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ABSTRACT

With the rapid evolution of large language models (LLMs), the demand for au-
tomated, high-performance system kernels has emerged as a key enabler for ac-
celerating development and deployment. We introduce TRITONRL, a domain-
specialized LLM for Triton kernel generation, trained with a novel reinforcement
learning (RL) framework that enables robust and automated kernel synthesis. Un-
like CUDA, which benefits from abundant programming data, high-performance
Triton kernels are scarce and typically require costly crawling or manual author-
ing. Furthermore, reliable evaluation methods for validating Triton kernels re-
main underdeveloped and even hinder proper diagnosis of base model perfor-
mance. Our approach addresses these challenges end-to-end with a fully open-
source recipe: we curate datasets from KernelBook, enhance solution quality
via DeepSeek-assisted distillation, and fine-tune Qwen3-8B to retain both rea-
soning ability and Triton-specific correctness. We further introduce hierarchical
reward decomposition and data mixing to enhance RL training. With correct re-
evaluations of existing models, our experiments on KernelBench demonstrate that
TRITONRL achieves state-of-the-art correctness and speedup, surpassing all other
Triton-specific models and underscoring the effectiveness of our RL-based train-
ing paradigm.

1 INTRODUCTION

The exponential growth in demand for GPU computing resources has driven the need for highly opti-
mized GPU kernels that improve computational efficiency, yet with the emergence of numerous GPU
variants featuring diverse hardware specifications and the corresponding variety of optimization ker-
nels required for each, developing optimized kernels has become an extremely time-consuming and
challenging task. In response to this need, there is growing interest in leveraging large language
models (LLMs) for automated kernel generation. While there have been attempts introducing infer-
ence frameworks that utilize general-purpose models, such as OpenAI models and DeepSeek, for
generating kernels (Ouyang et al., 2025; Lange et al., 2025; Li et al., 2025a; NVIDIA Developer
Blog, 2025), they often struggle with even basic kernel implementations, thereby highlighting the
critical need for domain-specific models specifically tailored for kernel synthesis.

As the need for specialized models for kernel generation has emerged, several works have focused on
fine-tuning LLMs for CUDA or Triton. In the CUDA domain, recent RL-based approaches include
Kevin-32B Baronio et al. (2025), which progressively improves kernels using execution feedback
as reward signals, and CUDA-L1, which applies contrastive RL to DeepSeek-V3 Li et al. (2025c).
While these large models (32B-671B parameters) achieve strong CUDA performance, their training
costs remain prohibitively expensive. To address these limitations, researchers have proposed spe-
cialized 8B Triton models, including KernelLLM Fisches et al. (2025) (supervised training on torch
compiler-generated code) and AutoTriton Li et al. (2025b), fine-tuned via LLM distillation and RL
using execution feedback. Though these smaller models outperform their base models, significant
room remains for improving efficiency and accuracy compared to larger counterparts.

Furthermore, there is a common issue reported across kernel generation works, reward hacking (Ba-
ronio et al., 2025; Li et al., 2025b). Due to the scarcity of high-quality kernel examples compared
to other programming languages, most approaches rely on RL training using runtime measurements
and correctness rewards from unit tests after kernel execution. However, models frequently learn to
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Figure 1: TRITONRL components and workflow.

exploit unit test loopholes, such as direct use of high-level PyTorch modules, rather than generat-
ing proper code, and this phenomenon is particularly prevalent in smaller models (8B and below)
(Baronio et al., 2025). This issue fundamentally undermines the core objective of developing more
efficient custom kernels to replace existing pre-optimized libraries, while current approaches pre-
dominantly rely on simple rule-based syntax verification whose effectiveness remains uncertain.

In this paper, we present TRITONRL, an 8B-scale LLM specialized for Triton programming that
achieves state-of-the-art performance in both correctness and runtime speedup, while effectively
mitigating reward hacking. To enable high-quality Triton kernel generation with small models (up
to 8B), we design a training pipeline with the following key contributions:

• Simplified dataset curation with distillation: Instead of large-scale web crawling, we build on
the curated KernelBook problems. Their solutions are refined and augmented through DeepSeek-
R1 distillation (Guo et al., 2025), providing high-quality supervision for SFT of our base model
Qwen3-8B (Team, 2025).

• Fine-grained and robust verification: We incorporate enhanced rule-based checks (e.g.,
nn.Module) together with LLM-based judges (e.g., Qwen3-235B-Instruct) to construct ver-
ifiable rewards. This enables reliable diagnosis across commercial and open-source models,
while preventing reward hacking that arises from naive syntax-only verification.

• Hierarchical reward decomposition with data mixing: Our RL stage decomposes rewards
into multiple dimensions (e.g., correctness, efficiency, style) and applies token-level credit as-
signment. Combined with strategic data mixing across SFT and RL, this yields better kernel
quality, generalization, and robustness.

• Comprehensive evaluation and open-sourcing: Through rigorous validity analysis that filters
out syntactically or functionally invalid code, we reveal true performance differences among
models. Ablation studies further confirm the effectiveness of our hierarchical reward design and
data mixing. At the 8B scale, TRITONRL surpasses existing Triton-specific LLMs, including
KernelLLM (Fisches et al., 2025) and AutoTriton (Li et al., 2025b). We fully release our datasets,
recipes, pretrained checkpoints, and evaluation framework to ensure reproducibility and foster
future research.

2 TRITONRL

In this section, we present TRITONRL, a specialized model designed for Triton programming. Our
objective is to develop a model that can generate Triton code that is both correct and highly opti-
mized for speed, outperforming the reference implementation. To achieve this, we adopt a two-stage
training strategy: we first apply supervised fine-tuning (SFT) to instill fundamental Triton syntax
and kernel optimization skills, followed by reinforcement learning (RL) with fine-grained verifi-
able rewards to further refine the model for correctness and efficiency. We will first detail the SFT
procedure, and subsequently present the design of the reinforcement learning framework.

2.1 TRITON KNOWLEDGE DISTILLATION VIA SUPERVISED FINE-TUNING

Recent work (Fisches et al., 2025; Li et al., 2025b) has demonstrated that large language models
(LLMs) exhibit weak Triton programming ability at the 8B scale, struggling both with syntax and
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ü Can be parsed properly (ast.parse)
ü Include Triton modules (@triton.jit)

ü Actual call of Triton
ü No use of high-level PyTorch (e.g. torch.nn)
ü Meaningful operations with Triton

Generated Triton codes to replace torch.matmul

syntax = 0

syntax = 1

def not_triton(x):  
       return torch.matmul(x)
…
def forward(self, x):
       return not_triton(x)

(a) Syntactically  invalid code

(b) Functionally invalid code

@triton.jit
def triton_copy(x):  
 …
def forward(self, x):
       y =  torch.matmul(x)
       try:
           return triton_copy(y)
      except:
           return y

func=0

Rule-based  & LLM Judge

Functionality verifier

Syntax verifier

Rule-based

Figure 2: Illustration of the flow of our robust verifier incorporating syntax and functionality check-
ers and the examples of invalid Triton codes. (a) invalid syntax: the code lacks any Triton blocks
and consists solely of PyTorch code. (b) invalid functionality: the code include dummy Triton code
that just copies data without meaningful operation delegating core operation (matrix multiplication)
to PyTorch modules (torch.matmul).

with performance-oriented design patterns. Effective dataset curation is therefore essential, not only
to expose Triton-specific primitives and coding structures but also to preserve the reasoning traces
that guide kernel optimization. To address this, our pipeline follows three key steps: (i) data aug-
mentation, (ii) synthesis of reasoning traces paired with corresponding code, and (iii) construction
of high-quality training pairs for supervised fine-tuning.

(i) Data augmentation: We start from the problem sets in KernelBook (Paliskara & Saroufim,
2025), which provides curated pairs of PyTorch programs and equivalent Triton kernels. To
enrich this dataset, we augment the tasks with additional variations (e.g., diverse input shapes),
thereby exposing the model to broader performance scenarios.

(ii) Data synthesis: To obtain diverse reasoning traces that guide correct and efficient Triton gen-
eration, we employ DeepSeek-R1 (Guo et al., 2025) to jointly synthesize reasoning steps and
Triton implementations. For each task wrapped with instruction and Pytorch reference, multiple
candidate kernels are collected, each paired with an explicit reasoning trace. This yields a dataset
of D =

{
(q, oi)

}
= {(task query, Triton code with CoT)}.

See concrete template in Appendix E.3).

(iii) Supervised fine-tuning: In the SFT stage, the model is trained to produce valid Triton code as
well as reproduce the associated reasoning traces from the instruction. This distillation process
transfers essential Triton programming patterns while reinforcing reasoning ability.

2.2 REINFORCEMENT LEARNING WITH HIERARCHICAL REWARD DECOMPOSITION

While supervised fine-tuning (SFT) equips the base model with basic Triton syntax and kernel opti-
mization abilities, the resulting code may still contain errors or lack efficiency. To further improve
the quality of Triton code generation of TRITONRL, we train the model via reinforcement learning
(RL) with verifiable rewards, which incentivize model to generate more correct and efficient Triton
code yielding higher rewards. In RL, designing effective reward feedback is essential since crude
reward designs not perfectly aligned with original objectives of tasks often lead to reward hacking,
guiding models to exploit loopholes. To address this, we first introduce robust and fine-grained
verifiers that rigorously assess the quality of Triton code in diverse aspects, forming the basis for
constructing reward functions. Building on these verifiers, we present a GRPO-based RL frame-
work with hierarchical reward decomposition that provides targeted feedback for reasoning traces
and Triton code, thereby improving the correctness and efficiency of generated Triton kernels.

