

REAL DEEP RESEARCH FOR AI AND ROBOTICS

000
001
002
003 **Anonymous authors**
004 Paper under double-blind review
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

023 Figure 1: Real Deep Research enables: (1) generating surveys for specific research focuses or perspectives; (2) analyzing topic trends over time; (3) mapping interdisciplinary research landscapes; and (4) retrieving high-impact papers relevant to a given topic. (Each dot represents a paper, and each sphere denotes a topic cluster. The cluster keywords and trend information are automatically generated by **RDR**)

ABSTRACT

030 With the rapid growth of research in AI and robotics—now producing over 10,000
031 papers annually—it has become increasingly difficult for researchers to stay up to
032 date. Fast-evolving trends, *the rise of interdisciplinary work*, and *the need to explore domains beyond one's expertise* all contribute to this challenge. To address
033 these issues, we propose a generalizable pipeline capable of systematically ana-
034 lyzing any research area: identifying emerging trends, uncovering cross-domain
035 opportunities, and offering concrete starting points for new inquiry. In this work,
036 we present **Real Deep Research** (RDR)—a comprehensive framework applied
037 to the domains of AI and robotics, with a particular focus on foundation models
038 and robotics advancements. We also briefly extend our analysis to other areas
039 of science. The main paper details the construction of the RDR pipeline, while
040 the appendix provides extensive results across each analyzed topic. We hope this
041 work could shed lights on researchers who works in the filed of AI and beyond.

1 INTRODUCTION

044 The fields of AI and robotics have experienced exponential growth in recent years, while researchers
045 continue to face the constraint of limited time and attention. This work is motivated by the au-
046 thors' need to efficiently survey research areas, stay up to date with rapidly evolving trends, identify
047 promising interdisciplinary opportunities, and quickly familiarize themselves with the latest devel-
048 opments on a given topic.

049 In response to this need, we develop a systematic analysis tool designed to help users quickly nav-
050 igate and adapt to any research area or topic. We begin by applying our approach to the fields of
051 AI and robotics, conducting an in-depth analysis with a focus on foundation models and robotics
052 research. To broaden our exploration and uncover emerging areas of interest, we also extend our
053

054 analysis to natural sciences and formal sciences, offering a glimpse into recent developments be-
 055 yond our core domains.
 056

057 While our intentions are well-founded, it is important to acknowledge existing efforts in this space.
 058 On one hand, there are high-quality survey papers written by domain experts (3, 11); on the other,
 059 a few recent works have explored automated research pipelines (1, 18). Expert-written surveys
 060 offer depth and accuracy but require significant manual effort and cannot easily adapt to the fast-
 061 paced evolution of research. Meanwhile, current automated approaches often lack domain-specific
 062 knowledge and expert insight, limiting their usefulness and relevance to researchers. Our work aims
 063 to bridge this gap by combining systematic automation with meaningful, expert-informed analysis.
 064

065 Therefore, in addition to building an effective pipeline for Real Deep Research, our goal is to make
 066 the tool robust and insightful enough to support top-tier researchers in tracking emerging trends
 067 and engaging with unfamiliar research areas. A key focus of our work is interdisciplinary explo-
 068 ration—helping researchers identify underexplored intersections between fields that present promis-
 069 ing opportunities for cross-domain collaboration.
 070

071 As shown in Fig. 1, the visualization displays individual papers, clustered research topics, and their
 072 corresponding trends. At a glance, it becomes clear that areas such as teleoperation, dexterous
 073 manipulation, and open-source robotics are emerging as promising directions, whereas traditional
 074 reinforcement learning appears to be declining in momentum. As researchers in the robotics field,
 075 we find that these trend insights align well with our domain knowledge and provide valuable guid-
 076 ance for identifying impactful research opportunities. We summarize the key contributions of this
 077 paper as follows:
 078

- 079 1. We propose the **Real Deep Research (RDR)** pipeline, a systematic framework for exploring and
 080 analyzing any research area in depth.
2. Leveraging domain expertise, we deliver high-quality survey outputs in the fields of AI and
 081 robotics, providing valuable insights for researchers and practitioners.
3. We quantitatively evaluate the RDR pipeline and demonstrate its advantages over existing com-
 082 mercial large language model tools within the targeted research domains.

083 2 RELATED WORK

084 **Surveys of Foundation Models.** In recent years, a number of survey studies have systematically re-
 085 viewed foundation models across different domains (3, 11, 7, 24, 53, 41), including natural language
 086 processing (51, 6), computer vision (24, 47), graph learning (41), and robotics (46, 44, 27, 42).
 087 However, these surveys require extensive manual effort and become outdated quickly due to the
 088 rapid progress of foundation models. Unlike such static surveys, our goal is to design a framework
 089 that can automatically analyze thousands of papers and provide an always up to date understanding
 090 of different research areas.
 091

092 **LLMs in Scientific Research.** Large language models (LLMs) have been applied across various
 093 stages of scientific research (37, 25, 30, 35), including idea generation (39, 2), coding (43, 28), paper
 094 reviewing (21, 25), and predicting experimental results (29, 26). Among these stages, literature anal-
 095 ysis plays a central role, involving tasks such as paper retrieval, clustering, and topic trend analysis.
 096 However, traditional literature search tools such as Google Scholar rely mainly on lexical matching
 097 and struggle with tasks that require deeper semantic reasoning. This has motivated researchers to
 098 leverage LLMs for literature analysis (1, 18, 10, 36). For example, SciLitLLM (18) employs su-
 099 pervised learning to build a specialized LLM for scientific literature understanding; PaSa (10) uses
 100 reinforcement learning with synthetic data to train an LLM agent that can answer complex schol-
 101 arly queries. Unlike prior work that focuses mainly on research question answering, our approach
 102 targets a broader and systematic understanding of entire research areas. We highlight not only se-
 103 mantic reasoning over large collections of papers but also automatic analysis of research trends,
 104 offering researchers a transparent and evidence-based view of the literature.
 105

106 **Knowledge Organization and Discovery.** It has been shown that LLMs are capable of clustering
 107 documents (38, 49) and uncovering latent topics (33, 17). For example, Knowledge Navigator (14)
 108 combines LLMs with clustering techniques to organize and structure documents for scientific lit-
 109 erature search; SciTopic (17) enhances LLMs in identifying topic structures by refining document
 110 embeddings. Beyond knowledge organization, recent research (15, 16, 8) also studies the trend of
 111

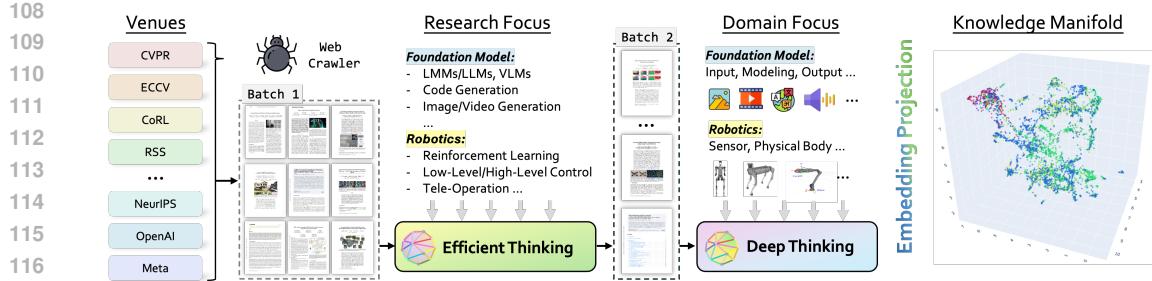


Figure 2: Pipeline of the proposed method on filtering and projecting thousands of papers to the embedding space for future analysis.

high-impact research topics. Our work introduces a novel approach by leveraging the reasoning capabilities of LLMs and the embedding representations of foundation models, which leads to more accurate and semantic knowledge organization. Built on this knowledge structure, our framework enables analysis of past and future research trends and supports inspection of connections between topics, providing valuable insights into scientific directions.

3 METHOD

In the Methods section, we focus specifically on the domains of foundation models and robotics to provide a comprehensive overview of how we conduct Real Deep Research using expert knowledge. As illustrated in Fig. 2, the embedding-based analysis pipeline consists of four main components: (1) Data Preparation (Sec. 3.1), (2) Content Reasoning (Sec. 3.2), (3) Content Projection (also in Sec. 3.2), and (4) Embedding Analysis (Sec. 3.4). This pipeline is powered by a suite of large language and multimodal models (LLMs/LMMs) for content extraction and reasoning, and is designed to be generalizable for the automated analysis of other research domains in the future. The following sections introduce each component in detail.

3.1 DATA PREPARATION.

Selection. To systematically investigate the integration of foundation models and robotics at scale, we focus on emerging trends and research priorities in both academia and industry. To capture the latest developments, we review recent publications from leading conferences in computer vision, robotics, and machine learning. Specifically, we collect papers via web crawling from top conference venues (CVPR, ECCV, ICCV, CoRL, RSS, ICRA, NeurIPS, etc.) as well as from industry research platforms (Nvidia, Meta, and OpenAI, etc.). This curated corpus comprehensively overviews the research contents in foundation models and robotics, highlighting key technical advancements, existing challenges, and future research directions. Specifically, we collect paper titles, authors, abstracts, and PDF links directly from conference and company websites. Then, we apply an area filtering process on paper titles and abstracts using an efficient LLM with a predefined set of criteria to ensure relevance to this study.

Area Filtering. We define the collected paper set as \mathbf{P} , while it generally fall under the broad area of vision, language, machine learning, and robotics, it is not guaranteed that each paper directly aligns with the specific focus of our work, such as foundation models (\mathbf{D}_f) and robotics (\mathbf{D}_r). To address this, we introduce *Area Filtering*—a step that leverages an efficient LLM with curated prompts—to identify papers relevant to our research scope. To ensure a correct filtering, we first define the scope of foundation models and robotics, clarifying technical boundaries between domains. Below are the prompts that we designed for our research focus:

Foundation Model Definition: ‘‘Research involving deep learning models (especially transformer-based) trained on large amounts of data and capable of fitting generalized factual realities. These models typically serve as versatile backbones for a variety of downstream tasks across multiple domains.’’

Key Indicators:

- Large Multimodal Models (LMM)
- Large Language Models (LLM) ...

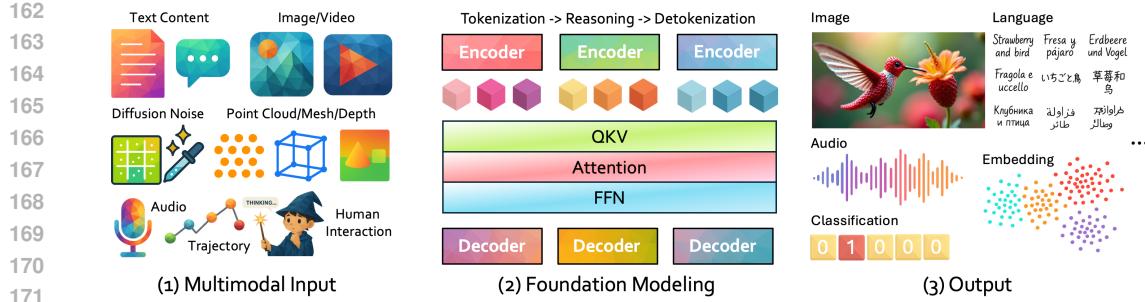


Figure 3: Perspective analysis of foundation model research, which primarily includes (1) Input, (2) Modeling, (3) Output, etc., shown in the figure.

Robotics Definition: "Research involving hardware systems equipped with input sensors and mechanical kinematics capable of producing joint movements. These systems are controlled by learning-based algorithms that facilitate automatic or robust mappings from sensory inputs to actuator outputs."

Key Indicators:

- Reinforcement Learning in robotic contexts
- Imitation Learning for physical systems ...

After filtering using an efficient LLM, the resulting set of papers (\mathbf{P}') belongs to either the foundation model domain (\mathbf{D}_f), the robotics domain (\mathbf{D}_r), or both. Formally we write $\mathbf{P}' = \{p \mid p \in \mathbf{D}_f \cup \mathbf{D}_r\}$.

3.2 CONTENT REASONING.

Given the filtered papers \mathbf{P}' in the domains of foundation models and robotics, an in-depth analysis is required to narrow the position of each paper. Guided by domain experts in foundation models and robotics, we define perspectives that align with established domain structures, emerging trends, and evolving knowledge. Beyond predefined perspectives, our pipeline supports future user-defined perspectives, allowing adaptation to new research questions. In the following paragraphs, we will depict the general structure, trends, and knowledge of the foundation model and robotics in preparation for analyzing the research works under \mathbf{P}' .

Foundation Model. A foundation model's development are systematically analyzed through five fundamental perspectives in this work: Input (**I**), Modeling (**M**), Output (**O**), Objective (**W**), and Learning Recipe (**R**). We have shown some main perspectives examples in Fig. 3. This structured representation facilitates a comprehensive analysis of the foundation model. Below is the formal writing for the procedure:

$$\mathcal{D}_f^{P'} = \bigcup_{p \in \mathbf{P}'} F(p), \quad F(p) = \text{LLM}(p \mid \mathbf{I}, \mathbf{M}, \mathbf{O}, \mathbf{W}, \mathbf{R}),$$

where LLM represents the large multimodal model, and $\mathcal{D}_f^{P'}$ denotes the perspective projection of the given papers in \mathbf{P}' , focused on foundation model research. In the following paragraphs, we provide a formal definition of each perspective:

Input (I**).** The input processing for a foundation model generally involves raw data and a tokenization procedure. Standard input sources include images, videos, audio, LiDAR, etc., with tokenization performed through transformations and neural networks.

Modeling (M**).** With input settled for a foundation model, the modeling part is responsible for extracting critical knowledge from the input, reasoning, and decoding to the output space. It is the critical procedure to transfer input knowledge to output.

Output (O**).** The task determines the decoding space according to the input and modeling, this is the final step to decode the latent representation to the output used for loss computation or the final interaction.

Objective (W**).** To fit a foundation model with the corresponding input, and output, the given model architecture is constrained by the learning objective, this fits the model distribution in alignment with the transformation given the task(s).

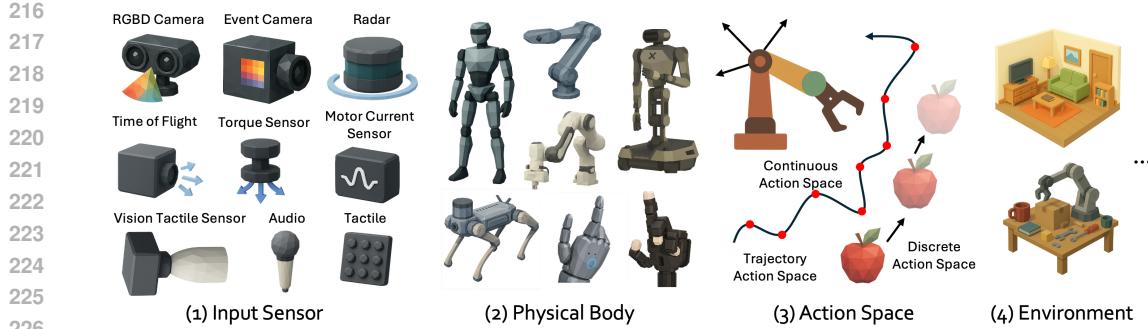


Figure 4: Perspective analysis of robotics research, which primarily includes (1) Input, (2) Modeling, (3) Output, etc., shown in the figure.

Recipe (R). The recipe is used as the cookbook on how to tune the model weight with input, output, and objective. It controls the training stage, convergence speed, and updated parameters.

Robotics. For research work in robotics, the core perspective shifts to emphasize hardware and interaction within real-world environments. We define five key perspectives to map each paper within the broader landscape of robotic applications: Input Sensor (**S**), Physical Body (**B**), Joint Output (**J**), Action Space (**A**), and Environment (**E**). An example of core perspectives is illustrated in Fig. 4. These perspectives collectively define how robots perceive, act, and interact within the physical world. The procedure could be formally written as:

$$\mathcal{D}_r^{P'} = \bigcup_{p \in \mathbf{P}'} F(p), \quad F(p) = \text{LMM}(p \mid \mathbf{S}, \mathbf{B}, \mathbf{J}, \mathbf{A}, \mathbf{E}),$$

where $\mathcal{D}_r^{P'}$ represents the perspective projection of the given papers in \mathbf{P}' , providing a structured framework for analyzing robotics research. We show the concrete definition in the following:

Input Sensor (S). Input sensors are hardware devices that measure physical quantities or environmental conditions and convert them into digital signals that can be processed by the robot's control system. They serve as the robot's interface with its environment.

