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Abstract

With the rapid advancements in computational
linguistics, machine learning-driven natural lan-
guage processing (NLP) systems have become
essential tools across various industries. These
systems significantly enhance data processing
efficiency, particularly in text classification
tasks. Federated training frameworks present
a promising solution for improving data pro-
tection. However, the exchange of information
during parameter updates still carries the risk
of sensitive data leakage. In this context, we
identify potential information security threats
to text classifiers operating within federated
training frameworks and systematically analyze
the relationship between model parameters and
training data. Based on our analysis, we pro-
pose a novel gradient-based data reconstruction
attack technique, which leverages knowledge
from the embedding layer, referred to as the
Embedding Data Reconstruction (EDR) attack.
Our approach begins by identifying a set of
tokens derived from the gradients. We then
process these tokens and employ a metaheuris-
tic integrated framework that combines Sim-
ulated Annealing (SA) and Tabu Search (TS).
This framework assists us in finding the optimal
sentence ordering while avoiding local optima.
Finally, we fine-tune the model using the gra-
dients obtained from the embedding layer. Our
experimental results demonstrate substantial
improvements across multiple datasets, with
the most significant enhancement observed in
bigrams, showing an average increase of ap-
proximately 45%.

1 Introduction

Amidst the backdrop of fragmented multi-party
data, increasingly stringent privacy regulations, and
a growing demand for cross-institutional collabo-
ration, Federated Learning (FL) has emerged as
an effective approach for leveraging distributed
data sources while protecting data privacy. Un-
like traditional centralized training approaches, FL
enables each participant to maintain its dataset in a

local environment, requiring only periodic submis-
sions of model parameters or gradients to a central
server for aggregation. This decentralized archi-
tecture fundamentally reduces privacy risks, as no
raw data leaves the data holders’ premises (Wu
et al., 2023). A prominent example of successful
FL implementation is Google’s Gboard, where user
typing data remains secured on individual smart-
phones while only model updates are transmitted
to central servers for improvement of predictive
capabilities (Hard et al., 2018; Yang et al., 2019).

Notwithstanding these benefits, recent studies
have revealed critical vulnerabilities in FL systems,
where adversaries can reconstruct or partially re-
trieve local training data through intercepting and
reverse-engineering parameter or gradient updates
(Liu et al., 2022; Balunovic et al., 2022; Gupta
et al., 2022; Li et al., 2023). More concerning is
the emergence of sophisticated attacks where mali-
cious actors can manipulate the model to perform
large-scale data reconstruction (Zhao et al., 2023;
Boenisch et al., 2023). These attacks exploit subtle
patterns within model updates to extract sensitive
textual information, including personally identi-
fiable information and proprietary content. This
privacy vulnerability has become a critical chal-
lenge for both the Natural Language Processing
and FL research communities, particularly in the
context of fine-tuning pre-trained language models
(Xie and Hong, 2021; Elmahdy et al., 2022; Zhang
et al., 2022, 2023; Chen et al., 2023). In response
to the aforementioned privacy vulnerabilities in FL.
systems, our study undertakes a multi-faceted ex-
ploration of gradient-based privacy attacks. Our
main contributions are:

* We first dive into the intricate mechanisms un-
derlying the reconstruction of training data, in-
novatively integrating metaheuristics SA and
TS in a gradient-based data reconstruction
attack to optimize the search for the best-
reconstructed sentence.



* We are the first to utilize the gradient infor-
mation of individual tokens in the embedding
layer to determine the correctness of sentence
ordering positions.

* Our proposed attack method, EDR, through
implementation and experimental evaluation,
has shown that it can reconstruct far more pri-
vate text compared to previous approaches.
This superiority is particularly prominent
when the batch size is 1 and 2.

2 Related Work

The recovery of training data from gradients has
emerged as a critical privacy concern in machine
learning, particularly in federated learning systems.
Initial research by Zhu et al. (Zhu et al., 2019)
revealed fundamental vulnerabilities in gradient-
based methods, demonstrating the feasibility of
reconstructing private training data through gradi-
ent leakage. Following the work, Zhao et al. (Zhao
et al., 2020) proposed the method which improved
reconstruction quality by extracting ground-truth
labels from gradients and empirically demonstrat-
ing its advantages.

