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Abstract

Lifelong knowledge editing enables continuous, precise updates to outdated knowl-
edge in large language models (LLMs) without computationally expensive full
retraining. However, existing methods often accumulate errors throughout the edit-
ing process, causing a gradual decline in both editing accuracy and generalization.
To tackle this problem, we propose Neuron-Specific Masked Knowledge Editing
(NMKE), a novel fine-grained editing framework that combines neuron-level at-
tribution with dynamic sparse masking. Leveraging neuron functional attribution,
we identify two key types of knowledge neurons, with knowledge-general neurons
activating consistently across prompts and knowledge-specific neurons activat-
ing to specific prompts. NMKE further introduces an entropy-guided dynamic
sparse mask, locating relevant neurons to the target knowledge. This strategy
enables precise neuron-level knowledge editing with fewer parameter modifica-
tions. Experimental results from thousands of sequential edits demonstrate that
NMKE outperforms existing methods in maintaining high editing success rates and
preserving model general capabilities in lifelong editing. Codes are provided in
https://github.com/LiuJinzhe-Keepgoing/NMKE.

1 Introduction

Lifelong model editing has emerged as an effective paradigm for maintaining and iterating modern
large language models (LLMs), which enables continual and dynamic knowledge injection, error
correction, and sensitive content removal [1, 2, 3, 4]. For example, model editing can rectify outdated
knowledge in LLMs without complete retraining, such as updating the year of the next Olympic
Games from 2024 to 2028. An ideal lifelong knowledge editing method must simultaneously
maintain high editing accuracy while preserving the model’s general capabilities [3, 5]. Previous
knowledge editing methods fall into two fundamental categories: those that integrate external
parameters [5, 6, 7, 8, 9] and those that directly modify internal model parameters [10, 11, 12, 13,
14, 15]. External parameters methods demonstrate strong generalization, but suffer from escalating
resource overheads and progressively declining editing accuracy as the number of edits increases [16].
In contrast, internal parameter methods, which typically follow a locate-then-edit paradigm [17],
offer enhanced interpretability and a simpler architecture [18], yet are prone to degradation in
general capabilities [15, 19]. More critically, both types of methods face fundamental limitations in
lifelong editing scenarios, where error accumulation compounds exponentially with successive editing
operations [19, 20, 21]. This creates a compelling research challenge: how to design a method that
harmonizes the strong generalization of external approaches with the efficiency of internal methods,
while enabling robust lifelong editing without performance degradation.
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Figure 1: Left: Comparison of layer-level editing with our neuron-level editing method, NMKE,
highlighting the impact on Multilayer Perceptron (MLP) layers. Right: Average editability score
(including edit success rate [23], generalization success rate and localization success rate [3]) and
average general capability (across MMLU [24], GSM8K [25], CommonsenseQA [26], and BBH-
Zeroshot [27]) across different edit steps on LLaMA3-8B-Instruct [28].

Motivated by this challenge, we focus on internal editing methods to ensure a simplified architecture,
aiming to achieve high editing accuracy while preserving the model’s general capabilities. Previous
internal methods have explored various localization strategies such as causal tracing [13], multi-layer
updates [14], and null-space projection [15] to identify factual knowledge within model parameters.
However, these strategies apply modifications at the level of entire layers or parameter blocks,
inadvertently affecting neurons unrelated to the target knowledge and consequently causing model
forgetting and capability collapsing [15, 22], as shown in Figure 1.

In this paper, we propose Neuron-specific Masked Knowledge Editing (NMKE), a novel fine-
grained knowledge editing framework that performs neuron-level attribution and constructs dynamic
sparse masks to precisely modify LLMs knowledge. Unlike previous coarse-grained approaches,
NMKE employs neuron-level attribution in the feedforward network (FFN) to quantify precisely how
individual neurons contribute to knowledge-based predictions. Through this attribution analysis, we
discover two distinct types of knowledge-encoding neurons: (i) Knowledge-General Neurons, which
exhibit stable activation across prompts and encode generalizable information, and (ii) Knowledge-
Specific Neurons, which are selectively activated to capture semantic variations in specific contexts.
Leveraging this insight, NMKE also constructs dynamic sparse masks, selectively focusing on the
most relevant subset of neurons associated with the target knowledge. Comprehensive empirical
evaluation demonstrates that NMKE achieves an optimal balance in lifelong editing by making
minimal-cost parameter modifications, ensuring accurate edits, and preserving general capabilities.
Our research makes the following key contributions:

* We experimentally show that the performance degradation in lifelong editing is driven by the
cumulative disruption of neurons caused by coarse-grained parameter updates. Building on this
analysis, we identify the critical roles of Knowledge-General and Knowledge-Specific neurons in
storing factual knowledge within the model.

* We introduce Neuron-Specific Masked Knowledge Editing (NMKE), a novel fine-grained editing
framework that utilizes neuron-level attribution and dynamic sparse masking to precisely target
and modify only those neurons most relevant to the updated knowledge, significantly reducing
unintended disruption to the model.



» Through rigorous evaluation on thousands of sequential edits,we show that NMKE consistently
outperforms existing methods in maintaining high editing success rates while simultaneously
preserving model capabilities in lifelong editing scenarios.

2 Preliminaries

2.1 Lifelong Model Editing

Lifelong model editing enables continuous knowledge updates in pretrained language models, main-
taining accuracy and correcting errors without the need for full retraining. Formally, let fo : X — Y
be a language model with parameters 6. In the sequential editing process, the ¢-th editing step
receives an editing request set S; = {(s, 7,0 — 0*)}, indicating that the fact triple (s, r, 0) should
be updated to (s, r, 0*). Here, s represents the subject, r the relation, and o the original and target
object, respectively. The model is updated via an editing function E, such that 8 = E(S,,6(~1),
where the objective that for all (s,7,0 — 0*) € S, the edited model satisfies fy((s,7) = o*.
Simultaneously, for unedited inputs = ¢ ( J, S;, the model output should remain as similar as possible
to their previous values fy) (2) & fy-1) (x). The central challenge in lifelong model editing is to
achieve high editing accuracy while minimizing interference with unedited knowledge.

