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Abstract001

With the rapid advancements in computational002
linguistics, machine learning-driven natural lan-003
guage processing (NLP) systems have become004
essential tools across various industries. These005
systems significantly enhance data processing006
efficiency, particularly in text classification007
tasks. Federated training frameworks present008
a promising solution for improving data pro-009
tection. However, the exchange of information010
during parameter updates still carries the risk011
of sensitive data leakage. In this context, we012
identify potential information security threats013
to text classifiers operating within federated014
training frameworks and systematically analyze015
the relationship between model parameters and016
training data. Based on our analysis, we pro-017
pose a novel gradient-based data reconstruction018
attack technique, which leverages knowledge019
from the embedding layer, referred to as the020
Embedding Data Reconstruction (EDR) attack.021
Our approach begins by identifying a set of022
tokens derived from the gradients. We then023
process these tokens and employ a metaheuris-024
tic integrated framework that combines Sim-025
ulated Annealing (SA) and Tabu Search (TS).026
This framework assists us in finding the optimal027
sentence ordering while avoiding local optima.028
Finally, we fine-tune the model using the gra-029
dients obtained from the embedding layer. Our030
experimental results demonstrate substantial031
improvements across multiple datasets, with032
the most significant enhancement observed in033
bigrams, showing an average increase of ap-034
proximately 45%.035

1 Introduction036

Amidst the backdrop of fragmented multi-party037

data, increasingly stringent privacy regulations, and038

a growing demand for cross-institutional collabo-039

ration, Federated Learning (FL) has emerged as040

an effective approach for leveraging distributed041

data sources while protecting data privacy. Un-042

like traditional centralized training approaches, FL043

enables each participant to maintain its dataset in a044

local environment, requiring only periodic submis- 045

sions of model parameters or gradients to a central 046

server for aggregation. This decentralized archi- 047

tecture fundamentally reduces privacy risks, as no 048

raw data leaves the data holders’ premises (Wu 049

et al., 2023). A prominent example of successful 050

FL implementation is Google’s Gboard, where user 051

typing data remains secured on individual smart- 052

phones while only model updates are transmitted 053

to central servers for improvement of predictive 054

capabilities (Hard et al., 2018; Yang et al., 2019). 055

Notwithstanding these benefits, recent studies 056

have revealed critical vulnerabilities in FL systems, 057

where adversaries can reconstruct or partially re- 058

trieve local training data through intercepting and 059

reverse-engineering parameter or gradient updates 060

(Liu et al., 2022; Balunovic et al., 2022; Gupta 061

et al., 2022; Li et al., 2023). More concerning is 062

the emergence of sophisticated attacks where mali- 063

cious actors can manipulate the model to perform 064

large-scale data reconstruction (Zhao et al., 2023; 065

Boenisch et al., 2023). These attacks exploit subtle 066

patterns within model updates to extract sensitive 067

textual information, including personally identi- 068

fiable information and proprietary content. This 069

privacy vulnerability has become a critical chal- 070

lenge for both the Natural Language Processing 071

and FL research communities, particularly in the 072

context of fine-tuning pre-trained language models 073

(Xie and Hong, 2021; Elmahdy et al., 2022; Zhang 074

et al., 2022, 2023; Chen et al., 2023). In response 075

to the aforementioned privacy vulnerabilities in FL 076

systems, our study undertakes a multi-faceted ex- 077

ploration of gradient-based privacy attacks. Our 078

main contributions are: 079

• We first dive into the intricate mechanisms un- 080

derlying the reconstruction of training data, in- 081

novatively integrating metaheuristics SA and 082

TS in a gradient-based data reconstruction 083

attack to optimize the search for the best- 084

reconstructed sentence. 085
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• We are the first to utilize the gradient infor-086