Physical Body (P). A physical body in robotics refers to the mechanical structure and architecture that enables physical interaction with the environment. This physical manifestation determines how motor commands translate into real-world forces, movements, and environmental manipulations.

Action Space (A). The action space is the set of all permissible actions a robot can select in a given context, ranging from low-level joint commands to high-level behaviors (e.g., “walk” or “grasp”). Each chosen action is ultimately executed as a joint output, bridging decision-making to physical movement.

Joint Output (J). Joint output refers to the physical movement or configuration of a robot's joints resulting from executed motor commands. It translates control signals (e.g., torque or velocity) into mechanical motion, allowing the robot to directly interact with and manipulate its environment.

Environment (E). The environment encompasses the physical space where a robot operates, characterized by its spatial layout, structural features, and contextual elements (e.g., furniture, tools, obstacles) that shape the task-specific challenges and opportunities the robot encounters.

Given the predefined perspective definition, we use the following prompt to extract each perspective from the paper:

Can you analyze the paper contents according to the following perspectives: (1) Definition 1, (2) Definition 2, (3) Definition 3, ... After analysis, please identify each of the perspectives in the paper, and return the answer in the following format: {"perspective 1": plain text, "perspective 2": plain text, "perspective 3": plain text, ...}

3.3 CONTENT PROJECTION.

Given the extracted contents from research papers guided by our defined perspective, we aim to project natural language descriptions into an informative latent space. This projection enables large-

270 scale analysis of current research in foundation models and robotics while revealing potential future
 271 research directions. Motivated by recent advancements in large language model-based embedding
 272 models, we **employ a pre-trained embedding foundation model \mathbf{G}** to project $\mathcal{D}_r^{P'}$ (processed
 273 robotics papers' content) and $\mathcal{D}_f^{P'}$ (processed foundation model papers' content) from natural lan-
 274 guage space into a more abstract embedding space. The embedding model maps text into a high-
 275 dimensional vector space where semantically similar concepts occupy proximate regions.
 276

277 We formally define this projection procedure as follows: For any text snippet $x \in \mathcal{D}$, its embedding
 278 is computed as: $v_x = \mathbf{G}(x) \in \mathbb{R}^d$. Our core assumption is that by projecting paper contents through
 279 this perspective-aware embedding process and analyzing them in the high-dimensional manifold,
 280 we can uncover meaningful patterns, research trends, and potential gaps in the literature through
 281 systematic visualization and clustering analysis.
 282

283 3.4 EMBEDDING ANALYSIS.

284 The goal of embedding analysis is to structure the understanding of previously extracted embed-
 285 dings. The pipeline for embedding analysis contains three components: (1) Clustering on the ex-
 286 tracted embeddings and analyzing the main concept from each cluster. (2) Structured the concept
 287 for each cluster to formulate an informative table. (3) Given the structured understanding, we trace
 288 back to the reference papers.

289 **Clustering for Embeddings.** We first embed every paper to obtain its vector representation V and
 290 partition the corpus into k clusters. From each cluster, we then draw a random sample of 50 papers
 291 and feed their text to a reasoning-based model with the prompt:

292 Can you summarize the following contents into three distinct keywords:
 293 Here is one example output: "keyphrase1, keyphrase2, keyphrase3". The
 294 output should be short and precise, with a single output for all
 295 papers.

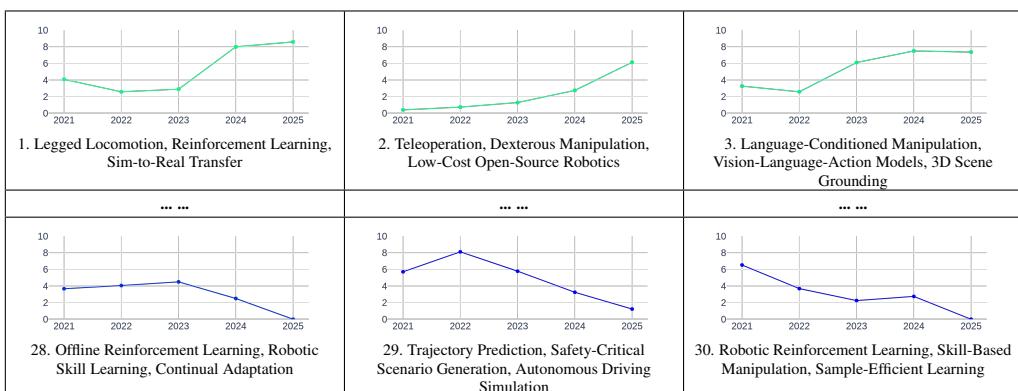
296 The model returns three compact key phrases that capture the cluster's core theme, giving every
 297 paper both a cluster label and an interpretable set of keywords for subsequent analysis.
 298

299 **Structuring for Thoughts.** With clustered embeddings and their associated topic keywords in place,
 300 the next step is to generate a structured survey for the given research area. To accomplish this, we
 301 leverage the o3 language model, using the clustered keywords as prompts to guide the formulation
 302 of the final survey content. Incorporating the clustering results into the prompt ensures that the
 303 generated text remains grounded in the actual structure of the research landscape, enhancing both
 304 coherence and relevance. We use the following prompt to produce the final output:

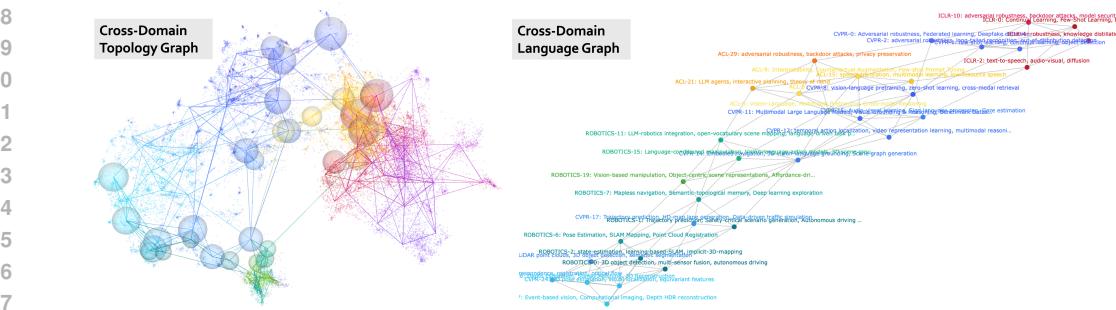
305 Those are summarized keywords for a number of science papers clustered
 306 by abstract contents, however they are ambiguous, contents may overlap
 307 between clusters, can you summarize the information in a more structured
 308 way for audience with the following criteria: ...

310 4 ANALYSIS

312 In this section, we conduct a comprehensive qualitative analysis of the conclusions drawn in this
 313 work from the following perspectives: (1) Embedding analysis for general research areas. (2) Em-
 314 bedding analysis within specific perspective. (3) Trend analysis of research focus over time. (4)
 315 Knowledge graph exploration across different research areas. (5) Retrieval examples based on em-
 316 beddings. This pipeline will enable a researcher to dive into any research area, identify what to
 317 explore, and determine the specific papers to focus on.


318 **Embedding Analysis - General.** The output of the embedding analysis is a comprehensive survey
 319 tailored to the featured research domain. This survey is organized into major categories and sub-
 320 categories, each detailing the specific topics covered. Rather than generating the survey content
 321 via LLM, we leverage the clustering results from the embedding analysis to guide its structure and
 322 scope. Additionally, for each sub-topic, we include the most relevant citations to provide readers
 323 with direct references for further exploration. We have provide the full survey for Foundation Model,
 Robotics, Computer Vision, Natural language processing, and machine learning in Appendix. B.

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371	324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371	324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371	324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371	324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
1. Perception & Mapping (34, 48, 52, 31, 9)	1.1 Multimodal sensor fusion (20, 45, 4, 54, 40) 1.2 3D reconstruct/occupancy (52, 12, 22, 23, 32) 1.3 BEV / top-view mapping (50, 45, 5, 13, 19)	Fuse heterogeneous sensors for richer scene understanding Build dense or sparse geometric maps for localisation Bird's-eye or top-down representations for planning	LiDAR–Camera Fusion; Radar–Camera Fusion; V2X Cooperative Perception ... 3-D SLAM & Reconstruction; 3-D Occupancy; Efficient 3-D Representation BEV Perception; V2X Collaborative Perception	0,6,7,8,14,16 0,8,16 0,14,16
...


Embedding Analysis - Perspective. After establishing a clear overview of the domain, we analyze it through a targeted *perspective* to expose structure and problem formulations. As introduced in the Methods section, our perspective analysis uses embedding-based clustering to organize works along a chosen axis. In this study we focus on foundation models and robotics, examining how each community formulates its problems. Below we illustrate the robotics case from the viewpoint of *action space*. This perspective-guided embedding analysis yields a deeper understanding of the domain and a high-level map of how researchers approach and solve its problems. We also provide the full perspective for foundation model and robotics in Appendix. C.

Category	Sub-category	What is covered	Typical examples	Cluster
1. Continuous Low-Level Actuation	1.1 Joint-space commands	Direct numerical inputs to individual joints or actuators, bounded by hardware limits.	joint torques/positions/velocities; high-dimensional joint commands; bounded control inputs; finger-joint configs; parametrised joint trajectories	0, 4, 6, 10, 12, 14, 18
	1.2 Vehicle / body dynamics commands	Low-level controls that change a mobile base, ground-vehicle or aerial body state.	steering angle; throttle / acceleration; braking; linear & angular velocity; body-rate thrust; speed/direction for locomotion; lane-keeping	0, 1, 7, 10, 12, 13, 15
...

Trend Analysis. Once we understand each domain and its key sub-perspectives, the next step is to assess topic momentum. Our trend analysis highlights which areas are accelerating and which have been thoroughly explored in recent years, giving a practical starting point when entering a new field. In robotics (see figure), the trajectories suggest that teleoperation, dexterous manipulation, and low-cost open-source robotics are currently rising, while traditional reinforcement learning and skill-based manipulation appear comparatively mature or show slowing activity. This will guide the researchers to smoothly enter a new field. We provide the full trend analysis in Appendix. D for Computer Vision, NLP, Robotics, and Machine Learning.

Knowledge Graph. Beyond identifying trending topics, a complementary path to new research directions is to surface cross-domain themes. In this work, we analyze intersections among computer vision, natural language processing, machine learning, and robotics. The left figure presents a cross-domain topology graph: colors denote domains; nodes (spheres) represent topics; edges indicate inter-domain connections; and endpoints mark domain-specific topics with no current cross links. This view reveals a mix of genuinely cross-domain areas and isolated, domain-specific topics—promising targets for future cross-pollination and inter-disciplinary exploration.

Retrieval Examples. Once a target research topic is identified, the next step is to pinpoint concrete entry points. We do this by leveraging the conference-level embeddings inferred earlier to run semantic searches and retrieve the most relevant literature. For example, after surveying robotics, we focus on dexterous manipulation and query the embedding index to surface closely related papers across venues. As shown in the table below, the returned papers align tightly with the query and exhibit meaningful community impact, as reflected by their venues, years, and citation counts.

Paper	Year	Venue	Citations
Query: dexterous manipulation generated data in 3D simulation and evaluated in real world.			
Evaluating Real-World Robot Manipulation Policies in Simulation	2024	CoRL24	127
Lessons from Learning to Spin “Pens”	2024	CoRL24	29
General In-hand Object Rotation with Vision and Touch	2023	CoRL23	134
Twisting Lids Off with Two Hands	2024	CoRL24	13
DexterityGen: Foundation Controller for Unprecedented Dexterity	2025	RSS25	16

5 EXPERIMENT

We have presented a comprehensive qualitative analysis demonstrating how Real Deep Research supports deep dives into a chosen research focus. This section now details the dataset curated for our study and the implementation specifics required to realize the system. We then provide quantitative evaluations—both by benchmarking our survey against commercial research tools and by validating the effectiveness of the embeddings that underpin our approach.

Dataset. We curate our dataset from publicly available venues. Since the main paper centers on AI and robotics, we collect publications from the venues listed in Table 1. To align with our focus on foundation models and robotics, we further filter the corpus to include 4,424 foundation-model papers across all venues since 2024 and 1,186 robotics papers over the same period. These statistics indicate that, relative to the broader AI literature, robotics remains a smaller community—one that is well positioned for growth, especially through cross-domain research. We plan to expand the paper collection over time.

Implementation Details. We do not train any new networks in this work for generating the embedding or survey; instead, we rely on off-the-shelf models. For straightforward tasks—such as classifying research areas—we use the Doubao language model. For reasoning-intensive tasks and complex summarization, we employ the o3 model to achieve stronger performance. To extract text embeddings, we use nvidia/NV-Embed-v2.

Survey Quality. As demonstrated in Sec. 3, our analysis of a research area begins with a broad survey of the existing literature. The analysis pipeline we propose is designed to significantly reduce model hallucination and produce a comprehensive, high-quality survey for a given research direction.

Venue	Year	Area	Total
CVPR	21-25	<i>Computer Vision</i>	11668
CoRL	21-24	<i>Robotics</i>	815
RSS	21-25	<i>Robotics</i>	575
ICLR	21-25	<i>Machine Learning</i>	9549
ACL	21-25	<i>NLP</i>	4556
NeurIPS	2024	<i>Machine Learning</i>	4240
ECCV	2024	<i>Computer Vision</i>	6166

Table 1: Paper Distribution Analysis across different venues, showing the total number of papers.

432	433	434	Model	Rank	General				Foundation Model			Robotics		
					CV	NLP	ML	Robotics	Input	Modeling	Output	Sensor	Body	Action
435	GPT5	4.80	10.00	17.39	45.45	71.43	44.44	10.00	21.05	22.73	34.78	69.57		
436	GPT5-Thinking	2.75	82.61	59.09	47.83	66.67	55.00	90.91	50.00	88.46	42.86	32.00		
437	GPT5-Research	4.00	42.11	50.00	72.73	63.64	21.05	35.00	50.00	0.00	40.91	52.63		
438	Gemini	4.80	35.00	40.00	15.38	0.00	13.64	54.17	45.83	31.25	45.00	26.32		
439	Gemini-Thinking	3.35	63.64	50.00	56.25	37.50	65.22	45.45	41.67	55.56	56.52	34.78		
440	RDR (Ours)	1.30	58.33	89.47	73.68	77.78	88.46	60.00	94.74	91.30	84.21	89.47		

441
442 Table 2: Survey Quality Evaluation among RDR and commercial based methods. We evaluate the
443 pairwise winning rate for each domain and perspective.

444 To evaluate the accuracy and quality of the generated surveys, we conducted a user study involving
445 experienced researchers with domain expertise in robotics and foundation models. As a baseline,
446 we prompted a commercial large language model using the following instruction: *“Act as an expert
447 research analyst. Your task is to create a structured map of the research landscape for a given
448 academic or industrial field. The output must be a single, valid JSON object that categorizes the
449 field into its primary research areas and specific sub-topics. For the research area ‘foundation
450 model,’ can you summarize the input perspective with the following definition: The input processing
451 for a foundation model generally involves raw data and a tokenization procedure ...”*

452 To assess the quality of the generated surveys, we adopted a pairwise comparison methodology
453 rather than asking evaluators to select a single best output. For each comparison, domain experts
454 were presented with two survey outputs and asked to determine which one demonstrated superior
455 quality and accuracy. This evaluation setup helps reduce cognitive load and bias, making the assess-
456 ment more reliable by avoiding the need for evaluators to recall or rank multiple outputs simultane-
457 ously. In total, we collected 8 evaluation entries, each with 80 pairwise comparisons. To quantify
458 performance, we computed the winning rate of each method within its respective domain.