2.2 Knowledge Storage in Transformers

Knowledge in Transformers [29] is primarily encoded within the FEN, which functions as distributed
key-value associative memories [12, 30, 31]. Formally, an FFN layer with input weights Wi® ¢
R >4 and output weights Wt ¢ R¥*?m transforms an input vector x € R? through the forward
propagation: y = W°*¢(Wx) + x , where o(-) represents the non-linear activation function,
and d,,, denotes the dimensionality of the hidden layer. Each neuron in the FFN can be considered a
key-value unit, where the i-th neuron associates with the key k(") = W;“ and the value v() = Wese,

When the input x aligns with k), the neuron is strongly activated, and the corresponding value v(?)
contributes significantly to the output. The FFN can be reformulated in a key-value form:

dm dm

y= Z s 4 x = Z o(kWx)v® 4+ x, (1
i=1

i=1

where s(*) represents the contribution of the i-th neuron to the output. This decomposition shows
that individual neurons collectively encode factual knowledge, but multiple factual associations often
share overlapping parameter subsets. Conventional approaches that modify entire parameter blocks
or layers during knowledge editing lead to interference with unrelated representations. In lifelong
editing, this interference accumulates, degrading model performance and exacerbating distribution
shift. Our key insight is that to maintain editing stability and preserve general capabilities, parameter
updates should target neural subspaces directly relevant to the edited knowledge, rather than applying
coarse updates to entire layers or modules.

3 Neuron-specific Masked Knowledge Editing

This section introduces NMKE, a fine-grained framework for knowledge editing that leverages neuron-
level attribution and constructs dynamic sparse masks. § 3.1 introduces the neuron-level attribution
method, where the neuron activations and masking behavior reveal the functional differences among
knowledge neurons and identify the knowledge-general and knowledge-specific neurons. § 3.2
introduces an entropy-based dynamic masking strategy to select minimal intervention subsets.

3.1 Neuron Attribution

Neuron-level Attribution. Inspired by [32], we estimate neuron importance using a static attri-
bution method. The contribution of each neuron to the predicted token is quantified by the increase
in log probability when its activation is perturbed. Specifically, s') in Eq. 1 can be regarded as the
perturbation from the ¢-th neuron to the input x. We formulate the perturbing process as:

x =x 4+ \-s0, 2)
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Figure 2: Left: The effect of neuron masking on multiple-choice task performance. Right: Perfor-
mance changes following the masking of different neuron types on the MMLU sub-task, with general
neuron masking leading to a substantial performance decline, particularly in college biology accuracy,
whereas domain-specific neurons cause minimal degradation. | represents the accuracy drop, with
the magnitude shown as a percentage.

where ) is the amplification factor to scale the perturbation. We then project both x and x(*) into the
vocabulary space using the unembedding matrix E,, and then compute the softmax logits, giving the
importance score of neuron ¢ as the log-probability gain of the target token y:

Imp = log p(y | x¥) —log p(y | x) = softmax(E,x") — softmax(E,x). 3)

In practice, the importance scores are computed in batches for each editing prompt, yielding a neuron
importance matrix I € R”*< with n denoting the batch size. This matrix is used to build sparse masks
(§ 3.2) that select key neurons for editing, enabling precise and low-interference model updates.

Functional Roles of Neurons. To explore the reasons behind capability degradation in lifelong
knowledge editing, we conduct attribution experiments on the LLaMA2-7B [33] model. Specifically,
we analyze neuron activations in the FFN layers of Transformer blocks across tasks from the MMLU
dataset [24], focusing on college and high school level biology and chemistry. Based on cross-task
activation patterns, FFN neurons can be categorized into three types: knowledge-general neurons
activated across all tasks, domain-specific neurons activated within a subject, and task-specific
neurons activated only in one task.

We observe that knowledge-general neurons occur most frequently, followed by domain-specific
neurons, with task-specific neurons being the least common. To assess the functional roles of different
neuron types, we conduct masking experiments by ablating the top-10 and top-50 neurons with the
highest attribution scores for each category and evaluating performance changes on MMLU subtasks.
As shown in Figure 2, masking knowledge-general neurons causes severe degradation where the
model produces meaningless outputs (e.g., brackets, stop words, or corrupted symbols), with accuracy

degrading from 37.5% to 4.17% with a drop of in the top-10 ablation and to 0.69% with
drop in the top-50 ablation. In contrast, masking task-specific neurons that correspond to
the same domain leads to only minor drops ( and ), while masking domain-specific

neurons that correspond to a different domain has a negligible effect. These results suggest that
knowledge in LLMs is not uniformly distributed but sparsely localized within a small set of neurons.
More experimental details are provided in Appendix B.1.

Building on these observations, we abstract the functional roles of neurons into two categories to
guide knowledge editing, i.e., knowledge-general and knowledge-specific neurons. Specifically,
neurons with stable activations across semantically similar prompts are defined as knowledge-general
neurons, while those with sharp, localized activations and high attribution scores in specific prompts
are termed as knowledge-specific neurons. Knowledge-specific neurons include domain-specific and
task-specific neurons. Model editing in each step should target the subset of the neurons, excluding
irrelevant knowledge-specific neurons.

3.2 Dynamic Sparse Masking

To locate relevant neurons for knowledge editing, we introduce a dynamic sparse masking mechanism
that adaptively selects a subset of neurons that provide predominant contributions in representing
target knowledge. Specifically, let I(") € R™*% be the neuron attribution matrix at layer [, where n is
the number of prompts and d; the number of neurons. The main difference between the two types
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Figure 3: Overview of NMKE. Neuron attribution and dynamic sparse masking to selectively update
Knowledge-General and Knowledge-Specific neurons, ensuring precise knowledge editing while
preserving the model’s general capabilities.

of neurons is that knowledge-general neurons demonstrate consistent activations across different
prompts, while knowledge-specific neurons demonstrate selective activations to specific prompts. By
analyzing the distribution of attribution scores, we can distinguish between the two types of neurons.