Fine-Grained Verification for High-Quality Triton Code. We denote i-th generated output sam-
ple oi for a given prompt or task q. Recall that q and oi include Pytorch reference qref and Triton
code ocode

i that is executable on some proper input x, i.e., qref(x), ocode(x). We introduce fine-grained
verifiers v that comprehensively evaluate different aspects of code quality as follows.
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• Robust verifier: Sequential verifier to check output is a valid Triton code without non-nonsensical
hacking. See Figure 2 for an illustration

– syntax : A binary verifier that assesses whether code ocode is valid Triton syntax. We use
a rule-based linter to verify the presence of Triton kernels annotated with @triton.jit.

– func: A binary functionality verifier to detect whether ocode constitutes a valid Triton
kernel. Syntax checks alone are insufficient, since models may output code that super-
ficially passes verification but defers computations to high-level PyTorch modules (e.g.,
torch.nn, @) or hardcodes constants, as in Figure 2 (b). To address this, we combine a
rule-based linter—which ensures Triton kernels are invoked and flags reliance on PyTorch
modules—with an LLM-based judge that evaluates semantic correctness against task spec-
ifications.

• compiled: A binary verifier that checks whether the generated Triton code can be successfully
compiled without errors.

• correct: A binary verifier that evaluates whether the generated Triton code produces correct
outputs by compiling and comparing its results against those of the reference PyTorch code using
provided test input x.

correct(q, o) = compile
(
ocode) · 1[ ocode(x) == qref(x)

]
• speedup: A scalar score that quantifies the execution time improvement of the generated Triton

code relative to the reference PyTorch implementation. For a prompt q with reference Pytorch
code qref and corresponding triton code ocode generated, speed-up is defined as, given test input
x,

speedup(q, o) =
τ(ocode, x)

τ(qref, x)
· correct(q, o),

where τ(·, x) measure the runtimes of given code and input x.

For notational simplicity, for a given prompt q and output sample oi, we define v(q, oi) as vi any
verification function v throughput the paper.

While prior works (Li et al., 2025b; Baronio et al., 2025) addressed reward hacking with rule-
based linters, such methods remain vulnerable to loopholes. Our verifier combines rule-based and
LLM-based checks to capture both syntactic and semantic errors, offering stronger guidance during
training (see Appendix E.2 for examples and Section 3 for evaluation). Building on these fine-
grained verifiers, we develop an RL framework that delivers targeted feedback to both reasoning
traces and Triton code, improving kernel correctness and efficiency.

Hierarchical Reward Decomposition. Training LLMs with long reasoning traces remains chal-
lenging because providing appropriate feedback across lengthy responses is difficult. When a single
final reward is uniformly applied to all tokens, it fails to distinguish between those that meaningfully
contribute to correctness or efficiency and those that do not. This issue is particularly pronounced
in kernel code generation, where reasoning traces often outline complex optimization strategies for
GPU operations. Even if the plan itself is well-formed and could yield significant speedups, errors in
the subsequent Triton implementation may cause the entire response to be penalized, which was also
identified by (Qu et al., 2025). This prevents the model from effectively learning good optimization
strategies, conflating high-quality reasoning with poor execution.

To address this, we propose a GRPO with hierarchical reward decomposition for Triton code gener-
ation. Specifically, Triton code generation oi can be viewed as two-level hierarchy action pairs,

• oplan
i : CoT reasoning traces correspond to high-level planning actions, providing abstract kernel

optimization strategies, such as tiling or shared memory.

• ocode
i : final Triton code answers correspond to low-level coding actions that execute the plan

given by the previous reasoning traces.

The key idea is to assign different reward credit for different class of output tokens between plan
and code. By jointly optimizing rewards for both levels, we can train the model to better align its
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PyTorch code

def forward(self, x):
       return torch.matmul(x)  
 

Triton code

@triton.jit
def triton_matmul(x):  
 ….

<think> 
Okay, … let’s try
- block-based approach 
- shared memory …
</think>

Plan (reasoning)

TritonPyTorch

You write custom Triton 
kernels to replace the 
PyTorch. operators ..

𝑦 "𝑦=

>
x1.5
faster

Query (𝑞) Output (𝑜!) Verifiable rewards (𝑟)

Model (𝜋" )

Syntax & Functionality

Speedup

Correctness

𝑜!
#$%&~𝜋"(⋅ |𝑞)

𝑜!'()*~𝜋"(⋅ |𝑞, 𝑜!
#$%&)

Rule-based  & LLM Judge

+

Figure 3: An example LLM output for Triton code generation, showing a reasoning trace (plan) and
the generated Triton kernel code conditioned on the plan.

reasoning with the desired code output as follows:

JGRPO(θ) = E
q∼P (Q), {oi=(o

plan
i ,ocode

i )}G
i=1∼πθold

(·|q)

[
1

G

G∑
i=1

αF plan
GRPO(θ, i) + F code

GRPO(θ, i)

]
(1)

where πθ and πθold are the policy model and reference model, q denotes a prompt given to the model,
defining a task to implement in Triton, and oi = (oplan

i , ocode
i ) represents i-th response generated by

the model for q in the group G. Here we denote oplan
i,t and ocode

i,t as t-th token of output plan and code. .
The GRPO losses F plan(θ) and F code(θ) are computed over the tokens in generated plans and Triton
codes, respectively, and α ∈ [0, 1] is a weighting factor that balances the training speed of planning
and coding policy. Here, α is set to a small value (e.g., 0.1) so that the planning distribution is up-
dated slowly, allowing the coding policy sufficient time to learn correct implementations conditioned
on those high-level plans. The detailed formulation of each loss component is as follows.

F plan
GRPO =

 1

|oplan
i |

|oplan
i |∑
t=0

{
min

[
πθ(o

plan
i,t |q, o

plan
i,<t)

πθold(o
plan
i,t |q, o

plan
i,<t)

Âplan
i,t , clip

(
πθ(o

plan
i,t |q, o

plan
i,<t)

πθold(o
plan
i,t |q, o

plan
i,<t)

, 1− ϵ, 1 + ϵ

)
Âplan

i,t

]} ,

F code
GRPO =

 1

|ocode
i |

|ocode
i |∑
t=0

{
min

[
πθ(o

code
i,t |q, o

plan
i , ocode

i,<t)

πθold(o
code
i,t |q, o

plan
i , ocode

i,<t)
Âcode

i,t , clip

(
πθ(o

code
i,t |q, o

plan
i , ocode

i,<t)

πθold(o
code
i,t |q, o

plan
i , ocode

i,<t)
, 1− ϵ, 1 + ϵ

)
Âcode

i,t

]} ,

(2)

where Âplan
i,t and Âcode

i,t are the group-wise advantages for plan and code tokens, computed as Ai,t =

ri − 1
G

∑G
j=1 rj , with rewards for plan and code tokens defined as:

rplan
i = syntaxi · funci · speedupi, rcode

i = syntaxi · funci · correcti. (3)

Here, we note that the syntax and functionality checks serve as necessary conditions for correctness
and speedup evaluations. If either the syntax or functionality check fails, the generated code is
deemed invalid, and both correctness and speedup rewards are set to zero.

By assigning speedup-based rewards to plan tokens and correctness-based rewards to code tokens,
our approach provides targeted feedback, allowing for more fine-grained credit assignment: reason-
ing traces are encouraged to propose optimization strategies that yield efficient kernels, while code
generation is guided to produce valid implementations that faithfully realize these plans. Moreover,
by choosing small values for α, we slow down the training of plan tokens relative to code tokens
to ensure the model to learn effective coding skills first for given plan distributions. This helps
avoid overly penalizing the reasoning trace due to code generation instability in early training, thus
preserving promising optimization plans that may yield higher speedup once the code generation
stabilizes. In our experiments, we explore different configurations of α and reward functions to
analyze the benefits of our reward decomposition.

Data Mixing Optimization for Reinforcement Learning. In our task, we have a training dataset
Dtrain that is made of examples from KernelBook. We have an evaluation dataset Dtest from

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

KernelBench. We regard the problem of selecting the right examples to post-train our LLM model
as a data mixing optimization problem, and we formulate the problem as follows.

Given a training dataset Dtrain and a test dataset Dtest, either dataset can be divided into m subsets.
we suppose the probability of selecting m training data subsets forms a probability simplex p ∈ ∆,
which represents the probability of drawing different subsets in the training set. We define the
reward function Ri

test(p) = 1
|Di

test|
∑

q∈Di
test

maxo∈πp(q) r
(
q, o
)
, where πp is the policy that is

trained under the data mixture p. In this problem, we use a static mixture p for all post-training
steps. Following the proposal by Chen et al. (2024), we can express a data mixture optimization
problem as the following optimization problem:

maximize
p∈∆

m∑
j=1

Rj
test(p) s.t. Rj

test(p) = ζ(S,p),where S ∈ Rm×m. (4)

We define S as the reward interaction matrix, where Sij captures the effect of post-training on the
i-th subset in Dtrain and then using the learned policy π to generate corresponding kernels for the
j-th Dtest. We use a general function ζ to leverage this information to predict the reward obtained
on the j-th subset in Dtest.

