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Abstract
Reasoning is a fundamental capability of Large
Language Models. While prior research predom-
inantly focuses on enhancing narrow skills like
math or code generation, improving performance
on many other reasoning tasks remains challeng-
ing due to sparse and fragmented training data.
To address this issue, we propose CODEI/O, a
novel approach that systematically condenses di-
verse reasoning patterns inherently embedded in
contextually-grounded codes, through transform-
ing the original code into a code input-output
prediction format. By training models to pre-
dict inputs/outputs given code and test cases en-
tirely in natural language as Chain-of-Thought
(CoT) rationales, we expose them to universal
reasoning primitives—like logic flow planning,
state-space searching, decision tree traversal, and
modular decomposition—while decoupling struc-
tured reasoning from code-specific syntax and
preserving procedural rigor. Experimental re-
sults demonstrate CODEI/O leads to consistent
improvements across symbolic, scientific, logic,
math & numerical, and commonsense reasoning
tasks. By matching the existing ground-truth out-
puts or re-executing the code with predicted in-
puts, we can verify each prediction and further
enhance the CoTs through multi-turn revision,
resulting in CODEI/O++ and achieving higher
performance. Our data and models are available
at https://github.com/hkust-nlp/CodeIO.

1. Introduction
Reasoning is a fundamental aspect of human cognition and
problem-solving, forming the basis for quickly transferring
and adapting to new tasks (Dehaene et al., 2004; Knauff
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& Wolf, 2010; Wang & Chiew, 2010). It is also recog-
nized as a cornerstone of advanced Large Language Mod-
els (LLMs) and a critical step toward achieving Artificial
General Intelligence (AGI) (Huang & Chang, 2022; Qiao
et al., 2022; Jaech et al., 2024; Xiang et al., 2025). Current
approaches, however, face a fundamental paradox: while
tasks like math problem solving (Shao et al., 2024; Yang
et al., 2024; Zeng et al., 2024; Ying et al., 2024; Toshni-
wal et al., 2024) and code generation (Roziere et al., 2023;
Mistral-AI, 2024; Zhu et al., 2024; Hui et al., 2024) benefit
from abundant structured training data, most other reasoning
domains—including logical deduction, scientific inference,
and symbolic reasoning—suffer from sparse and fragmented
supervision signals. As a result, it becomes crucial to iden-
tify training data that is rich in diverse reasoning patterns
while remaining scalable to obtain.

We believe that real-world code programs reflect the inte-
gration of a wide range of reasoning patterns across diverse
contexts, making them an ideal source for training while
minimizing the risk of overfitting. However, conventional
continual pre-training on raw code is suboptimal because
the relevant reasoning signals are often implicit and inter-
twined with noisy information. Even the cleaner objective
of directly training on text-to-code generation also faces
challenges, as it is constrained by the requirement to gen-
erate code-specific syntax, making it difficult to generalize
to tasks beyond code-specific ones. To address such lim-
itations, we propose transforming raw code files into exe-
cutable functions and designing a more straightforward task:
given a function along with its corresponding textual query,
the model needs to predict either the execution outputs given
inputs or feasible inputs given outputs entirely in natural lan-
guage as CoT rationales. This approach aims to disentangle
core reasoning flow from code-specific syntax while preserv-
ing logical rigor. By gathering and transforming functions
from diverse sources, the resulting data incorporates a va-
riety of foundational reasoning skills, such as logic flow
orchestration, state-space exploration, recursive decompo-
sition, and decision-making. Learning from these samples
across the diverse contexts provided by the raw code files
enables models to gain repeated exposure to these reasoning
processes, allowing them to better internalize these skills.

Similar to continual pre-training on raw code, our code in-
put/output prediction learning is introduced as a distinct
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Figure 1: Overview of our training data construction: Raw code files are gathered from various sources and converted into a
unified format. Input-output pairs are then generated by executing the code, while natural language CoTs for predictions are
collected from DeepSeek-V2.5. The verified CoTs can undergo optional revisions to further enhance reasoning chains.

training stage positioned before general instruction tuning
in a two-stage manner, serving as an intermediate step to en-
hance the reasoning abilities of the base model. The prompt
includes the function, the textual query, and the given in-
put or output, while the response is directly collected by
prompting a strong open-source model, DeepSeek-V2.5
(DeepSeek-AI et al., 2024). Notably, the instances for input-
output prediction are highly scalable to collect, as we can
sample hundreds of inputs from a separate Python input
generator for each function and execute the code to obtain
ground-truth outputs. Finally, we collect over 450K func-
tions from multiple sources, and for each function, several
input-output pairs are generated by executing the corre-
sponding code. Synthesizing CoTs for them results in a
total of 3.5M training samples, yielding the CODEI/O data.
To further leverage the verifiable characteristics of code, we
verify all predictions based on code execution and prompt
DeepSeek-V2.5 for a second turn of revisions on the re-
sponses it initially got wrong. These multi-turn revisions
are then concatenated into longer responses. The resulting
CODEI/O++ dataset further enhances model performance,
demonstrating the effectiveness of this refinement process.

We validate the effectiveness of CODEI/O and CODEI/O++
across four base models with parameter sizes ranging from
7B to 30B . Assessments across 14 different benchmarks
show training on them enhances performance on a diverse
range of reasoning tasks, not only limited to code-related
tasks but also more generalized tasks such as logic, sym-
bolic, mathematical & numerical, scientific, commonsense,
etc. Compared to several strong data baselines, such as
OpenMathInstruct2 (Toshniwal et al., 2024), OpenCoder-
SFT-Stage1 (Huang et al., 2024), WebInstruct (Yue et al.,
2024), and high-quality raw code (Ben Allal et al., 2024),
CODEI/O achieves not only higher average scores across
all four tested base models but also more balanced perfor-
mance – Instead of boosting scores on only a small subset
of evaluation benchmarks while causing declines on others,
CODEI/O delivers consistent improvements across nearly

all benchmarks, demonstrating balanced and generalizable
reasoning abilities.

2. CODEI/O
Our data construction pipeline is presented in this section.
We begin with collecting raw code files from various sources
(§2.1). They are then transformed into a unified format
(§2.2). Next, I/O pairs are sampled from the transformed
functions (§2.3). Finally, the complete training dataset is
assembled (§2.4). An overview is depicted in Figure 1.

2.1. Collecting Raw Code Files

The effectiveness of CODEI/O lies in selecting diverse raw
code sources that encompass a wide range of reasoning
patterns. To achieve this, we select sources with different
emphases: CodeMix, a large collection of raw Python code
files retrieved from an in-house code pre-training corpus,
where we filter out files that are either overly simplistic or
excessively complex; and PyEdu-R (reasoning), a subset of
Python-Edu (Ben Allal et al., 2024) that focuses on complex
reasoning tasks such as STEM, system modeling or logic
puzzles. To avoid overlap with CodeMix, we deliberately
exclude files centered on pure algorithms. Beyond these two
sources, we also incorporate high-quality code files from a
variety of smaller, reputable sources, including comprehen-
sive algorithm repositories, challenging math problems, and
well-known online coding platforms. In total, merging these
sources yields approximately 810.5K code files. Further
details on the data sources can be found in Appendix C.1.

2.2. Transforming to a Unified Format

The collected raw code files often lack structure, contain ir-
relevant elements, and are hard to execute in a self-contained
way. Therefore, we preprocess them using DeepSeek-V2.5
(DeepSeek-AI et al., 2024), which refines them into a uni-
fied format that emphasizes main logical functionality and
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You are given an amount of money `amt` and a list of coin 
denominations `coins`. Your task is to determine the minimum number 
of coins needed to make up the amount `amt` using the given 
denominations. If it is not possible to make the amount with the given 
coins, the function should return `inf` (infinity).

def change_ref(amt, coins):
    if amt <= 0: return 0
    if amt != 0 and not coins: return float("inf")
    elif coins[0] > amt: return change_ref(amt, 
coins[1:])
    else:
        use_it = 1 + change_ref(amt - coins[0], 
coins)
        lose_it = change_ref(amt, coins[1:])
        return min(use_it, lose_it)

1. Greedy Approach: We want to use as many of the largest denomination coins as 
possible to minimize the number of coins. However, the greedy approach doesn't 
always work for all coin systems, so we need to consider all possible combinations.

2. Possible Combinations:
   - Using the largest coin `7`:
     - We can use `7` coins up to `3` times (since `3 * 7 = 21`).
     - After using `3` coins of `7`, we have `25 - 21 = 4` left.
     - To make `4`, we can use `1` coin of `4`.
     - Total coins used: `3 (for 7) + 1 (for 4) = 4` coins.
   
   - Using fewer `7` coins:
     - If we use `2` coins of `7`, we have `25 - 14 = 11` left.
     - To make `11`, we can use `2` coins of `4` (totaling `8`) and `3` coins of `1`.
     - Total coins used: `2 (for 7) + 2 (for 4) + 3 (for 1) = 7` coins.
   