3.2.1 Type-specific Selection Score

Knowledge-general Neurons, due to their encoding of core knowledge, exhibit stable activations
across diverse prompts, resulting in consistently positive attribution scores. In consequence, such
neurons can be identified by counting the number of positive attribution scores over multiple prompts:

c= S 1 > o), )
j=1

where II[-] denotes the sign function. I[True] = 1 and [[False] = 0.

Knowledge-specific Neurons, due to their encoding of task-specific knowledge, are activated on at
least one prompt, resulting in a significant attribution score on a specific prompt. Therefore, such
neurons can be identified by the maximum attribution across prompts:

r;’ = mjax Iglz 5)

3.2.2 Type-specific Selection Ratio

To identify the subset of the knowledge-general and knowledge-specific neurons, we select a ratio
of the neurons based on their scores r?¢ and r°?. However, given different batches of prompts,
the neurons perform different activation statuses, and thus resulting in different attribution scores.
Employing a fixed ratio for all prompt batches can incorporate irrelevant neurons when fewer neurons
are well-activated, and lose relevant neurons when most neurons are well-activated. To tackle this
problem, we propose to dynamically assign the selection ratio based on the distribution of the
attribution scores.

Knowledge-general Neurons demonstrate stable activations across different prompts, indicating a
uniform distribution with higher entropy. Therefore, we can employ the average normalized entropy
across prompts to evaluate the ratio of the knowledge-general neurons:

l
Hee = nlogdlzzpulogpau P;,; = softmax(al)), ©

=11:=1

where the temperature « adjusts the score differences. The higher the average entropy H,., the more
neurons can be categorized as knowledge-generalized.



Knowledge-specific Neurons demonstrate selective activation, indicating a large maximum attribu-
tion score across prompts. When most neurons are categorized as knowledge-specific, the maximum
attribution scores will be similarly large across different neurons and demonstrate a large distribution
entropy:

d O]
1 max; I
Hep = — d qilogqi, qi=— 0. (7)
b log d, Py ' ' >, max; Iglz,

These entropy values indicate the ratio of the relevant neurons in different prompt batches. In
practice, we further adjust the ratio by constant scalers age, asp and bias terms bge, bsp, giving
Pge = ng " Uge + bge and Psp = Hsp * Qsp + bsp~

Neuron Selection and Mask Generation. Based on the estimated ratio pg., we compute the
threshold 7, as the (1 — pg.) quantile of the score r&°, and select neurons exceeding this threshold
as the knowledge-general neurons. The selection of the knowledge-specific neurons follows the same
protocol with ratio psp and score r®P. This selection constructs the binary sparse mask m®) ¢ {0,1}
as:
1
mz(. ) = [[r$® > 75 or rif > 7). 3

This hybrid selection mechanism provides flexible control of the neuron-level editing by incorporating
the functional roles of different neurons. By selectively updating neurons relevant to the edited
knowledge, this approach enables precise editing while preserving the knowledge structure of
irrelevant neurons. As shown in Figure 3, we propose a neuron-level knowledge editing framework,
NMKE, that restricts updates to a subset of functionally important MLP neurons, enabling precise
and minimal-disruptive knowledge injection. We follow AlphaEdit [15] to construct the optimization
pipeline, where m is employed to mask the parameter update matrix.

4 Experiments

4.1 Experimental Setup

Evaluation Benchmarks. We evaluate our methods in terms of editing performance and the
generalization ability of edited LLMs. For the knowledge editing performance, we utilize two
standard benchmarks: ZsRE [34] for question answering, and CounterFact [13] for factual corrections.
Following [6, 4], we report three key metrics: Rel. [23] (edit success), Gen. [3] (generalization to
paraphrased prompts), and Loc. [3] (locality preservation). For the generalization ability, we adopt
five downstream tasks that span mathematical reasoning, question answering, and code generation:
MMLU [24], GSMS8K [25], CommonsenseQA [26], BBH-Zeroshot [27], and HumanEval [35].

Baselines. We compare NMKE with various of baselines that covers both external and inter-
nal parameter methods, including Fine-Tuning (FT) [36], KN [12], ROME [13], PMET [37],
MEMIT [14], WISE [6], and AlphaEdit [15]. Evaluation is conducted on widely used LLMs
including LLaMA3-8B-Instruct [28], GPT2-XL [38], and Qwen2.5-7B [39] across cumulative edit
steps T' € {10, 100, 500, 1000, 1500, 2000, 3000, 5000}. More details are presented in Appendix A.

4.2 Does the Edited LLM Still Generalize?

Figure 4 evaluates the generalization ability of LLaMA-3-8B-Instruct on the ZsRE and CounterFact
datasets edited by various methods with 1 to 2000 editing steps. Overall, the results show that existing
methods exhibit rapid degradation in generalization ability as the number of edits increases. FT
destroys the generalization ability of LLMs on GSM8K and HumanEval after only 100 edits, while
methods like ROME and MEMIT show significant performance drops beyond 7" = 500. As the
SOTA method, AlphaEdit suffers from a gradual decline in generalization due to the continuous
modification of irrelevant knowledge neurons during layer-level edits. For example, at 7' = 1500,
AlphaEdit shows a significant decline in question answering performance, with nearly a complete
loss of mathematical and coding abilities, as the accuracy on both GSM8K and HumanEval drops to
0. In contrast, our NMKE effectively maintains the generalization of LLMs in lifelong editing on
both datasets and significantly outperforms all baselines with 7" > 1000. The superior performance
of NMKE can be attributed to its dynamic sparse masking mechanism, which confines the edited
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Figure 4: Generalization performance of LLaMA-3-8B-Instruct on MMLU [24], GSM8K [25],
CommonsenseQA [26], BBH-Zeroshot [27], and HumanEval [35] benchmarks after 2000 steps of
sequential editing on the ZsRE (fop) and CounterFact (bottom) datasets.