We make two crucial changes to prior data mixing work. First, unlike the typical data mixing work
that assumes ζ can be parametrized as a linear function, we do not make specific assumptions (Chen
et al., 2023; Xie et al., 2023; Fan et al., 2023). Second, we do not create random subsets of our
data. Instead, we note that KernelBench (Ouyang et al., 2025) has three complexity levels. We
use an LLM labeler to create difficulty labels for each data point in Dtrain. Since we focus on
difficulty level 1 and 2, we create two subsets for training and test: Dtrain = {DL1

train,DL2
train},

Dtest = {DL1
test,DL2

test}. Since the problem is under-constrained without a known parametric form
of ζ, we simply evaluate three candidate initializations, p ∈ [1, 0], [0, 1], [0.5, 0.5], and choose the
best-performing mixture rather than fully modeling S and ζ or solving for p exhaustively.

3 EXPERIMENTS

This section provides the detailed recipe of training and evaluation of TRITONRL, followed by the
main results and ablation studies.

3.1 TRAINING AND EVALUATION SETUPS

Data Preparation. For both SFT and RL, we use 11k tasks from KernelBook (Paliskara &
Saroufim, 2025). We expand each task with five reasoning traces and corresponding Triton imple-
mentations generated by DeepSeek-R1 (Guo et al., 2025), yielding 58k <task query, Triton
code with CoT> pairs. Prompts adopt a one-shot format, where the reference PyTorch code is
given and the model is asked to produce an optimized Triton alternative (examples in Appendix E.3).
To support curriculum in RL training, we further label tasks into three difficulty levels using Qwen3-
235B-Instruct (Team, 2025), following the task definitions in Ouyang et al. (2025), yielding 11k
<task query, level> pairs. See detailed generation and classification in Appendix G and
E.1.

Training Configuration. We begin by fine-tuning the base model Qwen3-8B on Level-1 tasks.
After SFT, we move to RL training on the same KernelBook tasks, but without output la-
bels—rewards are computed directly from code execution—so the RL dataset consists only of task
instructions. An example of such instructions is shown in Appendix E.3. We implement training un-
der the VeRL framework (Sheng et al., 2025), starting from Level-1 tasks and gradually progressing
to higher levels as performance improves (though current results use only Level-1). Hyperparam-
eters for both SFT and RL are provided in Appendix G. By default, we use the reward function r
from equation 3, setting α = 0.1 unless specified otherwise.

Evaluation Benchmarks. We evaluate TRITONRL on KernelBench (Li et al., 2025a)1. Kernel-
Bench offers an evaluation framework covering 250 tasks, divided into Level 1 (100 single-kernel

1We use the Triton backend version of KernelBench from https://github.com/
ScalingIntelligence/KernelBench/pull/35.
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Model #Params LEVEL1 (ROBUST VERIFIER) LEVEL1 (W/O ROBUST VERIFIER)

valid compiled / correct fast1 / fast2 mean speedup valid compiled / correct

Qwen3 (base) 8B 73.0 40.0 / 14.0 0.0 / 0.0 0.03 54.0 52.0 / 15.0
Qwen3 14B 82.0 65.0 / 17.0 0.0 / 0.0 0.04 66.0 71.0 / 16.0
Qwen3 32B 75.0 61.0 / 16.0 2.0 / 0.0 0.06 52.0 50.0 / 15.0

KernelLLM 8B 42.0 40.0 / 20.0 0.0 / 0.0 0.05 100.0 98.0 / 29.0
AutoTriton 8B 97.0 78.0 / 50.0 2.0 / 1.0 0.25 100.0 95.0 / 70.0
TRITONRL (ours) 8B 99.0 82.0 / 56.0 5.0 / 1.0 0.33 99.0 83.0 / 58.0

w/o RL (SFT only) 8B 97.0 88.0 / 44.0 4.0 / 2.0 0.33 98.0 93.0 / 47.0

Claude-3.7 - 99.0 99.0 / 53.0 3.0 / 1.0 0.32 100.0 100.0 / 64.0

Table 1: Main results on KernelBench Level 1. All metrics are reported as pass@10 (%). Our model
achieves the best results among models with fewer than 32B parameters. The left block reports
evaluation with the robust verifier (syntax + functionality). The right block (w/o robust verifier)
lacks functionality checks, leading to misleading correctness estimates.

Figure 4: Pass@k correctness and mean speedup for k = 1, 5, 10 on KernelBench Level 1 tasks.
We adopted our robust verifier to check validity.

tasks, such as convolution), Level 2 (100 simple fusion tasks, such as conv+bias+ReLU), and Level
3 (50 full architecture tasks, such as MobileNet), to assess LLM proficiency in generating efficient
CUDA kernels. We conduct experiments mainly on the Level 1 and Level 2 tasks from KernelBench.
The prompts used for these benchmarks are provided in Appendix F.1.

Metrics. We evaluate the performance of LLMs for generating Triton code in terms of (1) Validity
(syntax and functionality); (2) Correctness (compilation and correct output); (3) Speedup (relative
execution time improvement). We report fast1 and fast2 to indicate the model’s ability to gen-
erate Triton code that is at least as fast as or twice as fast as the reference PyTorch implementation,
respectively. The formal definition of metrics is provided in Appendix D. We measure the pass@k
metrics for each aspect, which indicates the ratio of generating at least one successful solution among
k sampled attempts. We use k = 10 as a default unless specified. We test both Triton codes and
reference PyTorch codes on an NVIDIA L40S.

Baselines. We compare TRITONRL with several baselines, including KernelLLM (Fisches et al.,
2025) and AutoTriton (Li et al., 2025b), which are fine-tuned LLMs specifically for Triton program-
ming. We also include our base model Qwen3-8B (Team, 2025) without any fine-tuning, fine-tuned
Qwen3-8B only after SFT, and larger Qwen3 models (e.g., Qwen3-14B and Qwen3-32B). Addition-
ally, we evaluate Claude-3.7 (Anthropic, 2025) with unknown model size. For large model classes
beyond 100B (e.g., GPT-OSS 120B (OpenAI, 2025), DeepSeek-R1-0528 (NVIDIA Developer Blog,
2025)), we report the numbers to the Appendix H.1 as a reference.

3.2 MAIN EXPERIMENT RESULTS

Overall Performance on Level 1 Tasks. The left side of Table 1 presents the performance com-
parison results for pass@10 evaluated with robust verifiers (syntax and functionality) on Kernel-
Bench Level 1 tasks. TRITONRL consistently outperforms most baseline models with < 32B pa-
rameter sizes in terms of validity, correctness, and speedup. In particular, TRITONRL surpasses
AutoTriton, which also leverages SFT and RL, by achieving higher correctness and speedup, un-
derscoring the advantages of our hierarchical reward assignment. Notably, the correctness metric
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improves from 44% (SFT only) to 55% after RL, indicating that RL provides substantial gains in
addition to supervised fine-tuning. Furthermore, TRITONRL achieves on-par performance to much
larger models, highlighting the efficiency of our approach in enabling smaller models to excel in
specialized code generation tasks. We further evaluated inference scaling by varying the number of
sampled attempts (k = 1, 5, 10), as illustrated in Figure 4. The correctness of TRITONRL increases
with more samples, whereas KernelLLM and Qwen3-8B show limited improvement, suggesting
that TRITONRL generates a more diverse set of codes and benefits from additional sampling during
inference. Additional pass@1 and pass@5 results are provided in Appendix H.2.

Figure 5: Side-by-side comparison of base models and
their post-trained variants. Successful training should
reduce invalid syntax errors (yellow) and functional
invalidity (red), while increasing correctness (green)
from individual base model. Only TRITONRL shows
this outcome.

Effectiveness of Validity Reward. We
analyze the validity of Triton codes gen-
erated by fine-tuned models to understand
the types of errors each model is prone
to. To examine the effects of fine-tuning
on validity, we also include the base mod-
els of TRITONRL and the baseline mod-
els. In Figure 5, although both AutoTriton
and TRITONRL achieve relatively high
rates of validity compared to KernelLLM,
a more detailed breakdown reveals that
AutoTriton exhibits a much higher propor-
tion of functionally invalid codes. Interest-
ingly, the base model of AutoTriton shows
a low rate of functionally and syntactically
invalid codes, indicating that the fine-
tuning process of AutoTriton may have led
to learn functionally invalid codes. In con-
trast, TRITONRL generates significantly
fewer invalid codes in terms of both syntax
and functionality after fine-tuning, demon-
strating the effectiveness of our robust ver-
ification in enhancing code quality.

Moreover, Table 1 highlights how heavily
prior models relied on cheating shortcuts. Without functionality verification (w/o robust), AutoTri-
ton’s correctness jumps from 50% to 70%, revealing its tendency to exploit reward-driven shortcuts
rather than produce true Triton code. In contrast, TRITONRL shows only a slight increase (56% to
58%), suggesting it learned to generate genuine code.

Effectiveness of Hierarchical Reward Decomposition. We analyze the impact of different re-
ward design choices during RL training on the performance. Denoting our default configurations of
reward decomposition, where reward function is set as equation 3 for α = 0.1, by λ⋆, we compare
our choice of reward decomposition with the following reward configurations:

• λ1: rplan
i = rcode

i = syntaxi · funci · correcti and α = 1.0 (uniform correctness).

