2 37.4

Meta

llama-3-1-8b-instruct 16.4 137.6 18.2 173.6 17.3 155.6
llama-3-2-90b-vision-instruct 12.1 63.9 11.4 47.9 11.8 55.9
llama-3-1-70b-instruct 10.9 58.4 13.7 67.6 12.3 63.0
llama-3-3-70b-instruct 5.5 23.6 6.2 30.3 5.8 26.9

OpenAI

gpt-4o-mini 12.9 56.9 15.4 64.4 14.2 60.6
gpt-4o 5.3 20.3 6.3 23.3 5.8 21.8
gpt-oss-20b 3.9 26.6 5.0 36.9 4.4 31.7
gpt-oss-120b 5.6 37.7 8.3 48.3 7.0 43.0
o3 4.5 23.0 8.0 33.7 6.3 28.3
gpt-5 8.1 76.5 10.6 81.9 9.2 78.9

Schema understanding convergence. Low-level capabilities such as schema compliance and valid
tool naming have largely converged across models. Even mid-scale systems achieve accuracy above
95%, suggesting that basic execution fidelity is no longer the primary bottleneck.

Scalability under multi-server settings. As the number of servers increases, task complexity rises,
but the performance curves are not strictly monotonic. Strong models (e.g., o3, gpt-5) maintain
relatively stable scores across single- and multi-server settings, while weaker/small models (e.g.,
llama-3-1-70b-instruct) show clear degradation with occasional fluctuations. This indicates that
adaptation in multi-server scenario is a differentiating capability.

Gaps in higher-order reasoning. The largest separations appear in planning effectiveness. Top
models demonstrate coherent structural reasoning, dependency awareness, and adaptive reflection,
reaching around 0.72 on these sub-dimensions, whereas weaker models rarely exceed 0.30. This
highlights that long-horizon reasoning and multi-hop coordination remain open challenges.

6.3 NUMBER OF ROUNDS AND TOOL CALLS FOR DIFFERENT MODELS EXECUTING TASKS

Table 6 reports the average number of interaction rounds and tool calls required for different models
to complete tasks in MCP-BENCH. The results highlight both the complexity of the benchmark and
the efficiency differences across models. Tasks in MCP-BENCH are inherently multi-step and often
involve chaining heterogeneous tools across servers, requiring both sequential reasoning and paral-
lel orchestration. As a result, even strong models typically require several rounds of interaction and
multiple tool calls, reflecting the non-trivial nature of the task distribution. Model-level differences
are nevertheless clear. Smaller systems such as llama-3-1-8b-instruct consume the most resources,
averaging 17.3 rounds and over 155 calls per task, while models like gemini-2.5-flash-lite also ex-
hibit heavy reliance on repeated tool usage (86.8 calls on average). In contrast, stronger models
such as gpt-4o, o3, and qwen3-235b-a22b-2507 achieve comparable or higher success rates with
much leaner execution, typically under 30–40 calls and 6–8 rounds. Frontier systems like gpt-5 and
gpt-oss-120b strike a middle ground: they engage in deeper multi-step reasoning (7–9 rounds) but
with more controlled call budgets (48–79 calls).

7 CONCLUSION

In this paper, we introduced MCP-BENCH, a large-scale benchmark for evaluating LLM agents
in realistic, ecosystem-based tool-use scenarios. Built on MCP, MCP-BENCH connects agents to
28 production servers with 250 tools, enabling complex multi-hop workflows and cross-domain
orchestration. Our automated task synthesis pipeline generates 104 challenging tasks with fuzzy
instructions that require strong agentic capabilities to solve. Through our evaluation framework
combining rule-based checks and LLM Judge scoring, we revealed that even state-of-the-art models
struggle with different capabilities such as dependency chain compliance, tool selection under noisy
environment, and long-horizon planning.
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A APPENDIX

In this Appendix, we first discuss the key capabilities for tool-using LLM agents and how MCP-
Bench reflects them (Section A.1). We demonstrate more details of used MCP servers in Section
A.2. We then demonstrate the detailed prompts used in task execution, task synthesis, and evaluation
in Section A.3, Section A.4, Section A.5, respectively. We then display examples of the input schema
for tools involved and more details of the tasks in Section A.6 and Section A.7. We also have the
discussion about the quality of our LLM Judge pipeline and the ablation studies for the prompt
shuffling and score averaging strategy in Section A.8. Finally, we discuss the disclosure of LLM
usages in this paper in Section A.9.

A.1 KEY CAPABILITIES FOR TOOL-USING LLM AGENTS AND HOW MCP-BENCH
REFLECTS THEM

To perform effectively in tool-augmented environments, LLM agents should demonstrate several
critical capabilities beyond standard language modeling.

Tool Schema Understanding and Compliance: Agents must faithfully interpret and satisfy com-
plex invocation schemas that involve nested JSON structures, enumerated types, constrained value
ranges, and mixtures of required and optional arguments. Success requires aligning natural language
reasoning with precise formal specifications. MCP-Bench enforces strict schema validation across
250 tools of varying complexity—from simple scalar inputs to deeply nested hierarchical struc-
tures—ensuring that even subtle schema violations are detected. Illustrative examples of diverse
input schemas are provided in Section A.6. Tool Retrieval and Selection under Fuzzy Instruc-
tions: Agents must identify the correct tools from large, heterogeneous tool spaces when confronted
with ambiguous or underspecified task descriptions. This requires disambiguating semantic variants,
coping with naming inconsistencies, and avoiding traps posed by superficially plausible but irrele-
vant tools. MCP-Bench stress-tests retrieval precision by attaching 10 distractor servers to every
task, introducing 100+ additional tools per instance. Moreover, fuzzy task variants (Section 4.2) de-
liberately omit explicit tool names and detailed step descriptions, forcing agents to infer appropriate
tools purely from contextual cues. Long-Horizon Planning and Cross-Server Orchestration with
Massive Goals: Realistic applications demand multi-round workflows that span domains, maintain
interdependent states across rounds, and sometimes pursue multiple goals simultaneously. Agents
must manage sequential and parallel dependencies, coordinate heterogeneous outputs, and optimize
efficiency through judicious orchestration. MCP-Bench includes both single-server and multi-server
tasks with up to 20 execution rounds. Its evaluation framework explicitly measures structural co-
herence, dependency awareness, parallelism efficiency, and reflective adaptation (Section 5). Tasks
include not only linear workflows but also complex compositions requiring concurrent interactions
across multiple servers with multiple objectives. Information Grounding and Evidence-Based
Reasoning: To avoid hallucination, agents must ground responses in actual tool outputs, maintain
factual consistency across calls, and provide traceable evidence for their claims. MCP-Bench evalu-
ates grounding by coupling execution history with rubric-based LLM judgments, rewarding answers
that correctly cite tool outputs and penalizing unsupported reasoning (Section 5). Real-World
Adaptability: Finally, agents must leverage broad world knowledge to interpret domain-specific
semantics, robustly handle diverse tool behaviors, and synthesize heterogeneous outputs into coher-
ent solutions. MCP-Bench spans 28 production-grade MCP servers covering domains from finance
and healthcare to scientific computation and cultural heritage, ensuring that tasks reflect the diver-
sity and unpredictability of real-world tool use.

A.2 DETAILS OF USED MCP SERVERS

In Table 7, we show the detailed descriptions for the involved MCP servers and the associated tools.
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Table 7: Details of tools and descriptions in used MCP servers.

Server Name GitHub Repository Tools Description & Tools
Bibliomantic https://github.com/d4nshields/

bibliomantic-mcp-server
4 Description: I Ching divination service provid-

ing traditional Chinese divination methods with
enhanced hexagram interpretation and statisti-
cal tracking. Tools: i_ching_divination (Per-
forms enhanced I Ching divination using tradi-
tional three-coin method with changing lines anal-
ysis), bibliomantic_consultation (Provides compre-
hensive bibliomantic consultation with full tra-
ditional I Ching elements and interpretations),
get_hexagram_details (Retrieves detailed hexa-
gram information including traditional Chinese
names, Unicode symbols, and rich commentary),
server_statistics (Displays enhanced server usage
statistics and performance metrics)

Math MCP https://github.com/
EthanHenrickson/math-mcp

13 Description: Mathematical computation service
providing essential arithmetic operations and sta-
tistical analysis functions for numerical data pro-
cessing and analysis. Tools: add (Performs ad-
dition of two numbers with precision handling),
subtract (Executes subtraction of second number
from first with numerical accuracy), multiply (Cal-
culates multiplication of two numbers with over-
flow protection), division (Performs division with
zero-division error handling and precision con-
trol), sum (Computes sum of any number of val-
ues in a list or array), mean (Calculates arith-
metic mean average of numerical data sets), me-
dian (Determines middle value of sorted numerical
datasets), mode (Finds most frequently occurring
value in numerical datasets), min (Identifies min-
imum value from lists of numbers), max (Deter-
mines maximum value from numerical datasets),
floor (Rounds numbers down to nearest integer us-
ing floor function), ceiling (Rounds numbers up
to nearest integer using ceiling function), round
(Rounds numbers to nearest integer with standard
rounding rules)

BioMCP https://github.com/
genomoncology/biomcp

14 Description: Comprehensive biomedical research
platform integrating literature search, clinical
trial data, and genetic variant analysis with AI-
powered research planning and Google Deep-
Mind’s AlphaGenome predictions. Tools: search
(Multi-database biomedical literature and clini-
cal trial search with structured thinking integra-
tion), fetch (Retrieves comprehensive details for
specific biomedical records using unique identi-
fiers), think (Required structured sequential think-
ing tool for research strategy planning), arti-
cle_searcher (Searches PubMed/PubTator3 for re-
search articles and preprints about genes and
variants), article_getter (Fetches detailed article
information including abstracts and full text),
trial_searcher (Comprehensive ClinicalTrials.gov
search with multiple filtering criteria), trial_getter
(Retrieves all available clinical trial informa-
tion by NCT ID), trial_protocol_getter (Fetches
core protocol details including study design and
sponsor information), trial_references_getter (Re-
trieves all linked publications and background lit-
erature for trials), trial_outcomes_getter (Fetches
detailed outcome measures and results data),
trial_locations_getter (Retrieves study locations
with contact details and investigators), vari-
ant_searcher (Searches MyVariant.info for ge-
netic variant database records with population
frequencies), variant_getter (Fetches comprehen-
sive genetic variant details including consequences
and annotations), alphagenome_predictor (Predicts
variant effects on gene regulation using Google
DeepMind’s state-of-the-art AlphaGenome model)