Table 1: Main editing results (LLaMA3-8B-Instruct) across 2000 editing steps on ZsRE and Counter-
Fact datasets. The best result is in bold, and the second-best result is underlined.

ZsRE
Method | T=10 | T=100 | T=50 | T=1000 | T=150 | T=2000

‘Rel. Gen. Loc. ‘ Rel. Gen. Loc. ‘ Rel.  Gen. Loc. ‘ Rel. Gen. Loc. ‘ Rel. Gen. Loc. ‘ Rel. Gen. Loc.

FT 0.18 003 001|017 013 003]012 011 000|013 010 002 ]0.12 010 002|007 006 001
KN 0.14 0.2 066 | 002 001 000|000 000 000|000 000 000|000 000 000|000 000 000
ROME 096 094 0.64 010 009 003|001 001 002|002 001 002|004 004 002|001 001 002
MEMIT 098 098 0.89 | 0.06 003 001 | 004 004 003|004 004 003|004 003 003|003 004 0.03
PMET 039 039 091 [0.02 002 005|000 000 000|000 000 000|000 000 000|000 000 0.00
WISE 083 078 - [071 067 - |046 045 - |041 039 - |032 031 - |037 036 -
AlphaEdit 099 098 097 [ 099 095 086|096 087 071 093 084 058|062 054 014|032 028 006
NMKE (Ours) | 0.93 090 095|095 095 086|096 087 082095 085 077|094 086 074|094 085 0.71
CounterFact

Method | T=10 | T =100 | T =500 | T=1000 | T=150 | T=2000

‘ Rel. Gen. Loc. ‘ Rel. Gen. Loc. ‘ Rel. Gen. Loc. ‘ Rel. Gen. Loc. ‘ Rel. Gen. Loc. ‘ Rel. Gen. Loc.
FT 0.02 0.00 0.00 | 004 000 000|007 001 000|003 001 000|005 001 000|007 003 000
KN 0.00 001 087 [003 003 079 |00l 001 066|000 000 000|000 000 000|000 000 000
ROME 090 070 0.60 [ 023 0.3 001 [001 001 000|001 000 000|001 000 000|000 000 000
MEMIT 098 070 076 | 0.08 003 006|000 000 001|000 000 001|000 000 001|000 000 0.00
PMET 0.10 020 098 [ 0.10 005 091|014 006 076|006 002 060 002 001 042|002 000 035
AlphaEdit 100 0.60 085|099 080 071|099 075 044 099 076 032|071 055 019022 013 004

NMKE (Ours) ‘ 092 051 086|097 056 0.80 099 058 060|099 065 050|098 0.65 043098 0.67 0.38

parameters and minimizes disruption to the model’s internal representations. Notably, after 5000
editing steps, MMLU remains at 0.59, with further results in Appendix B.2.

4.3 Do Sparser Neuron Modifications Lead to Better Edits?

Table 1 presents the results of lifelong knowledge editing on 2000 randomly sampled ZsRE and
CounterFact examples, edited sequentially with a batch size of 1, using LLaMA3-8B-Instruct. Most
methods (e.g., FT, KN, ROME, and MEMIT) exhibit significant performance degradation after
T = 100 in lifelong editing. WISE adds external modules without modifying internal parameters,
with locality indicated by a “-”, but its knowledge editing success rate decreases by after
2000 edits. AlphaEdit’s performance becomes unstable during sequential editing, with catastrophic
forgetting observed at 7' > 1500, as evidenced by a decline in editing success accuracy of

on ZsRE and on CounterFact. In contrast, NMKE demonstrates superior lifelong knowledge
editing capabilities on both datasets. This robustness stems from our fine-grained, neuron-level
editing strategy, which precisely targets a relevant neuron subset, preventing model collapse. Results
for scaling to 5000 are shown in Table 6, with additional experiments in Appendices B.2, B.4 and B.9.
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Figure 6: Editing and generalization performance after 7=2000 sequential edits under various
masking strategies.

4.4 What Happens to LLM Internal Parameters?

To analyze the impact of different methods on the model’s internal parameters, we visualize the
distributional shift of down-projection weights in the 8-th FFN layer using t-SNE [40]. We compare
the pre-edited LLaMA3-8B-Instruct model with its versions edited by AlphaEdit and NMKE, each
after 2000 sequential edits on ZsRE. As shown in Figure 5, the pre-edited LLaMA3-8B-Instruct
model (Figure 5 (a)) exhibits a compact weight distribution, indicating a stable parameter structure.
AlphaEdit (Figure 5 (b)) induces a noticeable deviation from the original weight distribution, resulting
in a more dispersed and distorted geometry in the t-SNE space, suggesting substantial distributional
shifts. In comparison, NMKE (Figure 5 (c)) maintains a more compact structure, closely aligned
with the original distribution, reflecting minimal parameter shifts. These results suggest that NMKE
induces fewer disruptions to the model’s internal parameters than AlphaEdit, which explains its
superior editing stability and reduced interference, as observed in § 4.2 and § 4.3. Additional analyses
of LLM internal parameters are presented in Appendices B.3, B.5, and B.8.

4.5 Further Analysis

Effects of Neuron Selection Strategies. Figure 6 compares four neuron selection strategies:
activating only (i) knowledge-general or (ii) knowledge-specific neurons, and activating both types
with (iii) fixed ratio or (iv) entropy-based dynamic ratio. Results show that the entropy-based dynamic
ratio achieves the highest editing success rate and best generalization, benefiting from its dynamic
neuron activation based on different knowledge types. Notably, activating only knowledge-general
neurons excels in locality preservation and retention of coding abilities. Overall, the four neuron
selection strategies within the NMKE framework effectively preserve strong general capabilities
after 2000 editing steps. Among these, the entropy-based dynamic ratio activation achieves the best
balance between enhancing knowledge editing performance and maintaining general capabilities.