   - Using `1` coin of `7`:
     - We have `25 - 7 = 18` left.
     - To make `18`, we can use `4` coins of `4` (totaling `16`) and `2` coins of `1`.
     - Total coins used: `1 (for 7) + 4 (for 4) + 2 (for 1) = 7` coins.
   
   - Using no `7` coins:
     - We can use `6` coins of `4` (totaling `24`) and `1` coin of `1`.
     - Total coins used: `6 (for 4) + 1 (for 1) = 7` coins.

3. Optimal Solution: The combination that uses the fewest coins is the one where we 
use `3` coins of `7` and `1` coin of `4`, totaling `4` coins.                            
{"output": 4}

1. Objective: We need to find an input where the minimum number of coins required 
to make up the amount `amt` is `4`.
2. Coin Denominations: The list of coin denominations should be such that the 
combination of coins that sums up to `amt` requires exactly `4` coins.
3. Example: Suppose we have coin denominations `[1, 2, 5]` and we want to make up 
the amount `8`. The optimal way to make up `8` using these coins is:
   - 1 coin of `5`
   - 1 coin of `2`
   - 1 coin of `1`
   - This sums up to `8` using `3` coins, which is less than `4`. So, this is not the correct 
input.
4. Another Example: Let's consider coin denominations `[1, 3, 4]` and the amount `6`. 
The optimal way to make up `6` using these coins is:
   - 1 coin of `4`
   - 2 coins of `1`
   - This sums up to `6` using `3` coins, which is still less than `4`.
5. Correct Example: Now, consider coin denominations `[1, 3, 4]` and the amount `8`. 
The optimal way to make up `8` using these coins is:
   - 2 coins of `4`
   - This sums up to `8` using `2` coins, which is less than `4`.
6. Final Example: Let's try coin denominations `[1, 2, 5]` and the amount `13`. The 
optimal way to make up `13` using these coins is:
   - 2 coins of `5`
   - 1 coin of `2`
   - 1 coin of `1`
   - This sums up to `13` using `4` coins, which matches our desired output.

{"input": {"amt": 13, "coins": [1, 2, 5]}}

Query Reference Code

Given output = 4, predict inputGiven input = {“amt”: 25, “coins”: [1,4,7]}, predict output

Figure 2: Two examples for the collected responses for input and output prediction respectively.

makes it executable for us to collect input-output pairs for
later prediction tasks. This transformation organizes the data
into the following components, and we provide a complete
example in Table 10 in Appendix G: 1) Cleaned Reference
Code: We preprocess the raw code files by cleaning and
refactoring the code to extract core logical functionalities
into functions. Non-essential elements like visualization
(e.g., print, plot) and file processing (e.g., read, write) are
excluded. 2) Main Entrypoint Function: A main entry-
point function is added to summarize the overall logic of the
code. It can call other functions or import external libraries
and must have non-empty arguments (inputs) as well as re-
turn meaningful outputs. All inputs and outputs are required
to be JSON-serializable to facilitate further processing. 3)
Input/Output Description: The inputs and outputs of the
main entrypoint function are clearly defined, including in-
formation on data types, constraints (e.g., output ranges), or
more complex requirements (e.g., keys in a dictionary). 4)
Input Generator: Rather than generating test cases directly,
a standalone rule-based python input generator function is
created. This generator returns non-trivial inputs that follow
the requirements of the main entrypoint function. Random-
ness is applied subject to constraints, enabling scalable data
generation. 5) Query: A concise problem statement is gen-
erated based on the main entrypoint function, serving as a

query to describe its intended functionality of the code.

2.3. Collecting Input and Output Pairs

After converting the collected raw code files into a unified
format, we sample multiple inputs using the input generator
for each function and obtain the corresponding outputs by
executing the code. To ensure the outputs are deterministic,
we skip all functions that include randomness, such as those
using import random. During the execution of these codes,
we also impose a series of limits on the runtime and the com-
plexity of the input/output objects (details in Appendix A).
For each transformed function, we sample multiple input-
output pairs, with the exact number depending on the source
from which it originates (details in Appendix C.2). After
filtering out non-executable code, samples that exceed the
runtime limit, and input-output pairs surpassing the desired
complexity, we obtain 3.5M instances derived from 454.9K
raw code files. The distribution of input and output predic-
tion instances is roughly balanced at 50%/50%.

2.4. Building Samples for Input-Output Prediction

After collecting the input-output pairs as well as the trans-
formed functions, we need to assemble them into a trainable
format. For the supervised fine-tuning process we adopt, a
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prompt and a response are needed for each training sample.
Since we aim for the input-output prediction tasks, we con-
struct the prompt using a designed template to combine the
function, the query, the reference code, and either a specific
input or output. We provide an example prompt in Figure
8 in Appendix G. The response should ideally be a natural
language CoT to reason about how to derive the correct out-
put or a feasible input. In general, we choose the following
two ways to construct the desired CoT responses:

Direct Prompting – CODEI/O While having full exe-
cutable code theoretically allows us to generate reliable
execution trajectories as responses, two challenges arise:
1) Obtaining a deterministic reverse function for input pre-
diction is impractical; 2) Automatically constructed trajec-
tories are constrained by pre-designed templates and lack
the expressiveness and generalizability of free-form natural
language reasoning. Thus, we adopt a fully LLM-based
approach for synthesizing all the desired responses using
DeepSeek-V2.5, as it has top-tier performance but extremely
low cost compared to other advanced LLMs. The dataset
generated here is referred to as CODEI/O. We provide two
examples of collected responses in Figure 2.

Making Full Use of Code – CODEI/O++ A common ap-
proach to enhance data quality is reject sampling (Yuan et al.,
2023), where incorrect predictions are discarded. Though
this approach suits CODEI/O well as we can verify all re-
sponses by re-executing the codes, we find it leads to subop-
timal performance (§4.1). Therefore, we take an alternative
approach to fully utilize the execution feedback from our
reference code. For responses with incorrect predictions, we
append the feedback as the second turn of input messages
and ask DeepSeek-V2.5 to regenerate another response. In
practice, we capture multiple types of feedback: For output
prediction, we simply inform the model that it generated
an incorrect answer. For input prediction, we additionally
provide the executed output based on the incorrect input.
For instances where the code fails to execute (e.g., due to
a format error, argument mismatch error, or other runtime
error), we also include these feedback explicitly.

After the second turn, we re-check the correctness of the
newly generated responses. We then construct the final
response by concatenating all of the four components: Turn
1 response + Turn 1 feedback + Turn 2 response + Turn 2
feedback. For correct responses in the first turn, the Turn 1
feedback is simply ”Success” with no Turn 2 contents. In
general, in first turn, 50% of the responses are correct and
10% of the incorrect ones can be successfully revised in the
second turn. Similar to CODEI/O, we keep all responses,
either correct or incorrect, after the revision. The dataset we
collect through this way is referred to as CODEI/O++, and
we provide a complete example in Table 11 in Appendix G.

3. Experiments
3.1. Settings

Models We select the following base models as the back-
bones: Qwen 2.5 7B Coder (Hui et al., 2024), Deepseek v2
Lite Coder (MoE) (Zhu et al., 2024), LLaMA 3.1 8B (Dubey
et al., 2024), and Gemma 2 27B (GemmaTeam et al., 2024).
These models were chosen for being the most advanced
base models currently, differing in architecture, size, and
pre-training focus. Notably, we include two coder models,
as previous studies have shown that coder models exhibit
stronger reasoning capabilities compared to general-purpose
models (Suzgun et al., 2023; Shao et al., 2024).

Instruction Tuning Data We utilize an in-house instruction-
tuning dataset containing approximately 1.18M samples
from different languages, encompassing a wide range of
domains such as math, coding, writing, and more. Tuning
the model on this dataset enables it to effectively follow
diverse instructions, making it applicable to and testable on
a broad spectrum of downstream tasks.

Training Setups Similar to continual pre-training, we em-
ploy a two-stage training strategy in most of our experi-
ments. The first stage involves training on the CODEI/O or
CODEI/O++ dataset, followed by a second stage of general
instruction-tuning.

The reason for adopting this two-stage training approach
is rooted in the characteristics of our datasets. The
CODEI/O(++) dataset contains a significantly larger number
of samples compared to the instruction-tuning data. Sim-
ply mixing the two datasets would result in a biased dis-
tribution, which could lead to insufficient learning on the
instruction-tuning data. This might prevent the model from
fully demonstrating its capacity to follow diverse instruc-
tions in downstream tasks. To address this, the two-stage
training first strengthens the model as a more robust base
model for general reasoning, and then adapts it into a versa-
tile instruction-following model through instruction tuning.
Detailed training hyper-parameters are in Appendix E.