The focus of gradient-based attacks has gradu-
ally shifted towards language models, with several
significant developments. Deng et al. (Deng et al.,
2021) proposed gradient attack algorithms specif-
ically designed for Transformer-based language
models, highlighting the urgent need for robust pri-
vacy protection mechanisms. Building on this foun-
dation, Gupta et al. (Gupta et al., 2022) presented
FILM, demonstrating successful text reconstruc-
tion from large batch sizes in FL settings, which
uses GPT architecture and achieves high recovery
rates on large batches but with comparatively lower
accuracy.

Balunovic et al. (Balunovic et al., 2022) devel-
oped LAMP, an approach that leverages auxiliary
language models with continuous and discrete opti-
mization methods to guide reconstruction towards
natural language text while avoiding local minima,
though it still suffers from some local optima chal-
lenges.

In this work, we propose EDR, a BERT-based
reconstruction method combined with a hybrid sim-
ulated annealing—tabu search framework. This de-
sign balances exploration and exploitation, improv-
ing reconstruction under small batch sizes and over-
comes limitations in token selection and sentence
ordering found in prior work.

Other methods include DAGER (Petrov et al.,
2024), which infers token relationships by leverag-
ing gradient correlations from client-side attention
layers. While this approach sidesteps explicit align-
ment via a proxy mechanism, it assumes decoder-
based architectures and requires cloud-grade GPUs
(A100/L4). In contrast, our method avoids such
architectural shortcuts and performs competitively
on consumer-grade hardware (RTX 4090), even
with longer sequences and smaller batch sizes.
FET (Gao et al., 2025) uses two-phase optimiza-
tion on embedding gradients but is outperformed by
EDR in ROUGE-2 under small to medium batches
due to our more balanced search.

Recent studies have further expanded the capabil-
ities of reconstruction attacks. Morris et al. (Morris
et al., 2023) achieved significant accuracy in text
recovery through embedding inversion techniques,
while He et al. (He et al., 2023) and Luo et al. (Luo
et al., 2022) enhanced the efficiency of gradient-
based reconstruction methods. Notably, Xu et al.
(Xu et al., 2023) proposed the CGIR attack, demon-
strating effective reconstruction without relying on
strong model assumptions. Most recently, Wang et
al. (Wang et al., 2025) introduced ILAMP, incorpo-
rating sequence beam search to enhance LAMP’s
performance in token order recovery.

3 Preliminary

3.1 Gradient-Based Attacks

A gradient leakage attack occurs when an attacker
attempts to exploit the gradient updates Vg;gi
sent from the client to the server during FL to in-
fer the client-owned private data (x;,y;), where
g9i = Vg,L(z;,y;) denotes the gradient of loss
function £ computed on the private data. This is
possible because gradients encode not only model
update directions but also information about the
underlying training data, presenting a potential
privacy-leakage vector, and the more precise the
gradient updates, the higher the risk of private data
exposure. Attackers can reconstruct input features,
labels, or even entire training samples from the
shared gradients. In such attacks, it is assumed that
the server is honest-but-curious, meaning it follows
the federated training protocol as required while
having the potential to try to extract sensitive infor-
mation from the shared gradients, which is in line
with many practical FL scenarios where the trust
in the server is not absolute.

A common approach, adopted by Zhu et al. in



their work on "DLG" (Zhu et al., 2019) and Deng et
al. concerning "TAG" (Deng et al., 2021), involves
solving an optimization problem to reconstruct the
private data. This problem is formulated as:

arg min §(Ve,9;,Ve,gi) (1)

where § represents the distance measure between
gradients, Vg, g" is the gradient computed from
reconstructed data (z},y), and Vg, g; is the gradi-
ent computed from real training data (x;, y;) with
model parameters 6; at layer . The attacker aims
to minimize this distance to recover the private
training data.

Common Distance Measure: Various distance
measures d have been proposed to quantify the sim-
ilarity between gradients, each with unique charac-
teristics and advantages:

L2 Distance: Zhu et al. (Zhu et al., 2019) em-
ployed the squared Euclidean norm, which penal-
izes larger differences in gradient magnitude, pro-
viding a smooth optimization surface.

