
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRITONRL: TRAINING LLMS TO THINK AND CODE
TRITON WITHOUT CHEATING

Anonymous authors
Paper under double-blind review

ABSTRACT

With the rapid evolution of large language models (LLMs), the demand for au-
tomated, high-performance system kernels has emerged as a key enabler for ac-
celerating development and deployment. We introduce TRITONRL, a domain-
specialized LLM for Triton kernel generation, trained with a novel reinforcement
learning (RL) framework that enables robust and automated kernel synthesis. Un-
like CUDA, which benefits from abundant programming data, high-performance
Triton kernels are scarce and typically require costly crawling or manual author-
ing. Furthermore, reliable evaluation methods for validating Triton kernels re-
main underdeveloped and even hinder proper diagnosis of base model perfor-
mance. Our approach addresses these challenges end-to-end with a fully open-
source recipe: we curate datasets from KernelBook, enhance solution quality
via DeepSeek-assisted distillation, and fine-tune Qwen3-8B to retain both rea-
soning ability and Triton-specific correctness. We further introduce hierarchical
reward decomposition and data mixing to enhance RL training. With correct re-
evaluations of existing models, our experiments on KernelBench demonstrate that
TRITONRL achieves state-of-the-art correctness and speedup, surpassing all other
Triton-specific models and underscoring the effectiveness of our RL-based train-
ing paradigm.

1 INTRODUCTION

The exponential growth in demand for GPU computing resources has driven the need for highly opti-
mized GPU kernels that improve computational efficiency, yet with the emergence of numerous GPU
variants featuring diverse hardware specifications and the corresponding variety of optimization ker-
nels required for each, developing optimized kernels has become an extremely time-consuming and
challenging task. In response to this need, there is growing interest in leveraging large language
models (LLMs) for automated kernel generation. While there have been attempts introducing infer-
ence frameworks that utilize general-purpose models, such as OpenAI models and DeepSeek, for
generating kernels (Ouyang et al., 2025; Lange et al., 2025; Li et al., 2025a; NVIDIA Developer
Blog, 2025), they often struggle with even basic kernel implementations, thereby highlighting the
critical need for domain-specific models specifically tailored for kernel synthesis.

As the need for specialized models for kernel generation has emerged, several works have focused on
fine-tuning LLMs for CUDA or Triton. In the CUDA domain, recent RL-based approaches include
Kevin-32B Baronio et al. (2025), which progressively improves kernels using execution feedback
as reward signals, and CUDA-L1, which applies contrastive RL to DeepSeek-V3 Li et al. (2025c).
While these large models (32B-671B parameters) achieve strong CUDA performance, their training
costs remain prohibitively expensive. To address these limitations, researchers have proposed spe-
cialized 8B Triton models, including KernelLLM Fisches et al. (2025) (supervised training on torch
compiler-generated code) and AutoTriton Li et al. (2025b), fine-tuned via LLM distillation and RL
using execution feedback. Though these smaller models outperform their base models, significant
room remains for improving efficiency and accuracy compared to larger counterparts.

Furthermore, there is a common issue reported across kernel generation works, reward hacking (Ba-
ronio et al., 2025; Li et al., 2025b). Due to the scarcity of high-quality kernel examples compared
to other programming languages, most approaches rely on RL training using runtime measurements
and correctness rewards from unit tests after kernel execution. However, models frequently learn to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: TRITONRL components and workflow.

exploit unit test loopholes, such as direct use of high-level PyTorch modules, rather than generat-
ing proper code, and this phenomenon is particularly prevalent in smaller models (8B and below)
(Baronio et al., 2025). This issue fundamentally undermines the core objective of developing more
efficient custom kernels to replace existing pre-optimized libraries, while current approaches pre-
dominantly rely on simple rule-based syntax verification whose effectiveness remains uncertain.

In this paper, we present TRITONRL, an 8B-scale LLM specialized for Triton programming that
achieves state-of-the-art performance in both correctness and runtime speedup, while effectively
mitigating reward hacking. To enable high-quality Triton kernel generation with small models (up
to 8B), we design a training pipeline with the following key contributions:

• Simplified dataset curation with distillation: Instead of large-scale web crawling, we build on
the curated KernelBook problems. Their solutions are refined and augmented through DeepSeek-
R1 distillation (Guo et al., 2025), providing high-quality supervision for SFT of our base model
Qwen3-8B (Team, 2025).

• Fine-grained and robust verification: We incorporate enhanced rule-based checks (e.g.,
nn.Module) together with LLM-based judges (e.g., Qwen3-235B-Instruct) to construct ver-
ifiable rewards. This enables reliable diagnosis across commercial and open-source models,
while preventing reward hacking that arises from naive syntax-only verification.

• Hierarchical reward decomposition with data mixing: Our RL stage decomposes rewards
into multiple dimensions (e.g., correctness, efficiency, style) and applies token-level credit as-
signment. Combined with strategic data mixing across SFT and RL, this yields better kernel
quality, generalization, and robustness.

• Comprehensive evaluation and open-sourcing: Through rigorous validity analysis that filters
out syntactically or functionally invalid code, we reveal true performance differences among
models. Ablation studies further confirm the effectiveness of our hierarchical reward design and
data mixing. At the 8B scale, TRITONRL surpasses existing Triton-specific LLMs, including
KernelLLM (Fisches et al., 2025) and AutoTriton (Li et al., 2025b). We fully release our datasets,
recipes, pretrained checkpoints, and evaluation framework to ensure reproducibility and foster
future research.

2 TRITONRL

In this section, we present TRITONRL, a specialized model designed for Triton programming. Our
objective is to develop a model that can generate Triton code that is both correct and highly opti-
mized for speed, outperforming the reference implementation. To achieve this, we adopt a two-stage
training strategy: we first apply supervised fine-tuning (SFT) to instill fundamental Triton syntax
and kernel optimization skills, followed by reinforcement learning (RL) with fine-grained verifi-
able rewards to further refine the model for correctness and efficiency. We will first detail the SFT
procedure, and subsequently present the design of the reinforcement learning framework.