Evaluation Benchmarks We evaluate all models on these
benchmarks: DROP (Dua et al., 2019), WinoGrande (Sak-
aguchi et al., 2020), GSM8K (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021b), MMLU-STEM (Hendrycks et al.,
2021a), BBH (Suzgun et al., 2023), GPQA (Rein et al.,
2024), CruxEval (Gu et al., 2024), ZebraGrid (Lin et al.,
2025). These benchmarks span multiple key reasoning do-
mains, including science, math & numerical, symbolic, com-
monsense, logic, and code understanding. We also include
two comprehensive benchmarks as well: LiveBench (White
et al., 2024)1, and KorBench (Ma et al., 2024). Besides

1We adopt the 2406-2407 split, excluding the code generation
and instruction-following subtasks as they are not our focus.
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Table 1: Main evaluation results on all benchmarks. WI = WebInstruct, OMI2 = OpenMathInstruct2, OC-SFT-1 =
OpenCoder-SFT-Stage-1, PyEdu = PythonEdu. We also report the number of training samples for each dataset. Color-coded
cells (green/red) are employed to denote improvements or declines relative to the single-stage baseline, with deeper shades
indicating larger score shifts.

1st Stage Wino
DROP

GSM
MATH GPQA

MMLU LC CRUX BBH Zebra Kor Live
AVGDataset # (M) Grande 8K -STEM -O -I -O -EN -ZH Logic Bench Bench

Qwen 2.5 Coder 7B

2nd Stage Only 66.9 70.7 83.4 71.6 41.5 77.2 20.7 61.3 60.0 68.3 70.6 10.9 38.7 26.0 54.8

WI 3.5 66.3 73.5 87.0 71.4 39.1 77.5 18.3 59.1 61.6 68.6 68.7 10.2 42.5 26.0 55.0
WI (Full) 11.6 67.0 75.0 87.0 71.1 42.9 78.6 19.1 59.3 59.8 68.4 70.4 10.9 41.9 27.6 55.6
OMI2 3.5 67.6 74.3 84.1 72.3 36.2 77.4 20.9 60.4 61.5 68.8 69.3 10.1 42.7 27.2 55.2
OMI2 (Full) 14.0 66.9 74.0 88.5 73.2 40.9 77.8 19.9 59.5 62.4 68.3 71.3 11.2 41.2 28.4 56.0
OC-SFT-1 4.2 66.6 75.3 86.7 70.9 37.7 78.0 20.3 60.9 60.1 67.5 67.6 10.8 40.1 27.5 55.0
PyEdu 7.7 66.7 74.8 85.8 71.4 40.9 77.4 19.1 58.9 62.4 67.8 65.7 10.6 39.3 25.8 54.8

CODEI/O 3.5 67.9 76.4 86.4 71.9 43.3 77.3 23.7 63.6 64.9 69.3 72.8 10.7 44.3 28.5 57.2
CODEI/O++ 3.5 66.9 79.1 85.7 72.1 40.6 77.9 24.2 62.5 67.9 71.0 74.2 10.7 45.7 29.1 57.7

LLaMA 3.1 8B

2nd Stage Only 71.3 73.1 83.2 49.9 40.6 70.0 4.1 44.5 46.9 65.8 65.6 9.8 39.8 25.7 49.3

WI 3.5 72.1 76.3 82.8 52.8 42.9 69.6 4.1 44.0 44.8 64.5 67.8 10.0 42.7 23.1 49.8
OMI2 3.5 72.2 74.8 86.2 58.9 38.2 70.1 5.8 46.1 46.4 67.4 68.6 9.5 40.3 24.5 50.6
OC-SFT-1 4.2 71.0 71.9 81.8 51.1 38.2 68.4 5.7 43.5 44.9 65.6 67.6 10.5 42.0 24.7 49.1
PyEdu 7.7 70.6 69.6 83.2 49.8 42.4 69.1 5.2 43.1 44.5 64.0 65.6 10.2 42.6 25.7 49.0

CODEI/O 3.5 71.7 73.9 83.6 53.8 43.5 69.0 9.3 50.1 53.3 67.5 65.3 10.4 40.9 24.7 51.2
CODEI/O++ 3.5 71.8 75.1 84.0 53.2 40.9 68.4 10.0 50.4 53.1 70.0 70.6 10.5 43.2 28.1 52.1

DeepSeek Coder v2 Lite 16B

2nd Stage Only 68.4 73.4 82.5 60.0 38.6 68.5 14.8 53.0 54.9 61.1 69.2 6.7 44.7 26.6 51.6

WI 3.5 68.5 73.8 83.7 60.5 39.5 68.7 14.3 53.5 57.1 61.6 65.7 6.9 43.1 25.4 51.6
OMI2 3.5 67.6 74.1 84.7 64.7 38.4 70.1 14.4 53.8 55.8 63.6 66.4 6.4 42.0 24.7 51.9
OC-SFT-1 4.2 68.2 73.6 83.3 60.9 37.3 69.1 14.7 52.8 56.1 60.9 67.9 6.1 42.7 25.2 51.3
PyEdu 7.7 68.3 74.6 83.0 60.6 38.2 69.7 15.6 54.9 57.0 61.9 68.6 7.0 44.7 24.6 52.1

CODEI/O 3.5 68.4 74.6 83.6 60.9 38.6 70.3 18.7 58.4 62.8 63.1 70.8 7.8 46.0 26.1 53.6
CODEI/O++ 3.5 69.0 73.5 82.8 60.9 38.8 70.0 20.3 59.5 61.0 64.2 69.4 6.7 46.3 26.9 53.5

Gemma 2 27B

2nd Stage Only 72.4 80.1 90.1 66.3 44.4 82.8 19.1 62.5 66.9 77.1 80.4 13.5 47.8 30.0 59.5

WI 3.5 73.2 79.0 91.5 70.6 44.9 82.7 20.7 63.5 66.3 77.6 77.2 17.1 47.3 33.3 60.4
OMI2 3.5 73.1 79.3 90.8 67.1 44.0 83.4 19.2 61.4 66.0 77.1 80.5 13.9 49.7 40.7 60.4
OC-SFT-1 4.2 73.5 79.9 91.1 66.1 46.9 81.8 20.2 62.8 65.6 77.3 78.9 14.0 46.9 35.3 60.0
PyEdu 7.7 73.7 79.5 90.3 66.0 45.3 82.8 18.7 61.3 64.9 77.4 79.0 14.2 48.9 34.0 59.7

CODEI/O 3.5 75.9 80.7 91.2 67.4 44.9 83.3 22.4 65.0 70.3 77.9 78.7 14.6 49.1 31.3 60.9
CODEI/O++ 3.5 73.1 82.0 91.4 66.9 46.0 83.0 26.6 64.4 70.6 78.4 77.8 16.4 49.4 35.3 61.5

these established benchmarks, we test on two extra ones:
BBH-ZH, a Chinese version of 9 BBH subtasks2 as our
instruction tuning data contains both English and Chinese
examples, and LeetCode-O (LC-O), designed for bilingual
output prediction for LeetCode questions with test cases.
All evaluations are done with greedy decoding in a zero-
shot setting, except for BBH-EN/-ZH where we use a 3-shot
setup. Details of all benchmarks are in Appendix B.

Baselines The primary baseline is to directly fine-tune the

2For clarity, BBH is referred to as BBH-EN in later sections.

base model on the instruction-tuning dataset in a single
stage (2nd Stage only). This serves to evaluate whether
the additional training stage provides any tangible bene-
fits. We also select several strong datasets as baselines in
the first Stage: WebInstruct (Yue et al., 2024): A large
instruction-tuning dataset with 11.6M samples mined from
the Internet and refined by LLMs. OpenMathInstruct-2
(Toshniwal et al., 2024): A 14M-sample dataset focused
on math problem solving, augmented from GSM8K and
MATH using LLaMA 3.1 405B-Inst (Dubey et al., 2024).
OpenCoder-SFT-Stage-1 (Huang et al., 2024): A 4.2M QA-
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Table 2: Key ablations we tested and the number of training samples under each condition. For a fairer comparison, we also
provide results on a ∼ 50% subset of CODEI/O to ensure the number of training samples remains comparable.

Wino
DROP

GSM
MATH GPQA

MMLU LC CRUX BBH Zebra Kor Live
AVG# (M) Grande 8K -STEM -O -I -O -EN -ZH Logic Bench Bench

CODEI/O 3.52 67.9 76.4 86.4 71.9 43.3 77.3 23.7 63.6 64.9 69.3 72.8 10.7 44.3 28.5 57.2
∼ 50% subset 1.59 67.5 74.7 86.7 71.6 42.9 77.3 23.0 62.8 65.9 69.1 70.8 10.5 42.1 28.9 56.7

Effect of prediction inputs or outputs only.