Call for Papers https://github.com/iremert/
call-for-papers-mcp

1 Description: Academic conference and event dis-
covery service for researchers seeking publication
and presentation opportunities. Tools: get_events
(Searches for academic conferences and events
matching specific keywords with detailed submis-
sion information)
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Table 7 continued from previous page
Server Name GitHub Repository Tools Description & Tools
Car Price Evaluator https://github.com/yusaaztrk/

car-price-mcp-main
3 Description: Brazilian automotive market anal-

ysis service providing current vehicle pric-
ing data through FIPE (Fundação Instituto de
Pesquisas Econômicas) API integration. Tools:
get_car_brands (Retrieves comprehensive list of all
available car brands from FIPE database with brand
codes and names), search_car_price (Searches for
specific car models and their current market prices
by brand name with detailed pricing informa-
tion), get_vehicles_by_type (Fetches vehicles cat-
egorized by type including cars, motorcycles, and
trucks with specifications)

Context7 https://github.com/upstash/
context7

2 Description: Programming library documentation
service providing up-to-date documentation access
through Context7’s encrypted and secure library
system. Tools: resolve-library-id (Resolves pack-
age or product names to Context7-compatible li-
brary IDs and returns matching libraries list), get-
library-docs (Fetches current documentation for
libraries using exact Context7-compatible library
IDs with comprehensive API reference)

DEX Paprika https://github.com/coinpaprika/
dexpaprika-mcp

11 Description: Comprehensive decentralized ex-
change analytics platform providing real-time DeFi
data, liquidity analysis, and trading insights across
multiple blockchain networks. Tools: getNet-
works (Required first step to retrieve all sup-
ported blockchain networks with network IDs like
ethereum and solana), getNetworkDexes (Fetches
available decentralized exchanges on specific net-
works), getNetworkPools (Primary function to
get top liquidity pools on specific networks with
comprehensive pool data), getDexPools (Retrieves
pools from specific DEX platforms on networks),
getPoolDetails (Provides detailed pool information
including liquidity, volume, and trading metrics),
getTokenDetails (Fetches comprehensive token in-
formation including price, market cap, and con-
tract details), getTokenPools (Finds all liquidity
pools containing specific tokens for trading analy-
sis), getPoolOHLCV (Retrieves historical OHLCV
price data essential for backtesting and technical
analysis), getPoolTransactions (Fetches recent pool
transactions including swaps, additions, and re-
movals), search (Cross-network search functional-
ity for tokens, pools, and DEXes by name, symbol,
or address), getStats (Provides high-level DexPa-
prika ecosystem statistics including total networks,
DEXes, pools, and tokens)

FruityVice https://github.com/
CelalKhalilov/fruityvice-mcp

1 Description: Nutritional information service pro-
viding comprehensive fruit nutrition data includ-
ing vitamins, minerals, calories, and dietary infor-
mation. Tools: get_fruit_nutrition (Retrieves de-
tailed nutritional information for specified fruits in-
cluding calories, carbohydrates, protein, fat, sugar,
fiber, and vitamin content)

Game Trends https://github.com/
halismertkir/game-trends-mcp

7 Description: Gaming industry analytics plat-
form providing real-time data on game pop-
ularity, sales trends, and promotional activi-
ties across major gaming platforms. Tools:
get_steam_trending_games (Fetches real-time
trending games from Steam with live data from
multiple sources), get_steam_top_sellers (Re-
trieves current top-selling games from Steam plat-
form with live sales data), get_steam_most_played
(Gets real-time most played games from Steam
with live player statistics from SteamCharts),
get_epic_free_games (Fetches current and up-
coming free games from Epic Games Store with
promotion details), get_epic_trending_games
(Retrieves trending games from Epic Games
Store platform), get_all_trending_games (Provides
comprehensive real-time gaming data aggre-
gated from all platforms including Steam and
Epic), get_api_health (Checks health status and
availability of the Gaming Trend Analytics API)
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Table 7 continued from previous page
Server Name GitHub Repository Tools Description & Tools
Google Maps https://github.com/cablate/

mcp-google-map
7 Description: Comprehensive location services

platform integrating Google Maps API for geospa-
tial queries, place discovery, navigation, and ge-
ographic data analysis. Tools: search_nearby
(Searches for nearby places based on location
with optional filtering by keywords, distance,
rating, and operating hours), get_place_details
(Retrieves detailed information about specific
places including contact details, reviews, rat-
ings, and operating hours), maps_geocode (Con-
verts addresses or place names to precise geo-
graphic coordinates with latitude and longitude),
maps_reverse_geocode (Converts geographic co-
ordinates to human-readable addresses with lo-
cation context), maps_distance_matrix (Calculates
travel distances and durations between multiple
origins and destinations for different transporta-
tion modes), maps_directions (Provides detailed
turn-by-turn navigation directions between two lo-
cations with comprehensive route information),
maps_elevation (Retrieves elevation data showing
height above sea level for specific geographic loca-
tions)

Huge Icons https://github.com/hugeicons/
mcp-server

3 Description: Comprehensive icon library ser-
vice providing access to thousands of high-quality
icons with search capabilities and platform-specific
implementation guidance. Tools: list_icons
(Retrieves complete list of all available Huge-
icons with metadata and categories), search_icons
(Searches for icons by name or tags using
comma-separated queries for multiple icon dis-
covery), get_platform_usage (Provides platform-
specific usage instructions and implementation de-
tails for different development environments)

Hugging Face https://github.
com/shreyaskarnik/
huggingface-mcp-server

10 Description: AI model hub integration service
providing comprehensive access to machine learn-
ing models, datasets, interactive spaces, research
papers, and curated collections. Tools: search-
models (Searches Hugging Face Hub for AI mod-
els with filtering by task, library, and popular-
ity), get-model-info (Retrieves detailed informa-
tion about specific models including architecture,
usage, and performance metrics), search-datasets
(Searches for machine learning datasets with fil-
tering by task type and size), get-dataset-info
(Fetches comprehensive dataset information in-
cluding structure, licensing, and usage examples),
search-spaces (Searches for interactive Spaces ap-
plications and demos), get-space-info (Retrieves
detailed information about specific Spaces includ-
ing functionality and source code), get-paper-info
(Fetches information about specific research pa-
pers linked to models), get-daily-papers (Retrieves
list of daily curated research papers from Hug-
ging Face), search-collections (Searches for cu-
rated collections of related models and datasets),
get-collection-info (Fetches detailed information
about specific collections including contents and
curation details)

OSINT Intelligence https://github.com/
himanshusanecha/
mcp-osint-server

7 Description: Open Source Intelligence (OSINT)
platform providing comprehensive cybersecurity
reconnaissance tools for domain analysis, net-
work scanning, and intelligence gathering. Tools:
whois_lookup (Performs domain registration in-
formation queries including owner, registrar, and
DNS details), nmap_scan (Executes network scan-
ning and port discovery for security assessment),
dnsrecon_lookup (Conducts DNS reconnaissance
to gather subdomain and DNS record information),
dnstwist_lookup (Analyzes domain similarity and
potential typosquatting threats), dig_lookup (Per-
forms detailed DNS queries and record analysis),
host_lookup (Gathers comprehensive host infor-
mation and network details), osint_overview (Pro-
vides comprehensive intelligence overview and
analysis summary)
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Table 7 continued from previous page
Server Name GitHub Repository Tools Description & Tools
Medical Calculator https://github.com/vitaldb/

medcalc
22 Description: Comprehensive medical calculation

platform providing evidence-based clinical deci-
sion support tools for kidney function, cardiovas-
cular risk assessment, drug dosing, and special-
ized medical scoring systems. Tools: egfr_epi
(Calculates estimated glomerular filtration rate us-
ing 2021 EPI formula without race adjustment),
egfr_epi_cr_cys (Computes eGFR using combined
creatinine-cystatin C equation for enhanced accu-
racy), bp_children (Calculates pediatric blood pres-
sure percentiles based on age, height, and gen-
der), bmi_bsa_calculator (Computes body mass
index and body surface area with multiple for-
mulas), crcl_cockcroft_gault (Determines creati-
nine clearance using Cockcroft-Gault formula for
drug dosing), map_calculator (Calculates mean
arterial pressure from systolic and diastolic val-
ues), chads2_vasc_score (Assesses stroke risk in
atrial fibrillation patients using validated scor-
ing system), prevent_cvd_risk (Predicts 10-year
cardiovascular disease risk in patients aged 30-
79), corrected_calcium (Adjusts calcium levels for
abnormal albumin concentrations), qtc_calculator
(Corrects QT interval for heart rate using multi-
ple validated formulas), wells_pe_criteria (Objec-
tifies pulmonary embolism risk using clinical cri-
teria), ibw_abw_calculator (Calculates ideal and
adjusted body weights using Devine formula),
pregnancy_calculator (Determines pregnancy dates
from last menstrual period or gestational age),
revised_cardiac_risk_index (Estimates periopera-
tive cardiac complications in noncardiac surgery),
child_pugh_score (Assesses cirrhosis severity and
mortality risk), steroid_conversion (Converts be-
tween different corticosteroid equivalencies), cal-
culate_mme (Computes total daily morphine mil-
ligram equivalents for opioid prescriptions), main-
tenance_fluids (Calculates pediatric IV fluid rates
using 4-2-1 rule), corrected_sodium (Adjusts
sodium levels in hyperglycemic patients using
correction formulas), meld_3 (Calculates MELD
3.0 score for liver transplant priority), framing-
ham_risk_score (Estimates 10-year coronary heart
disease risk), homa_ir (Calculates insulin resis-
tance using homeostatic model assessment)