L1 and L2 Combined Distance: Deng et al.
(Deng et al., 2021) adopted a hybrid approach that
combines L1 and L2 distances, leveraging the ro-
bustness of L1 against outliers and the smooth op-
timization benefits of L.2. Consider an [-layer net-
work, where the variable 6; represents the parame-
ters of layer 3.
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Cosine Similarity: Geiping et al. (Geiping et al.,
2020) and Balunovi¢ et al. (Balunovic et al., 2022)
used cosine similarity to measure the angular dif-
ference between two gradients, emphasizing direc-
tional consistency while ignoring magnitude differ-
ences.
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3.2 Neighborhood Search

Neighborhood search, a fundamental optimization
technique, operates on the principle of exploring
the neighborhood of the current solution to find
better ones (Sacramento et al., 2019). It starts with
a feasible initial solution, which can be either ran-
domly generated or derived from simple heuristic

methods. Once determined, this initial solution be-
comes the current solution. During the search, the
current solution is iteratively updated to approach
the optimal solution.

In this study, we employ three neighborhood
operations—Swap, Insert, and Reverse—to sys-
tematically explore the solution space. The Swap
operation exchanges the positions of two selected
words, Insert relocates a word to a new position,
and Reverse inverts the order of a selected se-
quence of words. These transformations enable
diverse local adjustments, effectively refining the
solution by mitigating suboptimal arrangements
and guiding the search toward improved reconstruc-
tions.

3.3 Simulated Annealing Algorithm

As a local search metaheuristic algorithm, the SA
algorithm can be used to solve both discrete and
continuous optimization problems. Its core concept
involves introducing randomness during the search
to avoid being trapped in local optima. Simultane-
ously, by gradually reducing the randomness of the
search by controlling the temperature parameter,
the algorithm eventually converges to the global
optimum (Bertsimas and Tsitsiklis, 1993). Its key
advantage lies in its simplicity. It can be rapidly
implemented without prior acquaintance with the
problem structure, making it suitable for tackling
computationally complex problems in many practi-
cal applications.

The basic procedure of the SA algorithm is
as follows. Initially, an initial solution is ran-
domly generated, and an initial temperature 7" is
set. Then, in each iteration, a new solution is gen-
erated through a certain method. Calculate the
difference A E between the objective function val-
ues of the new solution and the current solution.
If AE < 0, the new solution is accepted as the
current solution. If AE > 0, the new solution is
accepted with a certain probability, which is usually
P = exp(—AE/T). As the iteration progresses,
the temperature 7' is gradually decreased, causing
the algorithm to be more inclined to accept solu-
tions with better objective function values in the
later stages. When the temperature drops to a suffi-
ciently low level or other stopping conditions are
met, the algorithm halts, and the solution at this
point is regarded as an approximate global opti-
mum (Jiao et al., 2020).



3.4 Tabu Search

TS provides an effective approach to solving com-
plex optimization problems. Its core idea is to
avoid the algorithm getting trapped in local opti-
mal solutions by introducing a memory mechanism,
commonly known as the tabu list (Gendreau and
Potvin, 2005). This list records the solutions that
have been visited or specific search actions, and
prohibits the revisit of these solutions or actions
within a certain period, thus guiding the search to-
wards more promising regions (Lai and Fu, 2019;
Wang et al., 2019).

Mathematically, the TS algorithm can typically
be described as follows. Let the objective function
of the optimization problem be f(x), where z is the
solution vector. The algorithm starts from an initial
solution x( and seeks better solutions through a se-
ries of neighborhood searches. The neighborhood
search is usually defined as a set of new solutions
obtained by making small changes to the current
solution. In each iteration, the algorithm selects the
best candidate solution from the neighborhood of
the current solution. If this candidate solution is
not in the tabu list or it satisfies certain aspiration
criteria (e.g., its objective function value is much
better than the current optimal solution), then this
candidate solution is accepted as the new current
solution. Meanwhile, some relevant information
is updated in the tabu list to prevent the algorithm
from revisiting the same solutions or actions in the
short term.