I. Pred. only 1.75 66.3 75.9 85.8 71.6 38.8 77.7 22.9 62.8 64.5 68.3 69.4 11.4 44.4 26.2 56.1
O. Pred. only 1.76 66.9 75.2 84.6 71.5 42.4 76.5 23.3 61.1 65.6 70.1 72.1 11.4 42.2 26.9 56.4

Effect of rejection sampling.

w/o wrong 1.79 66.8 74.9 87.4 71.5 39.1 76.7 22.6 62.6 66.6 68.3 71.9 11.5 42.6 27.8 56.5
wrong→gt 3.52 66.4 76.8 86.0 70.6 42.4 76.5 24.3 62.1 67.6 68.0 71.1 11.5 43.1 26.6 56.6
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Figure 3: Average scores of Stage 1 training on CODEI/O,
a 3.5M WebInstruct subset (WI) and an enhanced version
distilled from DeepSeek-V2.5 Directly (WI-DS25).

pair dataset synthesized from general code data, covering
diverse computer science domains. Python-Edu (Ben Allal
et al., 2024): Following findings that continued pre-training
on code tends to enhance reasoning, we adopt its full 7.7M
code corpus and train on it using a standard language model-
ing loss. For WebInstruct and OpenMathInstruct-2, we use
3.5M subsets for most experiments to align with the size
of our CODEI/O dataset, but also report the scores when
training on the complete datasets for Qwen 2.5 7B Coder.

3.2. Main Results

We demostrate the main evaluation results in Table 1. As
shown, CODEI/O provides universal gains across bench-
marks, outperforming both the single-stage baseline and
other datasets, even larger ones. While competing datasets
may excel in specific tasks (e.g., OpenMathInstruct2 on
math) but regress in others (mixed green and red cells),
CODEI/O shows consistent improvements (mainly green
patterns). Despite using only code-centric data, it enhances
all other tasks beyond code reasoning as well, suggesting
its generalizable capabilities. We also observe that training
on raw code files (PythonEdu) results in only minor, and
occasionally even negative, improvements compared to the

single-stage baseline, significantly underperforming when
compared to CODEI/O, suggesting that learning from such
less-structured data is suboptimal. This further highlights
that performance gains are driven not merely by data size
but by thoughtfully designed training tasks that encompass
diverse, structured reasoning patterns in generalized CoTs.

Additionally, CODEI/O++ systematically outperforms
CODEI/O, boosting average scores without trade-offs on
individual tasks. This highlights how execution-feedback-
based multi-turn revision improves data quality and en-
hances reasoning across domains. Most importantly, both
CODEI/O and CODEI/O++ demonstrate performance im-
provements across models of various sizes and architectures
on most benchmarks, although we also observed nearly un-
changed or even decreased performance on a small number
of tasks. The further validates that our training approach,
predicting code inputs and outputs, enables models to excel
in diverse reasoning tasks without sacrificing specialized
benchmark performance.

4. Analysis
To examine the influence of different critical aspects of
our approach, we carry out multiple analysis experiments.
Unless explicitly stated otherwise, all experiments are per-
formed using Qwen 2.5 Coder 7B for simplicity, and the
results reported are those obtained after the second-stage
general instruction tuning.

4.1. Ablation Studies

We first perform two key ablation studies on our data con-
struction process, with results presented in Table 2:

Input/Output Prediction We examine input and output pre-
diction by training on each separately. The scores are gener-
ally similar, but input prediction excels on KorBench while
slightly hurting GPQA, and output prediction shows greater
benefits on symbolic reasoning tasks like BBH. CRUXEval-
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(a) Size of randomly sampled subset. (b) Ratio of testcases per sample compared to the full set.

Figure 4: The scaling effect of CODEI/O in the first stage training.

I and -O also favor input and output prediction, respectively.

Rejection Sampling We explore filtering incorrect re-
sponses using rejection sampling, which removes 50% of
the training data. However, this results in a general per-
formance drop, suggesting a loss of data diversity. We
also experiment with replacing all incorrect responses with
ground-truth answers through code execution (without CoT).
We see improvements on benchmarks like LeetCode-O and
CRUXEval-O designed to measure output prediction accu-
racy, but it lowers scores elsewhere, reducing the average
performance. When comparing these two with training on
a ∼ 50% subset of CODEI/O where the number of samples
are comparable, they still have no advantages. Therefore,
to maintain performance balance, we retain all incorrect re-
sponses in the main experiments without any modification.

4.2. Effect of Different Synthesis Model

Some of our baselines such as WebInstruct synthesize re-
sponses with Qwen-72B (Bai et al., 2023) and Mixtral
22Bx8 (Jiang et al., 2024a), while CODEI/O uses DeepSeek-
V2.5. To ablate the effect of different synthesis models, we
regenerate responses for the 3.5M WebInstruct (as it covers
massive domains) subset using DeepSeek-V2.5, creating
an updated dataset called WebInstruct-DS25. As shown in
Figure 3, while WebInstruct-DS25 outperforms the vanilla
dataset on Qwen 2.5 Coder 7B and LLaMA 3.1 8B, it still
falls short of CODEI/O. This highlights the value of diverse
reasoning patterns in code and the importance of task se-
lection in training. Overall, this comparison shows that
predicting code inputs and outputs improves reasoning be-
yond mere knowledge distillation from an advanced model.

4.3. Scaling Effect of CODEI/O

We evaluate how CODEI/O scales with varying amounts
of training data. By randomly sampling training instances,
Figure 4a reveals a clear trend: increasing the number of
training samples generally leads to improved performance
across benchmarks. Specifically, using the smallest amount
of data exhibits relatively weak performance on most bench-
marks, as the model lacks sufficient training to generalize
effectively. In contrast, when trained on the full dataset,
CODEI/O achieves the most comprehensive and robust per-
formance. Intermediate amounts of data yield results that
fall between these two extremes, demonstrating a gradual
improvement in performance as more training samples are
introduced. This highlights CODEI/O’s scalability and ef-
fectiveness in enhancing reasoning capabilities.

We also scale the data on the dimension of input-output
pairs by fixing and using all unique raw code samples but
changing the number of input-output prediction instances
for each sample. Figure 4b shows the ratio of used I/O pairs
compared to the full set. While the scaling effect is less
pronounced than with training samples, we still observe
clear benefits, particularly when increasing from 1/6 to 6/6.
This suggests some reasoning patterns require multiple test
cases to fully capture and learn their complex logic flow.

4.4. Different Data Format

We investigate how to best arrange the query, reference code,
and CoT in training samples. As shown in Table 3, placing
the query and reference code in the prompt and the CoT in
the response achieves the highest average score and most
balanced performance across benchmarks. Other formats
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Table 3: The effect of different data formats. We make bold the highest and underline the lowest scores in each column.

Data Format Wino
DROP

GSM
MATH GPQA

MMLU LC CRUX BBH Zebra Kor Live
AVGPrompt Response Grande 8K -STEM -O -I -O -EN -ZH Logic Bench Bench

Q+Code CoT 67.9 76.4 86.4 71.9 43.3 77.3 23.7 63.6 64.9 69.3 72.8 10.7 44.3 28.5 57.2
Q CoT 67.2 76.8 87.2 70.4 37.5 77.3 25.2 62.6 65.3 69.2 71.1 11.5 44.9 28.5 56.8
Code CoT 67.9 76.4 87.0 70.8 39.5 76.5 25.0 64.1 65.8 68.8 71.3 10.6 45.2 28.5 57.0
Q Code+CoT 65.9 76.1 87.5 71.7 42.2 76.9 22.9 63.9 66.1 69.6 72.9 10.9 41.4 28.5 56.9
Q Code 66.9 73.1 84.8 71.6 40.0 77.4 20.8 59.5 62.4 67.2 68.3 10.1 40.3 26.3 54.9
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Figure 5: Average benchmark scores from training on data
from different turns of revision.

show slightly lower but comparable performance, with the
worst results occurring when the query is in the prompt and
the reference code in the response, resembling a standard
code generation task but with much fewer training samples.
This highlights the importance of CoT and the scaling of
test cases for learning transferable reasoning ability.

4.5. Multi-turn Revision

Based on CODEI/O (no revision) and CODEI/O++ (single-
turn revision), we extended revisions to a second turn to
evaluate further improvements by regenerating predictions
for instances still incorrect after the first revision. We visual-
ize the distribution of response types in each turn in Figure
7 in Appendix D. It shows that most correct responses are
predicted in the initial turn, with about 10% of incorrect
responses corrected in the first-turn revision. However, the
second turn yields significantly fewer corrections, we find
by checking the cases that the model often repeats the same
incorrect CoT without adding new useful information. After
incorporating multi-turn revisions, we observe consistent
improvement from turn 0 to turn 1 but minimal gains from
turn 1 to turn 2 in Figure 5 – showing slight improvement
for LLaMA 3.1 8B but regression for Qwen 2.5 Coder 7B.
Hence, we stop at single-turn revision, i.e., CODEI/O++, in
our main experiments.

4.6. The Necessity of Two Stage Training

Lastly, we highlight the necessity of a separate training stage
with CODEI/O data by testing both single-stage mixed train-

Table 4: Average benchmark score under different training
strategy. IT stands for our instruction-tuning data.