459 As shown in Tab. 5, our method, Real Deep
460 Research (RDR), achieves the highest over-
461 all performance with an average rank of 1.30,
462 outperforming all baselines. RDR leads in
463 key domains such as NLP (89.47), robotics
464 (77.78), and foundation model output (94.74),
465 and also shows strong performance in robotics
466 subfields like sensor (91.30) and action (89.47).
467 While GPT5-Thinking slightly outperforms in
468 CV (82.61) and foundation model modeling
469 (90.91), RDR consistently ranks at or near the
470 top across nearly all categories.

471 **Embedding Quality.** Because much of our
472 analysis relies on high-quality embeddings, we
473 evaluate their effectiveness using a simple lin-
474 ear probe trained on top of frozen representations—an approach that best reflects the intrinsic utility
475 of the embeddings themselves. We follow the experimental protocol introduced in SciTopic (17),
476 using the same unsupervised training and evaluation splits to ensure fair comparison. Unlike our
477 method, SciTopic uses pseudo-labels during training, which introduces weak supervision; therefore,
478 we gray out its entry in the results for clarity. As shown in Tab. 5, our method RDR achieves the best
479 performance across both datasets, with an accuracy of 84.86 on AG News and 52.91 on 20 News
480 Groups. RDR also leads in NMI (61.66 and 56.57) and ARI (65.24 and 39.96), outperforming all
481 fully unsupervised baselines, and even surpassing the pseudo-supervised SciTopic model.

482 6 CONCLUSION

483 We began this work with the goal of tracking research trends and broadening our understanding
484 across fields to support interdisciplinary exploration. The RDR pipeline has since become a valuable
485 tool for the authors’ ongoing research. We hope it inspires future meta-research efforts toward LLMs
486 that can one day conduct research autonomously.

Model	AG News			20 News Groups		
	ACC(↑)	NMI(↑)	ARI(↑)	ACC(↑)	NMI(↑)	ARI(↑)
LDA	74.05	47.17	49.01	29.05	31.63	13.34
NMF	34.05	4.59	2.13	12.42	12.86	0.48
ProdLDA	80.93	56.51	60.91	37.42	45.67	23.89
DecTM	55.63	40.04	36.17	36.57	46.18	22.90
ETM	26.14	0.00	0.00	5.35	0.10	0.00
NSTM	26.14	0.01	0.00	16.92	17.02	2.34
TSCTM	79.63	53.91	55.89	40.60	44.06	15.71
ECRTM	78.69	54.05	54.88	25.70	31.00	12.26
Bertopic	35.93	12.88	7.03	29.78	28.57	11.58
FASTopic	83.48	59.10	62.48	51.65	56.32	39.49
SciTopic*	85.29	61.96	65.94	70.88	68.32	55.71
RDR (Ours)	84.86	61.66	65.24	52.91	56.57	39.96

487 Table 3: Unsupervised Clustering performance. *
488 indicate using more labels.

486 REFERENCES
487

488 [1] Anirudh Ajith, Mengzhou Xia, Alexis Chevalier, Tanya Goyal, Danqi Chen, and Tianyu
489 Gao. Litsearch: A retrieval benchmark for scientific literature search. *arXiv preprint*
490 *arXiv:2407.18940*, 2024.

491 [2] Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan, and Sung Ju Hwang. Researchagent:
492 Iterative research idea generation over scientific literature with large language models. *arXiv*
493 *preprint arXiv:2404.07738*, 2024.

494 [3] Rishi Bommasani. On the opportunities and risks of foundation models. *arXiv preprint*
495 *arXiv:2108.07258*, 2021.

496 [4] Tim Broedermann, David Brüggemann, Christos Sakaridis, Kevin Ta, Odysseas Liagouris,
497 Jason Corkill, and Luc Van Gool. Muses: The multi-sensor semantic perception dataset for
498 driving under uncertainty. In *European Conference on Computer Vision*, 2024.

499 [5] Loick Chambon, Eloi Zablocki, Mickaël Chen, Florent Bartoccioni, Patrick Pérez, and
500 Matthieu Cord. Pointbev: A sparse approach for bev predictions. In *Conference on Com-*
501 *puter Vision and Pattern Recognition*, 2024.

502 [6] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xi-
503 aoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language
504 models. *ACM transactions on intelligent systems and technology*, 15(3):1–45, 2024.

505 [7] Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow, Md. Mehrab Tanjim, Sungchul Kim, Franck
506 Dernoncourt, Tong Yu, Ruiyi Zhang, and Nesreen Ahmed. Bias and fairness in large language
507 models: A survey. *Computational Linguistics*, 50:1097–1179, 2023.

508 [8] Xuemei Gu and Mario Krenn. Forecasting high-impact research topics via machine learning
509 on evolving knowledge graphs. *Machine Learning: Science and Technology*, 6(2):025041,
510 2025.

511 [9] David Harwath, Adria Recasens, Didac Suris, Galen Chuang, Antonio Torralba, and James
512 Glass. Jointly discovering visual objects and spoken words from raw sensory input. In *Euro-*
513 *pean Conference on Computer Vision*, 2024.

514 [10] Yichen He, Guanhua Huang, Peiyuan Feng, Yuan Lin, Yuchen Zhang, Hang Li, et al. Pasa: An
515 llm agent for comprehensive academic paper search. *arXiv preprint arXiv:2501.10120*, 2025.

516 [11] Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A
517 survey. *ArXiv*, abs/2212.10403, 2022.

518 [12] Yuanhui Huang, Wenzhao Zheng, Borui Zhang, Jie Zhou, and Jiwen Lu. Selfocc: Self-
519 supervised vision-based 3d occupancy prediction. In *Conference on Computer Vision and*
520 *Pattern Recognition*, 2024.

521 [13] Kai Jiang, Jiaxing Huang, Weiyi Xie, Jie Lei, Yunsong Li, Ling Shao, and Shijian Lu. Da-
522 bev: Unsupervised domain adaptation for bird’s eye view perception. In *European Conference*
523 *on Computer Vision*, 2024.

524 [14] Uri Katz, Mosh Levy, and Yoav Goldberg. Knowledge navigator: Llm-guided browsing frame-
525 work for exploratory search in scientific literature. *arXiv preprint arXiv:2408.15836*, 2024.

526 [15] Mario Krenn and Anton Zeilinger. Predicting research trends with semantic and neural net-
527 works with an application in quantum physics. *Proceedings of the National Academy of Sci-*
528 *ences*, 117(4):1910–1916, 2020.

529 [16] Mario Krenn, Lorenzo Buffoni, Bruno Coutinho, Sagi Eppel, Jacob Gates Foster, Andrew
530 Gritsevskiy, Harlin Lee, Yichao Lu, João P Moutinho, Nima Sanjabi, et al. Forecasting the
531 future of artificial intelligence with machine learning-based link prediction in an exponentially
532 growing knowledge network. *Nature Machine Intelligence*, 5(11):1326–1335, 2023.

540 [17] Pengjiang Li, Zaitian Wang, Xinhao Zhang, Ran Zhang, Lu Jiang, Pengfei Wang, and
 541 Yuanchun Zhou. Scitopic: Enhancing topic discovery in scientific literature through advanced
 542 llm. *arXiv preprint arXiv:2508.20514*, 2025.

543 [18] Sihang Li, Jin Huang, Jiaxi Zhuang, Yaorui Shi, Xiaochen Cai, Mingjun Xu, Xiang Wang,
 544 Linfeng Zhang, Guolin Ke, and Hengxing Cai. Scilitllm: How to adapt llms for scientific
 545 literature understanding. *arXiv preprint arXiv:2408.15545*, 2024.

546 [19] Zhiqi Li, Wenhui Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Yu Qiao, and
 547 Jifeng Dai. Bevformer: Learning bird’s-eye-view representation from multi-camera images
 548 via spatiotemporal transformers. In *European Conference on Computer Vision*, 2024.

549 [20] Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun. Deep continuous fusion for
 550 multi-sensor 3d object detection. In *European Conference on Computer Vision*, 2024.

551 [21] Weixin Liang, Yuhui Zhang, Hancheng Cao, Binglu Wang, Daisy Yi Ding, Xinyu Yang, Kailas
 552 Vodrahalli, Siyu He, Daniel Scott Smith, Yian Yin, et al. Can large language models pro-
 553 vide useful feedback on research papers? a large-scale empirical analysis. *NEJM AI*, 1(8):
 554 A1oa2400196, 2024.

555 [22] Haisong Liu, Yang Chen, Haiguang Wang, Zetong Yang, Tianyu Li, Jia Zeng, Li Chen,
 556 Hongyang Li, and Limin Wang. Fully sparse 3d occupancy prediction. In *European Con-
 557 ference on Computer Vision*, 2024.

558 [23] Weiyang Liu, Zhen Liu, Liam Paull, Adrian Weller, and Bernhard Schölkopf. Structural causal
 559 3d reconstruction. In *European Conference on Computer Vision*, 2024.

560 [24] Yang Liu, Yao Zhang, Yixin Wang, Feng Hou, Jin Yuan, Jiang Tian, Yang Zhang, Zhongchao
 561 Shi, Jianping Fan, and Zhiqiang He. A survey of visual transformers. *IEEE transactions on
 562 neural networks and learning systems*, 2023.

563 [25] Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha.
 564 The ai scientist: Towards fully automated open-ended scientific discovery. *arXiv preprint
 565 arXiv:2408.06292*, 2024.

566 [26] Xiaoliang Luo, Akilles Rechardt, Guangzhi Sun, Kevin K Nejad, Felipe Yáñez, Bati Yilmaz,
 567 Kangjoo Lee, Alexandra O Cohen, Valentina Borghesani, Anton Pashkov, et al. Large language
 568 models surpass human experts in predicting neuroscience results. *Nature human behaviour*, 9
 569 (2):305–315, 2025.

570 [27] Yueen Ma, Zixing Song, Yuzheng Zhuang, Jianye Hao, and Irwin King. A survey on vision-
 571 language-action models for embodied ai. *arXiv preprint arXiv:2405.14093*, 2024.

572 [28] Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhi-
 573 jeetsingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark.
 574 Discoverybench: Towards data-driven discovery with large language models. *arXiv preprint
 575 arXiv:2407.01725*, 2024.

576 [29] Benjamin S Manning, Kehang Zhu, and John J Horton. Automated social science: Language
 577 models as scientist and subjects. Technical report, National Bureau of Economic Research,
 578 2024.

579 [30] Lisa Messeri and Molly J Crockett. Artificial intelligence and illusions of understanding in
 580 scientific research. *Nature*, 627(8002):49–58, 2024.

581 [31] Medhini Narasimhan, Erik Wijmans, Xinlei Chen, Trevor Darrell, Dhruv Batra, Devi Parikh,
 582 and Amanpreet Singh. Seeing the un-scene: Learning amodal semantic maps for room navi-
 583 gation. In *European Conference on Computer Vision*, 2024.

584 [32] Liang Peng, Junkai Xu, Haoran Cheng, Zheng Yang, Xiaopei Wu, Wei Qian, Wenxiao Wang,
 585 Boxi Wu, and Deng Cai. Learning occupancy for monocular 3d object detection. In *Conference
 586 on Computer Vision and Pattern Recognition*, 2024.

594 [33] Chau Minh Pham, Alexander Hoyle, Simeng Sun, Philip Resnik, and Mohit Iyyer. Topiccpt:
 595 A prompt-based topic modeling framework. *arXiv preprint arXiv:2311.01449*, 2023.
 596

597 [34] Abbas Sadat, Sergio Casas, Mengye Ren, Xinyu Wu, Pranaab Dhawan, and Raquel Urtasun.
 598 Perceive, predict, and plan: Safe motion planning through interpretable semantic representations.
 599 In *European Conference on Computer Vision*, 2024.

600 [35] Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang
 601 Liu, Michael Moor, Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as
 602 research assistants. *arXiv preprint arXiv:2501.04227*, 2025.
 603

604 [36] Xiaofeng Shi, Yuduo Li, Qian Kou, Longbin Yu, Jinxin Xie, and Hua Zhou. Spar:
 605 Scholar paper retrieval with llm-based agents for enhanced academic search. *arXiv preprint
 606 arXiv:2507.15245*, 2025.

607 [37] Richard Van Noorden and Jeffrey M Perkel. Ai and science: what 1,600 researchers think.
 608 *Nature*, 621(7980):672–675, 2023.
 609

610 [38] Vijay Viswanathan, Kiril Gashteovski, Kiril Gashteovski, Carolin Lawrence, Tongshuang Wu,
 611 and Graham Neubig. Large language models enable few-shot clustering. *Transactions of the
 612 Association for Computational Linguistics*, 12:321–333, 2024.

613 [39] Qingyun Wang, Doug Downey, Heng Ji, and Tom Hope. Scimon: Scientific inspiration
 614 machines optimized for novelty. In *Proceedings of the 62nd Annual Meeting of the Association
 615 for Computational Linguistics (Volume 1: Long Papers)*, pp. 279–299, 2024.
 616

617 [40] Tsun-Hsuan Wang, Sivabalan Manivasagam, Ming Liang, Bin Yang, Wenyuan Zeng, and
 618 Raquel Urtasun. V2vnet: Vehicle-to-vehicle communication for joint perception and predic-
 619 tion. In *European Conference on Computer Vision*, 2024.

620 [41] Zehong Wang, Zheyuan Liu, Tianyi Ma, Jiazheng Li, Zheyuan Zhang, Xingbo Fu, Yiyang Li,
 621 Zhengqing Yuan, Wei Song, Yijun Ma, et al. Graph foundation models: A comprehensive
 622 survey. *arXiv preprint arXiv:2505.15116*, 2025.
 623

624 [42] Xuan Xiao, Jiahang Liu, Zhipeng Wang, Yanmin Zhou, Yong Qi, Shuo Jiang, Bin He, and
 625 Qian Cheng. Robot learning in the era of foundation models: A survey. *Neurocomputing*, pp.
 626 129963, 2025.
 627

628 [43] Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic evalua-
 629 tion of large language models of code. In *Proceedings of the 6th ACM SIGPLAN international
 630 symposium on machine programming*, pp. 1–10, 2022.
 631

632 [44] Zhiyuan Xu, Kun Wu, Junjie Wen, Jinming Li, Ning Liu, Zhengping Che, and Jian
 633 Tang. A survey on robotics with foundation models: toward embodied ai. *arXiv preprint
 634 arXiv:2402.02385*, 2024.
 635

636 [45] Junbo Yin, Jianbing Shen, Runnan Chen, Wei Li, Ruigang Yang, Pascal Frossard, and Wen-
 637 guan Wang. Is-fusion: Instance-scene collaborative fusion for multimodal 3d object detection.
 638 In *Conference on Computer Vision and Pattern Recognition*, 2024.
 639

640 [46] Fanlong Zeng, Wensheng Gan, Yongheng Wang, Ning Liu, and Philip S Yu. Large language
 641 models for robotics: A survey. *arXiv preprint arXiv:2311.07226*, 2023.
 642

643 [47] Chunhui Zhang, Li Liu, Yawen Cui, Guanjie Huang, Weilin Lin, Yiqian Yang, and Yuehong
 644 Hu. A comprehensive survey on segment anything model for vision and beyond. *arXiv preprint
 645 arXiv:2305.08196*, 2023.
 646

647 [48] Juexiao Zhang, Gao Zhu, Sihang Li, Xinhao Liu, Haorui Song, Xinran Tang, and Chen Feng.
 648 Multiview scene graph. In *Neural Information Processing Systems*, 2024.
 649

648 [49] Yuwei Zhang, Zihan Wang, and Jingbo Shang. Clusterllm: Large language models as a guide
 649 for text clustering. *arXiv preprint arXiv:2305.14871*, 2023.

648 [50] Tianhao Zhao, Yongcan Chen, Yu Wu, Tianyang Liu, Bo Du, Peilun Xiao, Shi Qiu, Hongda
 649 Yang, Guozhen Li, Yi Yang, and Yutian Lin. Improving bird’s eye view semantic segmentation
 650 by task decomposition. In *Conference on Computer Vision and Pattern Recognition*, 2024.
 651

652 [51] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian
 653 Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models.
 654 *arXiv preprint arXiv:2303.18223*, 2023.

655 [52] Wenzhao Zheng, Weiliang Chen, Yuanhui Huang, Borui Zhang, Yueqi Duan, and Jiwen Lu.
 656 Occworld: Learning a 3d occupancy world model for autonomous driving. In *European Con-
 657 ference on Computer Vision*, 2024.