3.5 Threat Model

In this context, we set up an experimental environ-
ment without any security issues, thus there is no
external attacker, as shown in the left-hand part of
Figure 1. However, we designate the server as the
attacker. The server, in this case, is both honest and
curious, monitoring the communication between
itself and a random client during the federated train-
ing of a language model, as previously elaborated.
This server, masquerading as the aggressor, obtains
white-box admittance to two essential parcels of
information: 1) the gradients transmitted by the
client and 2) the model parameters, including the
vocabulary and the embedding matrix. It should
be emphasized that the server, as the attacker, can
inspect this information at any stage of the training
process. The opponent’s objective is to retrieve a
minimum of one sentence from the set of confi-
dential training data by exploiting the information

available to him. This is crucial because obtaining
even a single sentence is enough to compromise the
privacy guarantees provided by FL. Furthermore,
the adversary can repeat the attack on a single batch
multiple times to extract more sentences. The ex-
tent of resemblance between the retrieved sentence
and the original private sentence from the batch
gauges the effectiveness of the attack.

4 Approach

We propose a novel method for reconstructing train-
ing data, which is divided into three innovative
steps: Hierarchical Subword Assembly, Gradient-
Guided SA-TS Optimization, and Gradient Analy-
sis and Token Adjustment, as depicted in the right-
hand part of Figure 1.

4.1 TokenFusion: Hierarchical Subword
Assembly

We implement the strategy used by Gupta et al.
(Gupta et al., 2022) and employ a gradient anal-
ysis technique to extract a set of tokens 7' =
{t1,t2,...,t,} from the token embedding gradi-
ents V f(w;). Here, w; denotes the embedding vec-
tor of the i-th token, and f(-) represents the model
or loss function under consideration. Concretely,
we examine V f(w;) for non-zero rows, each corre-
sponding to a particular token embedding that influ-
ences the gradient. By identifying these non-zero
rows, we recover the set of tokens present in the
batch without directly accessing the original text.
Once the complete set of tokens 7 is obtained, we
proceed with further processing or reconstruction
tasks. Distinctively, after acquiring the comprehen-
sive set of tokens 7', we pioneer a novel approach
to processing these tokens. We initiate a series of
operations on the sub-words prefixed with "##" and
their corresponding root words. Firstly, we elim-
inate the special symbols and preserve the valid
tokens as root words. Subsequently, we explore
diverse combinations of root words and sub-words
while meticulously examining their lengths and
spellings.

After initially encoding the qualified lexemes,
we re-confirm whether these encodings fall within
the predefined set. Only those lexemes and their
associated encodings that meet all the stipulated cri-
teria are retained. Through this process, incomplete
sub-words are assembled into units with complete
semantic meanings, and the proper conjugation
of sub-words with root words is ensured. Conse-
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Figure 1: We assume that the attacker is an honest-but-curious server. The attack flow of EDR consists of three
main steps: (i) Hierarchical Subword Assembly: The received gradient information is used to combine subwords
(e.g., "##nor", "##kel") into a meaningful lexeme ("snorkel"). (ii) Gradient-Guided SA-TS Optimization: Candidate
sentences are generated from candidate lexemes and refined using gradient information and leverage a hybrid
approach combining SA and TS to select the best candidate sentence. (iii) Gradient Analysis and Token Adjustment:
Token gradients of the best candidate are analyzed and iteratively adjusted to ensure precise alignment with target
gradients, resulting in the reconstructed sentence that best matches the original data.

quently, in this step, a set of candidate lexemes
L ={l,ls,...,l,} is obtained, where m may or
may not be equal to n, the number of elements in
the set of tokens 7" = {t1,t2,...,t,}. The set L is
defined as:

L={¢|l= Merge(t1,ta,...,t;),t; € T} (4)
which means that each element £ in L is formed by
merging one or more tokens from the set 7" through
the operation Merge. Each candidate lexeme in
the set L may consist of a single token or multiple
tokens, and every one of these candidate lexemes
has the potential to appear in the training sentences
we aim to reconstruct.

4.2 Gradient-Guided SA-TS Optimization

Unlike the method proposed by Gupta et al. (Gupta
et al., 2022), which uses beam search for permu-
tation, we employ a hybrid optimization frame-
work integrating SA and TS for sentence configu-
ration. The core objective is to identify the recon-
structed sentence that minimizes the gradient dis-
tance. Importantly, the effectiveness of reconstruc-
tion is highly sensitive to batch size. Larger batches
(B = 4) dilute gradient signals, hinder individual
update extraction, and expand the combinatorial
search space, increasing complexity and reducing
optimization efficiency (Yue et al., 2023; Li et al.,
2020; Wang et al., 2023). Additionally, large-batch
normalization exacerbates non-IID effects, desta-
bilizing model behavior. These issues highlight
the advantage of small-batch settings, which pre-
serve clearer gradients, motivating our focus on
such configurations for reconstruction attacks.