First Second Model
Stage Stage Qwen LLaMA

- IT 54.8 49.3
- CODEI/O(10%)+IT 56.6 50.5

CODEI/O+IT - 55.9 49.7
CODEI/O IT 57.2 51.2

CODEI/O+IT IT 56.8 51.5
CODEI/O CODEI/O(10%)+IT 57.0 52.7

ing and two-stage training with different data mixtures. As
shown in Table 4, all two-stage variants outperform single-
stage training. Meanwhile, the effect of mixing data dur-
ing two-stage training varies across models. For Qwen
2.5 Coder 7B, the best result is keeping CODEI/O and
instruction-tuning data fully separate, while LLaMA 3.1
8B performs better with mixed data, either in the first stage
or in the second stage. To simplify our methodology, we
use fully separated data in our main experiments, leaving
optimal data-mixing strategies for future work.

4.7. Discussion on Data Leakage

Considering the diversity of CODEI/O, it is unavoidable
to see pattern overlap in both the training data and the test
benchmarks. Thus, distinguishing whether the performance
gain is from learning similar reasoning patterns or from
seeing identical questions in training becomes important. To
do so, we conduct a strict 13-gram-based leakage detection
on CODEI/O data following Singh et al. (2024). Specifically,
if any normed (punctuation, numbers, and blank spaces
removed) 13-gram in a test question is found in the whole
training data, it will be tagged as potentially leaked. The
results are shown in Table 5, and we can see that for most of
the benchmarks, there is no risk of leakage, or the leakage
ratio is far less than the performance gain.

Upon manual inspection of the two benchmarks – LeetCode-
O and KorBench – with high potential leakage ratios, we
find that:

1) KorBench overlaps only contain general descriptions
like Sudoku rules or common letter sequences (“A B C D...”)
rather than specific questions – our training tasks and the
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Table 5: Potential data leakage ratio over different bench-
marks measured by 13-gram overlap.

Benchmark Ratio (%) Benchmark Ratio (%)

LeetCode-O 21.5 MMLU 0.1
KorBench 5.1 CRUXEval 0.1
MATH 0.1 Others 0.0

Table 6: Sample-wise accuracy gains of CODEI/O com-
pared to the baseline on both the full set and the non-leaked
set.

Model
LeetCode-O KorBench

full unleaked full unleaked

Qwen 3.8 3.9 5.8 6.1
LLaMA 9.4 9.4 1.0 0.9
DSLite 5.3 5.7 -1.2 -1.3
Gemma 3.7 3.9 1.4 1.3

benchmark tasks are completely different.

2) LeetCode-O overlaps stem from sibling problems shar-
ing common descriptions (e.g., Two Sum I & II), despite
our having removed all original problems from our training
data.

To further evaluate whether the gains on these two bench-
marks are due to data leakage, we calculated the sample-
wise accuracy gains of CODEI/O compared to the baseline
on both the full set and the non-leaked set for various mod-
els. The results are shown in Table 6. The similar gains
observed on both full and non-leaked subsets across all mod-
els confirm that our improvements are not attributable to
data leakage.

5. Related Work
Learning about Code Execution The topic of learning
code execution has existed long before the era of LLMs
(Zaremba & Sutskever, 2014; Graves et al., 2014). However,
most related works focus solely on the output prediction task
itself when learning from code execution (Nye et al., 2021;
Liu et al., 2023; Ding et al., 2024c). Other works seek to uti-
lize code execution, either through the final feedback (Ding
et al., 2024a; Wang et al., 2024) or the intermediate trace
(Ding et al., 2024b; Ni et al., 2024), to improve code gener-
ation abilities. There are also specific benchmarks designed
to evaluate a model’s ability to predict execution results,
such as CRUXEval (Gu et al., 2024) and LiveCodeBench-
Exec (Jain et al., 2024). Similar to our method, Jiang et al.
(2024b) also propose to learn from code execution to en-
hance general reasoning ability, but the involved functions
are mainly LeetCode ones. Unlike the above works, which
set a narrow scope within code-related tasks, we are the first

to train LLMs on large-scale, diverse code input-output pre-
dictions and demonstrate its efficacy in improving general
reasoning ability beyond code.

Inference Time Scaling A very recent approach to en-
hance reasoning is inference-time scaling, such as OpenAI’s
o1 (Jaech et al., 2024) or DeepSeek’s R1 (DeepSeek-AI
et al., 2025), which typically encourages models to gener-
ate ultra-long reasoning process to solve problems through
large-scale reinforcement learning. Such methods are push-
ing models to new limits on massive challenge tasks, while
also significantly altering the output patterns of models. We
believe that CODEI/O is orthogonal to these methods, and
we hope it can provide a better basis to further incentivize
the reasoning abilities of LLMs.

6. Conclusion
In conclusion, we introduced CODEI/O, an approach to im-
prove the reasoning abilities of LLMs by training them to
predict code inputs and outputs in pure natural language
CoTs. This approach leverages the structured and scalable
nature of code to learn diverse reasoning patterns, including
symbolic, logical, mathematical, and commonsense reason-
ing. Extensive experiments show that CODEI/O as well
as the enhanced CODEI/O++ consistently outperforms ex-
isting baselines, delivering balanced improvements across
benchmarks without sacrificing performance in any domain,
underscoring its robustness and versatility.
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ari, B., Ramé, A., et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Gu, A., Roziere, B., Leather, H. J., Solar-Lezama, A., Syn-
naeve, G., and Wang, S. CRUXEval: A benchmark
for code reasoning, understanding and execution. In
Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A.,
Oliver, N., Scarlett, J., and Berkenkamp, F. (eds.), Pro-
ceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learn-
ing Research, pp. 16568–16621. PMLR, 21–27 Jul 2024.
URL https://proceedings.mlr.press/v235/gu24c.
html.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In International Conference
on Learning Representations, 2021a. URL https://
openreview.net/forum?id=d7KBjmI3GmQ.

10

https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=PnlCHQrM69
https://openreview.net/forum?id=PnlCHQrM69
https://proceedings.mlr.press/v235/gu24c.html
https://proceedings.mlr.press/v235/gu24c.html
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ


CODEI/O: Condensing Reasoning Patterns via Code Input-Output Prediction

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 2),
2021b.

Huang, J. and Chang, K. C.-C. Towards reasoning in
large language models: A survey. arXiv preprint
arXiv:2212.10403, 2022.

Huang, S., Cheng, T., Liu, J. K., Hao, J., Song, L., Xu, Y.,
Yang, J., Liu, J., Zhang, C., Chai, L., et al. Opencoder:
The open cookbook for top-tier code large language mod-
els. arXiv preprint arXiv:2411.04905, 2024.

Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang, L., Liu,
T., Zhang, J., Yu, B., Dang, K., et al. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186, 2024.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I.
Livecodebench: Holistic and contamination free eval-
uation of large language models for code. arXiv preprint
arXiv:2403.07974, 2024.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., Casas, D. d. l., Hanna,
E. B., Bressand, F., et al. Mixtral of experts. arXiv
preprint arXiv:2401.04088, 2024a.

Jiang, J., Yan, Y., Liu, Y., Jin, Y., Peng, S., Zhang, M., Cai,
X., Cao, Y., Gao, L., and Tang, Z. Logicpro: Improving
complex logical reasoning via program-guided learning.
arXiv preprint arXiv:2409.12929, 2024b.

Knauff, M. and Wolf, A. G. Complex cognition: the sci-
ence of human reasoning, problem-solving, and decision-
making, 2010.

Lambert, N., Morrison, J., Pyatkin, V., Huang, S., Ivison,
H., Brahman, F., Miranda, L. J. V., Liu, A., Dziri, N.,
Lyu, S., et al. Tulu 3: Pushing frontiers in open language
model post-training. arXiv preprint arXiv:2411.15124,
2024.

Lin, B. Y., Bras, R. L., Richardson, K., Sabharwal, A.,
Poovendran, R., Clark, P., and Choi, Y. Zebralogic: On
the scaling limits of llms for logical reasoning. arXiv
preprint arXiv:2502.01100, 2025.

Liu, C., Lu, S., Chen, W., Jiang, D., Svyatkovskiy, A.,
Fu, S., Sundaresan, N., and Duan, N. Code execution

with pre-trained language models. In Findings of the
Association for Computational Linguistics: ACL 2023,
pp. 4984–4999, 2023.

Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier,
J., Tazi, N., Tang, A., Pykhtar, D., Liu, J., Wei, Y., et al.
Starcoder 2 and the stack v2: The next generation. arXiv
preprint arXiv:2402.19173, 2024.

Ma, K., Du, X., Wang, Y., Zhang, H., Wen, Z., Qu, X., Yang,
J., Liu, J., Liu, M., Yue, X., et al. Kor-bench: Benchmark-
ing language models on knowledge-orthogonal reasoning
tasks. arXiv preprint arXiv:2410.06526, 2024.

Mistral-AI. Codestral, 2024. URL https://mistral.ai/
news/codestral/.

Ni, A., Allamanis, M., Cohan, A., Deng, Y., Shi, K., Sutton,
C., and Yin, P. NExt: Teaching large language models to
reason about code execution. In Forty-first International
Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=B1W712hMBi.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., et al. Show your work: Scratchpads for
intermediate computation with language models. arXiv
preprint arXiv:2112.00114, 2021.