mation of individual tokens in the embedding087

layer to determine the correctness of sentence088

ordering positions.089

• Our proposed attack method, EDR, through090

implementation and experimental evaluation,091

has shown that it can reconstruct far more pri-092

vate text compared to previous approaches.093

This superiority is particularly prominent094

when the batch size is 1 and 2.095

2 Related Work096

The recovery of training data from gradients has097

emerged as a critical privacy concern in machine098

learning, particularly in federated learning systems.099

Initial research by Zhu et al. (Zhu et al., 2019)100

revealed fundamental vulnerabilities in gradient-101

based methods, demonstrating the feasibility of102

reconstructing private training data through gradi-103

ent leakage. Following the work, Zhao et al. (Zhao104

et al., 2020) proposed the method which improved105

reconstruction quality by extracting ground-truth106

labels from gradients and empirically demonstrat-107

ing its advantages.108

The focus of gradient-based attacks has gradu-109

ally shifted towards language models, with several110

significant developments. Deng et al. (Deng et al.,111

2021) proposed gradient attack algorithms specif-112

ically designed for Transformer-based language113

models, highlighting the urgent need for robust pri-114

vacy protection mechanisms. Building on this foun-115

dation, Gupta et al. (Gupta et al., 2022) presented116

FILM, demonstrating successful text reconstruc-117

tion from large batch sizes in FL settings, which118

uses GPT architecture and achieves high recovery119

rates on large batches but with comparatively lower120

accuracy.121

Balunovic et al. (Balunovic et al., 2022) devel-122

oped LAMP, an approach that leverages auxiliary123

language models with continuous and discrete opti-124

mization methods to guide reconstruction towards125

natural language text while avoiding local minima,126

though it still suffers from some local optima chal-127

lenges.128

In this work, we propose EDR, a BERT-based129

reconstruction method combined with a hybrid sim-130

ulated annealing–tabu search framework. This de-131

sign balances exploration and exploitation, improv-132

ing reconstruction under small batch sizes and over-133

comes limitations in token selection and sentence134

ordering found in prior work.135

Other methods include DAGER (Petrov et al., 136

2024), which infers token relationships by leverag- 137

ing gradient correlations from client-side attention 138

layers. While this approach sidesteps explicit align- 139

ment via a proxy mechanism, it assumes decoder- 140

based architectures and requires cloud-grade GPUs 141

(A100/L4). In contrast, our method avoids such 142

architectural shortcuts and performs competitively 143

on consumer-grade hardware (RTX 4090), even 144

with longer sequences and smaller batch sizes. 145

FET (Gao et al., 2025) uses two-phase optimiza- 146

tion on embedding gradients but is outperformed by 147

EDR in ROUGE-2 under small to medium batches 148

due to our more balanced search. 149

Recent studies have further expanded the capabil- 150

ities of reconstruction attacks. Morris et al. (Morris 151

et al., 2023) achieved significant accuracy in text 152

recovery through embedding inversion techniques, 153

while He et al. (He et al., 2023) and Luo et al. (Luo 154

et al., 2022) enhanced the efficiency of gradient- 155

based reconstruction methods. Notably, Xu et al. 156

(Xu et al., 2023) proposed the CGIR attack, demon- 157

strating effective reconstruction without relying on 158

strong model assumptions. Most recently, Wang et 159

al. (Wang et al., 2025) introduced ILAMP, incorpo- 160

rating sequence beam search to enhance LAMP’s 161

performance in token order recovery. 162

3 Preliminary 163

3.1 Gradient-Based Attacks 164

A gradient leakage attack occurs when an attacker 165

attempts to exploit the gradient updates ∇θigi 166

sent from the client to the server during FL to in- 167

fer the client-owned private data (xi, yi), where 168

gi = ∇θiL(xi, yi) denotes the gradient of loss 169

function L computed on the private data. This is 170

possible because gradients encode not only model 171

update directions but also information about the 172

underlying training data, presenting a potential 173

privacy-leakage vector, and the more precise the 174

gradient updates, the higher the risk of private data 175

exposure. Attackers can reconstruct input features, 176

labels, or even entire training samples from the 177

shared gradients. In such attacks, it is assumed that 178

the server is honest-but-curious, meaning it follows 179

the federated training protocol as required while 180

having the potential to try to extract sensitive infor- 181

mation from the shared gradients, which is in line 182

with many practical FL scenarios where the trust 183

in the server is not absolute. 184

A common approach, adopted by Zhu et al. in 185
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their work on "DLG" (Zhu et al., 2019) and Deng et186

al. concerning "TAG" (Deng et al., 2021), involves187

solving an optimization problem to reconstruct the188

private data. This problem is formulated as:189

arg min δ(∇θi
g∗i ,∇θi

gi) (1)190

where δ represents the distance measure between191

gradients, ∇θi
g∗ is the gradient computed from192

reconstructed data (x∗i , y
∗
i ), and∇θi

gi is the gradi-193

ent computed from real training data (xi, yi) with194

model parameters θi at layer i. The attacker aims195

to minimize this distance to recover the private196

training data.197

Common Distance Measure: Various distance198

measures δ have been proposed to quantify the sim-199

ilarity between gradients, each with unique charac-200

teristics and advantages:201

L2 Distance: Zhu et al. (Zhu et al., 2019) em-202

ployed the squared Euclidean norm, which penal-203

izes larger differences in gradient magnitude, pro-204

viding a smooth optimization surface.205

L1 and L2 Combined Distance: Deng et al.206

(Deng et al., 2021) adopted a hybrid approach that207

combines L1 and L2 distances, leveraging the ro-208

bustness of L1 against outliers and the smooth op-209

timization benefits of L2. Consider an l-layer net-210

work, where the variable θi represents the parame-211

ters of layer i.212

Lcos(x) = 1− 1

l

l∑
i=1

∇θi
g∗i · ∇θi

gi
∥∇θi

g∗i ∥2 ∥∇θi
gi∥2

. (2)213

Cosine Similarity: Geiping et al. (Geiping et al.,214

2020) and Balunović et al. (Balunovic et al., 2022)215

used cosine similarity to measure the angular dif-216

ference between two gradients, emphasizing direc-217

tional consistency while ignoring magnitude differ-218

ences.219

Ltag(x) =
l∑

i=1

∥∇θi
g∗i −∇θi

gi∥2

+αtag ∥∇θi
g∗i −∇θi

gi∥1 .