Hyperparameter Analysis for NMKE. As shown in Figure 7 (a), in order to investigate the
impact of constant scalers age, asp and bias terms bg., bsp on the proportion of neuron activation,
we adjust the constant scalers ag. € {0.1,0.5,1.0} and bias terms be. € {0.2,0.3,0.4} to explore
their effects on knowledge editing performance. The results show that higher bias terms enhance
the selection of knowledge-general neurons, crucial for stable, generalizable knowledge, leading to
more precise updates. In contrast, larger constant scalers broaden neuron activation, which may select
unnecessary neurons and increase interference. This approach effectively targets knowledge neurons,
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Figure 7: (a) Effect of constant scalers and bias terms on neuron selection. The red and green lines
show that higher bias terms improve editing accuracy, while # indicates that larger constant scalers
reduce locality preservation. (b) Sensitivity of neuron editing to amplification factor \.

Table 2: Per-edit runtime and editing performance in sequential editing.

Method | Step Time (s) | T = 1000 | T = 2000

| peredit | Rel. Gen. Loc. | Rel. Gen. Loc.
MEMIT 16.83 0.04 0.04 0.03 | 0.04 0.03 0.03
WISE 26.49 041 0.39 - 0.32  0.31 -
AlphaEdit 22.16 093 084 058 | 0.62 054 0.14
NMKE (MPC) 22.25 094 082 081 | 093 0.83 0.77
NMKE (PSA) 29.67 095 084 079 | 0094 0.86 0.71
NMKE (LPS) 30.42 095 085 077 | 094 086 0.74

ensuring precise selection and preserving the model’s capabilities while minimizing disruption. In
Figure 7 (b), we analyzed the impact of amplification factors A = 10 and A = 30 on knowledge
editing performance. The results show that a moderate increase in the amplification factor helps
prioritize neurons most relevant to the target knowledge, improving editing efficiency and reducing
disturbances. Additional experimental results are presented in Appendices B.1 and B.6.

Editing Efficiency. To quantify attribution cost, we report per-edit runtime under sequential editing
across several competitive baselines and NMKE configured with three attribution strategies: MLP
Projection Coefficient (MPC) [30], Probability Shift Attribution (PSA) [32], and Log Probability
Shift (LPS) [32]. Table 2 shows that NMKE (MPC) is the most efficient variant, with only ~ 0.2
of per-edit overhead, while the highest-performing variant, NMKE (LPS), adds ~ 8s per edit but
remains practical and delivers significant improvements. Overall, NMKE is a flexible framework that
supports attribution methods of varying complexity, balancing quality and efficiency under different
scenarios. More analysis are provided in Appendix B.7.

Effect of Overlapping Neurons. To investigate the effect of overlapping neurons, we perform edits
using only overlapping neurons or only non-overlapping neurons. Table 3 shows that overlapping
neurons mediate the trade-off between edit success and locality. Editing with overlapping neurons
yields the strongest locality, with moderate drops in reliability and generalization. Editing with
non-overlapping neurons increases edit success and generalization but weakens locality. NMKE
combines the two via an entropy-guided ratio and achieves the best overall balance at 7' = 1000
and T = 2000, supporting its stability under sequential editing. Further experiments on knowledge
neuron distributions are reported in Appendix B.6.

Neuron Masking Analysis. To assess the effectiveness of a discretized neuron update mechanism,
we compare binary masking with a soft mask alternative. The NMKE (soft-mask) variant scales
each neuron’s update magnitude by its attribution score, preserving the continuity of neuron states.
As shown in Table 4, the soft mask largely matches NMKE in accuracy and generalization, but its
dense and indiscriminate updates degrade locality. In contrast, NMKE constrains updates to a sparse,
knowledge-aware neuron subset, thereby preserving stability and achieving robust locality.



Table 3: Functional analysis of overlapping neurons in sequential editing.

Method ‘ T = 1000 ‘ T = 2000
| Rel.  Gen. Loc. | Rel. Gen. Loc.

072 060 0.84 | 0.75 0.63 0.80
082 070 0.82 | 0.8 074 0.78
095 085 0.77 | 094 0.86 0.74

Overlapping Neurons Only
Non-Overlapping Neurons Only
NMKE

Table 4: Effectiveness analysis of neuron masking mechanisms.

Method | T=1000 |  T=2000

‘Rel. Gen. Loc. ‘ Rel. Gen. Loc.

NMKE (soft-mask) | 0.96 087 0.67 | 0.72 0.61 0.19
NMKE 095 085 0.77 | 094 0.86 0.74

5 Related Work

External Parameter Editing. External parameter editing methods are widely adopted for their
structural flexibility and ease of implementation [4, 3, 41, 42]. Early approaches like SERAC [7]
employ cached counterfactual models with scope classifiers for relevance-based routing. To improve
flexibility, GRACE [5] introduces discrete key-value adaptors for lifelong editing, while Melo [9]
proposes semantic-clustered low-rank adaptation modules. ATBias [43] shifts towards in-context
editing by biasing key entity tokens during decoding, and WISE [6] enhances the paradigm with dual-
memory architectures and trainable routers to isolate edited knowledge. Despite these advances, these
methods overlook dependencies among factual updates. To address this, recent methods [44, 45]
incorporate knowledge graphs with graph neural networks [46, 47, 48] to capture dependencies
between related edits. Nevertheless, external methods that rely on auxiliary modules still suffer from
growing storage and routing bottlenecks with more edits, degrading accuracy and efficiency.