Specifically, we first randomly sample from the
candidate lexemes L to form multiple fixed-length
sentences, constituting the initial population S.
Then, within this hybrid framework, each sentence
in S is reordered by exploring different permu-
tations, and its gradient is compared against the
target gradient. By iteratively refining sentence
configurations to minimize the gradient distance,
we ultimately obtain a reconstructed sentence that
best aligns with the original data’s gradient signals.

Evaluation function: SA requires an evaluation
function to measure the quality of reconstructed
sequences. Drawing on the findings of prior re-
search, we adapt our evaluation function according
to the batch size. When the batch size is 1, Cosine
Similarity (Eq. 2) is adopted due to its high ef-
fectiveness in evaluating reconstructed sentences.
For larger batch sizes, the L1 and L2 Combined
Distance (Eq. 3) is employed to measure the sim-
ilarity between the gradients of the generated and
target sequences. The sequence with the lowest ag-
gregated score or the highest cosine similarity is de-
termined as the optimal one. This approach ensures
that the evaluation criteria are in line with batch-
specific conditions, and simultaneously quantifies
the proximity to the original data through gradient
similarity.

The hybrid SA-TS framework enhances opti-
mization by combining SA’s global exploration
through stochastic acceptance with TS’s memory-
based avoidance of cycling, effectively preventing
premature convergence and improving search effi-
ciency in complex permutation spaces.

Through this integration (Fig. 2), the randomness



Algorithm 1 Initial population is optimized in the
hybrid framework.

1: Input: Initial population S, Evaluation func-
tion £(S), Initial temperature 7', Cooling rate
o, Maximum iterations maxz_iter, Tabu list L

2: Output: Best sentence s*
3: for sin S do
4: Initialize L <— L U {s}, failed < 0
5: for iter € {1,...,max_iter} do
6: Generate s’ by random shuffling
7: or neighborhood operations
8: if £(s") — L(s) < 0then
9: s+ s
10: else
11: s < s’ with probability P
12: end if
13: if s = s’ then
14: L+ LU{s}
15: else
16: failed < failed + 1
17: if failed > 0.1 - maz_iter then
18: break
19: end if
20: end if
21: Reduce the temperature: T < o« - T

22: end for
23: if L(s) — L(s*) <0 then

24: s* <« s
25: end if
26: end for

27: return s*

and global searching power of SA are retained, al-
lowing the search to jump out of local minima when
needed, while TS systematically guides the search
towards unexplored regions. As a result, the com-
bined method both broadens and accelerates the
overall optimization process, improving the likeli-
hood of converging to a near-optimal or even glob-
ally optimal sentence arrangement. Through the
implementation of this approach within the frame-
work and the utilization of the evaluation function,
we are able to obtain an optimal candidate sentence
at this step, which has been optimized to minimize
the gradient distance.

4.3 Gradient Analysis and Token Adjustment

In the final phase of our procedure, we conduct a
detailed analysis of the embedding layer gradients
corresponding to each token within the optimal
candidate sentence obtained through the previous

step. Our experiments reveal that when the target
data has a batch size greater than 1, successfully
restoring a single data entry causes the gradients of
its tokens in the embedding layer to align with the
target gradients. Consequently, only the remaining
data entries require further adjustment.

To optimize the reconstructed sentences, we sys-
tematically evaluate the tokens within each sen-
tence to ensure their positions are correct. Tokens
identified as misaligned are flagged and iteratively
adjusted. Same as the previous step, when the
batch size is 1, cosine similarity (Eq. 2) is adopted.
For larger batch sizes, the combined L1 and L2
combined distances (Eq. 3) are used as the bench-
mark to evaluate the alignment with the target gra-
dients. Adjustments continue until the evaluation
metrics reach their optimal values, ensuring precise
alignment. The final output sentence represents the
reconstructed sequence that achieves the highest
similarity to the original data in terms of gradient
alignment.