(3)220

3.2 Neighborhood Search221

Neighborhood search, a fundamental optimization222

technique, operates on the principle of exploring223

the neighborhood of the current solution to find224

better ones (Sacramento et al., 2019). It starts with225

a feasible initial solution, which can be either ran-226

domly generated or derived from simple heuristic227

methods. Once determined, this initial solution be- 228

comes the current solution. During the search, the 229

current solution is iteratively updated to approach 230

the optimal solution. 231

In this study, we employ three neighborhood 232

operations—Swap, Insert, and Reverse—to sys- 233

tematically explore the solution space. The Swap 234

operation exchanges the positions of two selected 235

words, Insert relocates a word to a new position, 236

and Reverse inverts the order of a selected se- 237

quence of words. These transformations enable 238

diverse local adjustments, effectively refining the 239

solution by mitigating suboptimal arrangements 240

and guiding the search toward improved reconstruc- 241

tions. 242

3.3 Simulated Annealing Algorithm 243

As a local search metaheuristic algorithm, the SA 244

algorithm can be used to solve both discrete and 245

continuous optimization problems. Its core concept 246

involves introducing randomness during the search 247

to avoid being trapped in local optima. Simultane- 248

ously, by gradually reducing the randomness of the 249

search by controlling the temperature parameter, 250

the algorithm eventually converges to the global 251

optimum (Bertsimas and Tsitsiklis, 1993). Its key 252

advantage lies in its simplicity. It can be rapidly 253

implemented without prior acquaintance with the 254

problem structure, making it suitable for tackling 255

computationally complex problems in many practi- 256

cal applications. 257

The basic procedure of the SA algorithm is 258

as follows. Initially, an initial solution is ran- 259

domly generated, and an initial temperature T is 260

set. Then, in each iteration, a new solution is gen- 261

erated through a certain method. Calculate the 262

difference ∆E between the objective function val- 263

ues of the new solution and the current solution. 264

If ∆E < 0, the new solution is accepted as the 265

current solution. If ∆E > 0, the new solution is 266

accepted with a certain probability, which is usually 267

P = exp(−∆E/T ). As the iteration progresses, 268

the temperature T is gradually decreased, causing 269

the algorithm to be more inclined to accept solu- 270

tions with better objective function values in the 271

later stages. When the temperature drops to a suffi- 272

ciently low level or other stopping conditions are 273

met, the algorithm halts, and the solution at this 274

point is regarded as an approximate global opti- 275

mum (Jiao et al., 2020). 276
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3.4 Tabu Search277