Internal Parameter Editing. Internal parameter editing approaches directly modify model weights
through constrained updates. Early meta-learning methods [11, 10] leverage hypernetworks to
generate task-specific parameter updates, but face limitations in scalability when handling sequential
edits due to extensive retraining requirements. F-Learning [49] adopts a two-stage forgetting-before-
learning fine-tuning paradigm for knowledge updating. The locate-then-edit paradigm [17] has
significantly advanced internal editing, evolving from single-layer approaches like ROME [13],
which targets specific key-value pairs in transformer layers, to multi-layer methods like MEMIT [14],
which distributes updates across multiple layers for enhanced robustness. Furthermore, AlphaEdit [15]
employs null-space projection to reduce distribution shift. These approaches operate at the layer or
parameter-block level, risking disruption of unrelated neurons and causing catastrophic forgetting
and performance degradation in lifelong editing [2, 19]. FINE [50] performs fine-grained editing
via contribution scoring, without explicitly modeling the functional roles of knowledge neurons.
Motivated by this, we propose NMKE, which performs fine-grained editing of knowledge neurons
via sparse masking, achieving stable lifelong editing while preserving generalization.

6 Conclusion

This paper introduces Neuron-specific Masked Knowledge Editing (NMKE), a fine-grained frame-
work for knowledge editing that leverages neuron-level attribution and dynamic sparse masking to
enable precise editing. By identifying and targeting both knowledge-general and knowledge-specific
neurons, NMKE confines updates to relevant neural subsets, effectively minimizing interference.
Experiments demonstrate that NMKE outperforms existing methods in edit success and generalization
retention, particularly in lifelong editing scenarios involving thousands of edits, where other methods
experience cumulative degradation. This superior performance arises from our neuron-level inter-
vention approach, which ensures successful edits while preserving general capabilities, presenting a
promising solution for lifelong editing. For limitations and discussion, please refer to Appendix C.
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Appendix

In the Appendix, we provide further details, including experimental setups, additional results, analyses,
and discussions, as outlined below:

* Appendix A: Experimental setups (cf. Section 4).
* Appendix B: More experimental results (cf. Section 3 and 4).

* Appendix C: Limitations and future discussions.

A Implementation Details

A.1 Description of Datasets

We evaluate general model capabilities using five challenging benchmarks covering factual knowledge,
reasoning, and code generation. We also test knowledge editing using two standard factual-editing
datasets. The benchmarks are described below:

MMLU [24]: a multiple-choice benchmark with over 16,000 questions across 57 academic and
professional subjects (e.g., mathematics, history, law, medicine). Each question has four answer
choices. MMLU tests a model’s recall of domain-specific knowledge and multi-domain reasoning,
serving as a broad measure of general knowledge and reasoning ability.

GSMSK [25]: contains roughly 8,500 grade-school math word problems requiring step-by-step
arithmetic reasoning. This benchmark tests a model’s ability to perform multi-step numerical
calculations.

CommonsenseQA [26]: a multiple-choice question-answering dataset focused on everyday com-
monsense reasoning. Each question has five options, only one of which is correct. CommonsenseQA
assesses a model’s understanding of implicit context and everyday knowledge.

BBH [27]: a subset of 23 challenging tasks drawn from the BIG-Bench benchmark, including logic
puzzles, mathematical reasoning, and code comprehension. We evaluate BBH in a zero-shot setting
to test a model’s general reasoning ability and robustness on complex tasks without any task-specific
training. In this paper, we choose to conduct the evaluation using a zero-shot approach.

HumanEval [35]: a code-generation benchmark with 164 Python programming problems. Each
problem provides a function signature, docstring, and example input-output pairs; the model must gen-
erate code that passes the provided unit tests. HumanEval measures a model’s functional correctness
and programming proficiency.

For factual knowledge editing, we adopt two standard benchmarks following prior work [6, 15].
ZsRE [34] is a relation-centric question-answering dataset where each example includes an edit
prompt with a target answer, a semantically equivalent paraphrase to test generalization, and an
unrelated prompt to probe locality. CounterFact [13] consists of factual statements paired with
counterfactual versions (created by replacing the subject entity while keeping the predicate fixed).

A.2 Reproduction Details

In this section, we provide detailed information to reproduce our experimental results. All experiments
are conducted using 8 NVIDIA A100 GPUs.

* For all of the models, we use HuggingFace Transformers by default
(https://github.com/huggingface/transformers).

* For editing language models, we use the EasyEdit framework
(https://github.com/zjunlp/EasyEdit).

* For evaluating the general capabilities of models, we use the Language Model Evaluation
Harness
(https://github.com/EleutherAIl/Ilm-evaluation-harness).

* In editing experiments, our hyperparameters follow the settings provided by the EasyEdit
framework
(https://github.com/zjunlp/EasyEdit/tree/main/hparams).
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Layer 1 Layer 15 Layer 30

Figure 8: Neuron activation values in layers 1, 15, and 30 across 60 prompts.
B More Experimental Results and Analyses

B.1 Functional Roles of Neurons.

To further verify the generality of our neuron classification scheme across domains, we extend the
masking analysis from college biology to the high school chemistry subset in MMLU. As shown in
Table 5, masking the top-10 and top-50 task-relevant neurons (based on attribution scores) results in
accuracy drops of and , respectively. In contrast, masking knowledge-general
neurons leads to a drastic degradation, with accuracy dropping by over 35 percentage points. These
results are consistent with the findings presented in § 3.1, offering additional empirical evidence for
the non-uniform distribution of knowledge neurons within LLMs.

Table 5: Accuracy and drop in performance for different masking strategies on the high school
chemistry task.

Task | Mask Type | Accuracy (%) | Drop (%)
All neurons (base model) 36.94 -
high school chemistry (mask top-10) 22.66 114.28

high school chemistry | high school chemistry (mask top-50) 22.17 114.77
common neurons (mask top-10) 1.48 135.46
common neurons (mask top-50) 1.47 135.47

In addition, we further explore the dynamics of neuron activations across different layers. Specifi-
cally, we visualize the activation patterns of selected neurons in layers 1, 15, and 30, as shown in
Figure 8. Neurons in the early layers exhibit low-amplitude, noisy activations, which reflect their
general-purpose characteristics. In contrast, neurons in the mid-to-high layers show higher activation
magnitudes and greater variance across prompts, indicating an increased degree of specialization
and functional diversity. Notably, several neurons in layer 30 consistently exhibit strong activations
across prompts, suggesting a resonance-like behavior and highlighting their potential role in stable
knowledge retrieval in specific tasks. These findings further validate our classification of knowledge-
general neurons and knowledge-specific neurons, and support the use of dynamic sparse masking to
target minimal yet effective subspaces for knowledge editing.