Metropolitan Museum https://github.com/mikechao/
metmuseum-mcp

3 Description: Metropolitan Museum of Art dig-
ital collection access service providing compre-
hensive search and detailed information about art-
works, artifacts, and cultural objects. Tools: list-
departments (Retrieves complete list of all museum
departments with organizational structure), search-
museum-objects (Searches museum collection ob-
jects with filtering options and returns object IDs
and total counts), get-museum-object (Fetches de-
tailed information about specific museum objects
by ID including images, provenance, and cultural
context)

Movie Recommender https://github.com/iremert/
movie-recommender-mcp

1 Description: Intelligent movie recommendation
service providing personalized film suggestions
based on keyword matching and content analysis
algorithms. Tools: get_movies (Generates movie
suggestions and recommendations based on user-
provided keywords with relevance scoring and de-
tailed film information)
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Table 7 continued from previous page
Server Name GitHub Repository Tools Description & Tools
National Parks https://github.com/

KyrieTangSheng/
mcp-server-nationalparks

6 Description: US National Parks Service official
data integration providing comprehensive infor-
mation about parks, facilities, alerts, and recre-
ational opportunities across the national park sys-
tem. Tools: findParks (Searches for national
parks based on state, name, activities, or other cri-
teria with detailed filtering), getParkDetails (Re-
trieves comprehensive information about specific
national parks including descriptions, contact info,
and amenities), getAlerts (Fetches current park
alerts including closures, hazards, and important
visitor information), getVisitorCenters (Gets infor-
mation about visitor centers with operating hours
and services), getCampgrounds (Retrieves camp-
ground information including availability, ameni-
ties, and reservation details), getEvents (Finds up-
coming events at parks including programs, tours,
and special activities)

OpenAPI Explorer https://github.com/janwilmake/
openapi-mcp-server

2 Description: Universal API integration platform
providing dynamic OpenAPI specification explo-
ration and interaction with various cloud services,
social media platforms, developer tools, and en-
terprise APIs. Tools: getApiOverview (Get an
overview of an OpenAPI specification for services
including OpenAI, GitHub, Twitter/X, Cloudflare,
npm, Slack, Stripe, and many others - should be
the first step when working with any API), callApi
(Execute API calls dynamically based on OpenAPI
specifications with automatic parameter validation
and response handling)

NASA Data https://github.com/AnCode666/
nasa-mcp

21 Description: Comprehensive NASA data integra-
tion platform providing access to astronomy im-
agery, space weather data, planetary information,
and satellite observations through official NASA
APIs. Tools: get_astronomy_picture_of_day
(Retrieves NASA’s daily astronomy picture with
explanations and metadata), get_asteroids_feed
(Fetches asteroid data based on closest approach
dates to Earth), get_asteroid_lookup (Looks up
specific asteroids using NASA JPL small body
system IDs), browse_asteroids (Browses compre-
hensive asteroid dataset with filtering capabilities),
get_coronal_mass_ejection (Retrieves coronal
mass ejection data with date range filtering),
get_geomagnetic_storm (Fetches geomagnetic
storm data with temporal analysis), get_solar_flare
(Gets solar flare activity data with intensity
classifications), get_solar_energetic_particle
(Retrieves solar energetic particle event
data), get_magnetopause_crossing (Fetches
magnetopause crossing event informa-
tion), get_radiation_belt_enhancement (Gets
radiation belt enhancement event data),
get_hight_speed_stream (Retrieves high-speed
solar wind stream data), get_wsa_enlil_simulation
(Fetches WSA+Enlil solar wind simulation
results), get_notifications (Gets DONKI
space weather notifications and alerts),
get_earth_imagery (Retrieves Landsat 8 satel-
lite imagery for specific coordinates and
dates), get_earth_assets (Gets information
about available Earth imagery assets for lo-
cations), get_epic_imagery (Fetches images
from Earth Polychromatic Imaging Camera),
get_epic_imagery_by_date (Retrieves EPIC
images for specific dates), get_epic_dates
(Gets available dates for EPIC image collec-
tions), get_exoplanet_data (Queries NASA
Exoplanet Archive with custom search pa-
rameters), get_mars_rover_photos (Fetches
photos from Mars rovers by sol or Earth date),
get_mars_rover_manifest (Retrieves mission
manifests with rover status and photo statistics)
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Table 7 continued from previous page
Server Name GitHub Repository Tools Description & Tools
NixOS https://github.com/utensils/

mcp-nixos
18 Description: Comprehensive NixOS ecosystem

integration providing package management, con-
figuration options, Home Manager support, macOS
nix-darwin compatibility, and community flakes
discovery. Tools: nixos_search (Searches NixOS
packages, options, programs, or flakes with con-
figurable result limits), nixos_info (Retrieves de-
tailed information about specific NixOS packages
or options with channel selection), nixos_channels
(Lists all available NixOS channels with sta-
tus information), nixos_stats (Gets comprehen-
sive statistics for NixOS channels including pack-
age and option counts), home_manager_search
(Searches Home Manager configuration options
by name and description), home_manager_info
(Fetches detailed information about specific Home
Manager options with exact name matching),
home_manager_stats (Retrieves Home Manager
statistics including total options and category
breakdown), home_manager_list_options (Lists all
Home Manager option categories with counts),
home_manager_options_by_prefix (Gets Home
Manager options matching specific prefixes for
category browsing), darwin_search (Searches nix-
darwin macOS configuration options by name
and description), darwin_info (Retrieves de-
tailed information about specific nix-darwin op-
tions), darwin_stats (Gets nix-darwin statistics
including option counts and categories), dar-
win_list_options (Lists all nix-darwin option cat-
egories with counts), darwin_options_by_prefix
(Gets nix-darwin options matching specific pre-
fixes), nixos_flakes_stats (Retrieves statistics about
available NixOS flakes including repositories and
contributors), nixos_flakes_search (Searches com-
munity NixOS flakes by name, description, owner,
or repository), nixhub_package_versions (Gets
version history and nixpkgs commit hashes for spe-
cific packages), nixhub_find_version (Finds spe-
cific package versions with smart search and in-
creasing limits)

OKX Exchange https://github.com/esshka/
okx-mcp

2 Description: OKX cryptocurrency exchange inte-
gration providing real-time trading data and his-
torical price analysis for digital assets and trading
pairs. Tools: get_price (Retrieves latest price in-
formation for OKX trading instruments with real-
time market data), get_candlesticks (Fetches his-
torical candlestick data for technical analysis and
price charting)
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Table 7 continued from previous page
Server Name GitHub Repository Tools Description & Tools
Paper Search https://github.com/openags/

paper-search-mcp
19 Description: Comprehensive academic research

platform integrating multiple scholarly databases
for paper discovery, PDF retrieval, and full-
text analysis across diverse scientific disciplines.
Tools: search_arxiv (Searches arXiv preprint
repository with metadata and abstract retrieval),
search_pubmed (Searches PubMed biomedical lit-
erature database with detailed paper informa-
tion), search_biorxiv (Searches bioRxiv biol-
ogy preprint server with recent research find-
ings), search_medrxiv (Searches medRxiv med-
ical preprint repository for clinical research),
search_google_scholar (Searches Google Scholar
across all academic disciplines with citation met-
rics), search_iacr (Searches IACR ePrint Archive
for cryptography and security research), down-
load_arxiv (Downloads PDF files from arXiv pa-
pers with local storage), download_pubmed (At-
tempts PDF download from PubMed with ac-
cess limitations notice), download_biorxiv (Down-
loads bioRxiv paper PDFs with DOI-based re-
trieval), download_medrxiv (Downloads medRxiv
paper PDFs with automated file management),
download_iacr (Downloads IACR ePrint paper
PDFs with paper ID validation), read_arxiv_paper
(Extracts and processes full text content from
arXiv paper PDFs), read_pubmed_paper (Reads
PubMed paper content with direct database ac-
cess limitations), read_biorxiv_paper (Extracts
full text from bioRxiv papers with structured
content analysis), read_medrxiv_paper (Processes
medRxiv paper text with medical content pars-
ing), read_iacr_paper (Extracts text from IACR
papers with cryptography-specific formatting),
search_semantic (Searches Semantic Scholar with
advanced filtering by year and field), down-
load_semantic (Downloads papers from Seman-
tic Scholar using multiple identifier formats),
read_semantic_paper (Reads and processes Se-
mantic Scholar papers with comprehensive text ex-
traction)

Reddit https://github.com/dumyCq/
mcp-reddit

2 Description: Reddit social media platform
integration providing access to community
discussions, trending content, and detailed
post analysis with comment threading. Tools:
fetch_reddit_hot_threads (Fetches trending hot
threads from specified subreddits with configurable
result limits), fetch_reddit_post_content (Retrieves
detailed post content including comments with
traversable comment tree structure and depth
control)
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Table 7 continued from previous page
Server Name GitHub Repository Tools Description & Tools
Scientific Computing https://github.com/

Aman-Amith-Shastry/scientific_
computation_mcp

26 Description: Advanced scientific computing plat-
form providing comprehensive linear algebra op-
erations, vector calculus computations, and math-
ematical visualization tools with in-memory ten-
sor storage. Tools: create_tensor (Creates
NumPy arrays with specified shapes and val-
ues in memory store), view_tensor (Returns im-
mutable view of stored tensors from memory),
delete_tensor (Removes tensors from in-memory
storage), add_matrices (Performs element-wise ad-
dition of two stored matrices), subtract_matrices
(Performs element-wise subtraction of stored ma-
trices), multiply_matrices (Executes matrix mul-
tiplication between stored tensors), scale_matrix
(Scales stored tensor by scalar factor with op-
tional in-place operation), matrix_inverse (Com-
putes inverse of stored square matrices with
singularity checks), transpose (Computes trans-
pose of stored tensors), determinant (Calculates
determinant of stored square matrices), rank
(Computes matrix rank of stored tensors), com-
pute_eigen (Calculates eigenvalues and eigenvec-
tors of square matrices), qr_decompose (Performs
QR decomposition into orthogonal and upper tri-
angular matrices), svd_decompose (Executes Sin-
gular Value Decomposition into U, S, V compo-
nents), find_orthonormal_basis (Finds orthonormal
basis for column space using QR decomposition),
change_basis (Transforms matrix to new coordi-
nate basis), vector_project (Projects stored vector
onto specified target vector), vector_dot_product
(Computes dot product between two stored vec-
tors), vector_cross_product (Calculates cross prod-
uct of stored 3D vectors), gradient (Computes sym-
bolic gradient of scalar functions), curl (Calcu-
lates symbolic curl of vector fields with optional
point evaluation), divergence (Computes symbolic
divergence of vector fields), laplacian (Calculates
Laplacian operator for scalar or vector fields), di-
rectional_deriv (Computes directional derivative
along specified vector direction), plot_vector_field
(Visualizes 3D vector fields with customizable
bounds), plot_function (Plots 2D/3D mathematical
functions from symbolic expressions)