TS provides an effective approach to solving com-278

plex optimization problems. Its core idea is to279

avoid the algorithm getting trapped in local opti-280

mal solutions by introducing a memory mechanism,281

commonly known as the tabu list (Gendreau and282

Potvin, 2005). This list records the solutions that283

have been visited or specific search actions, and284

prohibits the revisit of these solutions or actions285

within a certain period, thus guiding the search to-286

wards more promising regions (Lai and Fu, 2019;287

Wang et al., 2019).288

Mathematically, the TS algorithm can typically289

be described as follows. Let the objective function290

of the optimization problem be f(x), where x is the291

solution vector. The algorithm starts from an initial292

solution x0 and seeks better solutions through a se-293

ries of neighborhood searches. The neighborhood294

search is usually defined as a set of new solutions295

obtained by making small changes to the current296

solution. In each iteration, the algorithm selects the297

best candidate solution from the neighborhood of298

the current solution. If this candidate solution is299

not in the tabu list or it satisfies certain aspiration300

criteria (e.g., its objective function value is much301

better than the current optimal solution), then this302

candidate solution is accepted as the new current303

solution. Meanwhile, some relevant information304

is updated in the tabu list to prevent the algorithm305

from revisiting the same solutions or actions in the306

short term.307

3.5 Threat Model308

In this context, we set up an experimental environ-309

ment without any security issues, thus there is no310

external attacker, as shown in the left-hand part of311

Figure 1. However, we designate the server as the312

attacker. The server, in this case, is both honest and313

curious, monitoring the communication between314

itself and a random client during the federated train-315

ing of a language model, as previously elaborated.316

This server, masquerading as the aggressor, obtains317

white-box admittance to two essential parcels of318

information: 1) the gradients transmitted by the319

client and 2) the model parameters, including the320

vocabulary and the embedding matrix. It should321

be emphasized that the server, as the attacker, can322

inspect this information at any stage of the training323

process. The opponent’s objective is to retrieve a324

minimum of one sentence from the set of confi-325

dential training data by exploiting the information326

available to him. This is crucial because obtaining 327

even a single sentence is enough to compromise the 328

privacy guarantees provided by FL. Furthermore, 329

the adversary can repeat the attack on a single batch 330

multiple times to extract more sentences. The ex- 331

tent of resemblance between the retrieved sentence 332

and the original private sentence from the batch 333

gauges the effectiveness of the attack. 334

4 Approach 335

We propose a novel method for reconstructing train- 336

ing data, which is divided into three innovative 337

steps: Hierarchical Subword Assembly, Gradient- 338

Guided SA-TS Optimization, and Gradient Analy- 339

sis and Token Adjustment, as depicted in the right- 340

hand part of Figure 1. 341

4.1 TokenFusion: Hierarchical Subword 342

Assembly 343

We implement the strategy used by Gupta et al. 344

(Gupta et al., 2022) and employ a gradient anal- 345

ysis technique to extract a set of tokens T = 346

{t1, t2, . . . , tn} from the token embedding gradi- 347

ents∇f(wi). Here, wi denotes the embedding vec- 348

tor of the i-th token, and f(·) represents the model 349

or loss function under consideration. Concretely, 350

we examine∇f(wi) for non-zero rows, each corre- 351

sponding to a particular token embedding that influ- 352

ences the gradient. By identifying these non-zero 353

rows, we recover the set of tokens present in the 354

batch without directly accessing the original text. 355

Once the complete set of tokens T is obtained, we 356

proceed with further processing or reconstruction 357

tasks. Distinctively, after acquiring the comprehen- 358

sive set of tokens T , we pioneer a novel approach 359

to processing these tokens. We initiate a series of 360

operations on the sub-words prefixed with "##" and 361

their corresponding root words. Firstly, we elim- 362

inate the special symbols and preserve the valid 363

tokens as root words. Subsequently, we explore 364

diverse combinations of root words and sub-words 365

while meticulously examining their lengths and 366

spellings. 367

After initially encoding the qualified lexemes, 368

we re-confirm whether these encodings fall within 369

the predefined set. Only those lexemes and their 370

associated encodings that meet all the stipulated cri- 371

teria are retained. Through this process, incomplete 372

sub-words are assembled into units with complete 373

semantic meanings, and the proper conjugation 374

of sub-words with root words is ensured. Conse- 375
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Client2 Gradient2

Server
(honest-but-curious)

Client1 Gradient1

training…

training…

Gradient1

Gradient2

Parameters

Parameters

honest : aggregation

curious : analysis

TokenFusion: Hierarchical Subword Assembly

He forgothis s ##nor ##kel

He forgothis snorkel

Gradient-Guided SA-TS Optimization

Best Candidate
Candidate Sentences

Gradient Analysis and Token Adjustment

Token1 Token2 Token4 Token3 Token5

Step1.

Step2.

Step3.

Figure 1: We assume that the attacker is an honest-but-curious server. The attack flow of EDR consists of three
main steps: (i) Hierarchical Subword Assembly: The received gradient information is used to combine subwords
(e.g., "##nor", "##kel") into a meaningful lexeme ("snorkel"). (ii) Gradient-Guided SA-TS Optimization: Candidate
sentences are generated from candidate lexemes and refined using gradient information and leverage a hybrid
approach combining SA and TS to select the best candidate sentence. (iii) Gradient Analysis and Token Adjustment:
Token gradients of the best candidate are analyzed and iteratively adjusted to ensure precise alignment with target
gradients, resulting in the reconstructed sentence that best matches the original data.