2.1 TRITON KNOWLEDGE DISTILLATION VIA SUPERVISED FINE-TUNING

Recent work (Fisches et al., 2025; Li et al., 2025b) has demonstrated that large language models
(LLMs) exhibit weak Triton programming ability at the 8B scale, struggling both with syntax and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ü Can be parsed properly (ast.parse)
ü Include Triton modules (@triton.jit)

ü Actual call of Triton
ü No use of high-level PyTorch (e.g. torch.nn)
ü Meaningful operations with Triton

Generated Triton codes to replace torch.matmul

syntax = 0

syntax = 1

def not_triton(x):
 return torch.matmul(x)
…
def forward(self, x):
 return not_triton(x)

(a) Syntactically invalid code

(b) Functionally invalid code

@triton.jit
def triton_copy(x):
 …
def forward(self, x):
 y = torch.matmul(x)
 try:
 return triton_copy(y)
 except:
 return y

func=0

Rule-based & LLM Judge

Functionality verifier

Syntax verifier

Rule-based

Figure 2: Illustration of the flow of our robust verifier incorporating syntax and functionality check-
ers and the examples of invalid Triton codes. (a) invalid syntax: the code lacks any Triton blocks
and consists solely of PyTorch code. (b) invalid functionality: the code include dummy Triton code
that just copies data without meaningful operation delegating core operation (matrix multiplication)
to PyTorch modules (torch.matmul).

with performance-oriented design patterns. Effective dataset curation is therefore essential, not only
to expose Triton-specific primitives and coding structures but also to preserve the reasoning traces
that guide kernel optimization. To address this, our pipeline follows three key steps: (i) data aug-
mentation, (ii) synthesis of reasoning traces paired with corresponding code, and (iii) construction
of high-quality training pairs for supervised fine-tuning.

(i) Data augmentation: We start from the problem sets in KernelBook (Paliskara & Saroufim,
2025), which provides curated pairs of PyTorch programs and equivalent Triton kernels. To
enrich this dataset, we augment the tasks with additional variations (e.g., diverse input shapes),
thereby exposing the model to broader performance scenarios.

(ii) Data synthesis: To obtain diverse reasoning traces that guide correct and efficient Triton gen-
eration, we employ DeepSeek-R1 (Guo et al., 2025) to jointly synthesize reasoning steps and
Triton implementations. For each task wrapped with instruction and Pytorch reference, multiple
candidate kernels are collected, each paired with an explicit reasoning trace. This yields a dataset
of D =

{
(q, oi)

}
= {(task query, Triton code with CoT)}.

See concrete template in Appendix E.3).

(iii) Supervised fine-tuning: In the SFT stage, the model is trained to produce valid Triton code as
well as reproduce the associated reasoning traces from the instruction. This distillation process
transfers essential Triton programming patterns while reinforcing reasoning ability.

2.2 REINFORCEMENT LEARNING WITH HIERARCHICAL REWARD DECOMPOSITION

While supervised fine-tuning (SFT) equips the base model with basic Triton syntax and kernel opti-
mization abilities, the resulting code may still contain errors or lack efficiency. To further improve
the quality of Triton code generation of TRITONRL, we train the model via reinforcement learning
(RL) with verifiable rewards, which incentivize model to generate more correct and efficient Triton
code yielding higher rewards. In RL, designing effective reward feedback is essential since crude
reward designs not perfectly aligned with original objectives of tasks often lead to reward hacking,
guiding models to exploit loopholes. To address this, we first introduce robust and fine-grained
verifiers that rigorously assess the quality of Triton code in diverse aspects, forming the basis for
constructing reward functions. Building on these verifiers, we present a GRPO-based RL frame-
work with hierarchical reward decomposition that provides targeted feedback for reasoning traces
and Triton code, thereby improving the correctness and efficiency of generated Triton kernels.

Fine-Grained Verification for High-Quality Triton Code. We denote i-th generated output sam-
ple oi for a given prompt or task q. Recall that q and oi include Pytorch reference qref and Triton
code ocode

i that is executable on some proper input x, i.e., qref(x), ocode(x). We introduce fine-grained
verifiers v that comprehensively evaluate different aspects of code quality as follows.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• Robust verifier: Sequential verifier to check output is a valid Triton code without non-nonsensical
hacking. See Figure 2 for an illustration

– syntax : A binary verifier that assesses whether code ocode is valid Triton syntax. We use
a rule-based linter to verify the presence of Triton kernels annotated with @triton.jit.

– func: A binary functionality verifier to detect whether ocode constitutes a valid Triton
kernel. Syntax checks alone are insufficient, since models may output code that super-
ficially passes verification but defers computations to high-level PyTorch modules (e.g.,
torch.nn, @) or hardcodes constants, as in Figure 2 (b). To address this, we combine a
rule-based linter—which ensures Triton kernels are invoked and flags reliance on PyTorch
modules—with an LLM-based judge that evaluates semantic correctness against task spec-
ifications.

• compiled: A binary verifier that checks whether the generated Triton code can be successfully
compiled without errors.

• correct: A binary verifier that evaluates whether the generated Triton code produces correct
outputs by compiling and comparing its results against those of the reference PyTorch code using
provided test input x.

correct(q, o) = compile
(
ocode) · 1[ocode(x) == qref(x)

]
• speedup: A scalar score that quantifies the execution time improvement of the generated Triton

code relative to the reference PyTorch implementation. For a prompt q with reference Pytorch
code qref and corresponding triton code ocode generated, speed-up is defined as, given test input
x,

speedup(q, o) =
τ(ocode, x)

τ(qref, x)
· correct(q, o),

where τ(·, x) measure the runtimes of given code and input x.

For notational simplicity, for a given prompt q and output sample oi, we define v(q, oi) as vi any
verification function v throughput the paper.