Time MCP https://github.com/dumyCq/
time-mcp

2 Description: Time zone conversion and world
clock service providing accurate time informa-
tion and conversions across different time zones
globally. Tools: get_current_time (Get current
time in specific timezones using IANA timezone
names), convert_time (Convert time between time-
zones with source and target timezone specifica-
tions)

Unit Converter https://github.com/zazencodes/
unit-converter-mcp

16 Description: Comprehensive unit conversion ser-
vice supporting multiple measurement categories
including temperature, angle, length, energy, force,
pressure, power, speed, area, mass, volume, data
storage, density, time, and batch quantities. Tools:
convert_temperature (Temperature conversion be-
tween Celsius, Fahrenheit, and Kelvin), con-
vert_angle (Angle conversion between degrees, ra-
dians, and gradians), convert_length (Length con-
version across metric and imperial units), con-
vert_energy (Energy conversion including joules,
calories, and BTU), convert_force (Force conver-
sion between newtons, pounds-force, and more),
convert_pressure (Pressure conversion across mul-
tiple units), convert_power (Power conversion in-
cluding watts and horsepower), convert_speed
(Speed conversion between various velocity units),
convert_area (Area conversion across square units),
convert_mass (Mass and weight conversion), con-
vert_volume (Volume conversion for liquids and
solids), convert_computer_data (Digital storage
conversion), convert_density (Density conversion
across different units), convert_time (Time dura-
tion conversion), convert_batch (Batch processing
for multiple conversions), convert_weight (Legacy
weight conversion function)
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Table 7 continued from previous page
Server Name GitHub Repository Tools Description & Tools
Weather Data https://github.com/HarunGuclu/

weather_mcp
4 Description: Comprehensive weather infor-

mation service providing current conditions,
forecasting, location search, and real-time me-
teorological data for global locations. Tools:
get_current_weather_tool (Retrieves current
weather information including temperature, condi-
tions, humidity, and wind data for specific cities),
get_weather_forecast_tool (Provides weather fore-
casts for 1-10 days with detailed meteorological
predictions), search_locations_tool (Searches for
locations by name with detailed geographic infor-
mation), get_live_temp (Legacy tool for current
temperature retrieval with backward compatibility
support)

Wikipedia https://github.com/Rudra-ravi/
wikipedia-mcp

9 Description: Comprehensive Wikipedia content
access and analysis service providing advanced
article search, content extraction, and knowledge
discovery with structured data analysis capabili-
ties. Tools: search_wikipedia (Searches Wikipedia
for articles matching specific queries with rele-
vance ranking and metadata), get_article (Retrieves
full content of Wikipedia articles with complete
text and formatting), get_summary (Generates
concise article summaries with key information
extraction), summarize_article_for_query (Creates
query-tailored summaries focusing on specific as-
pects of articles), summarize_article_section (Pro-
vides focused summaries of specific article sections
with contextual information), extract_key_facts
(Extracts structured key facts and data points from
articles with categorization), get_related_topics
(Discovers related topics and articles through link
analysis and category exploration), get_sections
(Lists all sections and subsections of articles with
hierarchical structure), get_links (Retrieves all in-
ternal and external links with link context and rele-
vance scoring)
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A.3 DETAILS OF THE USED PROMPT FOR THE TASK EXECUTION AGENT

In this section, we show the detailed prompt used for the task execution agent in MCP-BENCH.

Strategic Planning Prompt

Purpose: Strategic decision-making and tool planning for multi-round execution

You are a strategic decision-making expert for a multi-tool AI agent using the provided tools
to perform the task.

TASK: "{task}"
CURRENT ROUND: {round_num}
AVAILABLE TOOLS ACROSS SERVERS:
{tool_list}

DECISION AND PLANNING:
1. Assess if the original task is fully completed
2. If not complete, decide if another round would provide significant value
3. If continuing, plan PARALLEL tool executions for this round

PARALLEL EXECUTION PLANNING (IF CONTINUING):
• Plan ALL tool calls for this round to execute in PARALLEL
• ALL tools in this round will run simultaneously without dependencies
• EARLY EXECUTION PRINCIPLE: Plan all necessary tool calls that don’t require de-

pendencies
• AVOID REDUNDANT CALLS: Don’t repeat successful tools unless specifically needed
• BUILD ON PREVIOUS RESULTS: Use information from previous rounds
• FOCUS ON INDEPENDENT TASKS: Plan tools that can work with currently available

information

REQUIRED JSON RESPONSE FORMAT:� �
{

"reasoning": "<Detailed explanation for your decision and
parallel execution plan>",

"should_continue": true/false,
"planned_tools": [

{
"tool": "server:tool_name",
"parameters": { "param": "value" }

}
]

}� �
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Final Solution Generation Prompt

Purpose: Generate multi-round execution results into final comprehensive answer

You are an expert solution synthesizer for multi-tool AI agent execution.

ORIGINAL TASK: "{task}"

A multi-round execution process has completed with {total_executions} total tool calls
across multiple MCP servers.

ACCUMULATED INFORMATION AND RESULTS:
{accumulated_information}

TASK REQUIREMENTS:
Based on the original task and all the information gathered from multiple servers, provide a
final, comprehensive, and well-structured answer that directly addresses the user’s request.

Synthesize the key findings and present them in a clear, organized manner that shows how
the different server capabilities were combined.

SYNTHESIS GUIDELINES:
• Extract and consolidate key information from all execution rounds
• Highlight how different tools and servers contributed to the solution
• Present findings in a logical, structured format
• Address all aspects of the original task
• Provide clear, actionable conclusions where appropriate

Content Summarization Prompt

Purpose: Compress large execution results to reduce token usage

You are a helpful assistant. I need your help to extract key information from content.

Summarize the following content to less than {threshold} tokens while preserving all impor-
tant information:

CONTENT: {content}

SUMMARIZED CONTENT:

SUMMARIZATION REQUIREMENTS:
• Preserve all critical findings and results
• Maintain factual accuracy
• Keep important numerical data and specific details
• Remove redundant or verbose explanations
• Focus on actionable information
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A.4 DETAILS OF THE USED PROMPT FOR TASK SYNTHESIS

In this section, we show the detailed prompt used for task synthesis in MCP-BENCH.

Task Generation Prompt

Purpose: Generate complex tasks with deep tool dependencies

You are a task designer for testing AI agents with MCP tools.

STEP 1: ANALYZE AND CREATE TOOL DEPENDENCIES
Analyze these available tools and CREATE meaningful dependencies for your task scenario:

{tool_descriptions}

Consider both:
A) INHERENT dependencies (tool’s natural input/output relationships)
• Which tools naturally produce data others consume
• Standard workflow patterns (search → fetch → analyze)
B) SCENARIO-BASED dependencies (create logical connections for your task), for ex-
ample:
• Tool A’s result determines WHICH tool to use next
• Tool B’s output sets PARAMETERS for Tool C
• Tool D validates or contradicts Tool E’s findings
• Parallel tools whose results must be COMBINED
• Iterative loops where results trigger RE-ANALYSIS

Record your dependency analysis in a "dependency_analysis" field that describes:
• Key tool chains and data flow
• Critical decision points
• Parallel vs sequential requirements
• Cross-server dependencies (for multi-server tasks)
For multi-server tasks ({server_name}), create CROSS-SERVER dependencies:
• Server A data influences Server B queries
• Cross-validation between different data sources
• One server’s limits trigger fallback to another

STEP 2: DESIGN ONE COMPLEX TASK
Based on your dependency analysis, create ONE task that:
• Create MAXIMUM complexity requiring massive tool calls
• Must use tools from all available servers
• Must consider inter-servers dependency if more than 1 server available
You may create the tasks with the following properties if suitable:
• Deep dependency chains where Tool B needs Tool A’s output, Tool C needs B’s output,

etc.
• Multiple decision branches based on intermediate results
• Iterative refinement: initial findings lead to deeper investigation
• Cross-validation: use multiple tools to verify critical findings
• Data transformation: output from one tool needs processing before next tool
• Conditional workflows: if condition X, then workflow Y, else workflow Z
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CRITICAL DATA REQUIREMENTS:
1. ALL tasks MUST be self-contained and executable WITHOUT any external depen-

dencies
2. NEVER reference external resources like:

• URLs (like "https://api.example.com" or any external API)
• Local files (like "user-management.yaml" or "config.json")
• Databases or external systems
• "Our API", "our system", "our database"

3. ALL data must come from either:
• The provided tools themselves (what they can generate/fetch/calculate)
• Concrete values you specify in the task (numbers, names, parameters)

4. NEVER use vague references:
• "user-provided parameters" or "user-specified"
• "fetched from database" or "retrieved from external source"
• "based on user preferences" or "according to input"
• "specified location/value" or "to be determined"

5. ALWAYS provide concrete values:
• Specific numbers (e.g., "analyze heat exchanger with inlet temp 80°C, outlet 60°C, flow

rate 0.5 kg/s")
• Named entities (e.g., "analyze weather in San Francisco" not "specified city")
• For locations: Use city names, landmark names, or general areas, NOT specific street

addresses
– GOOD: "San Francisco", "Times Square", "Central Park area", "downtown Seattle"
– BAD: "123 Main Street", "456 Park Avenue", specific house numbers or street ad-

dresses
• Exact thresholds (e.g., "alert if efficiency drops below 85%" not "desired threshold")
• ALWAYS USE relative dates/times (e.g., "next 7 days", "past 3 months", "upcoming

week" not "January 2024" or "2024-01-15")
6. If the task involves analysis, provide ALL input data in the task description:

• For calculations: provide all numbers, formulas, and units needed
• For searches: provide specific search terms and criteria
• For comparisons: provide specific items with their properties
• For optimization: provide current values and target metrics

REQUIREMENTS:
1. MUST require multiple tools in a specific sequence
2. Tool B should need output from Tool A (dependency chain)
3. Include decision points based on intermediate results
4. Be realistic and valuable for business/research purposes
5. Define expected analysis and output format
6. Task must be immediately executable - agent should never need to ask for more informa-

tion
7. Task should be executable and solvable by using the provided tools. You need to pay

attention to the function and the output of the provided tools.
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OUTPUT FORMAT:
Output ONLY a JSON object (not an array). ALWAYS USE relative dates/times:� �
{

"task_id": "task_XXX",
"task_description": "detailed task that leverages the identified

tool dependencies",
"dependency_analysis": "Your analysis from STEP 1 - describe the

key dependencies, tool chains, decision points, and data flow
patterns that this task requires"

}� �
Focus on creating a task that CANNOT be completed without understanding tool dependen-
cies.