quently, in this step, a set of candidate lexemes376

L = {l1, l2, . . . , lm} is obtained, where m may or377

may not be equal to n, the number of elements in378

the set of tokens T = {t1, t2, . . . , tn}. The set L is379

defined as:380

L = {ℓ | ℓ = Merge(t1, t2, . . . , ti), ti ∈ T} (4)381

which means that each element ℓ in L is formed by382

merging one or more tokens from the set T through383

the operation Merge. Each candidate lexeme in384

the set L may consist of a single token or multiple385

tokens, and every one of these candidate lexemes386

has the potential to appear in the training sentences387

we aim to reconstruct.388

4.2 Gradient-Guided SA-TS Optimization389

Unlike the method proposed by Gupta et al. (Gupta390

et al., 2022), which uses beam search for permu-391

tation, we employ a hybrid optimization frame-392

work integrating SA and TS for sentence configu-393

ration. The core objective is to identify the recon-394

structed sentence that minimizes the gradient dis-395

tance. Importantly, the effectiveness of reconstruc-396

tion is highly sensitive to batch size. Larger batches397

(B = 4) dilute gradient signals, hinder individual398

update extraction, and expand the combinatorial399

search space, increasing complexity and reducing400

optimization efficiency (Yue et al., 2023; Li et al.,401

2020; Wang et al., 2023). Additionally, large-batch402

normalization exacerbates non-IID effects, desta-403

bilizing model behavior. These issues highlight404

the advantage of small-batch settings, which pre-405

serve clearer gradients, motivating our focus on406

such configurations for reconstruction attacks.407

Specifically, we first randomly sample from the 408

candidate lexemes L to form multiple fixed-length 409

sentences, constituting the initial population S. 410

Then, within this hybrid framework, each sentence 411

in S is reordered by exploring different permu- 412

tations, and its gradient is compared against the 413

target gradient. By iteratively refining sentence 414

configurations to minimize the gradient distance, 415

we ultimately obtain a reconstructed sentence that 416

best aligns with the original data’s gradient signals. 417

Evaluation function: SA requires an evaluation 418

function to measure the quality of reconstructed 419

sequences. Drawing on the findings of prior re- 420

search, we adapt our evaluation function according 421

to the batch size. When the batch size is 1, Cosine 422

Similarity (Eq. 2) is adopted due to its high ef- 423

fectiveness in evaluating reconstructed sentences. 424

For larger batch sizes, the L1 and L2 Combined 425

Distance (Eq. 3) is employed to measure the sim- 426

ilarity between the gradients of the generated and 427

target sequences. The sequence with the lowest ag- 428

gregated score or the highest cosine similarity is de- 429

termined as the optimal one. This approach ensures 430

that the evaluation criteria are in line with batch- 431

specific conditions, and simultaneously quantifies 432

the proximity to the original data through gradient 433

similarity. 434

The hybrid SA-TS framework enhances opti- 435

mization by combining SA’s global exploration 436

through stochastic acceptance with TS’s memory- 437

based avoidance of cycling, effectively preventing 438

premature convergence and improving search effi- 439

ciency in complex permutation spaces. 440

Through this integration (Fig. 2), the randomness 441
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Algorithm 1 Initial population is optimized in the
hybrid framework.

1: Input: Initial population S, Evaluation func-
tion L(S), Initial temperature T , Cooling rate
α, Maximum iterations max_iter, Tabu list L

2: Output: Best sentence s∗

3: for s in S do
4: Initialize L← L ∪ {s}, failed← 0
5: for iter ∈ {1, . . . ,max_iter} do
6: Generate s′ by random shuffling
7: or neighborhood operations
8: if L(s′)− L(s) < 0 then
9: s← s′

10: else
11: s← s′ with probability P
12: end if
13: if s = s′ then
14: L← L ∪ {s′}
15: else
16: failed← failed+ 1
17: if failed > 0.1 ·max_iter then
18: break
19: end if
20: end if
21: Reduce the temperature: T ← α · T
22: end for
23: if L(s)− L(s∗) < 0 then
24: s∗ ← s
25: end if
26: end for
27: return s∗