While prior works (Li et al., 2025b; Baronio et al., 2025) addressed reward hacking with rule-
based linters, such methods remain vulnerable to loopholes. Our verifier combines rule-based and
LLM-based checks to capture both syntactic and semantic errors, offering stronger guidance during
training (see Appendix E.2 for examples and Section 3 for evaluation). Building on these fine-
grained verifiers, we develop an RL framework that delivers targeted feedback to both reasoning
traces and Triton code, improving kernel correctness and efficiency.

Hierarchical Reward Decomposition. Training LLMs with long reasoning traces remains chal-
lenging because providing appropriate feedback across lengthy responses is difficult. When a single
final reward is uniformly applied to all tokens, it fails to distinguish between those that meaningfully
contribute to correctness or efficiency and those that do not. This issue is particularly pronounced
in kernel code generation, where reasoning traces often outline complex optimization strategies for
GPU operations. Even if the plan itself is well-formed and could yield significant speedups, errors in
the subsequent Triton implementation may cause the entire response to be penalized, which was also
identified by (Qu et al., 2025). This prevents the model from effectively learning good optimization
strategies, conflating high-quality reasoning with poor execution.

To address this, we propose a GRPO with hierarchical reward decomposition for Triton code gener-
ation. Specifically, Triton code generation oi can be viewed as two-level hierarchy action pairs,

• oplan
i : CoT reasoning traces correspond to high-level planning actions, providing abstract kernel

optimization strategies, such as tiling or shared memory.

• ocode
i : final Triton code answers correspond to low-level coding actions that execute the plan

given by the previous reasoning traces.

The key idea is to assign different reward credit for different class of output tokens between plan
and code. By jointly optimizing rewards for both levels, we can train the model to better align its

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

PyTorch code

def forward(self, x):
 return torch.matmul(x)

Triton code

@triton.jit
def triton_matmul(x):
 ….

<think>
Okay, … let’s try
- block-based approach
- shared memory …
</think>

Plan (reasoning)

TritonPyTorch

You write custom Triton
kernels to replace the
PyTorch. operators ..

𝑦 "𝑦=

>
x1.5
faster

Query (𝑞) Output (𝑜!) Verifiable rewards (𝑟)

Model (𝜋")

Syntax & Functionality

Speedup

Correctness

𝑜!
#$%&~𝜋"(⋅ |𝑞)

𝑜!'()*~𝜋"(⋅ |𝑞, 𝑜!
#$%&)

Rule-based & LLM Judge

+

Figure 3: An example LLM output for Triton code generation, showing a reasoning trace (plan) and
the generated Triton kernel code conditioned on the plan.

reasoning with the desired code output as follows:

JGRPO(θ) = E
q∼P (Q), {oi=(o

plan
i ,ocode

i)}G
i=1∼πθold

(·|q)

[
1

G

G∑
i=1

αF plan
GRPO(θ, i) + F code

GRPO(θ, i)

]
(1)

where πθ and πθold are the policy model and reference model, q denotes a prompt given to the model,
defining a task to implement in Triton, and oi = (oplan

i , ocode
i) represents i-th response generated by

the model for q in the group G. Here we denote oplan
i,t and ocode

i,t as t-th token of output plan and code. .
The GRPO losses F plan(θ) and F code(θ) are computed over the tokens in generated plans and Triton
codes, respectively, and α ∈ [0, 1] is a weighting factor that balances the training speed of planning
and coding policy. Here, α is set to a small value (e.g., 0.1) so that the planning distribution is up-
dated slowly, allowing the coding policy sufficient time to learn correct implementations conditioned
on those high-level plans. The detailed formulation of each loss component is as follows.

F plan
GRPO =

 1

|oplan
i |

|oplan
i |∑
t=0

{
min

[
πθ(o

plan
i,t |q, o

plan
i,<t)

πθold(o
plan
i,t |q, o

plan
i,<t)

Âplan
i,t , clip

(
πθ(o

plan
i,t |q, o

plan
i,<t)

πθold(o
plan
i,t |q, o

plan
i,<t)

, 1− ϵ, 1 + ϵ

)
Âplan

i,t

]} ,

F code
GRPO =

 1

|ocode
i |

|ocode
i |∑
t=0

{
min

[
πθ(o

code
i,t |q, o

plan
i , ocode

i,<t)

πθold(o
code
i,t |q, o

plan
i , ocode

i,<t)
Âcode

i,t , clip

(
πθ(o

code
i,t |q, o

plan
i , ocode

i,<t)

πθold(o
code
i,t |q, o

plan
i , ocode

i,<t)
, 1− ϵ, 1 + ϵ

)
Âcode

i,t

]} ,

(2)

where Âplan
i,t and Âcode

i,t are the group-wise advantages for plan and code tokens, computed as Ai,t =

ri − 1
G

∑G
j=1 rj , with rewards for plan and code tokens defined as:

rplan
i = syntaxi · funci · speedupi, rcode

i = syntaxi · funci · correcti. (3)

Here, we note that the syntax and functionality checks serve as necessary conditions for correctness
and speedup evaluations. If either the syntax or functionality check fails, the generated code is
deemed invalid, and both correctness and speedup rewards are set to zero.

By assigning speedup-based rewards to plan tokens and correctness-based rewards to code tokens,
our approach provides targeted feedback, allowing for more fine-grained credit assignment: reason-
ing traces are encouraged to propose optimization strategies that yield efficient kernels, while code
generation is guided to produce valid implementations that faithfully realize these plans. Moreover,
by choosing small values for α, we slow down the training of plan tokens relative to code tokens
to ensure the model to learn effective coding skills first for given plan distributions. This helps
avoid overly penalizing the reasoning trace due to code generation instability in early training, thus
preserving promising optimization plans that may yield higher speedup once the code generation
stabilizes. In our experiments, we explore different configurations of α and reward functions to
analyze the benefits of our reward decomposition.

Data Mixing Optimization for Reinforcement Learning. In our task, we have a training dataset
Dtrain that is made of examples from KernelBook. We have an evaluation dataset Dtest from

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

KernelBench. We regard the problem of selecting the right examples to post-train our LLM model
as a data mixing optimization problem, and we formulate the problem as follows.