Qiao, S., Ou, Y., Zhang, N., Chen, X., Yao, Y., Deng,
S., Tan, C., Huang, F., and Chen, H. Reasoning with
language model prompting: A survey. arXiv preprint
arXiv:2212.09597, 2022.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y.,
Dirani, J., Michael, J., and Bowman, S. R. GPQA: A
graduate-level google-proof q&a benchmark. In First
Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=Ti67584b98.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Sauvestre, R., Remez, T., et al.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Sakaguchi, K., Le Bras, R., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 8732–8740, 2020.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang,
H., Zhang, M., Li, Y., Wu, Y., et al. Deepseekmath: Push-
ing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Singh, A. K., Kocyigit, M. Y., Poulton, A., Esiobu, D.,
Lomeli, M., Szilvasy, G., and Hupkes, D. Evaluation data
contamination in llms: how do we measure it and (when)
does it matter? arXiv preprint arXiv:2411.03923, 2024.

11

https://mistral.ai/news/codestral/
https://mistral.ai/news/codestral/
https://openreview.net/forum?id=B1W712hMBi
https://openreview.net/forum?id=B1W712hMBi
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98


CODEI/O: Condensing Reasoning Patterns via Code Input-Output Prediction

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid,
A., Fisch, A., Brown, A. R., Santoro, A., Gupta, A.,
Garriga-Alonso, A., et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of language
models. arXiv preprint arXiv:2206.04615, 2022.

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay, Y.,
Chung, H. W., Chowdhery, A., Le, Q., Chi, E., Zhou, D.,
et al. Challenging big-bench tasks and whether chain-of-
thought can solve them. In Findings of the Association for
Computational Linguistics: ACL 2023, pp. 13003–13051,
2023.

Toshniwal, S., Du, W., Moshkov, I., Kisacanin, B.,
Ayrapetyan, A., and Gitman, I. Openmathinstruct-2:
Accelerating ai for math with massive open-source in-
struction data. arXiv preprint arXiv:2410.01560, 2024.

Wang, X., Peng, H., Jabbarvand, R., and Ji, H. Leti: Learn-
ing to generate from textual interactions. In Findings of
the Association for Computational Linguistics: NAACL
2024, pp. 223–239, 2024.

Wang, Y. and Chiew, V. On the cognitive process of human
problem solving. Cognitive systems research, 11(1):81–
92, 2010.

White, C., Dooley, S., Roberts, M., Pal, A., Feuer, B., Jain,
S., Shwartz-Ziv, R., Jain, N., Saifullah, K., Naidu, S.,
et al. Livebench: A challenging, contamination-free llm
benchmark. arXiv preprint arXiv:2406.19314, 2024.

Xiang, V., Snell, C., Gandhi, K., Albalak, A., Singh, A.,
Blagden, C., Phung, D., Rafailov, R., Lile, N., Mahan,
D., et al. Towards system 2 reasoning in llms: Learning
how to think with meta chain-of-though. arXiv preprint
arXiv:2501.04682, 2025.

Yang, A., Zhang, B., Hui, B., Gao, B., Yu, B., Li, C., Liu,
D., Tu, J., Zhou, J., Lin, J., et al. Qwen2.5-math techni-
cal report: Toward mathematical expert model via self-
improvement. arXiv preprint arXiv:2409.12122, 2024.

Ying, H., Zhang, S., Li, L., Zhou, Z., Shao, Y., Fei, Z.,
Ma, Y., Hong, J., Liu, K., Wang, Z., et al. Internlm-
math: Open math large language models toward verifiable
reasoning. arXiv preprint arXiv:2402.06332, 2024.

Yuan, Z., Yuan, H., Li, C., Dong, G., Lu, K., Tan, C., Zhou,
C., and Zhou, J. Scaling relationship on learning math-
ematical reasoning with large language models. arXiv
preprint arXiv:2308.01825, 2023.

Yue, X., Zheng, T., Zhang, G., and Chen, W. Mam-
moth2: Scaling instructions from the web. arXiv preprint
arXiv:2405.03548, 2024.

Zaremba, W. and Sutskever, I. Learning to execute. arXiv
preprint arXiv:1410.4615, 2014.

Zeng, L., Zhong, L., Zhao, L., Wei, T., Yang, L., He, J.,
Cheng, C., Hu, R., Liu, Y., Yan, S., et al. Skywork-
math: Data scaling laws for mathematical reasoning in
large language models–the story goes on. arXiv preprint
arXiv:2407.08348, 2024.

Zhu, Q., Guo, D., Shao, Z., Yang, D., Wang, P., Xu, R.,
Wu, Y., Li, Y., Gao, H., Ma, S., et al. Deepseek-coder-
v2: Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931, 2024.

12



CODEI/O: Condensing Reasoning Patterns via Code Input-Output Prediction

A. Details of Checking Execution Complexity
During the execution of these codes, we set a runtime limit of 5 seconds for each sample. Additionally, we impose constraints
on the complexity of the input and output objects to ensure they remain predictable and within the generation capability of
general LLMs: total size of objects must be less than 1024 bytes, length of lists and dictionaries should be less than 20, and
strings should be no longer than 100 characters. For objects other than these simple types, we enforce a size limit of 128
bytes. These checks are conducted recursively to ensure that all sub-objects within the full input/output object comply with
these constraints. The exact code for these checks is shown below:

from pympler import asizeof

def strict_check_size(obj):
if asizeof.asizeof(obj) >= 1024:

return False
if isinstance(obj, dict):

if len(obj) >= 20:
return False

for k, v in obj.items():
if not strict_check_size(k) or not strict_check_size(v):

return False
elif isinstance(obj, (list, tuple, set)):

if len(obj) >= 20:
return False

for item in obj:
if not strict_check_size(item):

return False
elif isinstance(obj, str):

if len(obj) >= 100:
return False

else:
if asizeof.asizeof(obj) >= 128:

return False
return True

B. Details of Selected Benchmarks
We introduce the details of all the benchmarks we use in this work. The sizes of their test sets are shown in Table 7. Some
parts of these descriptions largely refer to Yue et al. (2024). The following are the established ones:

WinoGrande (Sakaguchi et al., 2020): WinoGrande is a benchmark for commonsense reasoning with expert-crafted
pronoun resolution problems.

DROP (Dua et al., 2019): DROP is a benchmark for numerical reasoning in reading comprehension. It demands resolving
references and performing operations like addition, counting, or sorting. We report the F1 score as the metric.

GSM8K (Cobbe et al., 2021): GSM8K contains diverse grade-school math problems, intended to test basic arithmetic and
reasoning abilities in an educational context.

MATH (Hendrycks et al., 2021b): MATH comprises intricate competition-level problems across 5 levels to evaluate the
models’ ability to perform complex mathematical reasoning.

GPQA (Rein et al., 2024): GPQA provides “Google-proof” questions in biology, physics, and chemistry, designed to test
deep domain expertise and reasoning under challenging conditions. We use its complete set.

MMLU-STEM (Hendrycks et al., 2021a): MMLU spans 57 subjects across multiple disciplines. MMLU evaluates the
breadth and depth of a model’s knowledge in a manner akin to academic and professional testing environments. We select
the STEM subset of MMLU.

CRUXEval (Gu et al., 2024): CRUXEval is designed to test a model’s ability to predict the inputs or outputs given an
anonymized Python function.

BBH (Suzgun et al., 2023): BBH consists of 23 tasks previously found challenging for language models from BIG-Bench
(Srivastava et al., 2022).
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Table 7: The number of test samples in the test set of each benchmark.

Wino
DROP

GSM
MATH GPQA

MMLU LC CRUX BBH Zebra Kor Live
Grande 8K -STEM -O -I -O -EN -ZH Logic Bench Bench

1,267 9,536 1,319 5,000 448 3,153 900 800 800 6,511 2,250 1,000 1,250 672

You have n coins and you want to build a staircase with these coins. The staircase consists of k
rows where the ith row has exactly i coins. The last row of the staircase may be incomplete.

Given the integer n, return the number of complete rows of the staircase you will build.

n = 5

What is the Output? Solve the problem without writing any code, and present your final
answer at the end in the following json format: {"output": <my output>}.

Figure 6: An example in the constructed Leetcode-O benchmark.

ZebraLogic (Lin et al., 2025): ZebraLogic is a benchmark using Logic Grid Puzzles (Zebra Puzzles) to test LLMs’ logical
reasoning. It involves deducing unique feature assignments for N houses based on clues, evaluating Constraint Satisfaction
Problem (CSP) solving skills, similar to human reasoning tests like the LSAT.

KorBench (Ma et al., 2024): KorBench is designed to evaluate models’ intrinsic reasoning and planning abilities by
minimizing interference from pretrained knowledge. It introduces new rules that are independent of prior knowledge,
allowing for a more accurate assessment of how models adapt to novel rule-driven tasks. KorBench consists of five task
categories: Operation, Logic, Cipher, Puzzle, and Counterfactual, each containing 25 manually defined rules.