and global searching power of SA are retained, al-442

lowing the search to jump out of local minima when443

needed, while TS systematically guides the search444

towards unexplored regions. As a result, the com-445

bined method both broadens and accelerates the446

overall optimization process, improving the likeli-447

hood of converging to a near-optimal or even glob-448

ally optimal sentence arrangement. Through the449

implementation of this approach within the frame-450

work and the utilization of the evaluation function,451

we are able to obtain an optimal candidate sentence452

at this step, which has been optimized to minimize453

the gradient distance.454

4.3 Gradient Analysis and Token Adjustment455

In the final phase of our procedure, we conduct a456

detailed analysis of the embedding layer gradients457

corresponding to each token within the optimal458

candidate sentence obtained through the previous459

step. Our experiments reveal that when the target 460

data has a batch size greater than 1, successfully 461

restoring a single data entry causes the gradients of 462

its tokens in the embedding layer to align with the 463

target gradients. Consequently, only the remaining 464

data entries require further adjustment. 465

To optimize the reconstructed sentences, we sys- 466

tematically evaluate the tokens within each sen- 467

tence to ensure their positions are correct. Tokens 468

identified as misaligned are flagged and iteratively 469

adjusted. Same as the previous step, when the 470

batch size is 1, cosine similarity (Eq. 2) is adopted. 471

For larger batch sizes, the combined L1 and L2 472

combined distances (Eq. 3) are used as the bench- 473

mark to evaluate the alignment with the target gra- 474

dients. Adjustments continue until the evaluation 475

metrics reach their optimal values, ensuring precise 476

alignment. The final output sentence represents the 477

reconstructed sequence that achieves the highest 478

similarity to the original data in terms of gradient 479

alignment. 480

5 Experiments 481

5.1 Set Up 482

In our evaluation, we employ three pivotal binary 483

text classification datasets to ensure a comprehen- 484

sive analysis. Specifically, we utilize CoLA and 485

SST-2 from the GLUE benchmark, along with the 486

RottenTomatoes dataset—each featuring distinct 487

sequence lengths. Our experiments are centered 488

on the BERTbase architecture provided by Hugging 489

Face. We utilize the ROUGE metric suite, an ap- 490

proach also adopted in TAG (Deng et al., 2021) 491

and LAMP (Balunovic et al., 2022). We calculate 492

the aggregated F-scores for ROUGE-1, ROUGE- 493

2, and ROUGE-L. ROUGE-1 is used to measure 494

the accuracy of the recovered unigrams, ROUGE-2 495

measures the accuracy of the recovered bigrams, 496

and ROUGE-L measures the ratio of the length of 497

the longest matching subsequence to the length of 498

the full sequence. Furthermore, when dealing with 499

batches consisting of multiple sequences, we inten- 500

tionally exclude the padding tokens from both the 501

reconstruction process and the subsequent ROUGE 502

computations. These padding tokens are used to 503

standardize the lengths of sequences. By doing so, 504

we ensure that our evaluation of the attack perfor- 505

mance is accurate and is not affected by the artifacts 506

introduced by padding. 507

Our method is compared with three main base- 508

lines, namely TAG, LAMPcos, and LAMPtag, 509
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Hybrid Optimization Framework

Max Iterations Initial Temperature Cooling RateInput: Candidate Sentences

Swap

Insert

Reverse

W4 W2 W3 W1 W5 W6

W2 W3 W4 W1 W5 W6

W4 W3 W2 W1 W5 W6

High Temperature (first 75% of temperature range)： Random Shuffling of the Sentence