Given a training dataset Dtrain and a test dataset Dtest, either dataset can be divided into m subsets.
we suppose the probability of selecting m training data subsets forms a probability simplex p ∈ ∆,
which represents the probability of drawing different subsets in the training set. We define the
reward function Ri

test(p) = 1
|Di

test|
∑

q∈Di
test

maxo∈πp(q) r
(
q, o
)
, where πp is the policy that is

trained under the data mixture p. In this problem, we use a static mixture p for all post-training
steps. Following the proposal by Chen et al. (2024), we can express a data mixture optimization
problem as the following optimization problem:

maximize
p∈∆

m∑
j=1

Rj
test(p) s.t. Rj

test(p) = ζ(S,p),where S ∈ Rm×m. (4)

We define S as the reward interaction matrix, where Sij captures the effect of post-training on the
i-th subset in Dtrain and then using the learned policy π to generate corresponding kernels for the
j-th Dtest. We use a general function ζ to leverage this information to predict the reward obtained
on the j-th subset in Dtest.

We make two crucial changes to prior data mixing work. First, unlike the typical data mixing work
that assumes ζ can be parametrized as a linear function, we do not make specific assumptions (Chen
et al., 2023; Xie et al., 2023; Fan et al., 2023). Second, we do not create random subsets of our
data. Instead, we note that KernelBench (Ouyang et al., 2025) has three complexity levels. We
use an LLM labeler to create difficulty labels for each data point in Dtrain. Since we focus on
difficulty level 1 and 2, we create two subsets for training and test: Dtrain = {DL1

train,DL2
train},

Dtest = {DL1
test,DL2

test}. Since the problem is under-constrained without a known parametric form
of ζ, we simply evaluate three candidate initializations, p ∈ [1, 0], [0, 1], [0.5, 0.5], and choose the
best-performing mixture rather than fully modeling S and ζ or solving for p exhaustively.

3 EXPERIMENTS

This section provides the detailed recipe of training and evaluation of TRITONRL, followed by the
main results and ablation studies.

3.1 TRAINING AND EVALUATION SETUPS

Data Preparation. For both SFT and RL, we use 11k tasks from KernelBook (Paliskara &
Saroufim, 2025). We expand each task with five reasoning traces and corresponding Triton imple-
mentations generated by DeepSeek-R1 (Guo et al., 2025), yielding 58k <task query, Triton
code with CoT> pairs. Prompts adopt a one-shot format, where the reference PyTorch code is
given and the model is asked to produce an optimized Triton alternative (examples in Appendix E.3).
To support curriculum in RL training, we further label tasks into three difficulty levels using Qwen3-
235B-Instruct (Team, 2025), following the task definitions in Ouyang et al. (2025), yielding 11k
<task query, level> pairs. See detailed generation and classification in Appendix G and
E.1.

Training Configuration. We begin by fine-tuning the base model Qwen3-8B on Level-1 tasks.
After SFT, we move to RL training on the same KernelBook tasks, but without output la-
bels—rewards are computed directly from code execution—so the RL dataset consists only of task
instructions. An example of such instructions is shown in Appendix E.3. We implement training un-
der the VeRL framework (Sheng et al., 2025), starting from Level-1 tasks and gradually progressing
to higher levels as performance improves (though current results use only Level-1). Hyperparam-
eters for both SFT and RL are provided in Appendix G. By default, we use the reward function r
from equation 3, setting α = 0.1 unless specified otherwise.

Evaluation Benchmarks. We evaluate TRITONRL on KernelBench (Li et al., 2025a)1. Kernel-
Bench offers an evaluation framework covering 250 tasks, divided into Level 1 (100 single-kernel

1We use the Triton backend version of KernelBench from https://github.com/
ScalingIntelligence/KernelBench/pull/35.

6

https://github.com/ScalingIntelligence/KernelBench/pull/35
https://github.com/ScalingIntelligence/KernelBench/pull/35

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model #Params LEVEL1 (ROBUST VERIFIER) LEVEL1 (W/O ROBUST VERIFIER)

valid compiled / correct fast1 / fast2 mean speedup valid compiled / correct

Qwen3 (base) 8B 73.0 40.0 / 14.0 0.0 / 0.0 0.03 54.0 52.0 / 15.0
Qwen3 14B 82.0 65.0 / 17.0 0.0 / 0.0 0.04 66.0 71.0 / 16.0
Qwen3 32B 75.0 61.0 / 16.0 2.0 / 0.0 0.06 52.0 50.0 / 15.0

KernelLLM 8B 42.0 40.0 / 20.0 0.0 / 0.0 0.05 100.0 98.0 / 29.0
AutoTriton 8B 97.0 78.0 / 50.0 2.0 / 1.0 0.25 100.0 95.0 / 70.0
TRITONRL (ours) 8B 99.0 82.0 / 56.0 5.0 / 1.0 0.33 99.0 83.0 / 58.0

w/o RL (SFT only) 8B 97.0 88.0 / 44.0 4.0 / 2.0 0.33 98.0 93.0 / 47.0

Claude-3.7 - 99.0 99.0 / 53.0 3.0 / 1.0 0.32 100.0 100.0 / 64.0

Table 1: Main results on KernelBench Level 1. All metrics are reported as pass@10 (%). Our model
achieves the best results among models with fewer than 32B parameters. The left block reports
evaluation with the robust verifier (syntax + functionality). The right block (w/o robust verifier)
lacks functionality checks, leading to misleading correctness estimates.

Figure 4: Pass@k correctness and mean speedup for k = 1, 5, 10 on KernelBench Level 1 tasks.
We adopted our robust verifier to check validity.

tasks, such as convolution), Level 2 (100 simple fusion tasks, such as conv+bias+ReLU), and Level
3 (50 full architecture tasks, such as MobileNet), to assess LLM proficiency in generating efficient
CUDA kernels. We conduct experiments mainly on the Level 1 and Level 2 tasks from KernelBench.
The prompts used for these benchmarks are provided in Appendix F.1.