• λ2: rplan
i = rcode

i = syntaxi · funci · speedupi and α = 1.0 (uniform speedup).
• λ3: Set reward function as equation 3 with α = 1.0.

Note that λ1 applies the correctness reward uniformly to all tokens, similar to the approach in Li
et al. (2025b), while λ2 does the same with the speedup reward. λ3 and λ⋆ use the same default
reward decomposition described in equation 3, but λ3 assigns equal weight to both plan and code
token, resulting in both being trained at the same rate, while λ⋆ assigns a smaller weight to the plan
tokens. We train TRITONRL for these configurations under the same hyperparameter settings and
the performance of each configuration evaluated on KernelBench Level 1 tasks.

The result in Table 2 shows that reward design has a substantial impact on model performance. The
default configuration, λ⋆, yields the best overall results, suggesting that while correctness is crucial
for generating valid Triton code, incorporating speedup feedback into high-level planning helps the
model uncover more efficient implementations without compromising correctness. Additionally,
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performance gap between λ⋆ and λ3 shows that slower updates of plan tokens enhances speedup
and correctness, which highlights the importance of balanced training dynamics between plan and
code tokens to prevent premature convergence.

Reward valid compiled / correct fast1 / fast2

λ⋆ 99.0 82.0 / 55.0 5.0 / 1.0
λ1 95.0 75.0 / 38.0 2.0 / 1.0
λ2 94.0 87.0 / 47.0 3.0 / 1.0
λ3 93.0 64.0 / 33.0 2.0 / 1.0

Table 2: Ablation study on reward design of TRI-
TONRL on KernelBench Level 1 tasks.

Effectiveness of Data Mixing. In or-
der to solve the data mixture optimization
problem, given the limited budget, we ex-
plore three common parametrization of p:
training solely on level 1 tasks, solely on
level 2 tasks, and a mixture of both level
1 and level 2 tasks with equal ratio. We
present the result in Table 3. We can see
that there is a non-trivial interaction effect
between post-training on different subsets of Dtrain. We obtain notably outperforming model in
terms of correctness and fast1 in Level 1 tasks if we choose p = [1, 0], while the performance on
Level 2 is not improved even if p = [0, 1]. A plausible explanation is that training on L2 tasks is
not as effective as L1 tasks for boosting evaluation performance on both L1 and L2 tasks, for the
model checkpoint we obtained through SFT (as confirmed in Table 4). This observation provides a
direction for future work where we use adaptive p for different the post-training steps.

Dtrain
Dtest LEVEL1 Dtest LEVEL2

Subset p valid compiled / correct fast1 / fast2 valid compiled / correct fast1 / fast2

Level 1 [1, 0] 99.0 82.0 / 56.0 5.0 / 1.0 66.0 29.0 / 7.0 0.0 / 0.0
Level 1+2 [0.5, 0.5] 99.0 92.0 / 43.0 2.0 / 1.0 74.0 35.0 / 8.0 0.0 / 0.0
Level 2 [0, 1] 100.0 97.0 / 49.0 3.0 / 1.0 57.0 37.0 / 6.0 0.0 / 0.0

Table 3: Ablation study on data mixture for RL training of TRITONRL, where the performance is
evaluated on KernelBench level 1 and level 2 tasks.

Limited Performance on Fusion Tasks. We evaluated TRITONRL and baseline models on Ker-
nelBench Level 2 tasks, which involve fused implementations such as Conv+ReLU. As shown in
Table 4, TRITONRL outperforms other 8B-scale Triton-specific models in correctness and speedup,
achieving performance comparable to Claude 3.7. Nevertheless, all models, including TRITONRL,
show a marked drop from Level 1 to Level 2, highlighting the greater difficulty of generating fully
valid Triton code for fusion tasks. This gap reflects the complexity and advanced optimizations
required, underscoring substantial room for improvement.

Model #Params LEVEL2 LEVEL2 (W/O ROBUST)

valid compiled / correct fast1 / fast2 compiled / correct

Qwen3 (base) 8B 56.0 1.0 / 0.0 0.0 / 0.0 52.0 / 11.0
Qwen3 14B 35.0 24.0 / 1.0 0.0 / 0.0 94.0 / 65.0
Qwen3 32B 31.0 16.0 / 0.0 0.0 / 0.0 73.0 / 22.0

KernelLLM 8B 0.0 0.0 / 0.0 0.0 / 0.0 96.0 / 3.0
AutoTriton 8B 70.0 3.0 / 0.0 0.0 / 0.0 97.0 / 76.0
TRITONRL (ours) 8B 69.0 29.0 / 7.0 0.0 / 0.0 88.0 / 42.0

w/o RL (SFT only) 8B 67.0 32.0 / 6.0 0.0 / 0.0 98.0 / 41.0

Claude-3.7 - 34.0 34.0 / 12.0 1.0 / 0.0 98.0 / 60.0

Table 4: Main results on KernelBench Level 2. The left block reports evaluation with the robust
verifier (syntax + functionality). The right block (w/o robust verifier) lacks functionality checks,
leading to misleading correctness estimates, more severe than Level 1 evaluation.

4 CONCLUSION

In this work, we introduce TRITONRL, a specialized LLM for Triton code generation, trained with
a novel RL framework featuring robust verifiable rewards and hierarchical reward assignment. Our
experiments on KernelBench show that TRITONRL surpasses existing fine-tuned Triton models in
validity, correctness, and efficiency. Ablation studies demonstrate that both robust reward design
and hierarchical reward assignment are essential for achieving correctness and efficiency. We be-
lieve TRITONRL marks a significant advancement toward fully automated and efficient GPU kernel
generation with LLMs.
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REPRODUCIBILITY STATEMENT

Our code-base is built upon publicly available frameworks (Verl (Sheng et al., 2025). Section 3.1
and the Appendix G F describe the experimental settings in detail.
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A LLM USAGE

We used an LLM to improve the writing by correcting grammar in our draft. It was not used to
generate research ideas.

B RELATED WORK

B.1 LLM FOR KERNEL GENERATION

The exponential growth in demand for GPU computing resources has driven the need for highly opti-
mized GPU kernels that improves computational efficiency. However, writing efficient GPU kernels
is a complex and time-consuming task that requires specialized knowledge of GPU architectures
and programming models. This has spurred significant interest in leveraging Large Language Mod-
els (LLMs), for automated kernel generation, especially for CUDA and Triton (Shao et al., 2024;
Ouyang et al., 2025; Li et al., 2025a; NVIDIA Developer Blog, 2025). While these general-purpose
models excel at a variety of programming tasks, they often struggle with custom kernel generation,
achieving low success rates on specialized gpu programming tasks (Ouyang et al., 2025), highlight-
ing the need for domain-specific models tailored to kernel synthesis.

For CUDA kernel generation, Ouyang et al. (2025) introduced KERNELBENCH, an open-source
framework for evaluating LMs’ ability to write fast and correct kernels on a suite of 250 carefully
selected PyTorch ML workloads. Furthermore, Lange et al. (2025) presented an agentic frame-
work, which leverages LLMs to translate PyTorch code into CUDA kernels and iteratively optimize
them using performance feedback. Additionally, several works have focused on fine-tuning LLMs
tailored for CUDA kernel generation. For example, Kevin-32B (Baronio et al., 2025) is a 32B pa-
rameter model fine-tuned via multi-turn RL to enhance kernel generation through self-refinement,
and CUDA-L1 (Li et al., 2025c) applies contrastive reinforcement learning to DeepSeek-V3-671B,
achieving notable speedup improvements in CUDA optimization tasks.

Another line of research focuses on Triton kernel generation. Li et al. (2025a) introduced TRITON-
BENCH, providing evaluations of LLMs on Triton programming tasks and highlighting the chal-
lenges of Triton’s domain-specific language and GPU programming complexity. To further enhance
LLMs’ capabilities in Triton programming, Fisches et al. (2025) has introduced KernelLLM, a fine-
tuned model of Llama3.1-8B-Instruct via supervised fine-tuning with Pytorch and Triton code pairs
in KernelBook Paliskara & Saroufim (2025), but its performance is limited by the quality of training
data. Similarly, Li et al. (2025b) introduced AutoTriton, a model fine-tuned specifically for Triton
programming from Seed-Coder-8B-Reasoning Zhang et al. (2025), which achieves improved per-
formance via SFT and RL with verifiable rewards based on correctness and rule-based Triton syntax
verification, which may have limited improvement in runtime efficiency due to correctness-focused
rewards. Both KernelLLM and AutoTriton are concurrent works developed alongside our work, and
we provide a detailed comparison in Section 3.2.

B.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Reinforcement Learning (RL) has become a key technique for training Large Language Models
(LLMs), especially in domains where verifiable reward signals are available. Unlike supervised fine-
tuning (SFT), which relies on curated examples, RL enables models to learn through trial and error,
guided solely by reward feedback. This makes the design of accurate reward functions critical, as
the model’s behavior is shaped entirely by the reward signal. As a result, RL with verifiable rewards
(RLVR) (Lambert et al., 2025; Team et al., 2025; Guo et al., 2025) has gained significant traction in
applications like mathematics and code generation (Shao et al., 2024; Li et al., 2022), where external
verification is feasible through solution correctness or unit test outcomes.