Low Temperature (last 25% of temperature range)： Neighborhood Operations

Tabu List 

check and update

Figure 2: Gradient-guided Sequence Optimization Framework Using SA and TS

among which the two methods of LAMP are re-510

garded as the current state-of-the-art methods. We511

use the open-source LAMP framework to imple-512

ment it. To ensure that our method is compared to513

these baselines under fair conditions, all methods514

use prior knowledge.515

In the configuration of our method, batch size516

directly influences key hyperparameters such as ini-517

tial temperature, cooling rate, and iteration count,518

allowing us to balance global exploration and lo-519

cal refinement. We divide the temperature schedule520

into two phases: a high-temperature stage for broad521

search and a low-temperature stage for fine-tuning.522

All experiments are conducted on a workstation523

with an Intel Core i9-14900K CPU, 64GB RAM,524

and an NVIDIA RTX 4090 GPU (24GB VRAM).525

Several key parameters must be predefined.526

These include the initial temperature, cooling rate,527

and maximum number of iterations. The maxi-528

mum number of failed attempts is set at 0.1 of the529

maximum number of iterations. When considering530

different batch sizes, specific parameter settings531

are as follows. For a batch size of 1, the initial532

temperature is set at 300, and the cooling rate is533

0.95. The maximum number of iterations is 3,000.534

In the case of a batch size of 2, the initial tempera-535

ture is increased to 400, the cooling rate is adjusted536

to 0.99, and the maximum number of iterations537

reaches 4,000. For a batch size of 4, the initial538

temperature is further elevated to 500, the cooling539

rate remains at 0.99, and the maximum number of540

iterations is set at 5,000. These settings are care-541

fully calibrated to optimize the performance of our542

method under various batch size conditions.543

The above parameter choices were determined544

through systematic grid search experiments, ensur-545

ing a balanced trade-off between reconstruction546

quality and computational efficiency. Detailed tun-547

ing procedures and selection rationale are provided548

in Appendix B 549

5.2 Results and Analysis 550

As shown in Table 1, our method consistently out- 551

performs baseline approaches across all datasets 552

and evaluation metrics (R-1, R-2, and R-L). On 553

CoLA, our method achieves remarkable results, 554

with R-1, R-2, and R-L scores of 98.52, 93.42, and 555

96.01, respectively, for B=1, and maintains its lead 556

for B=2 and B=4 with the highest R-L scores of 557

84.86 and 56.55. Similarly, on SST-2, the EDR 558

approach achieves the best performance across all 559

batch sizes, including a standout R-L score of 91.17 560

for B=1 and 65.64 for B=4. These results highlight 561

its robustness in both small and large-batch scenar- 562

ios. For the Rotten Tomatoes dataset, our method 563

demonstrates superior performance in most met- 564

rics. At B=1, it achieves R-1, R-2, and R-L scores 565

of 89.76, 29.98, and 57.64, significantly surpass- 566

ing all baselines. Although the R-2 score for B=4 567

(4.24) is slightly lower than the best baseline, it re- 568

mains comparable, while R-1 and R-L still lead at 569

44.33 and 29.05, respectively. Across all datasets 570

and evaluation conditions, our approach excels by 571

effectively balancing exploration and exploitation, 572

achieving both global diversity and local precision 573

in sentence reconstruction. 574

Several observations emerge from Table 2. First, 575

our method consistently produces reconstructions 576

that are significantly closer to the reference sen- 577

tences across all datasets compared to LAMPcos. 578

On the CoLA dataset, our method perfectly recon- 579

structs the sentence, retaining its semantic and syn- 580

tactic accuracy, while LAMPcos introduces lexical 581

errors such as "mykel snor," distorting the original 582

meaning. 583

For SST-2, our method demonstrates superior 584

capability in preserving both structure and mean- 585

ing, closely matching the reference. In contrast, 586
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B=1 B=2 B=4
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

CoLA

TAG 84.61 12.12 55.59 78.00 12.35 53.76 65.22 8.20 48.79
LAMPcos 88.54 52.28 75.26 77.56 32.14 64.51 61.99 18.09 53.01

LAMPL1+L2 87.70 48.06 73.96 81.13 35.89 66.56 68.48 20.03 55.15
EDR 98.52 93.42 96.01 95.54 74.30 84.86 68.51 25.00 56.55

SST-2

TAG 79.96 18.50 58.94 76.61 17.62 57.08 66.39 13.20 51.41
LAMPcos 88.05 58.22 77.50 79.43 41.82 69.03 63.73 26.34 56.59

LAMPL1+L2 89.57 62.44 77.31 85.64 48.33 72.96 74.82 33.56 63.20
EDR 97.34 84.46 91.17 89.92 65.99 78.66 74.96 43.43 65.64

Rotten
Tomatoes

TAG 68.76 3.40 35.68 54.52 3.02 32.46 43.98 1.97 29.12
LAMPcos 65.61 10.49 39.80 53.80 9.62 37.10 38.54 3.14 28.03

LAMPL1+L2 70.09 5.85 34.94 58.25 8.66 36.62 41.74 4.85 28.96
EDR 89.76 29.98 57.64 69.45 16.62 42.17 44.33 4.24 29.05

Table 1: EROUGE Score Comparison for Reconstruction Methods Across Datasets (Batch Sizes = 1, 2, and 4).

Sequence

CoLA

Reference Who has seen my snorkel?

LAMPcos who has mykel snor seen?

EDR Who has seen my snorkel?

SST-2

Reference ably balances real - time rhythms with propulsive incident.

LAMPcos ab balances - real time propulsively rhythms with incident.

EDR ably balances real - time rhythms with propulsive incident.

Rotten

Tomatoes

Reference vaguely interesting, but it’s just too too much .

LAMPcos but just s too vaguely vaguely, just vaguely much much.

EDR vaguely interesting, but it’s just too too much .

Table 2: Comparison of Sentence Reconstruction Between EDR and LAMPcos on Batch Size = 1

LAMPcos fails to maintain grammatical coher-587

ence, introducing errors such as "ab balances" and588

"propulsively," which diverge from the intended589

semantics.590

Similarly, on the Rotten Tomatoes dataset, our591

method successfully captures the tone and lex-592

ical nuances of the sentence with high fidelity.593

LAMPcos, however, generates a disjointed output594

with repeated and misplaced words, disrupting the595

fluency and interpretability.596

These qualitative results demonstrate the effec-597

tiveness of EDR in reconstructing sentences with598

superior grammatical, lexical, and semantic align-599

ment, particularly in small-batch settings, where600

precision is critical. EDR also offers strong com-601

putational efficiency and scalability, with favorable602

time complexity across batch sizes and sequence603

lengths, as elaborated in the Appendix A. 604

6 Conclusion 605

We propose a gradient-based data reconstruction 606

technique. Our approach makes use of traditional 607

gradient-reconstruction methods and prior knowl- 608

edge and incorporates meta-heuristic algorithms to 609

assist in the reconstruction of training data. This 610

technique enhances the reconstruction accuracy for 611

different datasets and batch sizes. 612

7 Limitations 613

From the experimental data, it can be seen that the 614

main limitation of our attack method lies in recon- 615

structing longer sentences. In particular, the sen- 616

tence lengths in the Rotten Tomatoes dataset usu- 617
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ally range from 14 to 27. This poses a huge search-618