Metrics. We evaluate the performance of LLMs for generating Triton code in terms of (1) Validity
(syntax and functionality); (2) Correctness (compilation and correct output); (3) Speedup (relative
execution time improvement). We report fast1 and fast2 to indicate the model’s ability to gen-
erate Triton code that is at least as fast as or twice as fast as the reference PyTorch implementation,
respectively. The formal definition of metrics is provided in Appendix D. We measure the pass@k
metrics for each aspect, which indicates the ratio of generating at least one successful solution among
k sampled attempts. We use k = 10 as a default unless specified. We test both Triton codes and
reference PyTorch codes on an NVIDIA L40S.

Baselines. We compare TRITONRL with several baselines, including KernelLLM (Fisches et al.,
2025) and AutoTriton (Li et al., 2025b), which are fine-tuned LLMs specifically for Triton program-
ming. We also include our base model Qwen3-8B (Team, 2025) without any fine-tuning, fine-tuned
Qwen3-8B only after SFT, and larger Qwen3 models (e.g., Qwen3-14B and Qwen3-32B). Addition-
ally, we evaluate Claude-3.7 (Anthropic, 2025) with unknown model size. For large model classes
beyond 100B (e.g., GPT-OSS 120B (OpenAI, 2025), DeepSeek-R1-0528 (NVIDIA Developer Blog,
2025)), we report the numbers to the Appendix H.1 as a reference.

3.2 MAIN EXPERIMENT RESULTS

Overall Performance on Level 1 Tasks. The left side of Table 1 presents the performance com-
parison results for pass@10 evaluated with robust verifiers (syntax and functionality) on Kernel-
Bench Level 1 tasks. TRITONRL consistently outperforms most baseline models with < 32B pa-
rameter sizes in terms of validity, correctness, and speedup. In particular, TRITONRL surpasses
AutoTriton, which also leverages SFT and RL, by achieving higher correctness and speedup, un-
derscoring the advantages of our hierarchical reward assignment. Notably, the correctness metric

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

improves from 44% (SFT only) to 55% after RL, indicating that RL provides substantial gains in
addition to supervised fine-tuning. Furthermore, TRITONRL achieves on-par performance to much
larger models, highlighting the efficiency of our approach in enabling smaller models to excel in
specialized code generation tasks. We further evaluated inference scaling by varying the number of
sampled attempts (k = 1, 5, 10), as illustrated in Figure 4. The correctness of TRITONRL increases
with more samples, whereas KernelLLM and Qwen3-8B show limited improvement, suggesting
that TRITONRL generates a more diverse set of codes and benefits from additional sampling during
inference. Additional pass@1 and pass@5 results are provided in Appendix H.2.

Figure 5: Side-by-side comparison of base models and
their post-trained variants. Successful training should
reduce invalid syntax errors (yellow) and functional
invalidity (red), while increasing correctness (green)
from individual base model. Only TRITONRL shows
this outcome.

Effectiveness of Validity Reward. We
analyze the validity of Triton codes gen-
erated by fine-tuned models to understand
the types of errors each model is prone
to. To examine the effects of fine-tuning
on validity, we also include the base mod-
els of TRITONRL and the baseline mod-
els. In Figure 5, although both AutoTriton
and TRITONRL achieve relatively high
rates of validity compared to KernelLLM,
a more detailed breakdown reveals that
AutoTriton exhibits a much higher propor-
tion of functionally invalid codes. Interest-
ingly, the base model of AutoTriton shows
a low rate of functionally and syntactically
invalid codes, indicating that the fine-
tuning process of AutoTriton may have led
to learn functionally invalid codes. In con-
trast, TRITONRL generates significantly
fewer invalid codes in terms of both syntax
and functionality after fine-tuning, demon-
strating the effectiveness of our robust ver-
ification in enhancing code quality.

Moreover, Table 1 highlights how heavily
prior models relied on cheating shortcuts. Without functionality verification (w/o robust), AutoTri-
ton’s correctness jumps from 50% to 70%, revealing its tendency to exploit reward-driven shortcuts
rather than produce true Triton code. In contrast, TRITONRL shows only a slight increase (56% to
58%), suggesting it learned to generate genuine code.

Effectiveness of Hierarchical Reward Decomposition. We analyze the impact of different re-
ward design choices during RL training on the performance. Denoting our default configurations of
reward decomposition, where reward function is set as equation 3 for α = 0.1, by λ⋆, we compare
our choice of reward decomposition with the following reward configurations:

• λ1: rplan
i = rcode

i = syntaxi · funci · correcti and α = 1.0 (uniform correctness).

• λ2: rplan
i = rcode

i = syntaxi · funci · speedupi and α = 1.0 (uniform speedup).
• λ3: Set reward function as equation 3 with α = 1.0.

Note that λ1 applies the correctness reward uniformly to all tokens, similar to the approach in Li
et al. (2025b), while λ2 does the same with the speedup reward. λ3 and λ⋆ use the same default
reward decomposition described in equation 3, but λ3 assigns equal weight to both plan and code
token, resulting in both being trained at the same rate, while λ⋆ assigns a smaller weight to the plan
tokens. We train TRITONRL for these configurations under the same hyperparameter settings and
the performance of each configuration evaluated on KernelBench Level 1 tasks.

The result in Table 2 shows that reward design has a substantial impact on model performance. The
default configuration, λ⋆, yields the best overall results, suggesting that while correctness is crucial
for generating valid Triton code, incorporating speedup feedback into high-level planning helps the
model uncover more efficient implementations without compromising correctness. Additionally,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

performance gap between λ⋆ and λ3 shows that slower updates of plan tokens enhances speedup
and correctness, which highlights the importance of balanced training dynamics between plan and
code tokens to prevent premature convergence.

Reward valid compiled / correct fast1 / fast2

λ⋆ 99.0 82.0 / 55.0 5.0 / 1.0
λ1 95.0 75.0 / 38.0 2.0 / 1.0
λ2 94.0 87.0 / 47.0 3.0 / 1.0
λ3 93.0 64.0 / 33.0 2.0 / 1.0

Table 2: Ablation study on reward design of TRI-
TONRL on KernelBench Level 1 tasks.