658 [53] Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben
 659 Yan, Lifang He, et al. A comprehensive survey on pretrained foundation models: A history
 660 from bert to chatgpt. *International Journal of Machine Learning and Cybernetics*, pp. 1–65,
 661 2024.

662 [54] Walter Zimmer, Gerhard Arya Wardana, Suren Sridharan, Xingcheng Zhou, Rui Song, and
 663 Alois C. Knoll. Tumtraf v2x cooperative perception dataset. In *Conference on Computer
 664 Vision and Pattern Recognition*, 2024.

665

666 **A APPENDIX**

667 This appendix presents the complete results of our Real Deep Research (RDR) analysis across a
 668 wide range of domains. We include detailed domain-level surveys (e.g., AI, robotics, computer
 669 vision, natural language processing), perspective-based breakdowns (e.g., input/output modeling in
 670 foundation models, sensor/action perspectives in robotics), and trend analyses to track the evolution
 671 of research focus over time. These results collectively offer a structured and insightful view of the
 672 research landscape, serving as a valuable reference for both new and experienced researchers.
 673

674 **Use of Large Language Model.** In paper writing, we use LLM to fix grammars and find part of
 675 related work. And we clearly indicate in which part we use LLM to do generate contents and extract
 676 features.
 677

Domain Survey	14
Foundation Model	14
Robotics	15
Computer Vision	16
Natural Language Processing	17
Machine Learning	18
Nature	19
Science	21
Perspective Survey	22
Foundation Model Perspectives	22
Robotic Perspectives	27
Trend Analysis	30
Computer Vision	30
Robotics	31
Natural Language Processing	32
Machine Learning	33

702 **B DOMAIN SURVEY**
703

705 Cat.	706 Sub-category	707 What is covered	708 Typical examples	709 Cluster
1. Model modalities & representations				
710 1.1 Vision-Language	711 Foundation models that jointly process images/video and natural language.	712 Vision-Language Models; Vision-Language Robotic FMs	713 0, 3	
714 1.2 Multimodal ($>=3$)	715 Architectures/objectives agnostic to the exact mix of modalities.	716 Multimodal Foundation Models; Multimodal LLMs; Multimodal Large Language Models	717 1, 4, 5, 6	
718 1.3 Open-vocabulary grounding	719 Linking free-form text to modality-specific regions or anchors.	720 Open-Vocabulary Grounding	721 1	
722 1.4 3D/4D & video reps	723 Learned neural representations for 3-D/4-D scenes and video.	724 3D & Multimodal Representation; Diffusion-based 3D/4D Generation; 3D & Video Synthesis	725 0, 7, 9	
726 1.5 Neural scene encoding	727 Representations enabling view-consistent reconstruction.	728 Multi-view Consistent Reconstruction; Gaussian Splatting; NeRF Representations	729 9	
2. Generative & diffusion techniques				
730 2.1 Core diffusion modelling	731 Diffusion processes used as the primary generative backbone.	732 Diffusion Generative Modeling	733 7	
734 2.2 Control & personalisation	735 Steering diffusion outputs with prompts, adapters or user profiles.	736 Controllable Diffusion Personalization; Controllable Efficient Sampling	737 7, 11	
738 2.3 Robot policy via diffusion	739 Using diffusion to learn control policies for robots or manipulators.	740 Diffusion-Based Policy Learning	741 3	
742 2.4 Editing & post-generation	743 Applying diffusion to edit or refine existing content.	744 Diffusion-based Generative Editing	745 4	
747 2.5 Efficiency & distillation	748 Speed-ups and compact student models for diffusion.	749 Diffusion Model Acceleration; Efficient Sampling & Distillation	750 8	
3. Training & adaptation strategies				
751 3.1 Self-/pre-training paradigms	752 Large-scale unsupervised or weakly-supervised pre-training methods.	753 Elastic Self-Supervised Pre-training	754 6	
756 3.2 Prompt/adapter learning	757 Lightweight modulation of frozen backbones via prompts or adapters.	758 Prompt/Adapter Tuning; Prompt/Adapter Learning; Parameter-Efficient Prompt Tuning	759 0, 1, 5	
762 3.3 Param-efficient finetune	763 LoRA/adapters that tune only a small slice of parameters.	764 Parameter-Efficient Fine-Tuning; Adapter-Efficient Fine-Tuning	765 10, 11	
768 3.4 Compression & inference efficiency	769 Sparsity, low-rank factorisation and runtime acceleration.	770 Sparse/Low-Rank Model Compression; Efficient Transformer Inference	771 10	
4. Safety, alignment & ethics				
772 4.1 Safety alignment	773 Aligning model behaviour with human or policy constraints.	774 LLM Safety Alignment; Alignment & Safety	775 2, 6	
777 4.2 Bias & harm mitigation	778 Detecting and reducing social or representational bias.	779 Safety & Bias Mitigation	780 11	
783 4.3 Preference optimisation	784 Fine-tuning with human preference or RLHF-style signals.	785 Preference-Optimized Fine-Tuning	786 2	
5. Embodied interaction & robotics				
787 5.1 Robotic foundation models	788 General-purpose models for perception and control on robots.	789 Vision-Language Robotic Foundation Models	790 3	
794 5.2 Embodied agents	795 Agents acting in simulated or real environments with multimodal inputs.	796 Embodied Vision-Language Agents	797 4	
799 5.3 Intended manipulation	800 Grounding natural-language instructions into robot actions.	801 Multimodal Instruction-Guided Manipulation	802 3	
6. Reasoning & agent systems				
803 6.1 Multi-agent reasoning	804 Coordinated planning or dialogue among several learned agents.	805 Multi-Agent Reasoning	806 2	
7. Generalisation & robustness				
807 7.1 Domain robustness	808 Techniques to maintain performance under domain shift.	809 Domain-Robust Generalization	810 5	

749 **Table 4: Domain Survey for Foundation Model.**
750

Cat.	Sub-category	What is covered	Typical examples	Cluster
756	1. Perception & Mapping			
757	1.1 Multimodal sensor fusion	Fuse heterogeneous sensors for richer scene understanding	LiDAR–Camera Fusion; Radar–Camera Fusion; V2X Cooperative Perception ...	0,6,7,8,14,16
758	1.2 3D reconstruct/occupancy	Build dense or sparse geometric maps for localisation	3-D SLAM & Reconstruction; 3-D Occupancy; Efficient 3-D Representation	0,8,16
759	1.3 BEV / top-view mapping	Bird's-eye or top-down representations for planning	BEV Perception; V2X Collaborative Perception	0,14,16
760	2. Manipulation & Grasping			
761	2.1 Dexterous grasping	Multi-finger in-hand manipulation	Dexterous Robotic Grasping; Dexterous Grasp & Manipulation	11,12
762	2.2 Generalist manipulation	Single policy handles diverse objects/tasks	Generalist Robotic Manipulation; Robotic Manipulation; Humanoid Manipulation	3,4,9
763	2.3 Tactile-vision fusion	Combine touch and vision for reactive grasps	Multimodal Tactile-Vision Learning	11
764	3. Locomotion & Navigation			
765	3.1 Legged locomotion control	Whole-body control and adaptation on uneven terrain	Legged Robot Locomotion; Learning-Based Control & Adaptation	17
766	3.2 Embodied VL navigation	Language-directed navigation with active mapping	Embodied Vision-Language Navigation; Active 3-D Mapping & Planning	7,19
767	4. Planning & Control			
768	4.1 Language/hierarchical planning	Translate language or high-level goals into executable skills	Language-Guided Planning & Control; Hierarchical Skill Planning & Adaptation	2,18
769	4.2 Diffusion/Transformer policies	Trajectory generation with generative sequence models	Diffusion Policies; Diffusion/Transformer Policy Models; Generative Diffusion Models	1,9,14
770	5. Robot Learning & Adaptation			
771	5.1 RL & imitation	Learn skills from rewards, demonstrations or offline data	Robot Reinforcement Learning; Imitation Learning Policies; Sample-Efficient RL ...	3,9,15
772	5.2 Sim to real & continual adaptation	Transfer and improve policies across domains over time	Continual Sim-to-Real Adaptation; Sim-to-Real Transfer; Self-Supervised Distillation/Adaptation	0,4,15,16
773	5.3 Multitask / generalisable policies	Single policy generalises across many tasks and embodiments	Multitask Generalisable Robotics	1
774	6. Autonomous Driving			
775	6.1 Motion forecasting, perception & simulation	Forecast traffic actors, all-weather perception, long-tail scenario simulation	Motion Forecasting; Trajectory Prediction; Driving Perception; Scenario Simulation	5,6,8,13,14
776	7. Simulation & World Models			
777	7.1 Generative world models	Learn latent physics/world models for planning or RL	Generative World Models	12
778	7.2 Self-supervised simulation	Expand synthetic experience using self-supervised signals	Self-Supervised Generative Simulation	5
779	8. Embodied Language Robotics			
780	8.1 LLM-driven robotics	Use large language models for zero-shot policy/reasoning	LLM-Driven Robotics; LLM-Enhanced Driving; LLM-Driven Zero-Shot Planning	2,13,19
781	8.2 Vision-language control	Pair vision with text to drive low-level actions	Vision-Language Robotic Control; Hierarchical Skill Planning & Adaptation	18
782	8.3 Open-vocabulary mapping	Build scene maps labelled with free-form language	Open-Vocabulary Scene Mapping	19
783	9. Safety & Robustness			
784	9.1 Safety-aware planning	Explicit risk reasoning during motion generation	Safety-Aware Motion Planning	10
785	9.2 Runtime monitoring	Detect and mitigate failures on-the-fly	Failure Detection & Runtime Monitoring	18
786	9.3 Robust control	Improve stability against disturbances and uncertainties	Safety & Robustness (Locomotion)	17
787	10. Multi-Robot & Human Collaboration			
788	10.1 Multi-agent collaboration	Plan and act with other robots or humans in the loop	Multi-Agent / Human-Robot Collaboration	10

Table 5: Domain Survey for Robotics.

Category	Sub-category	What is covered	Typical examples	Cluster
810	1. Robust & Generalizable Learning			
811	1.1 Adversarial / OOD Robustness	Defending against or detecting malicious, anomalous or out-of-distribution inputs.	adversarial robustness; deepfake detection; anomaly detection; out-of-distribution detection	0,2,5
812				
813	1.2 Domain Adaptation & Generalization	Transferring models across different domains, devices or persons without performance drop.	domain adaptation; domain generalization; test-time adaptation; person re-identification	3,6
814				
815	1.3 Low-Data Learning	Learning reliably from scarce, imbalanced or continually arriving data.	few-shot learning; continual learning; long-tailed recognition; federated learning	0,1,2
816				
817	2. Representation & Model Efficiency			
818	2.1 Representation Learning & Distillation	Un/semisupervised learning and distillation techniques that build informative, explainable features.	self-supervised learning; semi-supervised segmentation; pseudo-label consistency; representation learning; knowledge distillation; explainability	4,5,7,10
819				
820				
821	2.2 Efficient Architectures	Designing compact, hardware-friendly or automatically searched neural networks.	efficient vision transformers; neural architecture compression; sparse NAS; quantized NAS	9
822				
823	3. Generative Modeling & Editing			
824	3.1 2D Generative Imaging	Synthesising or editing images/videos with controllable appearance or compression.	generative adversarial networks; image inpainting; image translation; neural style transfer; diffusion-based image/video generation; controllable generative editing; neural compression	18,21,23
825				
826				
827	3.2 3D Neural Rendering & Scene Generation	Generating or reconstructing 3-D scenes via implicit or explicit neural representations.	neural radiance fields; 3D scene generation; 3D Gaussian splatting; dynamic scene reconstruction; neural rendering	25,28,29
828				
829				
830	4. 2D Perception & Enhancement			
831	4.1 Detection & Segmentation	Locating objects or semantic regions in images/videos.	object detection; semantic segmentation; few-shot detection	1,10,16
832				
833	4.2 Tracking & Motion Estimation	Following objects or estimating pixel correspondences over time.	object tracking; correspondence; registration; optical flow; UAV surveillance	13,20
834				
835	4.3 Matting & Transparency	Separating foreground layers or transparency effects in images/videos.	image/video matting; trimap guidance; mask guidance; transformer-based matting models	19
836				
837	4.4 Restoration & Enhancement	Improving quality of degraded images/videos or reconstructing HDR.	image/video restoration; diffusion models for restoration; HDR reconstruction	21,27
838				
839	5. 3D Perception & Geometry			
840	5.1 Depth & Reconstruction	Estimating depth or reconstructing 3-D structure from images.	depth estimation; stereo matching; 3D reconstruction	26
841				
842	5.2 LiDAR & 3D Detection	Understanding point clouds for object detection and semantic segmentation.	LiDAR point clouds; 3D object detection; 3D semantic segmentation	16
843				
844	5.3 Pose & Localization	Estimating 6-D object poses or localizing cameras in space.	6D pose estimation; visual localization; equivariant features	24
845	6. Video & Temporal Understanding			
846	6.1 Temporal Action & Video Reasoning	Recognising and localising actions or reasoning over temporal video cues.	temporal action localization; video representation learning; multimodal reasoning	12
847				
848	7. Multimodal & Vision-Language Systems			
849	7.1 Vision-Language Pretraining & Retrieval	Learning cross-modal representations for zero-shot tasks or retrieval.	vision-language pretraining; zero-shot learning; cross-modal retrieval	8
850	7.2 Multimodal Large Models & Grounding	Large models that jointly reason over vision and language with grounding.	multimodal large language models; visual grounding; visual reasoning; benchmark datasets; 3D vision-language grounding; scene graph generation	11,14
851				
852				
853	7.3 Audio / Sign / Gaze Multimodality	Integrating audio, sign language or gaze with vision tasks.	audio-visual learning; sign language processing; gaze estimation	15
854				
855	8. Human-Centric Understanding & Animation			
856	8.1 Pose & Interaction	Estimating human body pose and modelling human-object interactions.	3D human pose estimation; human-object interaction; transformer-based motion generation	22
857				
858	8.2 Avatars & Animation	Building and animating realistic 3-D human avatars.	3D human avatars; pose-driven animation; neural rendering of humans	28
859	9. Embodied & Autonomous Systems			
860	9.1 Embodied Navigation & Mapping	Perception and planning for agents navigating 3-D environments.	embodied navigation; HD-map generation; lane generation	14,17
861				
862	9.2 Trajectory Prediction & Traffic Simulation	Forecasting future paths and simulating realistic traffic participants.	trajectory prediction; data-driven traffic simulation	17
863				

Table 6: Domain Survey for Computer Vision.