In math and coding applications, the reward can be directly computed solely based on the final
outcomes when ground-truth answers or unit tests are available. For tasks where validation is not
available or noisy, rule-based verification or LLM-based judges can be employed to verify the quality
of generated content (Guha et al., 2025; Guo et al., 2025). For coding tasks, unit tests are commonly
used to measure whether generated code meets the specified requirements (Le et al., 2022; Ouyang
et al., 2025). However, unit tests often fail to cover edge cases or fully capture the problem require-
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ments, leading to potential “reward hacking” (Skalse et al., 2022) where the model generates code
that passes the tests but does not genuinely solve the task (Sharma et al., 2024; Gao et al., 2024).
Such reward hacking has been observed in kernel generation tasks, where models produce superfi-
cially correct codes passing unit tests by using high-level Pytorch modules instead of implementing
custom kernels. To address this, some works Li et al. (2025b); Baronio et al. (2025) have introduced
rule-based verification, which checks kernel syntax or use of specific high-level modules.

C NOTATIONS

The following notations will be used throughout this paper. For notational simplicity, we denote any
function f(q, oi) as fi when the context is clear.

• q: prompt given to the model, defining a task to implement in Triton
• o: output sequence generated by the model, which includes both reasoning trace and Triton

code
• πθ: policy model with parameters θ
• G: group size for GRPO
• oi: i-th sample in the group G, which includes a reasoning trace that provides the ”plan”

for Triton code optimization and implementation and the final ”Triton code”, i.e. oi =
{oi,plan, oi,triton}

• T c
i : set of token indices corresponding to token class c ∈ {plan, triton} in the i-th sample

• rc(q, oi) = rci : reward function for token class c ∈ {plan, triton}.

• Âc
t(q, oi) = rc(q, oi) − 1

G

∑G
j=1 r

c(q, oj): token-level advantage of the t-th token of the
i-th sample belonging to token class c ∈ {plan, triton}, shortened as Âc

i,t.

D METRICS

We provide the formal definitions of the evaluation metrics used in this paper. Given a set of N
tasks {qn}Nn=1 and k samples {oi}ki=1 generated by the model for each task, we define the following
metrics:

valid =
1

N

N∑
n=1

max
i∈[k]

1(syntax(qn, oi) · func(qn, oi) = 1)

compiled =
1

N

N∑
n=1

max
i∈[k]

1(syntax(qn, oi) · func(qn, oi) · compiled(qn, oi) = 1)

correct =
1

N

N∑
n=1

max
i∈[k]

1(syntax(qn, oi) · func(qn, oi) · correct(qn, oi) = 1)

fastp =
1

N

N∑
n=1

max
i∈[k]

1(syntax(qn, oi) · func(qn, oi) · correct(qn, oi) · speedup(qn, oi) > p)

mean speedup =
1

N

N∑
n=1

max
i∈[k]

(syntax(qn, oi) · func(qn, oi) · correct(qn, oi) · speedup(qn, oi))

(5)

E DATA CURATION AND EXAMPLES

E.1 DATA MIXING SUBSET CREATION

We labeled difficulty level of 11k PyTorch reference codes in KernelBook based on the complexity of
kernel implementation using Qwen3-235B-Instruct (Team, 2025). For each given PyTorch reference
code, we prompt Qwen3-235B-Instruct (temperature=0.7, top p=0.8) to label the difficulty level of
replacing the PyTorch reference with Triton code as follows:
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Instruction (input) example

‘‘‘ <PyTorch reference code> ‘‘‘
Assign a kernel implementation complexity level (1, 2, or 3) of the provided reference Py-
Torch architecture according to the criteria below:
• Level 1: Single primitive operation. This level includes the foundational building blocks
of AI (e.g. convolutions, matrix-vector and matrix-matrix multiplications, losses, activa-
tions, and layer normalizations). Since PyTorch makes calls to several well-optimized and
often closed-source kernels under-the-hood, it can be challenging for LMs to outperform
the baseline for these primitive operations. However, if an LM succeeds, the open-source
kernels could be an impactful alternative to the closed-source (e.g., CuBLAS [27]) kernels.
• Level 2: Operator sequences. This level includes AI workloads containing multiple prim-
itive operations, which can be fused into a single kernel for improved performance (e.g.,
a combination of a convolution, ReLU, and bias). Since compiler-based tools such as the
PyTorch compiler are effective at fusion, it can be challenging for LMs to outperform them.
However, LMs may propose more complex algorithms compared to compiler rules. • Level
3: This level includes architectures that power popular AI models, such as AlexNet and
MiniGPT, collected from popular PyTorch repositories on GitHub.

E.2 INVALID TRITON CODE EXAMPLES

Here, we provide some examples of invalid Triton code generated by the baseline models.

Example 1: Triton syntax failure (syntax = 0) – no Triton kernel. This is not a Triton kernel
because it does not include any custom @triton.jit kernel.

import torch
import torch.nn as nn
import triton
import triton.language as tl
import torch.nn.functional as F

# To replace with Triton, a custom kernel would be needed (not provided
here)

class ModelNew(nn.Module):
def __init__(self) -> None:

super().__init__()

def forward(self, x):
return F.avg_pool2d(x, kernel_size=3, stride=None, padding=0)

def get_inputs():
a = torch.randn(1, 128).cuda()
b = torch.randn(1, 128).cuda()
return [a, b]

def get_init_inputs():
return []

Example 2: Functional failure (syntax = 1, func = 0) – use of high-level PyTorch module.
This implementation contains a Triton kernel, but the main computation (convolution) is still handled
by the PyTorch nn.Conv3d module. The Triton kernel is only used for a simple addition, rather
than implementing the full intended operation.

import torch
import torch.nn as nn
import triton
import triton.language as tl

15
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@triton.jit
def add_bias_kernel(

out_ptr,
bias_ptr,
n_elements,
out_C,
out_D,
out_W,
out_H,
BLOCK_SIZE: tl.constexpr,

):
pid = tl.program_id(0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements

out = tl.load(out_ptr + offsets, mask=mask, other=0.0)

stride_channel = out_D * out_W * out_H
channel_idx = (offsets // stride_channel) % out_C
bias = tl.load(bias_ptr + channel_idx, mask=mask, other=0.0)

out = out + bias
tl.store(out_ptr + offsets, out, mask=mask)

def triton_add_bias(out: torch.Tensor, bias: torch.Tensor):
assert out.is_cuda and bias.is_cuda, "Tensors must be on CUDA."

out = out.contiguous()
bias = bias.contiguous()
n_elements = out.numel()
BLOCK_SIZE = 128

grid = lambda meta: (
(n_elements + meta["BLOCK_SIZE"] - 1) // meta["BLOCK_SIZE"],

)

batch_size, out_channels, D, W, H = out.shape

add_bias_kernel[grid](
out,
bias,
n_elements,
out_channels,
D,
W,
H,
BLOCK_SIZE=BLOCK_SIZE

)

return out

class ModelNew(nn.Module):
def __init__(

self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
bias: bool = False
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):
super(ModelNew, self).__init__()
self.conv3d = nn.Conv3d(

in_channels,
out_channels,
(kernel_size, kernel_size, kernel_size),
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias

)

def forward(self, x: torch.Tensor) -> torch.Tensor:
out = self.conv3d(x)
if self.conv3d.bias is not None:

out = triton_add_bias(out, self.conv3d.bias)
return out

Example 3: Functional failure (syntax = 1, func = 0) – hardcoded output and no meaning-
ful computation. While the Triton kernel is syntactically correct, but it doesn’t actually imple-
ment the intended operation (Group Normalization). The kernel doesn’t compute mean or variance,
which are essential for GroupNorm. To implement real GroupNorm, you’d need to compute per-
group statistics and normalize accordingly. Also, it only loads the input tensor and writes it back
unchanged.

import torch
import torch.nn as nn
import triton
import triton.language as tl

@triton.jit
def groupnorm_kernel(

x_ptr, # Pointer to x tensor
y_ptr, # Pointer to y tensor (not used here)
out_ptr, # Pointer to output tensor
n_elements, # Total number of elements
BLOCK_SIZE: tl.constexpr,

):
# Each program handles a contiguous block of data of size BLOCK_SIZE
block_start = tl.program_id(0) * BLOCK_SIZE
# Create a range of offsets [0..BLOCK_SIZE-1]
offsets = block_start + tl.arange(0, BLOCK_SIZE)
# Mask to ensure we don’t go out of bounds
mask = offsets < n_elements
# Load input value
x = tl.load(x_ptr + offsets, mask=mask, other=0.0)
# Compute x squared
x_squared = x * x
# Store the result
tl.store(out_ptr + offsets, x, mask=mask)

def triton_groupnorm(x: torch.Tensor, y: torch.Tensor):
assert x.is_cuda and y.is_cuda, "Tensors must be on CUDA."
x = x.contiguous()
y = y.contiguous()

# Prepare output tensor
out = torch.empty_like(x)

# Number of elements in the tensor
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n_elements = x.numel()
BLOCK_SIZE = 128 # Tunable parameter for block size

# Determine the number of blocks needed
grid = lambda meta: ((n_elements + meta["BLOCK_SIZE"] - 1) // meta["

BLOCK_SIZE"],)