Effectiveness of Data Mixing. In or-
der to solve the data mixture optimization
problem, given the limited budget, we ex-
plore three common parametrization of p:
training solely on level 1 tasks, solely on
level 2 tasks, and a mixture of both level
1 and level 2 tasks with equal ratio. We
present the result in Table 3. We can see
that there is a non-trivial interaction effect
between post-training on different subsets of Dtrain. We obtain notably outperforming model in
terms of correctness and fast1 in Level 1 tasks if we choose p = [1, 0], while the performance on
Level 2 is not improved even if p = [0, 1]. A plausible explanation is that training on L2 tasks is
not as effective as L1 tasks for boosting evaluation performance on both L1 and L2 tasks, for the
model checkpoint we obtained through SFT (as confirmed in Table 4). This observation provides a
direction for future work where we use adaptive p for different the post-training steps.

Dtrain
Dtest LEVEL1 Dtest LEVEL2

Subset p valid compiled / correct fast1 / fast2 valid compiled / correct fast1 / fast2

Level 1 [1, 0] 99.0 82.0 / 56.0 5.0 / 1.0 66.0 29.0 / 7.0 0.0 / 0.0
Level 1+2 [0.5, 0.5] 99.0 92.0 / 43.0 2.0 / 1.0 74.0 35.0 / 8.0 0.0 / 0.0
Level 2 [0, 1] 100.0 97.0 / 49.0 3.0 / 1.0 57.0 37.0 / 6.0 0.0 / 0.0

Table 3: Ablation study on data mixture for RL training of TRITONRL, where the performance is
evaluated on KernelBench level 1 and level 2 tasks.

Limited Performance on Fusion Tasks. We evaluated TRITONRL and baseline models on Ker-
nelBench Level 2 tasks, which involve fused implementations such as Conv+ReLU. As shown in
Table 4, TRITONRL outperforms other 8B-scale Triton-specific models in correctness and speedup,
achieving performance comparable to Claude 3.7. Nevertheless, all models, including TRITONRL,
show a marked drop from Level 1 to Level 2, highlighting the greater difficulty of generating fully
valid Triton code for fusion tasks. This gap reflects the complexity and advanced optimizations
required, underscoring substantial room for improvement.

Model #Params LEVEL2 LEVEL2 (W/O ROBUST)

valid compiled / correct fast1 / fast2 compiled / correct

Qwen3 (base) 8B 56.0 1.0 / 0.0 0.0 / 0.0 52.0 / 11.0
Qwen3 14B 35.0 24.0 / 1.0 0.0 / 0.0 94.0 / 65.0
Qwen3 32B 31.0 16.0 / 0.0 0.0 / 0.0 73.0 / 22.0

KernelLLM 8B 0.0 0.0 / 0.0 0.0 / 0.0 96.0 / 3.0
AutoTriton 8B 70.0 3.0 / 0.0 0.0 / 0.0 97.0 / 76.0
TRITONRL (ours) 8B 69.0 29.0 / 7.0 0.0 / 0.0 88.0 / 42.0

w/o RL (SFT only) 8B 67.0 32.0 / 6.0 0.0 / 0.0 98.0 / 41.0

Claude-3.7 - 34.0 34.0 / 12.0 1.0 / 0.0 98.0 / 60.0

Table 4: Main results on KernelBench Level 2. The left block reports evaluation with the robust
verifier (syntax + functionality). The right block (w/o robust verifier) lacks functionality checks,
leading to misleading correctness estimates, more severe than Level 1 evaluation.

4 CONCLUSION

In this work, we introduce TRITONRL, a specialized LLM for Triton code generation, trained with
a novel RL framework featuring robust verifiable rewards and hierarchical reward assignment. Our
experiments on KernelBench show that TRITONRL surpasses existing fine-tuned Triton models in
validity, correctness, and efficiency. Ablation studies demonstrate that both robust reward design
and hierarchical reward assignment are essential for achieving correctness and efficiency. We be-
lieve TRITONRL marks a significant advancement toward fully automated and efficient GPU kernel
generation with LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Our code-base is built upon publicly available frameworks (Verl (Sheng et al., 2025). Section 3.1
and the Appendix G F describe the experimental settings in detail.

REFERENCES

Anthropic. Claude 3.7 sonnet system card, 2025. URL https://www.anthropic.com/
claude-3-7-sonnet-system-card.

Carlo Baronio, Pietro Marsella, Ben Pan, and Silas Alberti. Multi-turn training for cuda kernel
generation. Cognition AI Blog. URL: https://cognition.ai/blog/kevin-32b, 2025. Accessed on
May 06, 2025.

Mayee Chen, Nicholas Roberts, Kush Bhatia, Jue Wang, Ce Zhang, Frederic Sala, and Christopher
Ré. Skill-it! a data-driven skills framework for understanding and training language models.
Advances in Neural Information Processing Systems, 36:36000–36040, 2023.

Mayee F Chen, Michael Y Hu, Nicholas Lourie, Kyunghyun Cho, and Christopher Ré. Aioli: A uni-
fied optimization framework for language model data mixing. arXiv preprint arXiv:2411.05735,
2024.

Simin Fan, Matteo Pagliardini, and Martin Jaggi. Doge: Domain reweighting with generalization
estimation. arXiv preprint arXiv:2310.15393, 2023.

Zacharias Fisches, Sahan Paliskara, Simon Guo, Alex Zhang, Joe Spisak, Chris Cummins, Hugh
Leather, Joe Isaacson, Aram Markosyan, and Mark Saroufim. Kernelllm, 5 2025. URL https:
//huggingface.co/facebook/KernelLLM. Corresponding authors: Aram Markosyan,
Mark Saroufim.

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang,
and Yi Wu. On designing effective rl reward at training time for llm reasoning. arXiv preprint
arXiv:2410.15115, 2024.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu
Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su,
Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan
Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon Albalak,
Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal, Saadia
Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Merrill,
Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy,
Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for reasoning models,
2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. ArXiv preprint, abs/2501.12948, 2025. URL https://arxiv.
org/abs/2501.12948.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik,
Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm,
Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu
3: Pushing frontiers in open language model post-training, 2025.