Category	Sub-category	What is covered	Typical examples	Cluster
864	1. Information Extraction	1.1 Entity & Relation Extraction	Automatic detection of named entities plus the semantic relations or events connecting them.	Named Entity Recognition, Relation Extraction, Event Extraction 0
865				
866	2. Text Generation & Summarization	2.1 Summarization & Keyphrase Generation	Producing concise summaries or keyphrases from longer documents.	Summarization, Keyphrase, Evaluation 12
867				
868		2.2 Controllable & Stylistic Generation	Generating text under user-specified style or attribute constraints.	Style transfer, controllable text generation, representations 27
869				
870	3. Dialogue & Conversational Systems	3.1 Task-oriented Dialogue	Dialogue systems that track state and generate responses to accomplish user goals.	Dialogue systems, Response generation, Dialogue state tracking 14
871				
872		3.2 Empathetic & Safe Dialogue	Handling empathy, hate speech and multimodal cues in conversations.	HateSpeechDetection, EmpatheticDialogue, ... 25
873				
874	4. Multilingual & Cross-lingual NLP	4.1 Multilingual Modeling & Transfer	Building models that operate across many (often low-resource) languages and transfer knowledge between them.	low-resource languages, multilingual language models, cross-lingual transfer 16
875				
876		4.2 Multilingual Machine Translation	Neural translation among multiple language pairs, often using shared or distilled models.	Neural machine, Knowledge distill, Multilingual modeling 19
877				
878		4.3 Multimodal Low-Resource Speech	Speech translation/recognition when data are scarce or involve multiple modalities.	speech translation, multimodal learning, low-resource speech 15
879				
880	5. Knowledge & Reasoning	5.1 Knowledge Graph Reasoning	Embedding and temporal/causal reasoning over structured knowledge graphs.	knowledge graph embedding, event causality reasoning, temporal knowledge reasoning 1
881				
882		5.2 Mathematical & Chain-of-Thought Reasoning	Using large language models for step-by-step logical or mathematical reasoning.	Large language models, Mathematical reasoning, Chain-of-thought prompting 10
883				
884		5.3 Compositional & Syntactic Generalization	Probing or improving models to generalize compositionally or parse syntax.	syntactic parsing, compositional generalization, lan. model probing 3
885				
886	6. Retrieval & Question Answering	6.1 Dense Retrieval & RAG	Learning dense vector search for open-domain QA and retrieval-augmented generation.	Dense retrieval, open-domain question answering, retrieval-augmented generation 4
887				
888		6.2 Table & Structured QA / Generation	Mapping natural language to SQL, answering table queries or generating text from structured data.	Text-to-SQL, Table Question Answering, Data-to-Text Generation 2
889				
890	7. Evaluation, Alignment & Editing	7.1 LLM Evaluation & Human Alignment	Designing metrics and feedback loops to align large language models with human intent.	LLM evaluation, alignment methods, human feedback 23
891				
892		7.2 Hallucination, Calibration & Knowledge Editing	Detecting/mitigating false outputs and editing or calibrating model knowledge.	hallucination, knowledge editing, calibration 11
893				
894		7.3 Evaluation Metrics & Data Augmentation	Developing metrics and synthetic data (incl. figurative language) to assess or improve models.	Evaluation metrics, Data augmentation, Figurative language 13
895				
896	8. Model Training Paradigms & Efficiency	8.1 Continual, In-context & Instruction Tuning	Allowing models to learn new tasks or follow instructions without full retraining.	continual learning, instruction tuning, in-context learning 17
897				
898		8.2 Parameter-Efficient & Compressed Models	Reducing training/inference cost via adapters, pruning or lightweight fine-tuning.	parameter-efficient fine-tuning, model compression for LLMs 20
899				
900		8.3 Transformer Efficiency & Long-Context Modeling	Architectural or computational methods to scale transformers to longer contexts efficiently.	Transformer efficiency, long-context modeling, adaptive computation 7
901				
902		8.4 Sentence & Multilingual Representation Learning	Contrastive or related methods to build versatile sentence embeddings across languages.	multilingual representation learning, sentence embeddings, contrastive learning 6
903				
904	9. Safety, Bias & Robustness	9.1 Social Bias & Fairness	Measuring and mitigating demographic or social biases in NLP systems.	social bias, debiasing, fairness evaluation 26
905				
906		9.2 Misinformation & Fact Verification	Detecting false claims, AI-generated text or aligning model values with truthfulness.	fact verification, misinformation detection, evidence retrieval, fake detection, value alignment 18,28
907				
908		9.3 Security & Privacy Robustness	Protecting models against adversarial, backdoor or privacy attacks.	adversarial robustness, backdoor attacks, privacy preservation 29
909				
910	10. Agents & Interactive Reasoning	10.1 LLM-based Agents & Planning	Using large language models as autonomous agents capable of interactive planning and theory-of-mind reasoning.	LLM agents, interactive planning, theory of mind 21
911				
912	11. Code Intelligence	11.1 Code Generation & Benchmarks	Generating executable code and evaluating models on coding tasks.	code generation, large language models, benchmark evaluation 24
913				
914				
915				
916				
917				

Table 7: Domain Survey for Natural Language Processing.

Category	Sub-category	What is covered	Typical examples	Cluster
918	1. Generative Modelling & Media Synthesis			
919	1.1 Image / Video Generation & Editing	Models that create or edit 2-D or temporal visual content via generative techniques.	Generative modeling; Image synthesis/editing; Diffusion-based methods; Optimal Transport; Diffusion Models	1, 3
920				
921	1.2 3-D Object & Molecule Generation	Generating 3-D shapes or molecular structures using geometry-aware or equivariant models.	3D shape generation; neural implicit representations; point cloud reconstruction; equivariant GNNs; 3D molecular generation; drug discovery	9, 16
922				
923	1.3 Audio & Speech Synthesis	Producing speech or audio from text or multimodal cues, via diffusion models.	text-to-speech; audio-visual; diffusion	2
924				
925	2. Representation & Transfer Learning			
926	2.1 Continual / Few-Shot / Domain Adaptation	Adapting models continually, with few examples, or across shifting domains.	Continual Learning; Few-Shot Learning; Domain Adaptation	0
927				
928	2.2 Self-, Contrastive & Retrieval-Augmented Learning	Building rich representations via self/contrastive learning or external retrieval augmentation.	Self-supervised Learning; contrastive learning; disentangled representations; clustering; language-modeling; retrieval-augmentation; representation-learning	5, 6, 15
929				
930	2.3 Parameter-Efficient Transfer	Adapting large transformers with minimal new parameters and compute.	Efficient-transformer-architectures; parameter-efficient-fine-tuning; multilingual-adaptation	7
931				
932	3. Robustness, Security & Privacy			
933	3.1 Adversarial & Backdoor Robustness	Defending against adversarial or backdoor manipulations and distribution shifts.	adversarial robustness; backdoor attacks; robustness; knowledge distillation; distribution shift	10, 4
934				
935	3.2 Uncertainty & Interpretability	Quantifying model confidence and explaining predictions.	uncertainty estimation; conformal prediction; model interpretability	14
936				
937	3.3 Privacy & Machine Unlearning	Ensuring data privacy and enabling deletion or secure distributed learning.	differential privacy; machine unlearning; federated learning; robust optimization	19, 24
938				
939	4. Model Efficiency & Compression			
940	4.1 Pruning, Quantization & Embedding Compression	Compressing networks by pruning, quantizing or embedding reduction for efficient deployment.	Network pruning; Sparse_Network_Pruning; Low-precision quantization; Embedding_Compression; Efficient architecture search; Recommendation_Systems	8, 21
941				
942				
943	5. Geometric & Graph Learning			
944	5.1 Equivariant / Geometric Deep Networks	Networks that respect group symmetries to learn geometric or physical structures.	equivariant neural networks; group symmetry; geometric deep learning	12
945				
946	5.2 Graph Neural Network Theory	Theoretical properties, expressivity and robustness of Graph Neural Networks.	Graph Neural Networks; Expressivity; Robustness	20
947				
948	6. Optimization & Theory			
949	6.1 Non-convex & Stochastic Optimization	Algorithms and analysis for nonconvex optimization with stochastic gradients.	Nonconvex optimization; Stochastic gradient methods; Convergence analysis	18
950				
951	6.2 Neural Network Theory & Neuroscience Inspiration	Theoretical studies and neuro-inspired modeling of recurrent nets.	recurrent neural networks; neuroscience-inspired modeling; theoretical analysis	17
952				
953	7. Reinforcement Learning & Embodied Intelligence			
954	7.1 Core & Offline Reinforcement Learning	Improving sample efficiency and offline policy learning in RL.	Reinforcement Learning; Offline Learning; Sample Efficiency	29
955				
956	7.2 Multi-Agent & Dialogue RL	Learning cooperation, competition or dialogue among multiple agents.	multi-agent reinforcement learning; bandit algorithms; game-theoretic learning; dialogue systems; multi-agent collaboration; reinforcement learning	28, 26
957				
958	7.3 Embodied AI & Robotics	Training embodied agents and robots via differentiable simulation and manipulation tasks.	Embodied AI; Robotic manipulation; Differentiable simulation	27
959				
960	8. Multimodal Perception & Reasoning			
961	8.1 Vision-Language & Knowledge Reasoning	Joint reasoning across vision and language plus knowledge graphs.	vision-language reasoning; knowledge graph learning; compositional generalization	11
962				
963	8.2 Video Understanding & 3-D Perception	Temporal and 3-D understanding of videos and dynamic scenes.	Video understanding; Temporal modeling; 3D perception	13
964				
965	9. Scientific & Symbolic Machine Learning			
966	9.1 Physics & Differential Equation-guided Learning	Learning operators governed by physical laws and differential equations.	Neural differential equations; Physics-informed operator learning; Spatiotemporal forecasting	23
967				
968	9.2 Program Synthesis & Automated Reasoning	Automatically generating code or formal proofs from specifications.	Program synthesis; Code generation; Theorem proving	22
969				
970	9.3 Combinatorial, Causal & Bayesian Optimization	Optimization over discrete structures, causal questions or Bayesian objectives.	Combinatorial optimization; Causal inference; Bayesian optimization	25
971				

Table 8: Domain Survey for Machine Learning.

Category	Sub-category	What is covered	Typical examples	Cluster
1. Life Sciences & Biomedicine				
1.1 Immuno-oncology & Metabolic Signalling	Immune mechanisms in cancer and metabolic cues that modulate them	T-cell immunity; tumour microenvironment; metabolic signalling	0	
1.2 Cancer Genomics & Epigenetics	Genetic and epigenetic alterations driving oncogenesis and therapy response	Cancer; DNA repair; epigenetics	1	
1.3 Infectious Disease & Microbiome Interactions	Host-pathogen dynamics and microbiome ecology shaping antimicrobial strategies	Host-pathogen interactions; antimicrobial therapeutics; microbiome dynamics	2	
1.4 Neuro-immune Metabolism & Aging	Crosstalk between immune system, metabolism and brain across aging	Neuroimmunology; metabolism; aging	3	
1.5 Genome Editing & Microbial/Plant Immunity	Engineering genomes and decoding microbial	plant defence mechanisms & CRISPR-based genome editing; bacterial anti-phage defence; plant immune signalling	4	
1.6 Protein & RNA Engineering	Designing proteins and regulating chromatin/RNA to control cell function	Protein design; chromatin regulation; RNA processing	5	
1.7 Neural Epigenetics & Disorders	Epigenetic regulation of neural plasticity and neuropsychiatric disease	Neural circuit plasticity; epigenetic regulation; neuropsychiatric disorders	6	
1.8 Population & Single-Cell Genomics	Sequencing-based mapping of genetic variation at population & cellular resolution	Genome sequencing; population genetics; single-cell transcriptomics	7	
1.9 Connectomics & Behaviour	Structural mapping of neural circuits to explain behaviour	Connectomics; neural circuit mapping; behaviour	8	
1.10 Evolutionary Genomics & Paleobiology	Reconstructing evolutionary history using ancient DNA and fossils	Paleogenomics; prehistoric migrations; fossil record	9	
2. Chemistry & Materials Science				
2.1 Catalysis & Green Synthesis	Catalytic and synthetic routes for sustainable chemical production	Advanced catalysis; sustainable chemistry; synthetic methodologies	10	
2.2 Functional Materials for Energy & Electronics	Multifunctional materials for energy storage and flexible devices	Advanced materials; energy storage; flexible electronics	12	
2.3 Perovskite Solar Technologies	High-efficiency perovskite and tandem photovoltaics with interface engineering	Perovskite photovoltaics; tandem solar cells; interface passivation	13	
2.4 Integrated Photonics & Optoelectronic Integration	Integration of perovskites and 2D semiconductors into photonic platforms	Integrated photonics; perovskite optoelectronics; 2D semiconductor integration	14	
3. Physics & Quantum Technology				
3.1 Quantum Materials	Emergent quantum phases in topological and moiré systems, incl. unconventional superconductivity	Topological quantum matter; moiré heterostructures; unconventional superconductivity	16	
3.2 Quantum Computing Hardware & Networks	Scalable, fault-tolerant quantum processors and quantum communication links	Fault-tolerant quantum computing; scalable qubit hardware; quantum networking	17	
4. Earth & Environmental Science				
4.1 Climate Change & Ecosystem Impacts	How climate change alters ecosystems and the global environment	Climate-change; ecosystem-impacts; global-environment	15	
5. Astronomy & Astrophysics				
5.1 Exoplanetary Science with JWST	Characterising exoplanet atmospheres and interiors using JWST observations	Exoplanet atmospheres; planetary interiors; JWST observations	18	
5.2 Early-Universe & Black-Hole Astronomy	Galaxy formation and supermassive black holes in the early Universe probed with JWST	JWST; early-Universe galaxies; supermassive black holes	19	
6. Computer Science & Artificial Intelligence				
6.1 Foundation & Trustworthy AI	Large foundation models, applied AI and methods ensuring fairness & reliability	Foundation models; applied artificial intelligence; fairness and reliability	11	

Table 9: Domain Survey for Natural related Topics.

1026				
1027				
1028				
1029				
1030				
1031				
1032				
1033				
1034				
Category	Sub-category	What is covered	Typical examples	Cluster
1. Earth & Environmental Sciences				
1036	1.1 Climate & Ecosystem Dynamics	Interactions among climate change, carbon cycling and biodiversity, including conservation responses	Biodiversity loss; Conservation strategies; Climate change impacts; Climate change; Carbon cycle; Environmental impacts	0,1
1037				
1038				
1039	1.2 Geophysical Processes	Physical processes shaping Earth's solid and cryospheric systems	Earthquakes; Volcanism; Ice dynamics	2
1040				
2. Space Science				
1041	2.1 Stellar & Space-Plasma Physics	Physics of stars, solar activity and the interstellar medium	Compact objects; Interstellar medium; Solar activity	9
1042				
1043				
3. Biological Sciences				
1044	3.1 Evolutionary Genomics	Genetic mechanisms driving adaptation and speciation	Evolutionary genomics; adaptation; speciation	3
1045				
1046	3.2 Molecular & Cellular Regulation	Molecular signaling and structural mechanisms governing development and genome integrity	Hormone signaling; Immune defense; Developmental regulation; Genome stability; Chromosome segregation; Cryo-EM structural biology	4,5
1047				
1048	3.3 Neurobiology & Systems Neuroscience	Gene-to-circuit bases of neural function, plasticity and behaviour	Neuroscience; Gene regulation; Single-cell; neural circuits; synaptic plasticity; behavior	6,8
1049				
1050	3.4 Immunity, Infection & Therapy	Host defence mechanisms and engineered immunotherapies against pathogens and cancer	Antiphage immunity; CRISPR systems; Antibiotic discovery; Immunoregulation; Metabolic signaling; Cancer therapy; Infectious disease; Immunotherapy; Molecular engineering	7,11,13
1051				
1052				
1053				
1054	3.5 Synthetic & Computational Biology	Design of biomolecules and biological systems using AI and synthetic methods	protein-design; deep-learning; synthetic-biology	12
1055				
4. Materials & Chemical Sciences				
1056	4.1 Catalysis & Chemical Transformations	Selective catalytic methods for constructing organic molecules	Catalytic organic synthesis; Radical-mediated transformations; Selective C–H functionalization	14
1057				
1058				
1059	4.2 Advanced Functional Materials	Smart, biointegrated and nanostructured materials with tailored properties	Smart materials; Biointegrated electronics; Soft robotics; Nanostructured materials; Energy storage; Functional properties	15,17
1060				
1061				
1062	4.3 Energy Conversion & Separation Materials	Materials enabling electrochemical, thermal and membrane-based energy technologies	Electrocatalysis; Porous framework materials; Membrane separations; Perovskite photovoltaics; Thermoelectric devices; Radiative cooling	16,18
1063				
1064				
5. Physics & Quantum Technologies				
1065	5.1 Quantum Materials & Information	Exotic quantum phases and their application to information processing	Topological quantum phases; Quantum information processing; Strongly correlated matter	19
1066				
1067				
6. Computational & Social Systems Science				
1068	6.1 Information Dynamics & Society	Computational study of information spread and persuasion in sociotechnical systems	misinformation propagation; democratic polarization; AI-mediated persuasion	10
1069				
1070				
1071				

Table 10: Structured overview of clustered science research areas.