Task Quality Assessment Prompt

Purpose: Evaluate task quality on solvability and utility dimensions

Evaluate this task’s quality on two dimensions:

Task Description:
{task_description}

Fuzzy Description (what the agent sees):
{fuzzy_description}

Available Tools:
{tool_descriptions}

EVALUATION CRITERIA:
1. SOLVABILITY (1-10):
• 10: All required data is provided, tools perfectly match needs, clear success criteria
• 8-9: Task is clearly solvable with the given tools, minor ambiguities acceptable
• 6-7: Mostly solvable but some steps may be challenging or unclear
• 4-5: Significant gaps in tool coverage or data requirements
• 1-3: Task cannot be meaningfully completed with available tools
Consider:
• Are all necessary tools available?
• Is all required data provided (no external dependencies)?
• Can the agent achieve the stated goal with these tools based on the function and output of

the tools?
• Are success criteria clear and measurable?

2. UTILITY (1-10):
• 10: Critical business/research value, addresses real-world problem perfectly
• 8-9: Strong practical value, useful for decision-making or operations
• 6-7: Moderate value, interesting but not critical
• 4-5: Limited practical value, mostly academic exercise
• 1-3: Trivial or artificial task with no real-world application
Consider:
• Does this address a real business or research need?
• Would the results be actionable and valuable?
• Is the complexity justified by the outcome?
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• Does it test meaningful agent capabilities?

OUTPUT FORMAT:
Provide scores and brief feedback in JSON format:� �
{

"solvability_score": <number 1-10>,
"utility_score": <number 1-10>,
"solvability_feedback": "Brief explanation of solvability

assessment",
"utility_feedback": "Brief explanation of utility assessment"

}� �
Task Description Fuzzing Prompt

Purpose: Convert detailed tasks into natural, conversational user requests

Convert this detailed task into a NATURAL, CONVERSATIONAL USER REQUEST that
truly tests the agent’s reasoning ability.

Original detailed task:
{detailed_task}

Available tools: {len(tools)} tools (but don’t mention them in the fuzzy version)

CRITICAL: CREATE A GENUINELY NATURAL REQUEST
ABSOLUTELY FORBIDDEN:
• ANY structured language that looks like a task description
• Phrases like "I need to analyze", "I want to compare", "Please evaluate"
• ANY specific server/platform names (arXiv, PubMed, Yahoo Finance, Google Maps, etc.)
• ANY tool names or technical implementation details
• Lists, enumerations, or step-by-step instructions
• Formal task language ("perform", "conduct", "execute", "implement")

INSTEAD, CREATE A NATURAL CONVERSATION:
• Start with context or a problem the user is facing
• Use conversational openers: "I’m trying to figure out...", "Been wondering about...", "Got

a situation here..."
• Include uncertainty: "not sure if", "maybe", "possibly", "might be"
• Add personal context: "for my project", "my boss asked", "I’m curious about"
• Express the need through a story or scenario, not a task list

HIDE THE TASK STRUCTURE COMPLETELY:
Don’t say: "I need to analyze financial metrics for AAPL, GOOGL, and MSFT"
Say instead: "I’ve been thinking about rebalancing my portfolio and I’m curious how tech
giants like AAPL, GOOGL, and MSFT have been doing lately. Which one would you say
looks strongest right now?"

Don’t say: "Search for recent papers on CRISPR and summarize the key findings"
Say instead: "I’m giving a presentation next week about gene editing. What’s the latest buzz
around CRISPR? Any breakthrough discoveries I should know about?"

Don’t say: "Calculate the thermal efficiency and optimize the heat exchanger parameters"
Say instead: "We’ve got this heat exchanger running at 80°C inlet, 60°C outlet with 0.5 kg/s
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flow. It doesn’t seem very efficient to me. Can you help me figure out what’s going on and
maybe how to improve it?"

PRESERVE CRITICAL DATA NATURALLY:
• Embed specific values conversationally: "around 150 or so", "somewhere near San Fran-

cisco"
• Use approximate language when appropriate: "roughly", "about", "somewhere between"
• Keep exact values only when truly necessary (calculations, IDs, etc.)
{calculation_requirements}

MAKE IT SOUND LIKE A REAL PERSON:
• Use contractions: "I’m", "don’t", "can’t", "what’s"
• Include filler words sparingly: "actually", "basically", "you know"
• Show emotion or urgency when appropriate: "really need to know", "been bugging me"
• Ask questions naturally: "What do you think?", "Does that make sense?", "Am I over-

thinking this?"

EXAMPLES OF NATURAL FUZZY DESCRIPTIONS:
Example 1 (Finance):
"So I’ve been watching my tech stocks lately and honestly, I’m not sure if I should hold or
sell. AAPL, GOOGL, and MSFT make up most of my portfolio. With everything going on
in the market, which one do you think has the best outlook? I’m particularly worried about
their debt levels and cash flow situation. Need some real data to back up any decision here,
not just gut feelings."

Example 2 (Research):
"I’m preparing for a journal club presentation and everyone’s been talking about these new
CRISPR developments. What’s actually new in the past few months? I keep hearing about
off-target effects being solved but can’t find solid evidence. Would really appreciate concrete
findings from recent studies, not just hype."

Example 3 (Technical):
"We’re having issues with our heat exchanger setup - running at 80°C in, 60°C out, flow
rate’s about 0.5 kg/s. My manager thinks we’re wasting energy but I need to prove it with
actual numbers. Can you work out what our current efficiency is and maybe suggest what
parameters we should tweak? Need solid calculations to convince them to approve changes."

CRITICAL: END NATURALLY WITH EVIDENCE REQUIREMENTS WOVEN INTO THE
CONVERSATION:
Instead of: "Please provide evidence-based analysis with concrete data"
Say: "I really need actual data on this - can’t go to my boss with just opinions. Whatever you
find, make sure it’s backed up by real numbers or solid sources, okay?"

ALWAYS USE relative dates/times (e.g., "next 7 days", "past 3 months", "upcoming week"
not "January 2024" or "2024-01-15")

Return ONLY the natural, conversational fuzzy description - make it sound like a real person
asking for help, not a robot executing a task.

A.5 DETAILS OF LLM JUDGE

In this section, we show the detailed prompt used for the LLM judge in our benchmark.
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LLM Judge Prompt

System Role:
You are an impartial evaluator judging the quality of an AI agent’s multi-server tool-based
task execution.

User:
You must assign scores only based on evidence from the task, solution, and tool usage. Your
evaluation should be:
• Objective (avoid being influenced by language fluency or formatting)
• Justified (include specific reasons tied to each score)
• Robust against bias (ignore narrative style, verbosity, or formatting polish)

TASK PRESENTED TO AGENT: "{task}"
CONCRETE TASK REFERENCE (For evaluation context only):
Note: The agent did NOT see this concrete version. It only saw the task above. The task
visible for the agent is the fuzzy version of the concrete task. The agent’s interpretation of
the fuzzy task may differ but still be valid.
"{concrete_task_description}"
DEPENDENCY ANALYSIS:
Note: This analysis was generated during task creation to help understand tool dependencies.
The agent did NOT see this analysis. It is provided as reference for evaluation purposes.
{dependency_analysis}
FINAL SOLUTION: "{final_solution}"
TOTAL ROUNDS: {total_rounds}
EXECUTION SUMMARY:
{execution_summary}
AVAILABLE TOOLS ({num_tools} tools):
{available_tools}

TASK COMPLETION RUBRIC (1–10 PER SUBDIMENSION)
1. Task Fulfillment

• 1–3: Perfectly completes 10–30% of requirements.
• 4–6: Perfectly completes 40–60% of requirements.
• 7–8: Perfectly completes 70–80% of requirements.
• 9–10: Perfectly completes 90–100% of requirements.

2. Grounding
• 1–3: 10–30% of claims are perfectly grounded in tool outputs.
• 4–6: 40–60% of claims are perfectly grounded in tool outputs.
• 7–8: 70–80% of claims are perfectly grounded in tool outputs.
• 9–10: 90–100% of claims are perfectly grounded in tool outputs.

TOOL USAGE RUBRIC (1–10 PER SUBDIMENSION)
1. Tool Appropriateness

• 1–3: 10–30% of tools were perfectly selected for their subtasks.
• 4–6: 40–60% of tools were perfectly selected for their subtasks.
• 7–8: 70–80% of tools were perfectly selected for their subtasks.
• 9–10: 90–100% of tools were perfectly selected for their subtasks.