Robert Tjarko Lange, Aaditya Prasad, Qi Sun, Maxence Faldor, Yujin Tang, and David Ha. The ai
cuda engineer: Agentic cuda kernel discovery, optimization and composition. 2025.

Cong Duy Vu Le, Jinxin Chen, Zihan Li, Hongyu Sun, Yuan Liu, Ming Chen, Yicheng Zhang,
Zhihong Zhang, Hong Wang, Sheng Yang, et al. Coderl: Mastering code generation through
pretrained models and deep reinforcement learning. arXiv preprint arXiv:2207.01780, 2022.
URL https://ar5iv.labs.arxiv.org/html/2207.01780.

10

https://www.anthropic.com/claude-3-7-sonnet-system-card
https://www.anthropic.com/claude-3-7-sonnet-system-card
https://huggingface.co/facebook/KernelLLM
https://huggingface.co/facebook/KernelLLM
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://ar5iv.labs.arxiv.org/html/2207.01780

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jianling Li, Shangzhan Li, Zhenye Gao, Qi Shi, Yuxuan Li, Zefan Wang, Jiacheng Huang, Haojie
Wang, Jianrong Wang, Xu Han, et al. Tritonbench: Benchmarking large language model capabil-
ities for generating triton operators. arXiv preprint arXiv:2502.14752, 2025a.

Shangzhan Li, Zefan Wang, Ye He, Yuxuan Li, Qi Shi, Jianling Li, Yonggang Hu, Wanxi-
ang Che, Xu Han, Zhiyuan Liu, and Maosong Sun. Autotriton: Automatic triton program-
ming with reinforcement learning in llms. arXiv preprint arXiv:2507.05687, 2025b. URL
https://arxiv.org/pdf/2507.05687.

Xiaoya Li, Xiaofei Sun, Albert Wang, Jiwei Li, and Chris Shum. Cuda-l1: Improving cuda opti-
mization via contrastive reinforcement learning. arXiv preprint arXiv:2507.14111, 2025c.

Yujia Li, David Choi, Junyoung Chung, Nate Glaese, Rew Beattie, Markus Pex, Huan-
ling Wu, Edward Zielinski, Quandong Ma, Timo Wicke, et al. Competition-level
code generation with alphacode. Science, 378(6624):1092–1097, 2022. URL https:
//www.researchgate.net/publication/366137000_Competition-level_
code_generation_with_AlphaCode.

NVIDIA Developer Blog. Automating gpu kernel generation with
deepseek-r1 and inference time scaling. NVIDIA Developer Blog,
February 2025. URL https://developer.nvidia.com/blog/
automating-gpu-kernel-generation-with-deepseek-r1-and-inference-time-scaling/.
Accessed on May 20, 2025.

OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025. URL https://arxiv.org/abs/
2508.10925.

Anne Ouyang, Simon Guo, Simran Arora, Alex L Zhang, William Hu, Christopher Ré, and Azalia
Mirhoseini. Kernelbench: Can llms write efficient gpu kernels? arXiv preprint arXiv:2502.10517,
2025.

Sahan Paliskara and Mark Saroufim. Kernelbook, 5 2025. URL https://huggingface.co/
datasets/GPUMODE/KernelBook.

Yuxiao Qu, Anikait Singh, Yoonho Lee, Amrith Setlur, Ruslan Salakhutdinov, Chelsea Finn, and
Aviral Kumar. Learning to discover abstractions for LLM reasoning. In ICML 2025 Workshop
on Programmatic Representations for Agent Learning, 2025. URL https://openreview.
net/forum?id=zwEUO0KT8G.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Archit Sharma, Sedrick Keh, Eric Mitchell, Chelsea Finn, Kushal Arora, and Thomas Kollar.
A critical evaluation of ai feedback for aligning large language models. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in
Neural Information Processing Systems, volume 37, pp. 29166–29190. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/33870b3e099880cd8e705cd07173ac27-Paper-Conference.pdf.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defin-
ing and characterizing reward gaming. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Process-
ing Systems, volume 35, pp. 9460–9471. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
3d719fee332caa23d5038b8a90e81796-Paper-Conference.pdf.

11

https://arxiv.org/pdf/2507.05687
https://www.researchgate.net/publication/366137000_Competition-level_code_generation_with_AlphaCode
https://www.researchgate.net/publication/366137000_Competition-level_code_generation_with_AlphaCode
https://www.researchgate.net/publication/366137000_Competition-level_code_generation_with_AlphaCode
https://developer.nvidia.com/blog/automating-gpu-kernel-generation-with-deepseek-r1-and-inference-time-scaling/
https://developer.nvidia.com/blog/automating-gpu-kernel-generation-with-deepseek-r1-and-inference-time-scaling/
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://huggingface.co/datasets/GPUMODE/KernelBook
https://huggingface.co/datasets/GPUMODE/KernelBook
https://openreview.net/forum?id=zwEUO0KT8G
https://openreview.net/forum?id=zwEUO0KT8G
https://proceedings.neurips.cc/paper_files/paper/2024/file/33870b3e099880cd8e705cd07173ac27-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/33870b3e099880cd8e705cd07173ac27-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/3d719fee332caa23d5038b8a90e81796-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/3d719fee332caa23d5038b8a90e81796-Paper-Conference.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming
Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze
Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin
Su, Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi,
Ling Ye, Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong,
Shaowei Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao,
Weimin Xiong, Weiran He, Weixiao Huang, Weixin Xu, Wenhao Wu, Wenyang He, Xianghui
Wei, Xianqing Jia, Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles,
Yang Li, Yangyang Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng
Liu, Ying Yang, Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang,
Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang,
Ziyao Xu, Zonghan Yang, and Zongyu Lin. Kimi k1.5: Scaling reinforcement learning with llms,
2025.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. Advances in Neural Information Processing Systems, 36:69798–
69818, 2023.