1080					
1081					
1082					
1083					
Category	Sub-category	What is covered	Typical examples	Cluster	
1. Pharmacogenomics & Genetics-Guided Therapy					
1085	1.1 Cytochrome P450 Genotype-Driven Therapy	Links CYP450 genetic variants to drug exposure and response for individualised dosing.	CYP2C19 pharmacogenetics, star-allele variability, precision antithrombotic therapy, antidepressant pharmacogenetics	1,3,4	
1086					
1087	1.2 Transporter Pharmacogenetics	Examines genetic variation in drug transporters and its impact on safety and efficacy.	SLCO1B1 variants, statin-associated muscle symptoms	6	
1088					
1089	1.3 PGx Implementation & Economic Evaluation	Assesses clinical decision support, workflow integration, and the cost-effectiveness of pharmacogenomics.	pharmacogenomics implementation, clinical decision support, cost-effectiveness	11	
1090					
1091	1.4 Oncology / High-Risk Therapy PGx	Uses germline variants to predict toxicity and guide dosing of high-risk or anticancer drugs.	DPYD variants, TPMT variants, NUDT15 variants, chemotherapy toxicity prediction, pharmacogenetic-guided dosing	21	
1092					
1093					
1094					
1095	2. Quantitative Pharmacology & Model-Informed Drug Development				
1096	2.1 Population PK & Dose Optimisation	Applies population PK and exposure-response models to refine dosing in diverse patients.	population pharmacokinetics, precision dosing, anticoagulants, exposure-response modelling, oncology real-world evidence	2,17,25,29	
1097					
1098					
1099	2.2 Mechanistic PBPK & Special Populations	Uses physiologically based PK models to predict drug disposition in paediatrics, the CNS, pregnancy, and other special populations.	paediatric PBPK modelling, CNS drug delivery, maternal-infant pharmacology, anti-infective therapy	7,19	
1100					
1101					
1102	2.3 Exposure-Response for Biologic / Cell Therapies	Characterises PK/PD and dose-response of biologics and cell-based therapies.	PK/PD modelling, haematological therapies, biologic PK/PD, immunomodulatory therapies, T-cell engagers	15,26,28	
1103					
1104					
1105	2.4 Machine-Learning-Assisted Precision Dosing	Integrates machine learning with PK models and real-world factors to individualise therapy.	machine learning, precision pharmacokinetic modelling, transplant immunosuppressant dosing, gut microbiota influence, model-informed drug development	18,20	
1106					
1107					
1108					
1109	3. Drug Metabolism, Transport & Interaction Science				
1110	3.1 Enzyme-Mediated DDIs & Prediction	Investigates cytochrome P450 interactions and uses models to forecast clinical risk.	cytochrome P450, PBPK modelling, QT prolongation	14,5	
1111					
1112	3.2 Transporter-Mediated DDIs & Biomarkers	Studies renal and hepatic transporters and endogenous probes to detect interaction liability.	renal transporters, hepatic transporters, endogenous biomarkers of transporter activity	13,24,27	
1113					
1114					
1115	3.3 Clinical DDIs & Risk Management	Documents real-world interaction scenarios and strategies to mitigate adverse outcomes.	opioid overdose management, nirmatrelvir/ritonavir interactions, EHR-based pharmacovigilance	0,8	
1116					
1117	4. Regulatory Science & Evidence Generation				
1118	4.1 Trial Diversity & Health Equity	Promotes representative enrolment and equitable access in clinical research.	clinical trial diversity, health equity, regulatory initiatives	10	
1119					
1120	4.2 Real-World Evidence & External Controls	Leverages observational data and synthetic controls to inform regulatory decisions.	real-world evidence, external control trials, regulatory frameworks	9	
1121					
1122	4.3 Drug-Lifecycle Oversight & Lag Analysis	Evaluates approval timelines, post-marketing requirements, and regulatory performance.	regulatory science, drug lag, post-marketing studies	16	
1123					
1124	4.4 Biomarker / Rare Disease / Biosimilar Qualification	Establishes evidentiary standards for biomarkers, orphan products, and biosimilars.	rare-disease drug development, biomarker qualification, biosimilar development, PK/PD biomarkers, regulatory strategies	22,23	
1125					
1126					
1127	5. Clinical Therapeutics & Outcomes Research				
1128	5.1 Cardio-Renal & Metabolic Outcomes	Assesses the long-term efficacy and safety of metabolic therapies on cardiovascular and renal endpoints.	SGLT2 inhibitors, cardiovascular-renal outcomes, antidiabetic drug safety	12	
1129					
1130					
1131	Table 11: Domain Survey for Science related Survey.				
1132					
1133					

C PERSPECTIVE SURVEY

Category	Sub-category	What is covered	Typical examples	Cluster
1. Textual inputs				
1.1 Large-scale tokenized corpora	Massive general-domain text for LM pre-training	Web pages; Wikipedia; books; C4; Pile; WikiText; OpenWebText; SlimPajama	11	
1.2 Prompt & interaction data	User/system prompts and model replies gathered for alignment, RLHF or robustness	Prompts/questions; model responses; preference/reward labels; adversarial triggers; long-context demonstrations	0, 2	
1.3 Problem statements with context	Natural-language tasks paired with explicit structured knowledge or code/data schemas	NL problem + knowledge graph/database schema/code stub; reasoning traces or step-by-step solutions	14	
2. Visual inputs (images)				
2.1 Raw images	Canonical labelled/unlabelled images after basic augmentation	ImageNet, CIFAR, COCO photos; medical scans	19	
2.2 Cued images	Images supplied with auxiliary spatial/sensor cues	Low-light or blurry photos + masks; camera poses; depth/event data; points/boxes	17	
2.3 Patch or region tokens	Visual patches embedded as tokens for transformer processing	ViT/MAE patches from images or single video frames	3	
3. Video & motion inputs				
3.1 Video streams with motion cues	Time-ordered frames plus motion/semantic signals	Video frames; optical flow; 3-D pose; segmentation masks; aligned audio track	13	
4. 3-D & spatial inputs				
4.1 Geometry & depth representations	Explicit 3-D or depth data for spatial reasoning	Point clouds; RGB-D images; TSDF/voxel grids; meshes; camera extrinsics; semantic labels	1	
5. Multimodal token sequences				
5.1 Cross-modal token bags	Tokens from diverse modalities embedded with positional info	Text, audio, vision, graphs, biology tokens with position vectors	12, 18	
5.2 Encoder-fused tokens	Tokens from separate encoders concatenated into one sequence	CLIP/ViT image tokens + BERT/LLaMA text tokens	15	
5.3 Normalized latent embeddings	Modality-specific encoders map data into a shared latent space (may include placeholders)	Text, images, video, audio all \rightarrow joint embeddings (missing modalities allowed)	4	
6. Generative-model conditioning				
6.1 Diffusion noise schedule	Noisy latent sample x_t , timestep token t , optional class/text/geometry conditioning	$x_t + z$; timestep t ; class label; pose map; depth; edges	16	
6.2 Auxiliary generation cues	User-supplied hints steering image generation or editing	Reference image; mask; depth; pose; layout; bounding boxes	10	
7. Task-oriented multimodal inputs				
7.1 Visual observations + NL prompts	Perception frames paired with a natural-language task or edit instruction	Screenshot + “click the red button”; video frame + “highlight the pedestrian”	6	
7.2 Image-text pairs with cues	Captioned/questioned images often carrying region annotations	Image + caption; VQA triplets; bounding-box / mask annotations	7	
7.3 Embodied-agent context	Agent perception, proprioception	history combined with a goal description & RGB-D stream; past actions; goal text (“navigate to the chair”)	8	
8. Sequential & trajectory inputs				
8.1 Offline state-action trajectories	Logged sequences for offline RL or behaviour cloning	Time-series control signals; graphs; 3-D skeleton poses; human preference labels	9	
9. Inverse-problem observations				
9.1 Corrupted measurements with ground truth	Raw measurements transformed by known operators, paired with target outputs	MRI k -space + mask; blurred \rightarrow sharp image pairs; noisy sensor data	5	

Table 12: Structured summary of input types used in foundation-model papers.

1188				
1189				
1190				
1191				
1192				
1193				
1194				
1195				
<hr/>				
1196				
1197	1. Representation & Architecture			
1198	1.1 Token & latent representation	Mapping raw data to discrete/continuous tokens or latents	Latent representation learning; token/patch embedding; visual-token projection ...	0, 14, 17, 18, 19
1199				
1200	1.2 Attention & Transformer variants	Architectural changes that make attention cheaper or deeper	Sparse/low-rank attention; spatiotemporal attention; positional scaling ...	2, 10, 11, 14, 17, 18, 19
1201				
1202	1.3 Mixture-of-Experts & routing	Dynamic selection of expert blocks or routes	Modular MoE; dynamic routing; MoE token routing ...	0, 11, 15, 17, 19
1203				
1204	2. Generative Paradigms			
1205	2.1 Diffusion & score-based generation	Noise-to-data generative flows	UNet diffusion; latent diffusion; guided conditional sampling ...	2, 3, 4, 5, 10, 13, 18
1206	2.2 Energy-based & control formulations	Sampling by minimising energy or solving control processes	Energy-based score learning; optimal-control SDE; solver-accelerated inversion ...	13
1207				
1208	2.3 Probabilistic & masked inference	Non-diffusion probabilistic decoders	Probabilistic generative inference; masked auto-encoding; next-token prediction ...	0, 17, 18, 19
1209				
1210	3. Multimodal Alignment & Fusion			
1211	3.1 Encoders → shared latent space	Separate encoders project each modality into a common space	Modality-specific encoders; projection layers; frozen CLIP backbone ...	1, 6, 12, 18, 19
1212				
1213	3.2 Cross-attention fusion & conditioning	Mechanisms for interaction between modalities	Cross-attention fusion; prompt cross-attention; multimodal concatenation ...	2, 4, 6, 10, 12, 14, 18, 19
1214				
1215	3.3 Vision/Video-language alignment	Aligning paired modalities in latent space	Video-language alignment; contrastive alignment; generative self-supervision ...	1, 8, 12, 14, 18, 19
1216				
1217	4. Adaptation & Efficiency			
1218	4.1 Parameter-efficient adaptation	Updating only a small subset of weights or added modules	LoRA/adapters; low-rank tuning; modular fusion ...	1, 2, 4, 10, 12, 15, 16, 19
1219				
1220	4.2 Prompting & modular extensions	Steering frozen backbones with prompts or plug-ins	Prompt conditioning; chain-of-thought prompting; tool invocation ...	1, 6, 7, 9, 17, 19
1221				
1222	4.3 Compression & efficient training	Reducing compute, memory or training cost	Quantisation; pruning-distillation; communication-efficient sharding ...	2, 5, 10, 15, 16, 19
1223	5. Reasoning & Interaction			
1224	5.1 Chain-of-thought & tool reasoning	Explicit reasoning traces or calls to external tools	Chain-of-thought reasoning; retrieval-augmented reasoning; self-refinement ...	6, 7, 8, 9
1225				
1226	5.2 RL & preference modeling	Reinforcement or preference-based optimisation	Preference-conditioned policies; RLHF alignment; optimal-transport RL ...	3, 9
1227				
1228	5.3 Multi-agent / planner loops	Multiple interacting agents or explicit planner loops	Multi-agent collaboration; Planner-Actor-Corrector-Verifier loop ...	7, 8
1229				
1230	6. Robustness & Domain Shift			
1231	6.1 Uncertainty & robust optimisation	Estimating confidence and resisting adversarial inputs	Uncertainty quantification; adaptive memory; adversarial robustness ...	0, 9, 16
1232	6.2 Domain adaptation & model editing	Adapting or editing knowledge post-training	Targeted model editing; synthetic-data adaptation; knowledge probing ...	4, 9, 16, 19
1233				

Table 13: Structured summary of modeling techniques used in foundation-model papers.

Category	Sub-category	What is covered	Typical examples	Cluster
1. Language-centric outputs				
1.1 Token probabilities & sequences	Autoregressive LMs: token logits or generated text	next-token probability distributions; generated token sequences	2	
1.2 Aligned LLM responses	Instruction-tuned completions for reasoning, safety, long-context	helpful-harmless-truthful responses; safe refusals; reasoning-enhanced; hallucination-reduced	3, 15	
1.3 Reasoning traces & answers	Chain-of-thought steps plus final decoded result	chain-of-thought reasoning; intermediate outputs; final answers	0	
1.4 Visually-grounded NL outputs	Language grounded in image/video content	captions; visual-QA; reasoning with bounding boxes, masks	9	
2. Generative visual & multimodal outputs				
2.1 Photorealistic images	High-fidelity images from text or prompts	photorealistic; identity-preserving; context-coherent images; text-conditioned images	1, 18	
2.2 Video / motion generation	Consistent video or 3D motion from text	temporally-consistent video; 3-D motion generation/editing	5	
2.3 3D scenes & assets	Meshes, NeRFs, Gaussian fields for rendering/editing	meshes; point clouds; NeRF; editable scene/asset generation	11	
2.4 Multimodal reconstructions	Images, video, audio decoded from latents	reconstructed/generated multi-modal data	19	
2.5 Diffusion samples & noise	Reverse-diffusion outputs with noise estimates	generated or reconstructed samples... plus noise/score estimates	7	
3. Predictive & structured outputs				
3.1 Classification scores	Class labels, probabilities, or logits	class labels / probabilities / logits	4, 13	
3.2 Localization & segmentation	Masks, boxes, poses, or captions pinpointing content	segmentation masks; bounding boxes; 3-D localization/pose; textual grounding/captions	16, 13	
3.3 Structured artefacts	Graphs, coordinates, flows, molecules, causal terms	graphs; poses; flows; molecular/crystal structures; uncertainties; causal/physical parameters	14	
3.4 Downstream embeddings	Transformed features for later task use	transformed feature embeddings; reconstructed/generative outputs	13	
3.5 Control & planning	Predicted actions, plans, or trajectories	action sequences & control commands; task-grounded plans	6	
4. Evaluation, improvement & efficiency outputs				
4.1 Metrics & benchmarks	Accuracy, bias, uncertainty, safety, etc.	accuracy; F1; ROC-AUC; Elo; bias; calibration	17	
4.2 Enhanced / corrected artefacts	Outputs improving other models (predictions, data, signals)	corrected predictions; synthetic/augmented data; anomaly/OOD scores; attribution indicators	10	
4.3 Compressed models	Quantised/tuned checkpoints with reduced cost	efficient, compressed, fine-tuned foundation models	8	
5. Embedding-space outputs				
5.1 Aligned multimodal embeddings	Joint space for text/image/audio enabling retrieval or classification	aligned multimodal embeddings; zero-shot classification	12	

Table 14: Structured summary of output types used in foundation-model papers.

1296
1297
1298
1299
1300
1301
1302
1303

Category	Sub-category	What is covered	Typical examples	Cluster
1. Language-modeling objectives				
1306	Next / Masked-token Prediction	Minimize CE on next/masked token.	Next-/masked-token pred.; LM; CE/NLL min.; aux reg.	4
1308	General LLM Advancement	Improve reasoning, alignment, efficiency, robustness.	Reasoning; alignment; eval.; efficiency; robustness; multi-domain	12
2. Alignment & safety objectives				
1310	Human-Preference Alignment	Maximize learned reward; limit divergence.	Pref. align; reward max.; safety-divergence reg.	1
1311	Hallucination & Bias Mitigation	Cut hallucinations/bias via grounding alignment.	Hallucination det./mit.; x-modal align/ground; bias red.	0
1313	General Safety & Robustness	Losses for safety, explainability, robust autonomy.	Alignment; safety; efficiency; general.; explain.; autonomy	6
1315	Security & Privacy Defense	Defend attacks, watermark, erase concepts.	Adv. robustness; watermark; backdoor/membership defense; privacy; concept erase; interp.	7
3. Adaptation & continual-learning				
1317	Prompt / Self-training Adaptation	Prompt/pseudo-label adapt for zero/few-shot.	FM adapt; prompt/pseudo-label; zero-/few-shot OVR; robustness; domain gen.	10
1319	Retention-Regularized Fine-tuning	Regularize fine-tuning to retain knowledge.	Task loss + retention reg.; preserve knowledge; generalization	17
4. Multimodal objectives				
1322	Unified Multimodal Representations	Vision-language align, ground, reason.	Unif. multimodal; V-L align; grounding; x-modal reason.; zero/few-shot; cont. adapt.	3
1324	Contrastive & Masked Alignment	Contrastive+masked for joint embeddings.	X-modal contrast; masked recon.; joint class.; dist. align	13
1325	3D / Multi-view Generation	Cross-modal loss for 3D-consistent views.	Hi-fid 3D multi-view gen.; sparse 2D/text	19
5. Generative diffusion objectives				
1328	Core Enhancement	Faster, higher-quality diffusion via guidance.	Accelerate train/inf.; guide/loss opt.; fidelity; diversity; control	16
1329	Noise-prediction & Score-matching	Train via noise pred., reconstr., ELBO.	Noise pred denoise; recon. fid. min.; score/ELBO opt.	18
1331	Video / Motion Diffusion	Conditioned diffusion for coherent video.	Hi-fid coherent video/motion synth.; control; prompt align	2
1332	Controllable Image Diffusion	Steer image diffusion for fairness etc.	Align; personalised; fairness; diversity; spatial; hi fid.; light train	5
1334	Latent & Denoising Regularization	Extra denoise/latent loss.	Denoise min.; latent align; cond. reg.; dist. fid. train	8
6. Policy-learning & RL				
1336	Multi-task Policy RL	One policy via cloning+pref. RL.	Multi-task policy; behavior/diffusion cloning; pref.-aligned RL; reward exp.	14
7. Optimization & efficiency				
1338	Loss & Representation Matching	Minimize task loss, align distributions.	Task combined losses; dist align; repr match; reg. opt.	11, 15
1340	Compute / Memory Efficiency	Cut compute/memory, keep accuracy.	Min. compute/memory/param cost; train/ft/inf.	9

Table 15: Structured summary of learning objectives used in foundation-model papers.