space challenge for the ranking process. When619

the batch size is small, the success rate can be in-620

creased by 5% to 20%. However, when the batch621

size is 4, the performance is slightly better than622

that of the baseline. This result indicates that when623

the length of sentences is fixed in a proper range,624

our method is still highly applicable. In general,625

the proposed EDR significantly improves the at-626

tack rate in the context of data reconstruction for627

federated learning of the language model. When628

the batch size increases, the effectiveness of our629

method does not scale up as expected, which may630

be due to the increased complexity of handling631

multiple sentences simultaneously and the poten-632

tial interference between them. This suggests that633

further optimization is needed to improve the per-634

formance of our method in scenarios with larger635

batch sizes and longer sentences.636

8 Ethical Considerations637

This research focuses on data reconstruction at-638

tacks in federated learning systems, aiming to high-639

light potential privacy vulnerabilities. While these640

findings are intended to improve the security and641

robustness of machine learning frameworks, we ac-642

knowledge the ethical implications associated with643

reconstructing private training data. The techniques644

developed could be misused if applied maliciously645

to compromise users’ sensitive information.646

To mitigate such risks, we emphasize that our647

work serves as a cautionary study to inform the648

design of more secure federated learning protocols649

and inspire the development of effective defense650

mechanisms. Researchers and practitioners should651

apply these methods responsibly, adhering to legal652

and ethical guidelines, and ensuring that privacy653

protections are strengthened rather than weakened.654

We advocate for transparency, informed consent,655

and strict data governance in any practical deploy-656

ment involving user data.657
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complexity of EDR, structured by its three main 821

phases but presented compactly. 822

Hierarchical Subword Assembly (TokenFusion). 823

This phase extracts token candidates from embed- 824

ding gradients and combines them into valid lex- 825

emes. The gradient analysis costs O(V · d), where 826

V is the vocabulary size and d is the embedding 827
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dimension. Subword combination (e.g., handling828

"##" tokens) takes O(k2), where k is the number of829

subwords per candidate. Lexeme validation costs830

O(m) for m candidates. Since m≪ V , this phase831

is dominated by O(V · d), which we approximate832

as O(V +B ·P ) in practice, where B is batch size833

and P is sentence length.834

Gradient-Guided SA-TS Optimization. This is835

the most expensive stage, using Simulated Anneal-836

ing (SA) and Tabu Search (TS) across I ≈ 3000 ·B837

iterations for B ≤ 4. Initial population genera-838

tion is O(B · P ). Each iteration includes neigh-839

borhood operations (O(P 2) worst-case), gradient-840

based evaluation (O(P · d)), and tabu list updates841

(O(min(I, tabu_size))). Temperature scheduling842

affects cost: early iterations favor faster random843

operations (O(P )), while later ones may involve844

more structured edits (O(P 2)). Overall, this phase845

scales as O(I · P 2 · d).846

Gradient Analysis and Token Adjustment.847

This final phase refines token placements based848

on gradient similarity. It involves token-wise evalu-849

ation, correctness checks, and updates, all of which850

scale as O(B · P · d).851

Combined Complexity. Summing the above, the852

total cost is:853

O(V ·d+I ·P 2 ·d+B ·P ·d) ≈ O(V +I ·P 2 ·d)854

assuming d and V are constant per model and855

I ∝ B. Given that P 2 ≪ V (e.g., P 2 = 900,856

V = 30,000), EDR remains efficient for small B857

and moderate P . However, cost grows quadrati-858

cally with sequence length and linearly with batch859

size, making EDR especially suitable for typical860

federated learning scenarios where B is small.861

B Hyperparameter Tuning Details862

Our parameter selection process followed a system-863

atic approach.864

Batch Size = 1. We conducted grid search exper-865

iments across the following ranges:866

• Initial temperature: 100–500867

• Cooling rate: 0.90–0.99868

• Maximum iterations: 1,000–5,000869

Through these experiments, we found that an870

initial temperature of 300, a cooling rate of 0.95,871

and 3,000 iterations provided the optimal balance 872

between exploration and exploitation. These val- 873

ues yielded the best reconstruction quality without 874

incurring excessive computational overhead. 875

Batch Size = 2 and 4. For larger batch sizes 876

(B = 2 and B = 4), we followed a similar tun- 877

ing process. Due to the expanded combinatorial 878

search space, these settings required higher temper- 879

atures and more iterations to effectively explore the 880

optimization landscape. 881

Specifically: 882

• For B = 2: Initial temperature = 400, cooling 883

rate = 0.99, maximum iterations = 4,000 884

• For B = 4: Initial temperature = 500, cooling 885

rate = 0.99, maximum iterations = 5,000 886

The increasing temperature and iteration values 887

directly correspond to the greater complexity that 888

must be explored as batch size increases. These 889

adjustments ensured that the optimization process 890

remained effective in various reconstruction scenar- 891

ios. 892
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