LiveBench (White et al., 2024): LiveBench is a benchmark for LLMs designed to prevent test set contamination and
ensure objective evaluation. It releases new questions monthly, sourced from recent datasets, arXiv papers, news, and
IMDb synopses. Each question has verifiable, objective answers, enabling accurate, automatic scoring without LLM judges.
It includes 18 diverse tasks across 6 categories, including reasoning, coding, mathematics, data analysis, language, and
instruction following.

We also have two extra ones created by ourselves:

BBH-ZH: We translate 9 tasks from BBH, i.e., boolean expressions, date understanding, logical deduction five objects,
navigate, object counting, reasoning about colored objects, temporal sequences, tracking shuffled objects five objects, web
of lies, to build a Chinese version.

LeetCode-O: We build a benchmark for testing code output prediction based on LeetCode problems. Different from
CRUXEval, which only provides the Python function but not the textual query, LeetCode-O instead only provides the textual
query but not the function, making it more challenging as the model needs to come up with the implicit solution by itself. In
constructing this benchmark, we deliberately skip all LeetCode problems that have been covered by our training dataset
and keep a balanced distribution of 300/300/300 across easy/medium/hard problems. For each problem, we also have both
the original English version and a Chinese-translated version. We report the problem-level accuracy, which gets 1 point if
and only if the model correctly predicts the outputs for all inputs under both languages; otherwise, it gets 0 points. The
input-output pairs are collected solely from the original problem descriptions; thus, each problem usually has 2 or 3 test
cases. We provide an example for this benchmark in Figure 6.

C. Details of Processing Different Data Sources
C.1. Source Distribution

CodeMix CodeMix is a large collection of raw Python code files retrieved and curated from an in-house code pre-training
corpus. To ensure the quality and relevance of the dataset, we filter out files that are either overly simplistic or excessively
complex. This filtering process is based on the success rate of the DeepSeek-Coder-V2-Lite-Inst model in doing a function
completion task derived from each file. Files with a success rate between 10% and 90% are retained, resulting in a collection
of approximately 427K code files.
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Table 8: Ablation study on data sources, we remove all training samples originate from one major data source.

Wino
DROP

GSM
MATH GPQA

MMLU LC CRUX BBH Zebra Kor Live
AVG# (M) Grande 8K -STEM -O -I -O -EN -ZH Logic Bench Bench

CODEI/O 3.52 67.9 76.4 86.4 71.9 43.3 77.3 23.7 63.6 64.9 69.3 72.8 10.7 44.3 28.5 57.2
∼ 50% subset 1.59 67.5 74.7 86.7 71.6 42.9 77.3 23.0 62.8 65.9 69.1 70.8 10.5 42.1 28.9 56.7

w/o CodeMix 1.84 65.8 76.6 87.3 70.9 42.6 77.0 21.8 62.0 65.0 68.5 69.5 10.7 43.8 26.8 56.3
w/o PyEdu-R 1.89 66.8 75.4 86.0 71.4 40.6 77.0 24.1 61.8 64.8 69.8 72.3 11.0 46.3 30.1 57.0

PyEdu-R Python-Edu (Ben Allal et al., 2024) is a large dataset containing about 7.7M high-quality Python code files
sourced from the Stack-V2 dataset (Lozhkov et al., 2024). These files are annotated with an additional scoring model to
evaluate their educational quality. Since our analysis indicates that a significant portion of the CodeMix dataset focuses
on algorithms, we intentionally exclude similar content from Python-Edu. To achieve this, we classify all code files into
several categories, such as algorithms, logic puzzles, math-related tasks, scientific computation, system modeling, other
complex reasoning, and non-reasoning codes, using both DeepSeek-Coder-V2-Lite-Inst and DeepSeek-V2.5. We remove
files classified as algorithms and non-reasoning. The resulting subset is referred to as PyEdu-R(easoning) and contains
approximately 369K code files.

Other Sources In addition to the two major datasets described above, we also collect high-quality code files from a
variety of other reputable sources. These include comprehensive algorithm repositories3, challenging mathematical problem
collections4, and well-known online coding platforms5. After consolidating all of these sources, we obtain a total of
approximately 14.5K code files.

C.2. Input-Output Pairs for Each Source

CodeMix For each sample in this subset, we select at most 3 pairs of input-output examples, resulting in 3 input prediction
instances and 3 output prediction instances per sample. After filtering, we obtain 300K samples, with an average of 2.78
input and 2.80 output prediction instances per sample, totaling 1,674,345 instances.

Pyedu-R For each sample in this subset, we select at most 6 pairs of input-output examples, resulting in 6 input prediction
instances and 6 output prediction instances per sample. After filtering, we obtain 141K samples, with an average of 5.77
input and 5.79 output prediction instances per sample, totaling 1,630,716 instances.

Other Sources For each sample in this subset, we select at most 10 pairs of input-output examples, resulting in 10 input
prediction instances and 10 output prediction instances per sample. After filtering, we obtain 13.9K samples, with an average
of 7.70 input and 7.87 output prediction instances per sample, totaling 216,159 instances.

C.3. The Effect of Using Different Sources

We analyze the contributions of our two main data sources, CodeMix and PyEdu-R, by excluding the training samples from
each. The results, presented in Table 8, indicate that removing PyEdu-R reduces performance on mathematical and scientific
benchmarks (e.g., DROP, GSM8K, GPQA), consistent with its construction process. In contrast, removing CodeMix has a
greater negative impact on symbolic or logical tasks, reflecting its focus on algorithmic content.

Nevertheless, combining both data sources yields the best overall performance. When comparing them to a similarly sized
subset of CODEI/O, we observe that removing CodeMix results in a performance decline, while removing PyEdu-R has a
smaller effect. Upon further inspection of the samples from PyEdu-R, we find that many focus on complex calculations
involving nontrivial floating-point numbers, but place less emphasis on high-level reasoning or problem-solving flows. This
characteristic makes PyEdu-R challenging for models to learn from effectively. Future work could explore refining or
cleaning PyEdu-R to enhance its learnability and utility.

3https://github.com/TheAlgorithms/Python
4https://projecteuler.net
5https://github.com/doocs/leetcode, https://www.codewars.com, https://edabit.com, https://codeforces.com,

https://atcoder.jp, https://www.codechef.com
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Figure 7: In multi-turn revision, we track the percentage (%) of each response type across the entire dataset after each
revision turn.

Table 9: Performance when switching the second stage instruction-tuning data to Tulu-3 (Lambert et al., 2024).

Wino
DROP

GSM
MATH GPQA

MMLU LC CRUX BBH Zebra Kor Live
AVGStage 1 Stage 2 Grande 8K -STEM -O -I -O -EN -ZH Logic Bench Bench

- Tulu3 66.9 59.9 81.0 38.3 27.2 69.3 16.6 53.9 59.9 63.9 69.8 8.9 35.2 22.5 48.1
CODEI/O Tulu3 68.1 59.4 79.3 39.8 30.4 71.3 17.6 57.1 64.3 65.8 72.5 8.6 43.4 22.4 50.0
CODEI/O++ Tulu3 67.6 54.9 80.5 39.9 27.5 71.9 20.6 57.3 63.3 66.6 70.0 9.3 41.8 24.3 49.7

D. Detailed Statistics in Multi-turn Revision
We report the detailed distribution of response types after each revision turn in Figure 7, including both input and output
predictions. In general, we observe that most correct predictions are already made in the initial turn. During the first
revision turn, approximately 16% and 10% of incorrect predictions are revised for input and output predictions, respectively.
However, in the second revision turn, significantly fewer predictions are revised, indicating a rapidly diminishing benefit
from further revisions. Therefore, to save computing resources—both in prompting DeepSeek-V2.5 and executing the code
for verification—we limit the revision process to a single turn in our main experiments.

E. Training Hyper-parameters
During the first stage, we train for 1 epoch using a constant learning rate, which is set to 1e-5 for the three smaller models
and 4e-6 for Gemma 2 27B. The batch size is 1024. In the second stage, we train for 700 steps with the batch size of 1024
as well, corresponding to about 3 epochs of the entire instruction-tuning dataset. The learning rate is set to 3e-5 for the
three smaller models and 1e-5 for Gemma 2 27B, using a cosine scheduler decaying to 1e-6 and 3e-7, respectively. In both
training stages, no warmup period is applied and the maximum sequence length is set to 4096.

F. The Effect of Using Other Instruction-Tuning Data
Besides our in-house instruction-tuning data, we also conduct experiments using another strong public instruction-tuning
dataset, Tulu-3 (Lambert et al., 2024). We present the benchmark performance when training on Qwen 2.5 Coder 7B in
Table 9. After switching to this new dataset for the second stage of training, we still observe a significant improvement over
the single-stage baseline, indicating the robustness of CODEI/O. However, contrary to our main experiments, CODEI/O++
performs slightly worse than CODEI/O. A potential reason for this could be that Tulu-3 does not cover as many instruction
types as our in-house dataset, which may limit the model’s ability to fully leverage its reasoning capabilities after training.