# Launch the Triton kernel
groupnorm_kernel[grid](x, y, out, n_elements, BLOCK_SIZE=BLOCK_SIZE)
return out

class ModelNew(nn.Module):
def __init__(self, num_features: int, num_groups: int) -> None:

super().__init__()
self.num_features = num_features
self.num_groups = num_groups

def forward(self, x: torch.Tensor) -> torch.Tensor:
# Use Triton kernel for elementwise operations
x_triton = triton_groupnorm(x, x)
# Manually compute mean and variance (as Triton kernel only handles

x)
# Actual GroupNorm logic would go here
# For this example, we return the Triton processed tensor
return x_triton

E.3 SFT AND RL DATASET CONSTRUCTION WITH KERNELBOOK

To synthesize SFT dataset, we extract 11,621 PyTorch reference codes from KernelBook, executable
without errors, such as

import torch
import torch.nn as nn

class Model(nn.Module):

def __init__(self):
super(Model, self).__init__()

def forward(self, neighbor):
return torch.sum(neighbor, dim=1)

def get_inputs():
return [torch.rand([4, 4, 4, 4])]

def get_init_inputs():
return [[], {}]

For each given PyTorch reference code, we construct an instruction for DeepSeek-R1 to generate
CoTs and Triton kernels as:
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Instruction (input) example

Your task is to write custom Triton kernels to replace as many PyTorch operators as possi-
ble in the given architecture, aiming for maximum speedup. You may implement multiple
custom kernels, explore operator fusion (such as combining matmul and relu), or introduce
algorithmic improvements (like online softmax). You are only limited by your imagination.
You are given the following architecture:
‘‘‘ <PyTorch reference code> ‘‘‘
You have to optimize the architecture named Model with custom Triton kernels. Optimize
the architecture named Model with custom Triton kernels! Name your optimized output
architecture ModelNew. Output the new code in codeblocks. Please generate real code,
NOT pseudocode, make sure the code compiles and is fully functional. Just output the new
model code, no other text, and NO testing code! Before writing a code, reflect on your idea
to make sure that the implementation is correct and optimal.

Given the instruction for each PyTorch reference code, we collect (CoT, Triton kernel code) pairs
fom DeepSeek-R1 and construct outputs for SFT by concatenating the pairs as follows:

Triton kernel with CoT (output) example

<think>
CoT
</think>
‘‘‘
<Triton kernel code>
‘‘‘

In this manner, for each Pytorch reference code in KernelBook, we construct 5 (input, output) SFT
samples.

For RL training, we use the same instruction input as a prompt for the same set of Pytorch reference
codes in KernelBook, without the output synthesized by DeepSeek-R1 because RL training only
requires reward feedback, which can be directly obtained from executing the generated Triton code.

F EVALUATION AND EXAMPLES

F.1 EVALUATION WITH KERNELBENCH

To evaluate the trained models, we construct prompts for 250 tasks in KernelBench. Similar to Ker-
nelBook, KernelBench provides a reference PyTorch code for each task. For each given reference
PyTorch code, we construct a prompt with one simple example pair of (PyTorch code, Triton ker-
nel code), similarly to the one-shot prompting format in KernelBench. Here, we use the following
PyTorch and Triton codes for a simple add operation as an example:

### PyTorch reference code ###
import torch
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
def __init__(self) -> None:

super().__init__()

def forward(self, a, b):
return a + b

def get_inputs():
# randomly generate input tensors based on the model architecture
a = torch.randn(1, 128).cuda()
b = torch.randn(1, 128).cuda()
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return [a, b]

def get_init_inputs():
# randomly generate tensors required for initialization based on the

model architecture
return []

### Triton kernel code ###

import torch
import torch.nn as nn
import torch.nn.functional as F
import triton
import triton.language as tl

@triton.jit
def add_kernel(

x_ptr, # Pointer to first input
y_ptr, # Pointer to second input
out_ptr, # Pointer to output
n_elements, # Total number of elements in input/output
BLOCK_SIZE: tl.constexpr,

):
# Each program handles a contiguous block of data of size BLOCK_SIZE
block_start = tl.program_id(0) * BLOCK_SIZE
# Create a range of offsets [0..BLOCK_SIZE-1]
offsets = block_start + tl.arange(0, BLOCK_SIZE)
# Mask to ensure we don’t go out of bounds
mask = offsets < n_elements
# Load input values
x = tl.load(x_ptr + offsets, mask=mask, other=0.0)
y = tl.load(y_ptr + offsets, mask=mask, other=0.0)
# Perform the elementwise addition
out = x + y
# Store the result
tl.store(out_ptr + offsets, out, mask=mask)

def triton_add(x: torch.Tensor, y: torch.Tensor):
"""
This function wraps the Triton kernel call. It:
1. Ensures the inputs are contiguous on GPU.
2. Calculates the grid (blocks) needed.
3. Launches the Triton kernel.

"""
assert x.is_cuda and y.is_cuda, "Tensors must be on CUDA."
x = x.contiguous()
y = y.contiguous()

# Prepare output tensor
out = torch.empty_like(x)

# Number of elements in the tensor
n_elements = x.numel()
BLOCK_SIZE = 128 # Tunable parameter for block size

# Determine the number of blocks needed
grid = lambda meta: ((n_elements + meta["BLOCK_SIZE"] - 1) // meta["

BLOCK_SIZE"],)

# Launch the Triton kernel
add_kernel[grid](x, y, out, n_elements, BLOCK_SIZE=BLOCK_SIZE)
return out

class ModelNew(nn.Module):
def __init__(self) -> None:
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super().__init__()

def forward(self, a, b):
# Instead of "return a + b", call our Triton-based addition
return triton_add(a, b)

Prompt (input) example

You write custom Triton kernels to replace the pytorch operators in the given architecture to
get speedups.
You have complete freedom to choose the set of operators you want to replace. You may
make the decision to replace some operators with custom Triton kernels and leave others
unchanged. You may replace multiple operators with custom implementations, consider op-
erator fusion opportunities (combining multiple operators into a single kernel, for example,
combining matmul+relu), or algorithmic changes (such as online softmax). You are only
limited by your imagination.
Here’s an example to show you the syntax of inline embedding custom Triton kernels in
torch. The example given architecture is:
‘‘‘ <Example PyTorch code> ‘‘‘
The example new architecture with custom Triton kernels looks like this:
‘‘‘ <Example Triton kernel code> ‘‘‘
You are given the following architecture:
‘‘‘ <PyTorch reference code> ‘‘‘
Optimize the architecture named Model with custom Triton kernels! Name your optimized
output architecture ModelNew. Output the new code in codeblocks. Please generate real
code, NOT pseudocode, make sure the code compiles and is fully functional. Just output the
new model code, no other text, and NO testing code!

F.2 EXAMPLE OF TRITON CODES WITH SPEEDUP > 1

Problem 12 in KernelBench Level 1: diagonal matrix multiplication with x11 speedup.

import torch
import triton
import triton.language as tl

@triton.jit
def fused_diag_matmul_kernel(
vec_a_ptr, # Pointer to the diagonal vector A (N,)
mat_b_ptr, # Pointer to the input dense matrix B (N, M)
output_ptr, # Pointer to the output matrix (N, M)
# --- Matrix dimensions ---
N, # The size of the diagonal vector A
M, # The number of columns in matrix B
TOTAL_ELEMENTS, # Total number of elements in the output matrix (N * M)
# --- Tuning parameters ---
BLOCK_SIZE: tl.constexpr, # Number of elements each Triton program will

handle
):
"""
Computes C = diag(A) * B, where A is a vector representing the diagonal.
This kernel treats the operation as a simple element-wise multiplication
where each row of B is scaled by the corresponding element of A.
"""
# 1. CALCULATE OFFSETS: Determine which elements this program instance

will process.
pid = tl.program_id(axis=0)
block_start_offset = pid * BLOCK_SIZE
offsets = block_start_offset + tl.arange(0, BLOCK_SIZE)

# 2. CREATE BOUNDARY-CHECK MASK: Prevent out-of-bounds memory access.
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mask = offsets < TOTAL_ELEMENTS

# 3. COMPUTE 2D INDICES FROM 1D OFFSETS: Find the row for vector A.
row_indices = offsets // M

# 4. LOAD DATA EFFICIENTLY: Read from global memory into registers.
vec_a_elements = tl.load(vec_a_ptr + row_indices, mask=mask, other=0.0)
mat_b_elements = tl.load(mat_b_ptr + offsets, mask=mask, other=0.0)

# 5. PERFORM THE CORE COMPUTATION: The actual fused operation.
output = vec_a_elements * mat_b_elements

# 6. STORE THE RESULT: Write the computed values back to global memory.
tl.store(output_ptr + offsets, output, mask=mask)

Problem 61 in KernelBench Level 1: 3D Transposed Convolution with x1.5 speedup.
import torch
import torch.nn as nn
import triton
import triton.language as tl

@triton.jit
def conv_transpose3d_kernel(

input_ptr, weight_ptr, output_ptr,
B, IC, OC, D_in, H_in, W_in, D_out, H_out, W_out,
input_batch_stride, input_channel_stride, input_d_stride,

input_h_stride, input_w_stride,
weight_in_channels_stride, weight_out_channels_stride, weight_d_stride