B.2  Scaling to 5000 Edits: Lifelong Robustness Evaluation.

Table 6 presents a comparison of knowledge editing and generalization performance for AlphaEdit
and NMKE on the ZsRE and CounterFact datasets, evaluated at 3000 and 5000 editing steps. On
the ZsRE dataset, NMKE consistently outperforms AlphaEdit across all metrics at 7' = 3000. This
trend is maintained at 7' = 5000, where NMKE achieves strong performance in both edit success
and generalization, while AlphaEdit’s performance remains low across both metrics. These results
demonstrate NMKE’s effectiveness in maintaining generalization and achieving higher accuracy in
knowledge editing tasks, even with extensive editing steps.

B.3 MLP Weight Distribution Changes from 1000 to 2000 Edits: AlphaEdit vs. NMKE

Figure 9 shows the evolution of MLP weight distributions for AlphaEdit and NMKE at T' = 1000,
T = 1500, and T' = 2000. For AlphaEdit, the weight distribution becomes progressively more
dispersed with each additional editing step, reflecting the broader, layer-level modifications applied by
this method, which leads to increased instability in the model’s internal representations. In contrast,
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Table 6: Scaling to 5K edits on ZsRE and CounterFact datasets using LLaMA3-8B-Instruct.

| ZSRE (T=3000) | General Tasks (7'=3000)

Method | Rel. Gen. Loc. | MMLU GSM8K CommonsenseQA BBH-Zeroshot HumanEval
AlphaEdit 0.17 0.14 0.02 0.26 0.00 0.21 0.00 0.00
NMKE (ours) | 0.92 0.81 0.68 0.59 0.64 0.68 0.40 0.26

| ZSRE (T'=5000) | General Tasks (7'=5000)

Method \ Rel. Gen. Loc. \ MMLU GSM8K CommonsenseQA BBH-Zeroshot HumanEval
AlphaEdit ‘ 0.02 0.02 0.00 0.27 0.00 0.20 0.00 0.00
NMKE (ours) | 0.86 0.74 0.59 0.53 0.40 0.62 0.35 0.24

| CE(T=3000) | General Tasks (7=3000)
Method ‘ Rel. Gen. Loc. ‘ MMLU GSM8K CommonsenseQA BBH-Zeroshot HumanEval

AlphaEdit 0.04 0.01 0.00 0.23 0.00 0.20 0.00 0.00
NMKE (ours) | 095 0.65 0.33 0.59 0.67 0.65 0.39 0.23

(a) Alphaedit (T=1000) on LLama3-8B-Instruct (b) Alphaedit (T=1500) on LLama3-8B-Instruct (c) Alphaedit (T=2000) on LLama3-8B-Instruct

40 Alphakdit(t=1000) a0 AlphaEdit(t=1500) 40 Alphakdit(t=2000)

-4 -3 -20 -10 0 10 20 30 40 -40 -3 -20 -10 0 10 20 30 40 40 -30 -20 -10 o0 10 20 30 40

(d) NMKE (T=1000) on LLama3-8B-Instruct (e) NMKE (T=1500) on LLama3-8B-Instruct (f) NMKE (T=2000) on LLama3-8B-Instruct

40 NMKE 40 NMKE a0 NMKE

Figure 9: Hierarchical Distribution of Knowledge Neurons Across Layers

NMKE maintains a more stable distribution across all editing steps, with minimal deviation from
the original model. This evidences NMKE’s neuron-level editing, targeting only relevant neurons
and preserving global parameter stability with minimal interference. The observed trends highlight
NMKE’s advantage in sustaining internal stability across sequential knowledge edits.

B.4 Editing Performance on GPT2-XL and Qwen2.5-7B

Table 7 shows that NMKE consistently outperforms all baseline methods, including AlphaEdit, on
the ZsRE dataset using GPT2-XL, particularly in editing accuracy and localization. While NMKE
consistently leads, the difference compared to AlphaEdit is modest due to the smaller size of GPT2-
XL. Despite this, NMKE demonstrates a slight advantage, especially in later editing steps. Results on
Qwen2.5-7B are shown in Table 8.

B.5 /5-Norm Distribution of Layer 8 MLP Down-Projection Weights

Figure 10 illustrates the ¢5-norm distribution of the layer-8 MLLP down-projection weights for the
original model, AlphaEdit, and NMKE after 2000 sequential edits. The original model exhibits
a tight distribution. In contrast, AlphaEdit broadens and shifts the distribution, indicating large
layer-wise perturbations and reduced stability. NMKE remains close to the original with slight
deviations, consistent with selective neuron-level editing that minimizes collateral changes. Overall,
NMKE induces fewer disruptions to internal representations than AlphaEdit, thereby better preserving
stability and general capability under extensive edits.
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Table 7: Editing performance on the ZsRE dataset using GPT2-XL across sequential steps.

ZsRE on GPT2-XL

Method | T=10 | T =100 | T = 500 | T = 1000 | T = 1500 | T = 2000

‘Rel. Gen. Loc. ‘ Rel. Gen. Loc. ‘ Rel. Gen. Loc. ‘ Rel. Gen. Loc. ‘ Rel. Gen. Loc. ‘ Rel. Gen. Loc.