1341
1342
1343
1344
1345
1346
1347
1348
1349

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359

Category	Sub-category	What is covered	Typical examples	Cluster
1. Pre-Training & Representation Learning				
1363	1.1 Contrastive/masked vision-language pre-training	Learn aligned image–text embeddings before any task-specific tuning.	ViT/CLIP contrastive/masked pretrain; strong aug.; $T=0.07$; 40–600ep finetune.	5
1365	1.2 Adapter-aided diffusion image/video pre-training	Freeze released checkpoints; add lightweight adapters to scale.	Frozen ckpt + LoRA/prompt; AdamW + cos LR; prog-res; CF guidance.	13
2. Fine-Tuning & Adaptation				
1368	2.1 Vision–language instruction tuning	Turn a frozen VLM into an instruction follower.	Image–text pretrain \rightarrow inst. tune; PEFT; opt. RLHF.	1
1370	2.2 Parameter-efficient domain adaptation	Keep backbone frozen; adapt via prompts/adapters only.	Prompt/adapter/LoRA; distill or contrastive shift.	10
1371	2.3 Instruction SFT + retrieval alignment	Align an LLM with retrieval and preferences.	Multi-stage SFT; retrieval ctx; DPO/RLHF; rerank \rightarrow generate.	6
1372	2.4 3-D coarse-to-fine diffusion adaptation	Make diffusion/LLM backbones 3-D consistent.	Alt. SDS/guidance; synth views; render-denoise distill.	4
1374	2.5 Video-diffusion adapter tuning	Specialise image diffusion for temporal output.	Temp/spatial adapters; latent denoise; low \rightarrow high-res.	7
1376	2.6 Controllable diffusion sampling	Add style/identity knobs without retraining core model.	Var-score-recon losses; dyn. guidance; feature mod.	8
1377	2.7 Layout / prompt-conditioned diffusion	Condition generation on structured layouts or text.	LLM layout cond.; masked-attn sampling; coarse \rightarrow fine.	11
1379	2.8 Composite-loss self-supervised fine-tuning	Improve a backbone with multiple unsupervised signals.	Mask/noise; contrast+recon+distill; EMA teacher.	15
1380	2.9 Pseudo-label self-training	Self-train using synthetic multimodal labels.	Synth labels (Diff/LLM/SAM); filter; adapter FT; contrast/distill.	16
3. Reinforcement Learning & Control				
1382	3.1 Diffusion-backed policy optimisation	Blend BC and RL signals for policy training.	Traj samp; BC+PPO; Q-guided denoise; self-play.	0
1384	3.2 Hierarchical planning & embodied control	Combine VLM/LLM skills with robotic policies.	Skill seg; hier plan; RH control; real-time accel.	19
4. Efficiency & Compression				
1386	4.1 Model compression & quantisation	Shrink models with minimal retraining.	Low-rank+sparse; mixed-prec.; prune+search.	2
1388	4.2 Transformer training / inference acceleration	Architectural and parallel tricks to cut runtime.	Multi-dev partition; sparse/flash attn; KV prune; stride denoise.	9
1389	4.3 Hyper-parameter & infrastructure optimisation	Well-tuned schedules and distributed stacks.	AdamW warm-cos LR; FP16/BF16; DeepSpeed; 100k–500k steps.	17
5. Safety & Adversarial Robustness				
1391	7.1 Jailbreak & adversarial prompt synthesis	Craft inputs that bypass safety guards.	Harmful data; shadow model; grad token opt; synth prompt.	12

Table 16: Structured summary of training recipes used in foundation-model papers.

1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404	Category	Sub-category	What is covered	Typical examples	Cluster
1405	1. Vision & Imaging Sensors				
1406	1.1 RGB cameras	Monocular, stereo, multi-view, surround-view or panoramic cameras producing color frames; used for appearance-based perception.	front/side/rear vehicle cameras, egocentric/wrist/-head cameras, aerial/on-board cameras	0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19	
1407	1.2 RGB-D cameras	Active or structured-light cameras that output synchronized color + depth images.	Intel RealSense, Azure Kinect, panoramic RGB-D rigs	3, 7, 10, 11, 13, 14, 17, 18, 19	
1408	1.3 Event (neuromorphic) cameras	Asynchronous sensors emitting per-pixel brightness changes with micro-second latency.	DVS, DAVIS	9	
1409	1.4 Thermal / LWIR cameras	Passive long-wave IR imagers for temperature or night-vision cues.	Thermal cameras, LWIR DoFP polarization cameras	3, 14	
1410	2. Depth & Range Sensors				
1411	2.1 LiDAR	Spinning or solid-state laser scanners returning 3-D point-clouds.	Multi-beam/spinning LiDAR, PolLidar wavefront lidar	3, 4, 5, 11, 13, 14, 16, 17	
1412	2.2 Time-of-Flight cameras	Pulsed or continuous-wave light cameras computing per-pixel range.	Indirect/monocular ToF depth cameras, AMCW-ToF	9, 14	
1413	2.3 Radar	mmWave / FMCW / 4-D imaging radars measuring range-Doppler or heat-maps.	Automotive mmWave/FMCW, MIMO imaging radar	3, 4, 14	
1414	3. Proprioceptive Sensors				
1415	3.1 Joint & wheel encoders	Optical or magnetic sensors giving joint angle / wheel ticks.	joint encoders, wheel encoders	3, 7, 8, 13, 16	
1416	3.2 IMUs	3-axis accelerometers & gyros providing orientation/velocity.	IMU, pose modules	3, 4, 7, 13, 16, 17	
1417	3.3 Force / torque sensors	Strain-gauge or multi-axis transducers measuring interaction forces.	force-torque sensors, motor-current feedback	7, 13, 16, 19	
1418	3.4 Motor-current sensors	Drive-current read-back for inferred load.	motor-current feedback	19	
1419	4. Tactile & Contact Sensors				
1420	4.1 Vision-based tactile	Camera-in-gel sensors capturing high-resolution surface contact.	GelSight, Soft-Bubble	13	
1421	4.2 Pressure / tactile arrays	Capacitive or resistive skins giving per-taxel pressure maps.	force-torque/pressure arrays, contact sensors	7, 13	
1422	5. External Tracking & Global Localization				
1423	5.1 Optical motion-capture systems	Infra-red camera networks tracking reflective markers.	VICON, optical marker rigs	3, 13, 14, 19	
1424	5.2 Wearable mocap devices	Marker gloves or body suits for fine human-pose capture.	motion-capture gloves, skeletal/hand markers	13, 19	
1425	5.3 Radio-based positioning	Satellite or UWB transceivers returning global coordinates.	GPS, UWB beacons	3, 4, 16	
1426	6. Audio Sensors				
1427	6.1 Microphones / audio arrays	Mono or array microphones for speech / environmental sound.	microphone audio inputs	3, 13, 19	

Table 17: Structured summary of input sensors used in robotic papers.

1458	Category	Sub-category	What is covered	Typical examples	Cluster
1. Ground-based mobile robots					
1461	1.1 Small RC / off-road vehicles	1/10-scale cars, ATVs, skid-steer rovers for field tests	RC cars/ATVs; small off-road vehicles	19	
1463	1.2 Kinematic vehicle models	Bicycle/unicycle point-mass models (simulation-only)	Simulated vehicle agents (kinematic/dynamic)	0	
2. Aerial robots					
1465	2.1 Quadrotors / drones	Four-rotor UAVs with cameras, LiDAR, IMU	Quadrotor UAVs; drones	11, 19	
3. Legged & humanoid robots					
1468	3.1 Simulated legged agents	Classic MuJoCo bodies for RL locomotion	Hopper; HalfCheetah; Walker2d; Ant; Quadruped	11	
1469	3.2 Real quadrupeds & hybrids	Torque-controlled \sim 12-DoF quadrupeds; wheel-leg hybrids	ANYmal; Unitree A1/Go1; MIT Mini-Cheetah; wheel-leg hybrids	12	
1471	3.3 Humanoids	High-DoF bipeds/humanoids, often with articulated hands	Humanoids/bipeds; SMPL-X mesh; simulated avatars	16	
4. Manipulators & end-effectors					
1474	4.1 Standard 6–7 DoF arms	Fixed-base arms with two-finger or suction grippers	UR5e; Sawyer; other 6–7 DoF arms	2	
1475	4.2 Franka-class agile arms	7-DoF Panda-style arms popular in RL/IL	Franka Emika Panda; Robotiq; suction cups	3	
1477	4.3 Mobile / dual-arm manipulators	One or two arms on a wheeled base (bimanual possible)	Mobile bases with dual arms; mobile manipulators	7, 11	
1479	4.4 Arm + dexterous hand	Arms distinguished by multi-finger hands	Shadow; Allegro; Adroit; LEAP; DeltaHand	16, 18	
5. Soft & continuum robots					
1481	5.1 Continuum / soft manipulators	Deformable backbones, pneumatic/tendon actuation, soft skins & grippers; tensegrity frames	Soft continuum arm; soft gripper; compliant tensegrity structures	1	

Table 18: Structured summary of physical bodies used in robotic papers.

1487	Category	Sub-category	What is covered	Typical examples	Cluster
1. Direct joint-level outputs					
1489	1.1 Joint state read-outs	Instantaneous articulated joint positions, orientations, angles, velocities	“joint positions & orientations”; “joint angles”; “joint velocities”; “mesh deformations”	0, 1, 9	
1491	1.2 Joint command signals	Low-level motor targets (torque / position / velocity) that drive joint motion	“joint torque/position commands”; “continuous motor control signals”; “PD control torques”	7, 11, 12, 16, 17	
1493	1.3 Joint motion trajectories	Time-indexed sequences of joint states the robot follows	“motion sequences over time”; “planned joint trajectories”; “optimised 6-DoF trajectories”	0, 1, 17	
2. Rigid-body / end-effector pose outputs					
1496	2.1 6-DoF body poses	Position + orientation of whole robots, cameras or objects	“6-DoF poses”; “rigid transformations”; “UAV 3-D position & orientation”	6, 10, 16	
1499	2.2 End-effector pose + gripper	Cartesian pose of manipulator tip plus gripper open/close state	“6-DoF end-effector pose (x, y, z, r, p, y) ”; “gripper_state (open/close)”	4	
3. Ground-vehicle / mobile-robot control outputs					
1501	3.1 Steering & pedal commands	Low-level automotive controls for heading and speed	“steering_angle”; “acceleration/throttle”; “brake”	3	
1503	3.2 Wheel / differential-drive velocities	Body-frame linear & angular velocity commands for wheels/actuators	“linear & angular velocity motor commands”; “wheel/actuator motions”	14	
1505	3.3 Motion trajectories	Pre-planned paths or waypoints for vehicle motion	“robot/vehicle motion trajectories”; “position/orientation updates”	19, 16	
4. Aerial-rotorcraft control outputs					
1508	4.1 Rotor thrust & body-rate commands	Per-rotor thrust/speed or body-rate inputs that place a UAV in 3-D space	“rotor thrust/speed commands”; “collective thrust & body-rate inputs”	6	

Table 19: Structured summary of joint outputs used in robotic papers.

1512	Category	Sub-category	What is covered	Typical examples	Cluster
1. Continuous Low-Level Actuation					
1515	1.1 Joint-space commands	Direct numerical inputs to individual joints or actuators, bounded by hardware limits.	joint torques/positions/velocities; high-dimensional joint commands; bounded control inputs; finger/joint configs; parametrised joint trajectories	0, 4, 6, 10, 12, 14, 18	
1518	1.2 Vehicle / body dynamics commands	Low-level controls that change a mobile base, ground-vehicle or aerial body state.	steering angle; throttle / acceleration; braking; linear & angular velocity; body-rate thrust; speed/direction for locomotion; lane-keeping	0, 1, 7, 10, 12, 13, 15	
2. Mid-Level Pose & Trajectory Control					
1521	2.1 End-effector & gripper pose	6-DoF goals and time-parameterised trajectories for arms, grippers or aerial manipulators.	continuous 6-DoF poses; pose deltas ($\Delta x, \Delta y, \Delta z, \Delta roll, \Delta pitch, \Delta yaw$); gripper open/close; gripper width/force; grasp trajectories	2, 6, 9, 10, 12, 14, 18	
1524	2.2 Base / waypoint trajectories	Desired paths, way-points or velocity profiles for the robot body or ego vehicle.	waypoint/path-goal selection; future trajectory sequences; base linear & angular velocity commands; lane-change/merge trajectories	0, 1, 7, 10, 15, 19	
3. High-Level Discrete Skills & Behaviour Primitives					
1528	3.1 Manipulation skills	Object-centred primitives that parameterise targets, forces or object states.	grasp/pick; place/drop; push/pull; rotate/open/close; part deformation	0, 10, 18, 19	
1530	3.2 Locomotion & navigation skills	Discrete moves or gait switches for repositioning the whole robot.	move_forward/stop; turn_left/turn_right; gait switch; lane keeping/change; overtaking/merging; “go to X”	0, 1, 10, 15, 19	
1532	3.3 Interaction & instruction skills	Multimodal actions expressed through gesture, speech or scene edits.	gesture actions; speech actions; instructional guidance; scene editing commands	0	

Table 20: Structured summary of action space used in robotic papers.

1537	Category	Sub-category	What is covered	Typical examples	Cluster
1. Autonomous-driving & Mobile-vehicle scenes					
1540	1.1 On-road urban / suburban / rural driving	Real or simulated road networks with traffic, road rules, and weather variation.	urban roads; highways; intersections; traffic lights/signs; ...	1, 2, 6, 9, 12, 13, 19	
1542	1.2 Off-road, cross-country & planetary terrain	Structured or unstructured natural terrains requiring ground-robot locomotion.	uneven ground; sand; gravel; snow; ...	11	
2. Manipulation workspaces					
1545	2.1 Basic household tabletop	Small cluttered indoor bench for reach-scale manipulation.	cluttered tabletop; household objects; articulated fixtures; ...	0	
1547	2.2 Kitchen & household benchmark suites	Standardised kitchen/tabletop scenes from RLBench, Meta-World, FrankaKitchen, Habitat, Ravens, etc.	kitchen counters; RLBench station; FrankaKitchen; ...	14, 17	
1549	2.3 Assembly & insertion tables	Contact-rich assembly surfaces with precisely shaped parts.	assembly workspace; peg-hole joints; plug-socket joints; ...	18	
1551	2.4 Shared lab / industrial workcells	Planar or 3-D manipulation bays in labs or factories, often human-robot shared.	lab work surfaces; human-robot zones; static & dynamic obstacles; ...	10	
3. Embodied navigation & Scene-understanding worlds					
1553	3.1 Multi-room home / office interiors	Photorealistic or simulated domestic & office floorplans for navigation and light manipulation.	apartments; offices; corridors; dynamic changes; ...	7	
1556	3.2 Large-scale mixed indoor-outdoor simulators	Dynamic 3-D worlds with physics for point-goal, exploration, or social-navigation tasks.	rooms; mazes; multiple agents; partial observability; ...	15	
1558	3.3 Object-rich mixed-reality scene sets	Real + synthetic household, lab, or industrial spaces emphasising clutter & diversity.	household rooms; industrial floors; cluttered indoor scenes; ...	4, 5, 8	
4. Physics-centric control benchmarks					
1561	4.1 Classic locomotion & manipulation suites	Widely-used control benchmarks with domain-randomised dynamics.	MuJoCo tasks; IsaacGym walkers; Robotarium arena; ...	3	
1563	4.2 High-fidelity multi-physics platforms	Environments that model contact, fluids, deformables & human interaction in indoor/outdoor scenes.	rigid-body scenes; deformable objects; fluid interaction; humans; ...	16	

Table 21: Structured summary of environment used in robotic papers.