, weight_h_stride, weight_w_stride,
output_batch_stride, output_channel_stride, output_d_stride,

output_h_stride, output_w_stride,
BLOCK_SIZE: tl.constexpr,

):
# Each block handles BLOCK_SIZE output elements
pid = tl.program_id(0)
n_elements = B * OC * D_out * H_out * W_out

block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)

# Mask to avoid out-of-bounds access in last block
mask = offsets < n_elements

# Precompute for flattening and indexing
OC_D_outH_outW_out = OC * D_out * H_out * W_out
D_outH_outW_out = D_out * H_out * W_out

# Decompose flat index into (batch, channel, depth, height, width)
b_idx = offsets // OC_D_outH_outW_out
residual = offsets % OC_D_outH_outW_out
oc_idx = residual // D_outH_outW_out
spatial_idx = residual % D_outH_outW_out

d_idx = spatial_idx // (H_out * W_out)
hw_idx = spatial_idx % (H_out * W_out)
h_idx = hw_idx // W_out
w_idx = hw_idx % W_out

# Accumulator for output value (per element)
acc = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)

# Loop over all input channels and 3x3x3 kernel positions
for ic in range(IC):
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for kd in range(3):
for kh in range(3):

for kw in range(3):
# Compute corresponding input position for each output
d_in = d_idx - kd
h_in = h_idx - kh
w_in = w_idx - kw

# Check input bounds to avoid invalid memory access
in_bounds = (

(d_in >= 0) & (d_in < D_in) &
(h_in >= 0) & (h_in < H_in) &
(w_in >= 0) & (w_in < W_in)

)

# Compute input tensor offset
input_offsets = (

b_idx * input_batch_stride +
ic * input_channel_stride +
d_in * input_d_stride +
h_in * input_h_stride +
w_in * input_w_stride

)

# Load input values with masking (zeros for out-of-bounds)
input_val = tl.load(input_ptr + input_offsets, mask=

in_bounds, other=0.0)

# Compute weight tensor offset (flipped in transpose)
weight_offsets = (

oc_idx * weight_out_channels_stride +
ic * weight_in_channels_stride +
kd * weight_d_stride +
kh * weight_h_stride +
kw * weight_w_stride

)

weight_val = tl.load(weight_ptr + weight_offsets)

# Accumulate product into output accumulator
acc += input_val * weight_val

# Store the final output value
output_offsets = (

b_idx * output_batch_stride +
oc_idx * output_channel_stride +
d_idx * output_d_stride +
h_idx * output_h_stride +
w_idx * output_w_stride

)

# Store with mask for thread-safety
tl.store(output_ptr + output_offsets, acc, mask=mask)

def triton_conv_transpose3d(x: torch.Tensor, weight: torch.Tensor) ->
torch.Tensor:
B, IC, D_in, H_in, W_in = x.shape
OC = weight.shape[1]

# Output dimensions for stride=1, padding=0, kernel=3
D_out = D_in + 2
H_out = H_in + 2
W_out = W_in + 2
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# Allocate output tensor
output = torch.empty((B, OC, D_out, H_out, W_out), device=x.device,

dtype=x.dtype)

# Launch grid size: enough blocks to cover all output elements
BLOCK_SIZE = 256
grid = (triton.cdiv(B * OC * D_out * H_out * W_out, BLOCK_SIZE),)

# Launch the kernel
conv_transpose3d_kernel[grid](

x, weight, output,
B, IC, OC, D_in, H_in, W_in, D_out, H_out, W_out,
x.stride(0), x.stride(1), x.stride(2), x.stride(3), x.stride(4),
weight.stride(0), weight.stride(1), weight.stride(2), weight.stride

(3), weight.stride(4),
output.stride(0), output.stride(1), output.stride(2), output.stride

(3), output.stride(4),
BLOCK_SIZE

)

return output

class ModelNew(nn.Module):
def __init__(

self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
output_padding: int = 0,
groups: int = 1,
bias: bool = False

):
super().__init__()

# This implementation is hardcoded for kernel_size=3, stride=1, no
padding, no bias

assert (
kernel_size == 3 and stride == 1 and
padding == 0 and output_padding == 0 and
groups == 1 and not bias

)

self.in_channels = in_channels
self.out_channels = out_channels

# Weight shape: [in_channels, out_channels, 3, 3, 3]
self.weight = nn.Parameter(torch.empty(in_channels, out_channels,

3, 3, 3))

# Initialize with Kaiming uniform
nn.init.kaiming_uniform_(self.weight, a=5**0.5)

def forward(self, x: torch.Tensor) -> torch.Tensor:
return triton_conv_transpose3d(x, self.weight)

Problem 35 in KernelBench Level 1: Group Normalization with x1.1 speedup.
import torch
import torch.nn as nn
import triton
import triton.language as tl
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@triton.jit
def group_norm_reduce_kernel(

x_ptr,
mean_group_ptr,
var_group_ptr,
N, C, H, W, num_groups, M,
BLOCK_SIZE_REDUCE: tl.constexpr

):
# Program IDs for parallel execution across batch and groups
pid0 = tl.program_id(0) # batch index
pid1 = tl.program_id(1) # group index

group_size = M * H * W
group_start = pid0 * (C * H * W) + pid1 * group_size

# Use float accumulators for numerical stability
sum1 = 0.0
sum2 = 0.0

# Loop over the group in chunks for better cache usage
for i in range(0, group_size, BLOCK_SIZE_REDUCE):

offset = i + tl.arange(0, BLOCK_SIZE_REDUCE)
mask = offset < group_size # avoid out-of-bounds loads

offsets = group_start + offset

# Efficient memory access with masking and zero-padding
chunk = tl.load(x_ptr + offsets, mask=mask, other=0.0)

# Accumulate sum and squared sum
sum1 += tl.sum(chunk, axis=0)
sum2 += tl.sum(chunk * chunk, axis=0)

# Numerically stable variance computation
mean = sum1 / group_size
var = (sum2 - mean * sum1) / group_size

# Store per-group mean and variance
mean_idx = pid0 * num_groups + pid1
tl.store(mean_group_ptr + mean_idx, mean)
tl.store(var_group_ptr + mean_idx, var)

@triton.jit
def group_norm_forward_kernel(

x_ptr,
out_ptr,
mean_group_ptr,
var_group_ptr,
weight_ptr,
bias_ptr,
N, C, H, W, num_groups, M, eps,
BLOCK_SIZE: tl.constexpr

):
# 1D parallelism across total number of elements
pid = tl.program_id(0)
total_elements = N * C * H * W

block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < total_elements # bounds checking

# Flattened indexing to recover n, c from offset
total2 = H * W
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total3 = C * total2

n = offsets // total3
rest = offsets - n * total3
c = rest // total2
group_index = c // M # which group the channel belongs to

# Memory load with masking
x_offsets = offsets
x_val = tl.load(x_ptr + x_offsets, mask=mask)

# Load per-sample, per-group mean and variance
mean_idx = n * num_groups + group_index
mean_val = tl.load(mean_group_ptr + mean_idx)
var_val = tl.load(var_group_ptr + mean_idx)

# Load affine transformation parameters per channel
gamma = tl.load(weight_ptr + c)
beta = tl.load(bias_ptr + c)

# Avoid negative variance (numerical safety)
var_val = tl.maximum(var_val, 0)
std = tl.sqrt(var_val + eps)

# Normalize and apply affine transformation
normalized = (x_val - mean_val) / std
out_val = normalized * gamma + beta

# Store result with mask to handle edge threads
tl.store(out_ptr + x_offsets, out_val, mask=mask)

class ModelNew(nn.Module):
def __init__(self, num_features, num_groups):

super().__init__()
self.num_groups = num_groups
self.num_features = num_features

# Learnable affine parameters
self.weight = nn.Parameter(torch.ones(num_features))
self.bias = nn.Parameter(torch.zeros(num_features))

def forward(self, x):
x = x.contiguous() # ensure contiguous memory layout for Triton

N, C, H, W = x.shape
M = C // self.num_groups # channels per group

# Allocate buffers for per-group statistics
mean_group = torch.empty((N, self.num_groups), device=x.device)
var_group = torch.empty((N, self.num_groups), device=x.device)

# Launch reduction kernel: one thread per (N, group)
grid_reduce = (N, self.num_groups)
group_norm_reduce_kernel[grid_reduce](

x, mean_group, var_group,
N, C, H, W, self.num_groups, M,
BLOCK_SIZE_REDUCE=1024 # large block size for better throughput

)

# Allocate output tensor
out = torch.empty_like(x)
total_elements = N * C * H * W

# Launch forward kernel: 1D block across all elements
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grid_forward = (triton.cdiv(total_elements, 1024),)
group_norm_forward_kernel[grid_forward](

x, out, mean_group, var_group,
self.weight, self.bias,
N, C, H, W, self.num_groups, M, 1e-5,
BLOCK_SIZE=1024 # tuneable block size

)

return out

G HYPERPARAMETERS OF SFT AND RL TRAINING

For data preparation, we use temperature=0.6, top p=0.95 for DeepSeek-R1 (Guo et al., 2025). To
label difficulty, we further label tasks into three difficulty levels using Qwen3-235B-Instruct (Team,
2025) (temperature=0.7, top p=0.8).