2. Parameter Accuracy
• 1–3: 10–30% of tool calls have perfectly accurate and complete parameters.
• 4–6: 40–60% of tool calls have perfectly accurate and complete parameters.
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• 7–8: 70–80% of tool calls have perfectly accurate and complete parameters.
• 9–10: 90–100% of tool calls have perfectly accurate and complete parameters.

PLANNING EFFECTIVENESS AND EFFICIENCY RUBRIC (1–10 PER SUBDIMENSION)
1. Dependency Awareness

• 1–3: 10–30% of dependency chains are perfectly executed.
• 4–6: 40–60% of dependency chains are perfectly executed.
• 7–8: 70–80% of dependency chains are perfectly executed.
• 9–10: 90–100% of dependency chains are perfectly executed.

2. Parallelism and Efficiency
• 1–3: More than 70% redundant calls OR less than 30% of parallelizable tasks were

executed in parallel.
• 4–6: 40–60% redundant calls OR 40–60% of parallelizable tasks were executed in

parallel.
• 7–8: 20–30% redundant calls AND 70–80% of parallelizable tasks were executed in

parallel.
• 9–10: Less than 10% redundant calls AND 90–100% of parallelizable tasks were exe-

cuted in parallel.

PERCENTAGE-BASED SCORING SYSTEM:
How to Calculate Scores:
For each dimension, calculate the DEFECT RATE:
• Defect Rate = (Number of Issues / Total Opportunities) × 100%
Then map defect rate to score:
• 0–10% defects → Score 9–10 (Excellent to Perfect)
• 10–30% defects → Score 7–9 (Good performance)
• 30–50% defects → Score 5–7 (Average performance)
• 50–70% defects → Score 3–5 (Poor performance)
• 70–100% defects → Score 0–3 (Failed)
How to Score:
1. When evaluating percentages, be EXTREMELY STRICT about what counts as “perfectly

executed”
2. “Perfectly” means ALL of the following must be true:

• Correct tool selection (not just “works” but OPTIMAL choice)
• Complete and accurate parameters (not just valid, but IDEAL)
• Zero redundancy (no repeated or unnecessary calls)
• Proper error handling (graceful recovery from ANY failure)
• Efficient execution (parallel when possible, minimal rounds)
• Concise output (no verbose explanations unless requested)

3. If ANY of the above is missing, that portion is NOT perfectly executed (counts as 0%)
4. Example: Task completed correctly but with 1 redundant call = that portion is 0% perfect
KEY PRINCIPLES:
1. ALWAYS calculate as percentage, NOT absolute numbers
2. 10 errors in 100 calls (10%) = same score as 1 error in 10 calls (10%)
3. Consider the OPPORTUNITY COUNT for each dimension:

• Tool calls: How many total calls were made?
• Parallelization: How many tasks COULD have been parallel?
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• Parameters: How many total parameters across all calls?
• Claims: How many factual statements were made?
• Dependencies: How many dependency relationships exist?

4. NORMALIZE by complexity - don’t punish complex tasks:
• Simple task: 1 error/5 steps (20% defect) = Score 7
• Complex task: 4 errors/20 steps (20% defect) = Score 7

CRITICAL: Apply the STRICTEST interpretation of “perfectly executed”. If there’s ANY
doubt, score lower.

CONCRETE SCORING EXAMPLES WITH PROPORTIONS:
Task Fulfillment:
• Completed 19/20 requirements (5% defect rate) = Score 9
• Completed 16/20 requirements (20% defect rate) = Score 8
• Completed 12/20 requirements (40% defect rate) = Score 6
• Completed 8/20 requirements (60% defect rate) = Score 4
Tool Appropriateness:
• 19/20 tools optimal (5% defect rate) = Score 9
• 16/20 tools optimal (20% defect rate) = Score 8
• 12/20 tools optimal (40% defect rate) = Score 6
• 8/20 tools optimal (60% defect rate) = Score 4
Parallelism & Efficiency:
• 9/10 parallelizable tasks done in parallel (10% missed) = Score 9
• 8/10 parallelizable tasks done in parallel (20% missed) = Score 8
• 6/10 parallelizable tasks done in parallel (40% missed) = Score 6
• 4/10 parallelizable tasks done in parallel (60% missed) = Score 4
Grounding:
• 19/20 claims supported by evidence (5% unsupported) = Score 9
• 16/20 claims supported by evidence (20% unsupported) = Score 8
• 12/20 claims supported by evidence (40% unsupported) = Score 6
• 8/20 claims supported by evidence (60% unsupported) = Score 4
Parameter Accuracy:
• 95/100 parameters perfect (5% defect rate) = Score 9
• 80/100 parameters perfect (20% defect rate) = Score 8
• 60/100 parameters perfect (40% defect rate) = Score 6
• 40/100 parameters perfect (60% defect rate) = Score 4
FORMAT NOTE: Text output when JSON not required = NO PENALTY (0% defect)
FORMAT NOTE: Missing JSON when explicitly required = Count as failed requirement
Remember: Most real-world executions should score 4–6. Scores of 8+ should be EXCEP-
TIONAL.
FINAL REMINDER BEFORE SCORING:
• Default to 4–5 unless you have strong evidence for higher
• Count ONLY truly perfect executions toward the percentage
• Be your most critical self - find flaws first, then acknowledge successes
• If you’re considering a score above 7, re-examine for ANY imperfection
• Server count is IRRELEVANT - using more servers is NOT better
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CRITICAL EVALUATION REQUIREMENTS:
1. You MUST map each score to the exact percentage ranges in the rubrics.
2. Task Completion and Tool Selection MUST be evaluated against the CONCRETE TASK

REFERENCE, not the fuzzy task.
3. Planning Effectiveness should be evaluated based on the PROPORTION of dependencies

correctly handled, not the absolute number of steps executed or exact conformance to the
dependency analysis.

4. First calculate the actual percentage of completion/success, then assign the corresponding
score range.

5. IMPORTANT: Focus on completion RATIOS not absolute numbers - completing 7/10
steps (70%) should score similarly to completing 14/20 steps (70%), regardless of task
complexity.

Please score based on COMPLETION PERCENTAGES and PROPORTIONAL SUCCESS,
not absolute numbers of tools called or steps executed. Return your evaluation scoring and
reasoning in this exact JSON format:� �
{

"task_fulfillment_reasoning": "Explain how well the agent
fulfilled the detailed task objectives, referencing specific
content from the CONCRETE TASK DESCRIPTION and what percentage
was completed.",

"grounding_reasoning": "Explain how well the agent’s outputs were
grounded in actual tool results versus unsupported claims.",

"tool_appropriateness_reasoning": "Explain whether the tools
selected were appropriate for each subtask requirement.",

"parameter_accuracy_reasoning": "Explain the accuracy and
completeness of parameters used in tool calls, noting any
missing required parameters or incorrect values.",

"dependency_awareness_reasoning": "Explain how well the agent
understood and respected task dependencies (what percentage of
dependencies were handled correctly), refer to the provided

dependency analysis section.",
"parallelism_efficiency_reasoning": "Explain the efficiency of

execution, including use of parallelism and avoiding
redundancy, refer to the provided dependency analysis section
.",

"task_fulfillment": X,
"grounding": X,

"tool_appropriateness": X,
"parameter_accuracy": X,

"dependency_awareness": X,
"parallelism_and_efficiency": X

}� �
Return only the JSON object.
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A.6 EXAMPLES OF THE INPUT SCHEMA FOR TOOLS INVOLVED.

Input Schema Example 1: Blood Pressure Percentiles in Medical Calculator

Tool: bp_children
Input Schema:� �

{
"type": "object",
"properties": {
"years": {

"type": "integer",
"minimum": 1,
"maximum": 17,
"description": "Age in years"

},
"months": {

"type": "integer",
"minimum": 0,
"maximum": 11,
"description": "Additional months of age"

},
"height": {

"type": "integer",
"minimum": 50,
"maximum": 250,
"description": "Height in centimeters"

},
"sex": {

"type": "string",
"enum": ["male", "female"],
"description": "Patient gender"

},
"systolic": {

"type": "integer",
"minimum": 50,
"maximum": 250,
"description": "Systolic blood pressure in mmHg"

},
"diastolic": {

"type": "integer",
"minimum": 30,
"maximum": 150,
"description": "Diastolic blood pressure in mmHg"

}
},
"required": ["years", "months", "height", "sex", "systolic", "

diastolic"]
}� �

Input Schema Example 2: Multi-parameter eGFR in Kidney Function Calculator

Tool: egfr_epi_cr_cys
Input Schema:� �
{
"type": "object",
"properties": {
"scr": {

"type": "number",
"minimum": 0.1,
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"maximum": 50.0,
"multipleOf": 0.01,
"description": "Serum creatinine level in mg/dL (0.1-50.0)"

},
"scys": {

"type": "number",
"minimum": 0.1,
"maximum": 10.0,
"multipleOf": 0.01,
"description": "Serum cystatin C level in mg/L (0.1-10.0)"

},
"age": {

"type": "integer",
"minimum": 18,
"maximum": 120,
"description": "Patient age in years (18-120)"

},
"male": {

"type": "boolean",
"description": "True if patient is male, False if female"

}
},
"required": ["scr", "scys", "age", "male"],
"additionalProperties": false

}� �
Input Schema Example 3: Tensor Creation in Scientific Computing

Tool: create_tensor
Input Schema:� �
{
"type": "object",
"properties": {
"shape": {

"type": "array",
"items": {
"type": "integer",
"minimum": 1,
"maximum": 10000

},
"minItems": 1,
"maxItems": 10,
"description": "Tensor shape as list of integers (max 10

dimensions)"
},
"values": {

"type": "array",
"items": {
"type": "number"

},
"minItems": 1,
"maxItems": 1000000,
"description": "Flat list of floats to fill the tensor"

},
"name": {

"type": "string",
"pattern": "^[a-zA-Z][a-zA-Z0-9_]*$",
"minLength": 1,
"maxLength": 50,
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"description": "Variable name (alphanumeric with
underscores, starts with letter)"

}
},
"required": ["shape", "values", "name"],
"additionalProperties": false

}� �
Input Schema Example 4: Matrix Basis Change in Linear Algebra

Tool: change_basis
Input Schema:� �
{
"type": "object",
"properties": {
"name": {