G. Examples Mentioned in the Main Text
In this section, we present the examples mentioned in the main text. Table 10 illustrates an example of how we transform
a raw code file into our desired unified format. Figure 8 provides an example of the exact prompt used in both response
collection and training. Additionally, Table 11 demonstrates a complete training sample in CODEI/O++. In this sample, the
initial response is incorrect, but after incorporating feedback and regenerating the response, DeepSeek-V2.5 successfully
revise it to a correct prediction at the second turn.
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Table 10: A complete example showing how we transform a raw code file into our designed unified format.

Raw Code File Cleaned Reference Code (with Main Entrypoint Function)

#get the vertical acceleration data
acceleration [. . . . . . . . ]
# pass acceleration data to low pass filter
time[. . . . . . . . . . . . ]

#code to find speed at each point
initial_speed = current_speed
delta_t = t_current - t_prev
curr_acc = acc[i]
current_speed = initial_speed + (curr_acc) * delta_t

#code to find dispacement

initial_dis = current_disp
delta_t = t_current - t_prev
curr_speed = ("call above algorithm")
current_disp = initial_dis + (initial_speed + current_speed)/2

* delta_t ;↩→

#code to find horizontal displacement

#use the above same code and find horizontal displacement
#pass both the displacement data through low pass filter
#map horizontal and vertical displacement to give road profile

# import necessary packages
import numpy as np

# main function
def main_solution(acceleration, time, initial_speed,

initial_displacement):↩→
# Convert inputs to numpy arrays if they are not already
acceleration = np.array(acceleration)
time = np.array(time)

# Initialize variables
current_speed = initial_speed
current_disp = initial_displacement

# Calculate speed and displacement
speeds = []
displacements = []

for i in range(1, len(time)):
delta_t = time[i] - time[i-1]
curr_acc = acceleration[i]
current_speed = current_speed + curr_acc * delta_t
speeds.append(current_speed)

current_disp = current_disp + (initial_speed +
current_speed) / 2 * delta_t↩→

displacements.append(current_disp)

initial_speed = current_speed

# Convert outputs to JSON serializable format
speeds = [float(speed) for speed in speeds]
displacements = [float(disp) for disp in displacements]

return {"speeds": speeds, "displacements": displacements}

Query

Given a set of vertical acceleration data and corresponding time points, how can we determine
the speed and displacement of a vehicle at each time point, starting from an initial speed and
displacement?

Input/Output Description Input Generator

Input:
acceleration (list of float): List of vertical

acceleration values at each time point.↩→
time (list of float): List of time points corresponding to

the acceleration values.↩→
initial_speed (float): Initial speed at the first time

point.↩→
initial_displacement (float): Initial displacement at the

first time point.↩→

Output:
return (dict): A dictionary containing two keys:
- speeds (list of float): List of calculated speeds at

each time point.↩→
- displacements (list of float): List of calculated

displacements at each time point.↩→

def input_generator():
# Generate random acceleration data
acceleration = [np.random.uniform(-10, 10) for _ in

range(10)]↩→

# Generate corresponding time data
time = [0.1 * i for i in range(10)]

# Generate initial speed and displacement
initial_speed = np.random.uniform(0, 10)
initial_displacement = np.random.uniform(0, 10)

return {
"acceleration": acceleration,
"time": time,
"initial_speed": initial_speed,
"initial_displacement": initial_displacement

}
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You are given a question that requires some input and output variables as follows:

Given two jugs with capacities of ‘x‘ and ‘y‘ liters, is it possible to measure exactly
‘z‘ liters of water using these two jugs? What is the result of this measurement attempt?

The input and output requirements are as follows:

Input:
‘x‘ (int): The capacity of the first jug in liters.
‘y‘ (int): The capacity of the second jug in liters.
‘z‘ (int): The desired amount of water to measure in liters.

Output:
‘return‘ (bool): True if it is possible to measure exactly z liters using the two jugs, False
otherwise.

Given the following output: Input Prediction

True

Can you predict a feasible input without writing any code? Please reason and put your
final answer in the following json format: "input": <your input>, where <your input> should be
a dictionary, even if the there is only one input variable, with keys strictly match the input
variables’ names as specified.

Given the following input: Output Prediction

{"x":5, "y": 6, "z": 7}

Can you predict the output without writing any code? Please reason and put your final
answer in the following json format: "output": <your output>, where <your output> should strictly
match the the output requirement as specified.

Tip: Here is a reference code snippet for this question. You can refer to this code to
guide your reasoning but not copy spans of code directly.

# import necessary packages
import random

# main function
def main solution(x, y, z):

"""
Determines if it is possible to measure exactly z liters using two jugs with capacities x and y

liters.

:param x: int, capacity of the first jug in liters
:param y: int, capacity of the second jug in liters
:param z: int, the desired amount of water to measure in liters
:return: bool, True if it is possible to measure exactly z liters, False otherwise
"""
if z == 0:

return True
if x + y < z:

return False
if x > y:

x, y = y, x
if x == 0:

return y == z
while y % x != 0:

y, x = x, y % x
return z % x == 0

Figure 8: An example prompt we used for collecting responses and training. Most parts of the prompt for input and output
prediction remain the same, except for the two gray background blocks, which is used as needed.
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Table 11: A complete example for input prediction in CODEI/O++ training data. The reference code is omitted in the
prompt, and the given input is highlighted. For the concatenated response, we highlight the template, the Turn 1 feedback,
and the Turn 2 feedback, and all the other contents are generated by DeepSeek-V2.5 in two turns.

Prompt

You are given a question that requires some input and output variables as follows:

Given a list of integers numbers and an integer target, determine the length of the shortest contiguous subarray whose sum is at least
target. If no such subarray exists, return 0. How can you find this shortest subarray length efficiently?

The input and output requirements are as follows:

Input:
- target (int): The target sum that the subarray should at least reach.
- numbers (list of int): A list of integers representing the array from which the subarray is to be found.

Output:
- return (int): The length of the shortest contiguous subarray whose sum is at least the target. Returns 0 if no such subarray exists.

Given the following output: 4

Can you predict a feasible input without writing any code? Please reason and put your final answer in the following json format: {"input": <your
input>}, where <your input> should be a dictionary with keys strictly match the input variables’ names as specified.

Concatenated Response (Turn 1 generation + Turn 1 feedback + Turn 2 generation + Turn 2 feedback)

To predict a feasible input that results in the output 4, we need to consider the following:

1. Target Sum: The target sum is the minimum sum that a subarray should achieve.
2. Numbers List: The list of integers from which we need to find the shortest subarray.
3. Output: The length of the shortest subarray whose sum is at least the target.

Given the output is 4, this means the shortest subarray that meets or exceeds the target sum has a length of 4.

### Reasoning:
- Target Sum: Let’s assume the target sum is 10.
- Numbers List: We need to construct a list where the shortest subarray that sums to at least 10 has a length of 4.

### Example Construction:
- If we have a list like [1, 2, 3, 4, 5], the subarray [2, 3, 4, 5] sums to 14, which is greater than 10, and its length is 4.

Thus, a feasible input that results in the output 4 could be:

```json
{"input": {"target": 10, "numbers": [1, 2, 3, 4, 5]}}
```

This input satisfies the condition that the shortest subarray with a sum of at least 10 has a length of 4.

Let me check if I did it correctly ...... Oops! Something went wrong and I find this

[Mismatch] Your input is not feasible! Given the output 4, your predicted input is {"target": 10, "numbers": [1, 2, 3, 4, 5]}, which
actually gets a wrong output as 3

Well ...... I apologize for the oversight. Let’s re-evaluate the input to ensure it matches the output 4.

We need to find a list of integers where the shortest contiguous subarray whose sum is at least target has a length of exactly 4.

### Revised Reasoning:
- Target Sum: Let’s keep the target sum as 10.
- Numbers List: We need a list where a subarray of length 4 sums to 10 or more.

### Example Construction:
- Consider the list [1, 2, 2, 2, 2, 2]:

- The subarray [2, 2, 2, 2] sums to 8, which is less than 10.
- However, if we add another 2, making it [1, 2, 2, 2, 2, 2, 2], the subarray [2, 2, 2, 2] still sums to 8.

- Let’s try a different approach with larger numbers to ensure the subarray of length 4 sums to at least 10:
- Consider the list [1, 3, 2, 2, 5, 1]:

- The subarray [1, 3, 2, 2] sums to 8, which is less than 10.
- The subarray [3, 2, 2, 5] sums to 12, which is more than 10, and its length is 4.

Thus, a feasible input that results in the output 4 could be:

```json
{"input": {"target": 10, "numbers": [1, 3, 2, 2, 5, 1]}}
```

This input satisfies the condition that the shortest subarray with a sum of at least 10 has a length of 4.

Let me check if I did it correctly ...... Yes, that’s correct! I made it!
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