5 Experiments

5.1 SetUp

In our evaluation, we employ three pivotal binary
text classification datasets to ensure a comprehen-
sive analysis. Specifically, we utilize CoLA and
SST-2 from the GLUE benchmark, along with the
RottenTomatoes dataset—each featuring distinct
sequence lengths. Our experiments are centered
on the BERT}, . architecture provided by Hugging
Face. We utilize the ROUGE metric suite, an ap-
proach also adopted in TAG (Deng et al., 2021)
and LAMP (Balunovic et al., 2022). We calculate
the aggregated F-scores for ROUGE-1, ROUGE-
2, and ROUGE-L. ROUGE-1 is used to measure
the accuracy of the recovered unigrams, ROUGE-2
measures the accuracy of the recovered bigrams,
and ROUGE-L measures the ratio of the length of
the longest matching subsequence to the length of
the full sequence. Furthermore, when dealing with
batches consisting of multiple sequences, we inten-
tionally exclude the padding tokens from both the
reconstruction process and the subsequent ROUGE
computations. These padding tokens are used to
standardize the lengths of sequences. By doing so,
we ensure that our evaluation of the attack perfor-
mance is accurate and is not affected by the artifacts
introduced by padding.

Our method is compared with three main base-
lines, namely TAG, LAMP.y, and LAMPy,,
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Figure 2: Gradient-guided Sequence Optimization Framework Using SA and TS

among which the two methods of LAMP are re-
garded as the current state-of-the-art methods. We
use the open-source LAMP framework to imple-
ment it. To ensure that our method is compared to
these baselines under fair conditions, all methods
use prior knowledge.

In the configuration of our method, batch size
directly influences key hyperparameters such as ini-
tial temperature, cooling rate, and iteration count,
allowing us to balance global exploration and lo-
cal refinement. We divide the temperature schedule
into two phases: a high-temperature stage for broad
search and a low-temperature stage for fine-tuning.
All experiments are conducted on a workstation
with an Intel Core 19-14900K CPU, 64GB RAM,
and an NVIDIA RTX 4090 GPU (24GB VRAM).

Several key parameters must be predefined.
These include the initial temperature, cooling rate,
and maximum number of iterations. The maxi-
mum number of failed attempts is set at 0.1 of the
maximum number of iterations. When considering
different batch sizes, specific parameter settings
are as follows. For a batch size of 1, the initial
temperature is set at 300, and the cooling rate is
0.95. The maximum number of iterations is 3,000.
In the case of a batch size of 2, the initial tempera-
ture is increased to 400, the cooling rate is adjusted
to 0.99, and the maximum number of iterations
reaches 4,000. For a batch size of 4, the initial
temperature is further elevated to 500, the cooling
rate remains at 0.99, and the maximum number of
iterations is set at 5,000. These settings are care-
fully calibrated to optimize the performance of our
method under various batch size conditions.

The above parameter choices were determined
through systematic grid search experiments, ensur-
ing a balanced trade-off between reconstruction
quality and computational efficiency. Detailed tun-
ing procedures and selection rationale are provided

in Appendix B

5.2 Results and Analysis

As shown in Table 1, our method consistently out-
performs baseline approaches across all datasets
and evaluation metrics (R-1, R-2, and R-L). On
CoL A, our method achieves remarkable results,
with R-1, R-2, and R-L scores of 98.52, 93.42, and
96.01, respectively, for B=1, and maintains its lead
for B=2 and B=4 with the highest R-L scores of
84.86 and 56.55. Similarly, on SST-2, the EDR
approach achieves the best performance across all
batch sizes, including a standout R-L score of 91.17
for B=1 and 65.64 for B=4. These results highlight
its robustness in both small and large-batch scenar-
10s. For the Rotten Tomatoes dataset, our method
demonstrates superior performance in most met-
rics. At B=1, it achieves R-1, R-2, and R-L scores
of 89.76, 29.98, and 57.64, significantly surpass-
ing all baselines. Although the R-2 score for B=4
(4.24) is slightly lower than the best baseline, it re-
mains comparable, while R-1 and R-L still lead at
44.33 and 29.05, respectively. Across all datasets
and evaluation conditions, our approach excels by
effectively balancing exploration and exploitation,
achieving both global diversity and local precision
in sentence reconstruction.