FT 026 0.18 0.06 | 0.06 0.06 0.02 |0.07 004 0.01 006 005 001|006 006 001|005 004 0.00
KN 0.02 0.00 0.05|0.01 0.00 0.010.00 000 0.00]000 000 000]|0.00 000 000/ 0.00 000 0.00
ROME 097 093 072 |0.19 0.16 0.03|0.05 004 0.01 002 001 000]|0.00 000 0.01|0.00 000 0.01
MEMIT 083 072 096 | 081 0.72 092|005 0.04 0.01 002 001 0.00|0.00 000 0.01 000 000 0.01
AlphaEdit 099 093 1.00 | 098 0.89 092|095 084 079 | 091 0.78 072|090 0.74 0.67 | 0.89 0.72 0.62

NMKE (Ours) | 098 095 1.00 | 096 086 093|095 084 079 | 093 076 075|091 073 070 | 090 070 0.65

Table 8: Editing performance on the ZsRE dataset using Qwen2.5-7B across sequential steps.

Method ‘ T =100 ‘ T = 500 ‘ T = 1000 ‘ T = 2000
| Rel. Gen. | Rel. Gen. | Rel. Gen. | Rel. Gen.

Alphaedit | 0.98 096 | 0.97 090 | 095 089 | 092 0.85
NMKE 097 096 | 097 093 | 097 091 | 0.96 0.90

B.6 Hierarchical Distribution of Knowledge Neurons Across Layers

Figure 11 shows the distribution of knowledge-general and knowledge-specific neurons across layers
0-31 of LLaMA3-8B to reveal their structural roles in knowledge representation. Knowledge-general
neurons are concentrated in the top layers, with a notably higher activation rate in layer 31, indicating
that they play a central role in aggregating high-level knowledge. Knowledge-specific neurons are
more evenly spread and gradually thin out with depth. The overlap ratio between knowledge-general
and knowledge-specific neurons reaches its maximum in the middle layers, implying that these
layers may act as integration hubs where general and specific knowledge intersect. This mirrors the
theoretical intuition that intermediate Transformer layers blend low-level and high-level semantics.

Notably, instead of modifying all knowledge-associated neurons, our sparse mask dynamically
identifies and edits only a minimal subset relevant to the target knowledge. The temperature coefficient
and scaling factors were set from the empirical distribution of neuron activations rather than hand-
tuned. All other hyperparameters were fixed across models and datasets, and NMKE consistently
achieved strong editing and generalization.

B.7 Memory overhead

To reduce overhead, we compute neuron attribution only in layers 4-8. As summarized in Table 9,
each layer instantiates three additional memory objects: attribution coefficients (=0.33 MB per layer),
a binary importance mask (/0.05 MB per layer), and two scalars. These objects are created on
demand during forward and attribution and released after editing, and their memory cost is negligible
relative to the model parameters.
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Table 9: Layer-wise attribution memory statistics.

Layer  Coeff Size (MB)  Non-zero Neurons  Resonance Ratio Burst Ratio

4-8 0.33 x5 ~6,072-7,320 ~0.30-0.33 ~0.24-0.28

Table 10: Quantitative analysis of parameter stability.

Layer Comparison Wasserstein| Cosine MeanT Cosine Std] /5 Mean] /5 Std|
7 Base vs AlphaEdit 0.2079 0.7632 0.0292 0.9337 0.1507
Base vs NMKE 0.0357 0.9588 0.0067 0.3564 0.0218

3 Base vs AlphaEdit 0.4371 0.6386 0.0594 1.2864 0.4421
Base vs NMKE 0.1057 0.8907 0.0175 0.6000 0.0542

9 Base vs AlphaEdit 0.0000 1.0000 0.0000 0.0000 0.0000
Base vs NMKE 0.0000 1.0000 0.0000 0.0000 0.0000

Table 11: Batched sequential editing scenarios.
| T = 1000 | T = 2000

Method

‘Rel. Gen.  Fluency ‘ Rel. Gen. Fluency

AlphaEdit | 0.88 0.79 4.79 0.68 0.58 4.77
NMKE 092 0.83 5.82 0.90 0.80 5.79

B.8 Quantitative analysis of parameter stability

We quantified weight shifts in layers 7-9 using Wasserstein, cosine, and {5 distances. As shown
in Table 10, NMKE induces significantly smaller distributional shifts than AlphaEdit in the edited
layers (4-8), better preserving the internal weight structure. In the unedited layer 9, neither method
produces any change.

B.9 Batched sequential editing scenarios

Table 11 shows that we use a batch size of 4 across 2000 sequential edits to simulate practical
simultaneous updates, evaluating all methods only after completing all edits for a fairer comparison.
Our results demonstrate that NMKE preserves stable editing accuracy and locality as the number of
edits grows, while AlphaEdit’s performance degrades considerably. This is likely due to AlphaEdit’s
fixed global projection matrix, which cannot adapt to distributional shifts across multiple edits. In
contrast, NMKE'’s fine-grained neuron-level masking minimizes per-batch weight changes, reducing
model drift.

C Limitations and Future Discussions

NMKE’s performance largely depends on neuron attribution and dynamic sparse masking. Our
current approach labels neurons as knowledge-general or knowledge-specific based on activation
patterns. In practice, neuron responses vary along a continuum and are influenced by both within-layer
activations and cross-layer interactions. Building on this, we will design more precise, continuous
importance measures at both the intra-layer and inter-layer levels and explicitly model cross-layer
information flow to learn path-aware attribution and masks that remain consistent across layers, which
should improve parameter localization and stability during long-horizon editing. In addition, edits
should satisfy dependency closure across related but distinct facts. For example, updating the current
CEO should remain consistent with the total number of CEOs. Quantifying and mitigating post-edit
propagation errors and conflicts is a key component of knowledge editing. These directions will
guide our future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in Appendix C.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Appendix A and the codes in the supplementary.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Yes, please refer to Appendix A.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, please refer to Appendix A.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: This paper does not report error bars following the practice of previous
studies [6, 11].

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, please refer to Appendix A.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This paper conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Yes, please refer to Appendix C.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, please refer to Appendix A.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Yes, please refer to Appendix A.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is used only for writing, editing, or formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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