D TREND ANALYSIS

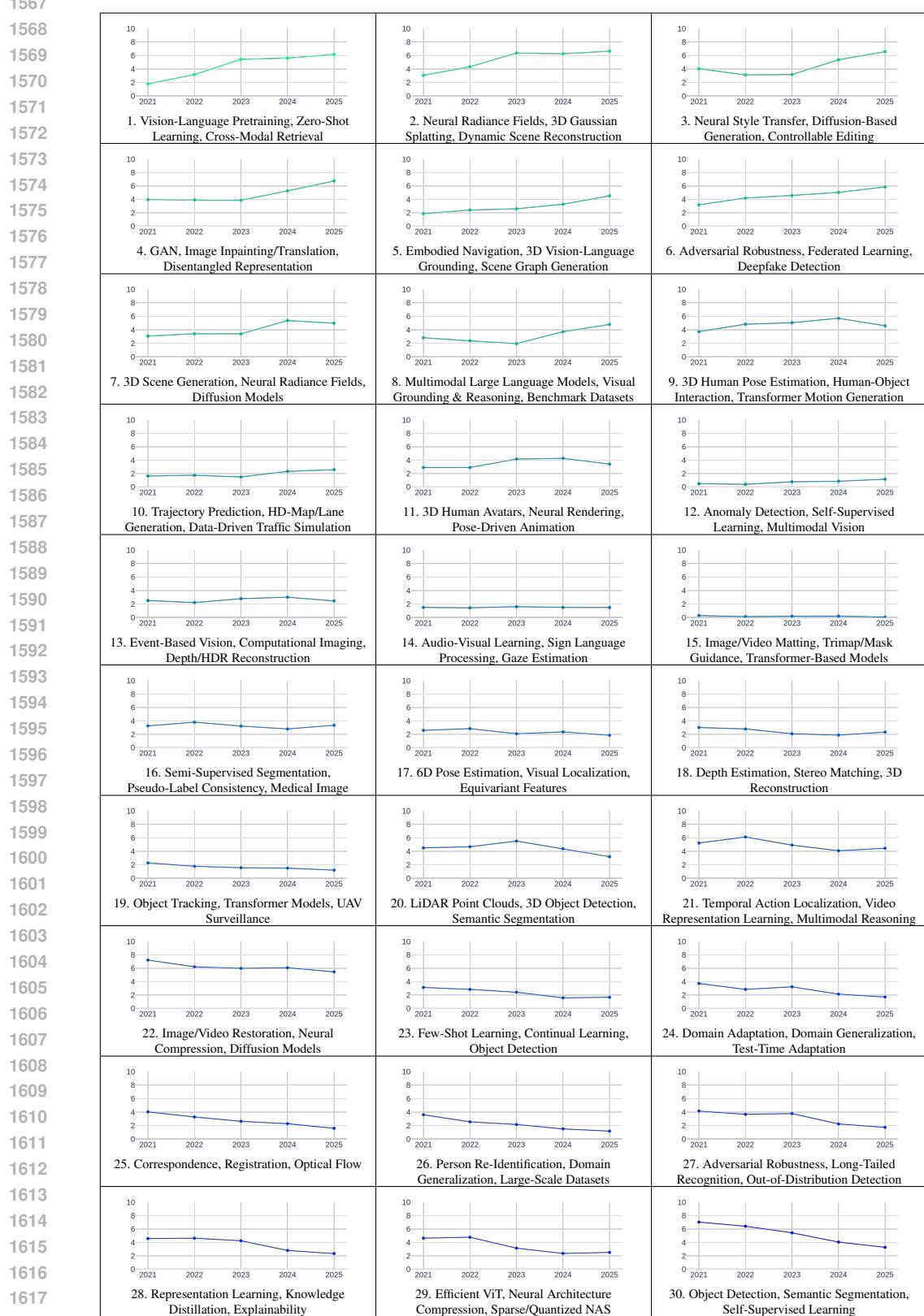


Figure 5: Trend Visualization of Computer Vision Research

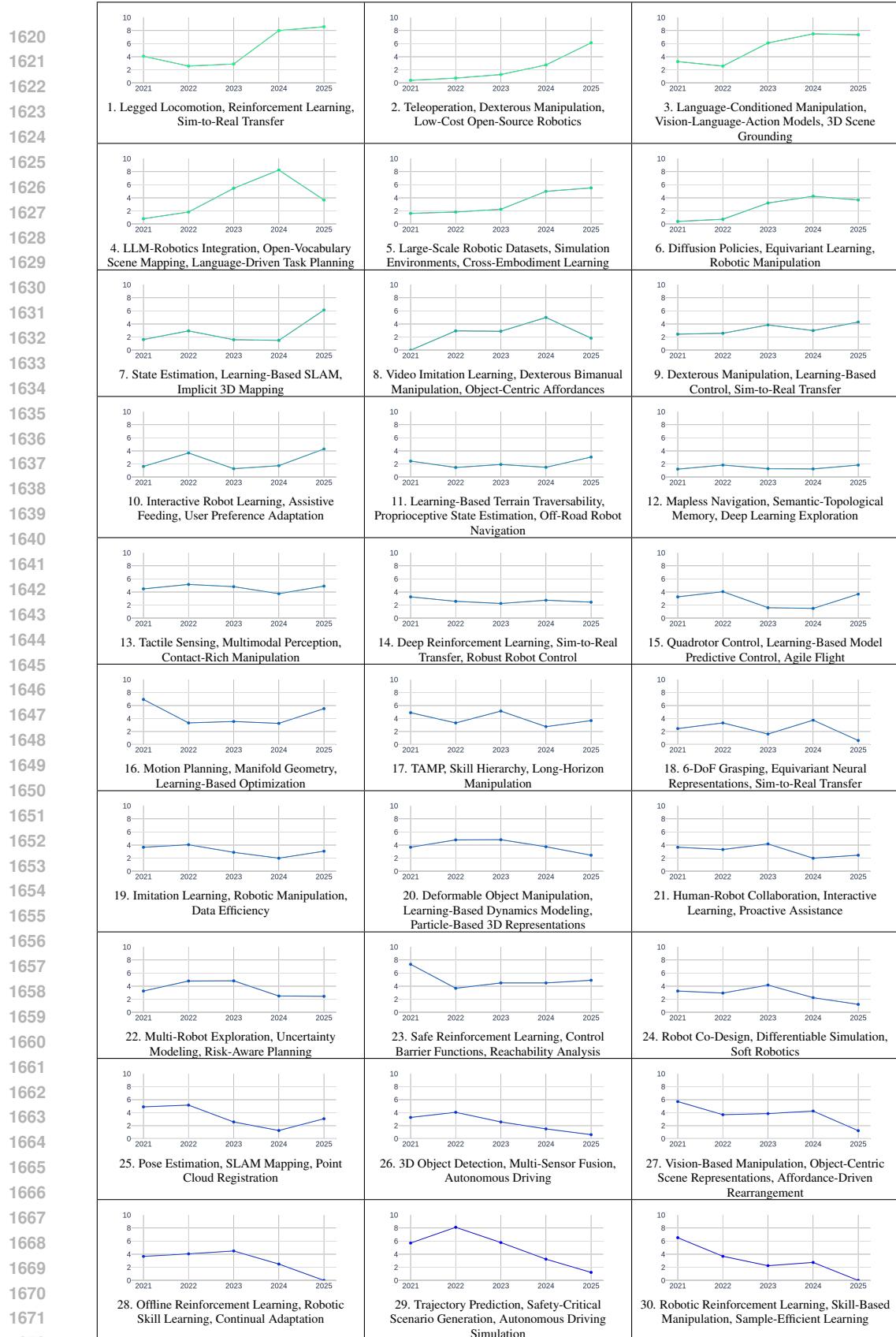


Figure 6: Trend Visualization of Robotics Research

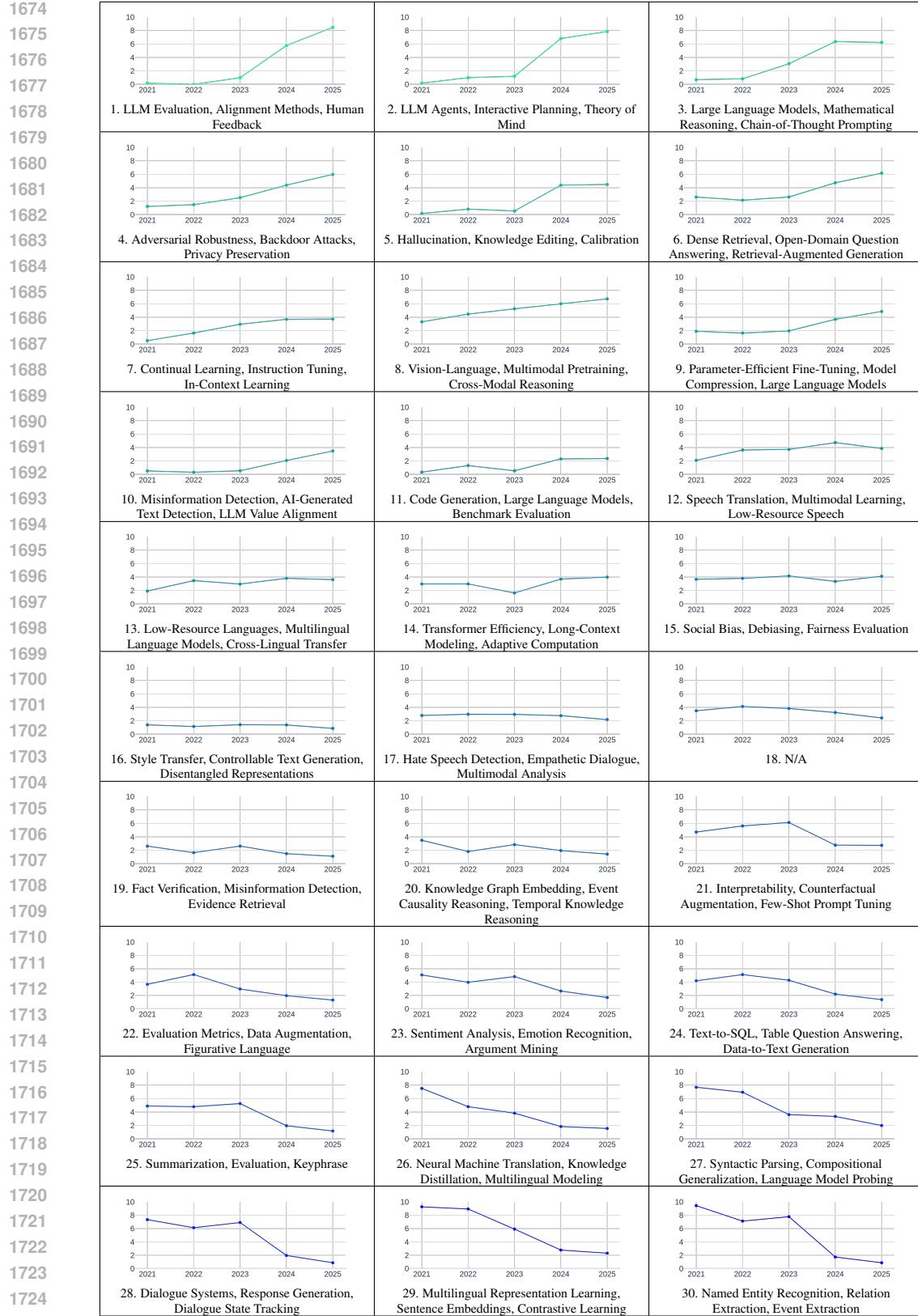


Figure 7: Trend Visualization of NLP Research

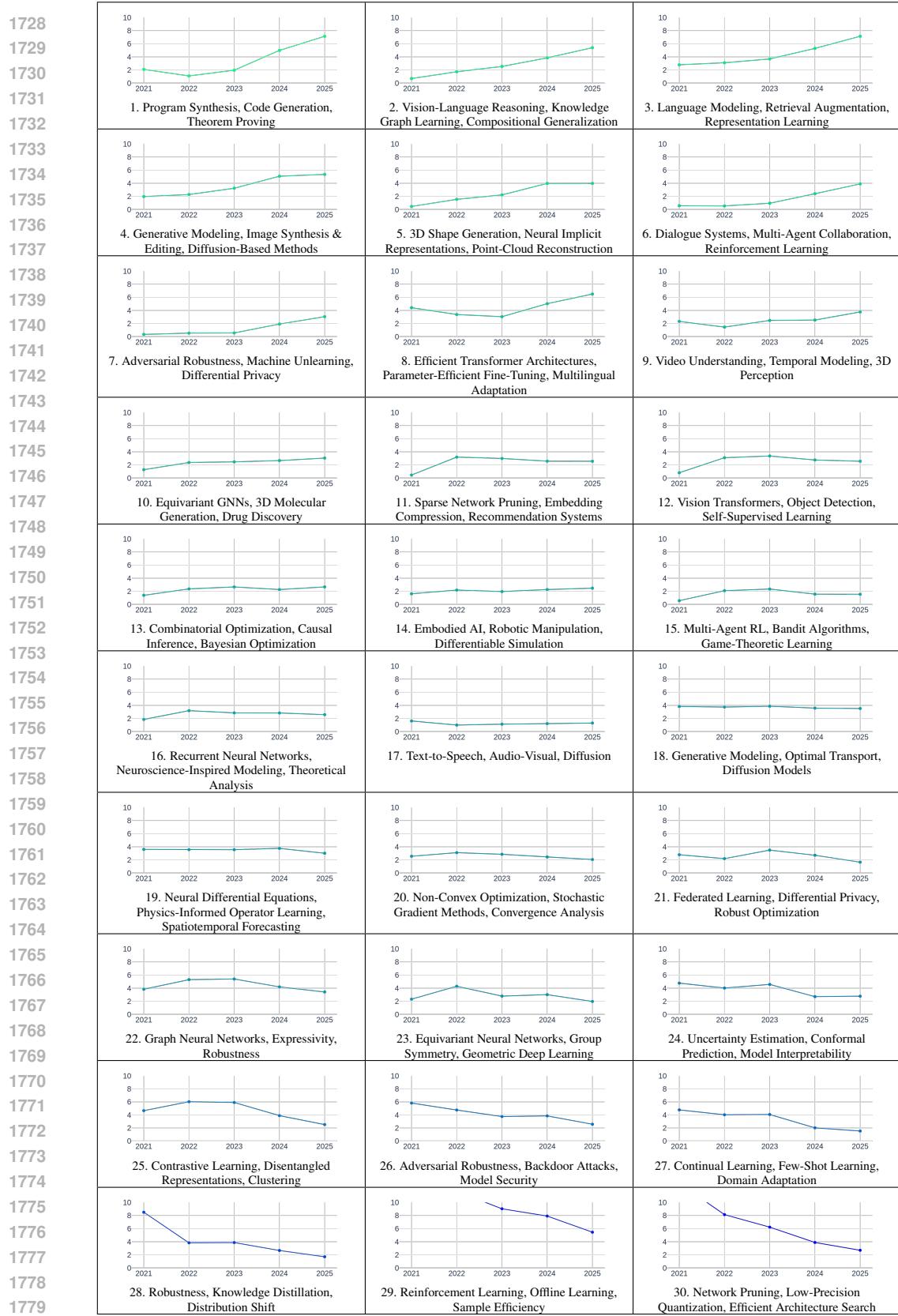


Figure 8: Trend Visualization of Machine Learning Research