Several observations emerge from Table 2. First,
our method consistently produces reconstructions
that are significantly closer to the reference sen-
tences across all datasets compared to LAMP,.
On the CoLA dataset, our method perfectly recon-
structs the sentence, retaining its semantic and syn-
tactic accuracy, while LAMP, introduces lexical
errors such as "mykel snor," distorting the original
meaning.

For SST-2, our method demonstrates superior
capability in preserving both structure and mean-
ing, closely matching the reference. In contrast,



B=1 B=2 B=4

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
TAG 84.61 12.12 55.59 78.00 12.35 53.76 65.22 8.20 48.79

CoLA LAMP.,s 88.54 5228 75.26 77.56 32.14 64.51 61.99 18.09 53.01
LAMPy 144, 8770 48.06 73.96 81.13 35.89 66.56 68.48 20.03 55.15
EDR 98.52 9342 96.01 95.54 7430 84.86 68.51 25.00 56.55

TAG 79.96 18.50 58.94 76.61 17.62 57.08 66.39 13.20 5141
SST2 LAMP,s 88.05 58.22 77.50 7943 41.82 69.03 63.73 26.34 56.59
LAMPyL 1, 89.57 6244 7731 85.64 4833 7296 74.82 33.56 63.20
EDR 97.34 84.46 91.17 89.92 65.99 78.66 7496 43.43 65.64
TAG 68.76 340 35.68 5452 3.02 3246 4398 197 29.12
Rotten LAMP.,s 65.61 1049 39.80 53.80 9.62 37.10 38.54 3.14 28.03
Tomatoes LAMPp 142 7009 5.85 3494 5825 8.66 36.62 4174 4.85 28.96
EDR 89.76 29.98 57.64 69.45 16.62 42.17 44.33 424  29.05

Table 1: EROUGE Score Comparison for Reconstruction Methods Across Datasets (Batch Sizes = 1, 2, and 4).

Sequence
Reference Who has seen my snorkel?
CoLA LAMP.,s who has mykel snor seen?
EDR Who has seen my snorkel?
Reference ably balances real - time rhythms with propulsive incident.
SST-2 LAMP., ab balances - real time propulsively rhythms with incident.
EDR ably balances real - time rhythms with propulsive incident.
Reference vaguely interesting, but it’s just too too much .
Rotten
LAMP.,s but just s too vaguely vaguely, just vaguely much much.
Tomatoes
EDR vaguely interesting, but it’s just too too much .

Table 2: Comparison of Sentence Reconstruction Between EDR and LAMP,s on Batch Size = 1

LAMP,,s fails to maintain grammatical coher-
ence, introducing errors such as "ab balances" and
"propulsively,” which diverge from the intended
semantics.

Similarly, on the Rotten Tomatoes dataset, our
method successfully captures the tone and lex-
ical nuances of the sentence with high fidelity.
LAMP,s, however, generates a disjointed output
with repeated and misplaced words, disrupting the
fluency and interpretability.

These qualitative results demonstrate the effec-
tiveness of EDR in reconstructing sentences with
superior grammatical, lexical, and semantic align-
ment, particularly in small-batch settings, where
precision is critical. EDR also offers strong com-
putational efficiency and scalability, with favorable
time complexity across batch sizes and sequence

lengths, as elaborated in the Appendix A.

6 Conclusion

We propose a gradient-based data reconstruction
technique. Our approach makes use of traditional
gradient-reconstruction methods and prior knowl-
edge and incorporates meta-heuristic algorithms to
assist in the reconstruction of training data. This
technique enhances the reconstruction accuracy for
different datasets and batch sizes.

7 Limitations

From the experimental data, it can be seen that the
main limitation of our attack method lies in recon-
structing longer sentences. In particular, the sen-
tence lengths in the Rotten Tomatoes dataset usu-



ally range from 14 to 27. This poses a huge search-
space challenge for the ranking process. When
the batch size is small, the success rate can be in-
creased by 5% to 20%. However, when the batch
size is 4, the performance is slightly better than
that of the baseline. This result indicates that when
the length of sentences is fixed in a proper range,
our method is still highly applicable. In general,
the proposed EDR significantly improves the at-
tack rate in the context of data reconstruction for
federated learning of the language model. When
the batch size increases, the effectiveness of our
method does not scale up as expected, which may
be due to the increased complexity of handling
multiple sentences simultaneously and the poten-
tial interference between them. This suggests that
further optimization is needed to improve the per-
formance of our method in scenarios with larger
batch sizes and longer sentences.