"type": "string",
"pattern": "^[a-zA-Z][a-zA-Z0-9_]*$",
"description": "Name of matrix in tensor store"

},
"new_basis": {

"type": "array",
"items": {
"type": "array",
"items": {
"type": "number"

},
"minItems": 1,
"maxItems": 1000

},
"minItems": 1,
"maxItems": 1000,
"description": "2D array where columns are new basis

vectors"
}

},
"required": ["name", "new_basis"],
"additionalProperties": false

}� �
Input Schema Example 5: Multi-Domain Search in Biomedical Research

Tool: article_searcher
Input Schema:� �
{
"type": "object",
"properties": {
"chemicals": {

"anyOf": [
{"type": "array", "items": {"type": "string", "minLength

": 2}},
{"type": "string", "minLength": 2},
{"type": "null"}

],
"description": "Chemical/drug names to search for"

},
"genes": {
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"anyOf": [
{
"type": "array",
"items": {
"type": "string",
"pattern": "^[A-Z][A-Z0-9]*$",
"minLength": 2,
"maxLength": 20

}
},
{"type": "string", "pattern": "^[A-Z][A-Z0-9]*$"},
{"type": "null"}

],
"description": "Gene symbols (uppercase alphanumeric)"

},
"variants": {

"anyOf": [
{
"type": "array",
"items": {
"type": "string",
"pattern": "^(p\\.|c\\.|g\\.|m\\.|n\\.)?[A-Z]?[0-9]+[

A-Z*]?$"
}

},
{"type": "string"},
{"type": "null"}

],
"description": "Genetic variants (HGVS notation)"

},
"include_preprints": {

"type": "boolean",
"default": true,
"description": "Include preprints from bioRxiv/medRxiv"

},
"page": {

"type": "integer",
"minimum": 1,
"maximum": 1000,
"default": 1,
"description": "Page number (1-based)"

},
"page_size": {

"type": "integer",
"minimum": 1,
"maximum": 100,
"default": 10,
"description": "Results per page"

}
},
"additionalProperties": false

}� �
A.7 DETAILS OF THE TASKS

In this section, we demonstrate more examples of the tasks in MCP-BENCH (Table 8) and list the
combinations of the servers to construct the tasks (Table 9).
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Table 8: More examples of task in MCP-BENCH.

Servers & Tools Task Description

Servers: Google Maps, Weather Data,
National Parks
Useful Tools: findParks,
getParkDetails, getAlerts,
getCampgrounds, getVisitorCenters,
maps_geocode,
maps_distance_matrix,
maps_directions, maps_elevation,
search_nearby,
get_weather_forecast_tool, getEvents,
maps_reverse_geocode,
get_place_details,
get_current_weather_tool

Hey there—I’m gearing up for a quick three-day camping get-
away to Yosemite from San Jose and, to be honest, I’m feeling
a bit swamped by all the options and details. I’d love to zero in
on the three best campgrounds that actually have real comforts—
think showers, drinking water, maybe even Wi-Fi—are definitely
open on my dates and aren’t under any alerts or closures right now.
Once I’ve got that shortlist, can you help me figure out roughly how
far and how long it takes to drive from San Jose to each of those
spots? I’m planning to settle into one as my “base camp,” so for
that primary site it’d be great to know the nearest visitor center’s
hours and exactly how to get there—like turn-by-turn directions,
plus the distance and travel time. Also, what’s the elevation at that
main campground? Since I want to pack smart, I really need a solid
three-day weather outlook for Yosemite—nothing vague, just the
highs, lows and general conditions for the next few days. And, just
in case I run out of snacks or cooking supplies, is there a grocery or
convenience store within about five kilometers of that first camp-
ground? I can’t just wing this trip, so any real numbers or solid
reference points you can dig up would be awesome—no vague
guesses, please. Thanks! Please ensure all findings are supported
by concrete data and verifiable sources. I need specific numbers
and evidence, not generalizations.

Servers: Hugging Face, Paper Search,
Wikipedia
Useful Tools: search-models,
get-model-info, search-datasets,
search_arxiv, download_arxiv,
read_arxiv_paper, search_pubmed,
search_wikipedia, get_article,
get_summary, extract_key_facts,
search-spaces, get-space-info,
search_biorxiv, download_biorxiv,
read_biorxiv_paper, get_sections,
get_links

I’m working on a project where I need to pick the very best news-
article classifier out there right now—specifically the one built for
that 4-category news dataset (world, sports, business, tech). My
boss wants me to find a publicly available, open-source model that
has the highest F1 score, and then see if any fresh paper from the
last three months has pushed the bar another 5 percentage points
higher. If a recent research write-up really beats the community
model by at least 5 points in F1, I’d like to know what architectural
tweak or training trick they used so I can apply it to the top model
we found. If not, we’ll just roll with that open-source champion as
is. Also, I need a quick, plain-English refresher on what a micro-
averaged F1 score actually means and how it’s calculated—got to
explain it clearly to stakeholders. Could you dig into this for me,
pull together the model ID and its reported F1, track down any pa-
per from roughly the past three months with its own F1, compare
them, and then recommend next steps? Really need solid num-
bers and clear references so I’m not just guessing. Thanks! Please
ensure all findings are supported by concrete data and verifiable
sources. I need specific numbers and evidence, not generalizations.
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Table 8 continued from previous page
Servers & Tools Task Description

Servers: Google Maps, National
Parks
Useful Tools: findParks,
getParkDetails, getAlerts, getEvents,
getCampgrounds, getVisitorCenters,
maps_geocode,
maps_reverse_geocode,
get_place_details, search_nearby,
maps_directions,
maps_distance_matrix,
maps_elevation

I’ve been itching to head out of Denver for a 5-day camping trip
sometime in the next week, but I’m kind of torn on which national
park makes the most sense. Ideally it’s no more than about a 200
km drive, offers solid hiking and camping, and has a visitor center
where I can catch any talks or events going on that week. I’m
also really curious about spending nights at camp spots that vary in
elevation—maybe one high ridge, one mid-level meadow and one
lower valley—just to see how the landscape and weather change.
On top of that, I don’t want to be stuck cooking at every stop,
so it’d be awesome to know what town is nearest each campsite
and where I can grab a good meal—not just any greasy spoon, but
something rated at least four stars, and I need to know how long
the drive is and exactly how to get there. In the middle of the trip
I’d like to base myself at a visitor center for a couple of nights
to break things up and dive into any ranger-led programs. Could
you put together a day-by-day itinerary for the upcoming week
that does all of that—picks the best park within a reasonable drive
from Denver, highlights three campsites that maximize elevation
differences, flags any alerts or events happening, finds the nearest
town restaurants with ratings and drive times, and then lays out
morning/afternoon/evening plans for each of the five days? I really
need actual data on this—can’t go wandering off with just vague
advice. Whatever you find, please back it up with real numbers or
solid sources, okay? Please ensure all findings are supported by
concrete data and verifiable sources. I need specific numbers and
evidence, not generalizations.

Servers: NixOS, Context7
Useful Tools: nixos_search,
nixos_info, nixos_channels,
nixos_stats, home_manager_search,
home_manager_info,
home_manager_stats,
home_manager_list_options,
home_manager_options_by_prefix,
darwin_search, darwin_info,
darwin_stats, darwin_list_options,
darwin_options_by_prefix,
nixos_flakes_stats,
nixos_flakes_search,
nixhub_package_versions,
nixhub_find_version, search_context,
get_context_entry

I’ve been banging my head trying to get a Flask-based web app
running in a totally reproducible way across our team’s setups.
We need Python 3.10, Flask itself, Redis, and Docker all coming
from the same Nix channel (we’re on 25.05), plus config snippets
that play nicely with Home Manager on Linux laptops and nix-
darwin on macOS. On top of that, my lead wants a tiny excerpt—
like 500 words or so—on how Flask routing works to stick in
our README. What would really help is if you could pull to-
gether: • A quick snapshot of the 25.05 channel (how big it is,
broadly speaking) • The exact Nix package names and versions for
python3, flask, redis, and docker, ideally with the commit or revi-
sion that pins them • The main Home Manager options we should
set for Python and Docker, with their descriptions • The equivalent
nix-darwin settings so my mac-using teammate can just drop them
in • Whether there’s a Poetry flake out there we can lean on (or a
note if none exist) • And finally, about 500 tokens’ worth of official
Flask routing docs so I can paste it straight into our project guide
If you could wrap all of that up as a single JSON I can hand off
to my team, that’d save me hours of guesswork—and give me the
hard data I need to prove this setup will actually work everywhere.
Thanks! Please ensure all findings are supported by concrete data
and verifiable sources. I need specific numbers and evidence, not
generalizations.
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Table 8 continued from previous page
Servers & Tools Task Description

Servers: Metropolitan Museum,
Wikipedia
Useful Tools:
search-museum-objects,
get-museum-object, list-departments,
search_wikipedia, get_article,
get_summary, get_sections, get_links,
get_related_topics, extract_key_facts,
summarize_article_section,
summarize_article_for_query

I’m putting together a small art-history spotlight on seating in New
Kingdom Egypt—specifically what’s on view at the Met—and I’m
a bit stuck on how to pull everything together. My professor wants
me to pick out an example piece from the Met’s Egyptian section,
but I’m not even sure what they call that department or how to
find chairs with pictures in their collection. Once I have a few
candidates, I need to know their dates (make sure they’re really
New Kingdom) and exactly what they’re made of. If there aren’t
enough chairs, I might have to slip in a stool or footrest to hit at
least two examples, and then choose the one with the most elabo-
rate materials list as my main focus. After that, I have to see what
Wikipedia says about Ancient Egyptian furniture—grab the arti-
cle summary, pull out the top five insights specifically about New
Kingdom pieces, and boil down the “Construction and materials”
bit into a quick blurb. It’d also help to know a handful of related
topics I could mention for extra context. Finally, I need to check
if my chosen Met object uses any materials that don’t show up
in those Wikipedia facts—those could be neat anomalies to point
out. I really need actual Met IDs, image links, periods, materi-
als lists, the Wikipedia summary, key New Kingdom facts, that
short construction/materials paragraph, related topics, and a note
on any unmatched materials. Can you help me track it all down?
I can’t go to my professor with guesses—gotta have real data or
solid sources. Please ensure all findings are supported by concrete
data and verifiable sources. I need specific numbers and evidence,
not generalizations.