For SFT, we training for 2 epochs with a batch size of 16, a learning rate of 1 × 10−5, and a
maximum sequence length of 12,288 tokens. We train the model for 2 epochs using the VeRL
framework (Sheng et al., 2025) with a batch size of 32, a learning rate of 1 × 10−6, the maximum
prompt length 2, 048, and the maximum response length 16, 384. We use 8 NVIDIA A100 80GB
GPUs for both SFT and RL training.

H ADDITIONAL EXPERIMENT RESULTS

H.1 OVERALL PERFORMANCE COMPARISON

Model #Params LEVEL1 LEVEL1 (W/O ROBUST)

valid compiled / correct fast1 / fast2 valid compiled / correct fast1 / fast2

Qwen3 (base) 8B 73.0 40.0 / 14.0 0.0 / 0.0 54.0 52.0 / 15.0 0.0 / 0.0
Qwen3 14B 82.0 65.0 / 17.0 0.0 / 0.0 66.0 71.0 / 16.0 0.0 / 0.0
Qwen3 32B 75.0 61.0 / 16.0 2.0 / 0.0 52.0 50.0 / 15.0 2.0 / 0.0

KernelLLM 8B 42.0 40.0 / 20.0 0.0 / 0.0 100.0 98.0 / 29.0 2.0 / 0.0
AutoTriton 8B 97.0 78.0 / 50.0 2.0 / 1.0 100.0 95.0 / 70.0 8.0 / 1.0
TRITONRL (ours) 8B 99.0 82.0 / 56.0 5.0 / 1.0 99.0 83.0 / 58.0 5.0 / 1.0

w/o RL (SFT only) 8B 97.0 88.0 / 44.0 4.0 / 2.0 98.0 93.0 / 47.0 5.0 / 2.0

GPT-oss 120B 100.0 100.0 / 74.0 7.0 / 2.0 100.0 100.0 / 78.0 7.0 / 2.0
Claude-3.7 - 99.0 99.0 / 53.0 3.0 / 1.0 100.0 100.0 / 64.0 8.0 / 1.0
DeepSeek-R1 685B 100.0 100.0 / 66.0 6.0 / 2.0 100.0 100.0 / 72.0 6.0 / 2.0

Table 5: Main results on KernelBench Level 1. All metrics are reported in terms of pass@10
(%). We obtained the best result in model parameter sizes < 32B. The left side shows the results
where the validity of generated codes is verified using the robust verifier, checking both syntax
and functionality. The right side (w/o robust) shows the results without the robust verifier, where
functionality is not checked.

H.2 PASS@K RESULTS

In addition to the pass@10 results shown in the main text, we also report pass@1 and pass@5 results
for KernelBench Level 1 and Level 2 tasks in Table 7 and Table 8. These results further demonstrate
the strong performance of TRITONRL in generating valid, correct, and efficient Triton code across
various pass@k metrics.
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Model #Params LEVEL2 LEVEL2 (W/O ROBUST)

valid compiled / correct fast1 / fast2 valid compiled / correct fast1 / fast2

Qwen3 (base) 8B 56.0 1.0 /0.0 0.0 / 0.0 94.0 52.0 / 11.0 1.0 / 0.0
Qwen3 14B 35.0 24.0 / 1.0 0.0 / 0.0 100.0 94.0 / 65.0 14.0 / 1.0
Qwen3 32B 31.0 16.0 / 0.0 0.0 / 0.0 90.0 73.0 / 22.0 7.0 / 1.0

KernelLLM 8B 0.0 0.0 / 0.0 0.0 / 0.0 98.0 96.0 / 3.0 3.0 / 1.0
AutoTriton 8B 70.0 3.0 / 0.0 0.0 / 0.0 100.0 97.0 / 76.0 15.0 / 0.0
TRITONRL (ours) 8B 69.0 41.0 / 10.0 0.0 / 0.0 100.0 88.0 / 42.0 13.0 / 1.0

w/o RL (SFT only) 8B 67.0 32.0 / 6.0 0.0 / 0.0 100.0 98.0 / 41.0 11.0 / 1.0

GPT-oss 120B 39.0 38.0 / 12.0 0.0 / 0.0 100.0 99.0 / 74.0 23.0 / 1.0
Claude-3.7 - 34.0 34.0 / 12.0 1.0 / 0.0 100.0 98.0 / 60.0 18.0 / 1.0
DeepSeek-R1 685B 30.0 29.0 / 10.0 0.0 / 0.0 100.0 98.0 / 72.0 25.0 / 3.0

Table 6: Main results on KernelBench level 2 tasks. All metrics are reported in terms of pass@10
(%). We obtained the best result in model parameter sizes < 32B. The left side shows the results
where the validity of generated codes is verified using the robust verifier, checking both syntax
and functionality. The right side (w/o robust) shows the results without the robust verifier, where
functionality is not checked.

Model PASS@1 PASS@5 PASS@10

valid compiled / correct fast1 / fast2 valid compiled / correct fast1 / fast2 valid compiled / correct fast1 / fast2

Qwen3 (8B) 24.0 14.0 / 4.0 0.0 / 0.0 54.0 33.0 / 14.0 0.0 / 0.0 73.0 40.0 / 14.0 0.0 / 0.0
Qwen3 (14B) 25.0 22.0 / 10.0 0.0 / 0.0 66.0 53.0 / 14.0 0.0 / 0.0 82.0 65.0 / 17.0 0.0 / 0.0
Qwen3 (32B) 19.0 16.0 / 4.0 0.0 / 0.0 52.0 41.0 / 14.0 2.0 / 0.0 75.0 61.0 / 16.0 2.0 / 0.0

KernelLLM 32.0 29.0 / 14.0 0.0 / 0.0 41.0 39.0 / 19.0 0.0 / 0.0 42.0 40.0 / 20.0 0.0 / 0.0
AutoTriton 61.0 42.0 / 18.0 0.0 / 0.0 94.0 73.0 / 40.0 1.0 / 1.0 97.0 78.0 / 50.0 2.0 / 1.0
TRITONRL (ours) 70.0 51.0 / 21.0 0.0 / 0.0 97.0 80.0 / 47.0 3.0 / 1.0 99.0 82.0 / 56.0 5.0 / 1.0

w/o RL (SFT only) 48.0 37.0 /12.0 0.0 / 0.0 94.0 77.0 / 31.0 2.0 /1.0 97.0 88.0 / 44.0 4.0 / 2.0

GPT-oss 82.0 82.0 / 38.0 3.0 / 1.0 100.0 100.0 / 64.0 7.0 / 2.0 100.0 100.0 / 74.0 7.0 / 2.0
Claude-3.7 78.0 73.0 / 25.0 1.0 / 1.0 99.0 98.0 / 40.0 1.0 / 1.0 99.0 99.0 / 53.0 3.0 / 1.0
DeepSeek-R1 87.0 86.0 / 29.0 1.0 / 0.0 99.0 98.0 / 51.0 4.0 / 2.0 100.0 100.0 / 66.0 6.0 / 2.0

Table 7: Pass@k performance comparison for k = 1, 5, 10 on KernelBench Level 1 tasks.

Model PASS@1 PASS@5 PASS@10

valid compiled / correct fast1 / fast2 valid compiled / correct fast1 / fast2 valid compiled / correct fast1 / fast2

Qwen3 (8B) 9.0 0.0 / 0.0 0.0 / 0.0 30.0 1.0 / 0.0 0.0 / 0.0 56.0 1.0 / 0.0 0.0 / 0.0
Qwen3 (14B) 4.0 2.0 / 1.0 0.0 / 0.0 23.0 17.0 / 1.0 0.0 / 0.0 35.0 24.0 / 1.0 0.0 / 0.0
Qwen3 (32B) 4.0 3.0 / 0.0 0.0 / 0.0 19.0 9.0 / 0.0 0.0 / 0.0 31.0 16.0 / 0.0 0.0 / 0.0

KernelLLM 0.0 0.0 / 0.0 0.0 / 0.0 0.0 0.0 / 0.0 0.0 / 0.0 0.0 0.0 / 0.0 0.0 / 0.0
AutoTriton 21.0 0.0 / 0.0 0.0 / 0.0 57.0 1.0 / 0.0 0.0 / 0.0 70.0 3.0 / 0.0 0.0 / 0.0
TRITONRL (ours) 16.0 10.0 / 0.0 0.0 / 0.0 56.0 20.0 / 4.0 0.0 / 0.0 71.0 29.0 / 7.0 0.0 / 0.0

w/o RL (SFT only) 15.0 8.0 / 0.0 0.0 / 0.0 51.0 25.0 / 5.0 0.0 / 0.0 67.0 32.0 / 6.0 0.0 / 0.0

GPT-oss 9.0 8.0 / 2.0 0.0 / 0.0 30.0 28.0 / 7.0 0.0 / 0.0 39.0 38.0 / 12.0 0.0 / 0.0
Claude-3.7 15.0 13.0 / 1.0 0.0 / 0.0 31.0 30.0 / 10.0 1.0 / 0.0 34.0 34.0 / 12.0 1.0 / 0.0
DeepSeek-R1 6.0 4.0 / 0.0 0.0 / 0.0 23.0 22.0 / 4.0 0.0 / 0.0 30.0 29.0 / 10.0 0.0 / 0.0

Table 8: Pass@k performance comparison for k = 1, 5, 10 on KernelBench Level 2 tasks.
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