8 Ethical Considerations

This research focuses on data reconstruction at-
tacks in federated learning systems, aiming to high-
light potential privacy vulnerabilities. While these
findings are intended to improve the security and
robustness of machine learning frameworks, we ac-
knowledge the ethical implications associated with
reconstructing private training data. The techniques
developed could be misused if applied maliciously
to compromise users’ sensitive information.

To mitigate such risks, we emphasize that our
work serves as a cautionary study to inform the
design of more secure federated learning protocols
and inspire the development of effective defense
mechanisms. Researchers and practitioners should
apply these methods responsibly, adhering to legal
and ethical guidelines, and ensuring that privacy
protections are strengthened rather than weakened.
We advocate for transparency, informed consent,
and strict data governance in any practical deploy-
ment involving user data.
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A Time Complexity Analysis of EDR

We provide a detailed analysis of the computational
complexity of EDR, structured by its three main
phases but presented compactly.

Hierarchical Subword Assembly (TokenFusion).
This phase extracts token candidates from embed-
ding gradients and combines them into valid lex-
emes. The gradient analysis costs O(V - d), where
V' is the vocabulary size and d is the embedding
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dimension. Subword combination (e.g., handling
"##" tokens) takes O(k?), where k is the number of
subwords per candidate. Lexeme validation costs
O(m) for m candidates. Since m < V, this phase
is dominated by O(V - d), which we approximate
as O(V + B - P) in practice, where B is batch size
and P is sentence length.

Gradient-Guided SA-TS Optimization. This is
the most expensive stage, using Simulated Anneal-
ing (SA) and Tabu Search (TS) across I ~ 3000- B
iterations for B < 4. Initial population genera-
tion is O(B - P). Each iteration includes neigh-
borhood operations (O(P?) worst-case), gradient-
based evaluation (O(P - d)), and tabu list updates
(O(min(, tabu_size))). Temperature scheduling
affects cost: early iterations favor faster random
operations (O(P)), while later ones may involve
more structured edits (O(P?)). Overall, this phase
scales as O(I - P2 - d).

Gradient Analysis and Token Adjustment.
This final phase refines token placements based
on gradient similarity. It involves token-wise evalu-
ation, correctness checks, and updates, all of which
scaleas O(B - P - d).

Combined Complexity. Summing the above, the
total cost is:

O(V-d+1-P?>.d+B-P-d)~ O(V+1-P?.d)

assuming d and V' are constant per model and
I « B. Given that P? < V (e.g., P2 = 900,
V' = 30,000), EDR remains efficient for small B
and moderate P. However, cost grows quadrati-
cally with sequence length and linearly with batch
size, making EDR especially suitable for typical
federated learning scenarios where B is small.

B Hyperparameter Tuning Details

Our parameter selection process followed a system-
atic approach.

Batch Size =1. We conducted grid search exper-
iments across the following ranges:

* Initial temperature: 100-500
* Cooling rate: 0.90-0.99
¢ Maximum iterations: 1,000-5,000

Through these experiments, we found that an
initial temperature of 300, a cooling rate of 0.95,
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and 3,000 iterations provided the optimal balance
between exploration and exploitation. These val-
ues yielded the best reconstruction quality without
incurring excessive computational overhead.

Batch Size = 2 and 4. For larger batch sizes
(B = 2and B = 4), we followed a similar tun-
ing process. Due to the expanded combinatorial
search space, these settings required higher temper-
atures and more iterations to effectively explore the
optimization landscape.

Specifically:

* For B = 2: Initial temperature = 400, cooling
rate = 0.99, maximum iterations = 4,000

* For B = 4: Initial temperature = 500, cooling
rate = 0.99, maximum iterations = 5,000

The increasing temperature and iteration values
directly correspond to the greater complexity that
must be explored as batch size increases. These
adjustments ensured that the optimization process
remained effective in various reconstruction scenar-
i0s.
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