Servers: Scientific Computing, Math
MCP
Useful Tools: compute_eigen,
svd_decompose, determinant, rank,
matrix_inverse, create_tensor,
multiply_matrices, gradient, add,
multiply, sum, mean,
vector_dot_product, vector_project,
scale_matrix, qr_decompose, subtract

I’m working on a mini portfolio analysis for a class project and
could use some help untangling the math. I’ve got three assets
with expected returns of 0.08, 0.12 and 0.10, and I estimated their
covariance matrix as:
[0.04 0.006 0.014 0.006 0.09 0.02 0.014 0.02 0.16]
When I peeked at the determinant, I worried it might be zero or
really small, so I thought I might gently bump the whole matrix
by 0.1% until it’s safely nonzero. After that, I’d like to get its
eigenvalues and eigenvectors, figure out the largest and smallest
eigenvalue, and compute the condition number. If it turns out to be
over 100, I’ll need to go the SVD route and build a pseudoinverse;
otherwise a regular inverse should do. Once I’ve got whichever
inverse is appropriate, I want to multiply it by the return vector
[0.08, 0.12, 0.10] to see what portfolio weights pop out. I’m also
curious to project the return vector onto the principal eigenvector
(the one tied to the biggest eigenvalue) and then verify my weights
sum to 1 by dotting them with [1,1,1]. Could you walk me through
all of that and give me the actual numbers? Specifically: • The
nonzero determinant after any tiny scaling • The condition num-
ber • Whether you ended up using an inverse or a pseudoinverse
• The full inverse (or pseudoinverse) matrix • The final weight
vector • The projected return onto that top eigenvector • And the
dot-product sum of the weights I really need concrete figures—no
hand-waving—because I have to show this to my professor and
can’t just say “it works out.” Thanks!
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Table 8 continued from previous page
Servers & Tools Task Description

Servers: Medical Calculator,
FruityVice, BioMCP
Useful Tools: bmi_bsa_calculator,
egfr_epi_cr_cys, crcl_cockcroft_gault,
prevent_cvd_risk, chads2_vasc_score,
corrected_sodium, corrected_calcium,
maintenance_fluids,
steroid_conversion,
get_fruit_nutrition, think, search,
fetch, article_searcher, article_getter,
qtc_calculator, wells_pe_criteria,
map_calculator

I’m looking after a 60-year-old woman who has type 2 diabetes,
high blood pressure and high cholesterol, and I’m trying to pull to-
gether a full picture of her cardiometabolic and nutritional status—
but I’m not totally confident I’ve got it all right. She’s roughly 80
kg and 165 cm tall, so I want to know her BMI and body surface
area. For her kidney function, her creatinine is 1.2 mg/dL and cys-
tatin C is 1.1 mg/L—do you think we should use the 2021 CKD-
EPI creatinine-cystatin C equation to get her eGFR? And then I’d
like a Cockcroft-Gault estimate of her creatinine clearance too. On
top of that, I need to figure out her 10-year risk of cardiovascular
disease—she’s 60, female, total cholesterol is 240 mg/dL, HDL is
40 mg/dL, systolic blood pressure around 150 mmHg, she’s dia-
betic, a current smoker, already on antihypertensives and a statin.
I’m thinking PREVENT might be appropriate, but I need that per-
centage so I can decide if she really belongs on high-intensity statin
therapy per the latest AHA/ACC thresholds. While we’re crunch-
ing scores, could you also work out her CHA2DS2-VASc? She’s
got hypertension and diabetes, no heart failure, no prior stroke or
vascular disease, and of course she’s female. I’d also like to correct
her serum sodium—measured at 138 mEq/L with a glucose of 250
mg/dL—and adjust her calcium, which is 8.0 mg/dL when albumin
is 2.5 g/dL. I’ve been asked to set her maintenance IV fluid rate by
the 4-2-1 rule for an 80 kg patient, and to convert her current pred-
nisone dose of 5 mg/day into a dexamethasone equivalent. Finally,
for her diet, I want to recommend a heart-healthy, low-glycemic
plan—could you pull the nutrition facts for one medium apple and
one medium banana? In the end, I really need a concise summary
with all the hard numbers—BMI, BSA, eGFR, creatinine clear-
ance, CVD risk percent, statin recommendation, CHA2DS2-VASc
score, corrected sodium and calcium, fluid rate, steroid conversion
and the apple/banana nutrition info—so I can justify everything to
my team with solid data, not just gut feeling. Please ensure all
findings are supported by concrete data and verifiable sources. I
need specific numbers and evidence, not generalizations.

Servers: Google Maps, Weather Data,
National Parks
Useful Tools: findParks,
getParkDetails, getAlerts,
getVisitorCenters, getCampgrounds,
getEvents, maps_geocode,
maps_distance_matrix,
maps_reverse_geocode,
maps_directions, maps_elevation,
search_nearby,
get_current_weather_tool,
get_weather_forecast_tool,
get_place_details

I’m trying to plan a week-long hiking and camping loop that starts
and ends in Denver, and I’m hoping you can really nerd out with
me on the details. I want to hit a few of the best parks in Colorado,
Utah or Wyoming that have both solid trails and campgrounds, then
narrow it down to the three closest ones by drive time so I’m not
losing half my day on the road. From there, I’d love a day-by-day
agenda for the next seven days that not only tells me which park
I’m at and when, but also flags any active alerts or if there’s more
than a 50% chance of rain that day (so we could switch things
around if it looks dicey). On top of that, I need to know what
the visitor center hours are, where I can actually secure a camp-
site or catch an event, plus a quick weather snapshot each morn-
ing and night. If there’s a nearby town or landmark, I want to
know about hotels in, say, a 20 km radius too—just in case I de-
cide to splurge one night. And for each driving leg, could you give
me the distance, drive time, a rough idea of elevation change, and
turn-by-turn directions? I really need actual numbers backed up by
real data—no hand-wavy guesses—because I’m sharing this with
friends who expect concrete facts. Thanks!
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Table 9: MCP server combinations used in MCP-BENCH.

Server Count Server Combination

2

Paper Search, BioMCP
Wikipedia, NASA Data
Google Maps, National Parks
NixOS, Context7
Google Maps, Weather Data
DEX Paprika, OKX Exchange
Metropolitan Museum, Wikipedia
Scientific Computing, Math MCP
Hugging Face, Paper Search
National Parks, Weather Data
Unit Converter, Math MCP
Game Trends, Reddit
Scientific Computing, Unit Converter
Wikipedia, Paper Search
Reddit, DEX Paprika

3

Google Maps, Weather Data, National Parks
Hugging Face, Paper Search, Wikipedia
Paper Search, Call for Papers, Wikipedia
Medical Calculator, FruityVice, BioMCP
Metropolitan Museum, Huge Icons, Wikipedia
Scientific Computing, BioMCP, Math MCP
Medical Calculator, Wikipedia, FruityVice
NASA Data, Google Maps, Wikipedia
OpenAPI Explorer, Paper Search, Hugging Face

A.8 ABLATION STUDIES ON LLM JUDGE PIPELINE

To assess the effectiveness of prompt shuffling and score averaging in our LLM judge pipeline, we
conduct ablation study on it in this section. The results also reflect the overall quality of our LLM
judge pipeline.

Coefficient of Variation among Different LLMs. To quantify the stability of LLM judge under
different pipeline designs, we compute the coefficient of variation (CV) for each judge pipeline
across a suite of 50 benchmark tasks. These tasks are synthesized using two real-world

Table 10: Ablation study on prompt shuffling and
score averaging.

Method Coefficient of Variation
among Different LLMs (↓)

Human
Agreement Score (↑)

w/o Prompt Shuffling
and Score Averaging 16.8% 1.24 out of 2

w/ Prompt Shuffling
and Score Averaging 15.1% 1.43 out of 2

Model Context Protocol (MCP) servers: Web-
Search and Time. The WebSearch server sup-
ports information retrieval and summarization,
while the Time server provides temporal rea-
soning and calendar tools. Each task is scored
by three LLMs—o4-mini (OpenAI, 2025c),
gpt-4o (Hurst et al., 2024), gpt-4o-mini (Ope-
nAI, 2024),—with same LLM judge pipeline.
We extract the task completion score (on a 0–
10 scale) for CV computation. Specifically, for
each task t, we calculate its coefficient of variation as CVt =

σt

µt
× 100%, where µt =

1
k

∑k
j=1 sj

and σt =
√

1
k

∑k
j=1(sj − µt)2, with sj denoting the task completion score assigned by model j,

and k the number of models. The final reported CV is the mean over all tasks: CV = 1
n

∑n
t=1 CVt,

where n = 50 is the number of benchmark tasks. As shown in Table 1, removing prompt shuf-
fling and score averaging results in a CV of 16.8%, while enabling them reduces the CV to 15.1%,
indicating improved consistency across LLMs.

Human Agreement Score. We further evaluate the alignment between LLM judges and human
preferences. Three human annotators independently reviewed score in different dimensions pro-
duced by each judge pipeline and rated their agreement on a 3-point scale: 0 for disagreement, 1 for
partial agreement, and 2 for full agreement. The final human agreement score is the average across
all annotators and tasks. As shown in Table 10, the pipeline without prompt shuffling and score av-
eraging achieves an average agreement of 1.24 out of 2, while the pipeline with prompt perturbation
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improves this score to 1.43, showing that strategy also impacts human-perceived evaluation quality.
Also, the results indicate that our LLM judge pipeline aligns well with human judgment, achieving
performance substantially above partial agreement and trending toward full agreement.

A.9 DISCLOSURE OF LLM USAGE

LLMs were used in this paper to assist with grammar and wording improvements.
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