Yuyu Zhang, Jing Su, Yifan Sun, Chenguang Xi, Xia Xiao, Shen Zheng, Anxiang Zhang, Kaibo
Liu, Daoguang Zan, Tao Sun, et al. Seed-coder: Let the code model curate data for itself. arXiv
preprint arXiv:2506.03524, 2025.

12

https://arxiv.org/abs/2505.09388

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LLM USAGE

We used an LLM to improve the writing by correcting grammar in our draft. It was not used to
generate research ideas.

B RELATED WORK

B.1 LLM FOR KERNEL GENERATION

The exponential growth in demand for GPU computing resources has driven the need for highly opti-
mized GPU kernels that improves computational efficiency. However, writing efficient GPU kernels
is a complex and time-consuming task that requires specialized knowledge of GPU architectures
and programming models. This has spurred significant interest in leveraging Large Language Mod-
els (LLMs), for automated kernel generation, especially for CUDA and Triton (Shao et al., 2024;
Ouyang et al., 2025; Li et al., 2025a; NVIDIA Developer Blog, 2025). While these general-purpose
models excel at a variety of programming tasks, they often struggle with custom kernel generation,
achieving low success rates on specialized gpu programming tasks (Ouyang et al., 2025), highlight-
ing the need for domain-specific models tailored to kernel synthesis.

For CUDA kernel generation, Ouyang et al. (2025) introduced KERNELBENCH, an open-source
framework for evaluating LMs’ ability to write fast and correct kernels on a suite of 250 carefully
selected PyTorch ML workloads. Furthermore, Lange et al. (2025) presented an agentic frame-
work, which leverages LLMs to translate PyTorch code into CUDA kernels and iteratively optimize
them using performance feedback. Additionally, several works have focused on fine-tuning LLMs
tailored for CUDA kernel generation. For example, Kevin-32B (Baronio et al., 2025) is a 32B pa-
rameter model fine-tuned via multi-turn RL to enhance kernel generation through self-refinement,
and CUDA-L1 (Li et al., 2025c) applies contrastive reinforcement learning to DeepSeek-V3-671B,
achieving notable speedup improvements in CUDA optimization tasks.

Another line of research focuses on Triton kernel generation. Li et al. (2025a) introduced TRITON-
BENCH, providing evaluations of LLMs on Triton programming tasks and highlighting the chal-
lenges of Triton’s domain-specific language and GPU programming complexity. To further enhance
LLMs’ capabilities in Triton programming, Fisches et al. (2025) has introduced KernelLLM, a fine-
tuned model of Llama3.1-8B-Instruct via supervised fine-tuning with Pytorch and Triton code pairs
in KernelBook Paliskara & Saroufim (2025), but its performance is limited by the quality of training
data. Similarly, Li et al. (2025b) introduced AutoTriton, a model fine-tuned specifically for Triton
programming from Seed-Coder-8B-Reasoning Zhang et al. (2025), which achieves improved per-
formance via SFT and RL with verifiable rewards based on correctness and rule-based Triton syntax
verification, which may have limited improvement in runtime efficiency due to correctness-focused
rewards. Both KernelLLM and AutoTriton are concurrent works developed alongside our work, and
we provide a detailed comparison in Section 3.2.

B.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Reinforcement Learning (RL) has become a key technique for training Large Language Models
(LLMs), especially in domains where verifiable reward signals are available. Unlike supervised fine-
tuning (SFT), which relies on curated examples, RL enables models to learn through trial and error,
guided solely by reward feedback. This makes the design of accurate reward functions critical, as
the model’s behavior is shaped entirely by the reward signal. As a result, RL with verifiable rewards
(RLVR) (Lambert et al., 2025; Team et al., 2025; Guo et al., 2025) has gained significant traction in
applications like mathematics and code generation (Shao et al., 2024; Li et al., 2022), where external
verification is feasible through solution correctness or unit test outcomes.

In math and coding applications, the reward can be directly computed solely based on the final
outcomes when ground-truth answers or unit tests are available. For tasks where validation is not
available or noisy, rule-based verification or LLM-based judges can be employed to verify the quality
of generated content (Guha et al., 2025; Guo et al., 2025). For coding tasks, unit tests are commonly
used to measure whether generated code meets the specified requirements (Le et al., 2022; Ouyang
et al., 2025). However, unit tests often fail to cover edge cases or fully capture the problem require-

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

ments, leading to potential “reward hacking” (Skalse et al., 2022) where the model generates code
that passes the tests but does not genuinely solve the task (Sharma et al., 2024; Gao et al., 2024).
Such reward hacking has been observed in kernel generation tasks, where models produce superfi-
cially correct codes passing unit tests by using high-level Pytorch modules instead of implementing
custom kernels. To address this, some works Li et al. (2025b); Baronio et al. (2025) have introduced
rule-based verification, which checks kernel syntax or use of specific high-level modules.

C NOTATIONS

The following notations will be used throughout this paper. For notational simplicity, we denote any
function f(q, oi) as fi when the context is clear.

• q: prompt given to the model, defining a task to implement in Triton
• o: output sequence generated by the model, which includes both reasoning trace and Triton

code
• πθ: policy model with parameters θ
• G: group size for GRPO
• oi: i-th sample in the group G, which includes a reasoning trace that provides the ”plan”

for Triton code optimization and implementation and the final ”Triton code”, i.e. oi =
{oi,plan, oi,triton}

• T c
i : set of token indices corresponding to token class c ∈ {plan, triton} in the i-th sample

• rc(q, oi) = rci : reward function for token class c ∈ {plan, triton}.

• Âc
t(q, oi) = rc(q, oi) − 1

G

∑G
j=1 r

c(q, oj): token-level advantage of the t-th token of the
i-th sample belonging to token class c ∈ {plan, triton}, shortened as Âc

i,t.

D METRICS

We provide the formal definitions of the evaluation metrics used in this paper. Given a set of N
tasks {qn}Nn=1 and k samples {oi}ki=1 generated by the model for each task, we define the following
metrics:

valid =
1

N

N∑
n=1

max
i∈[k]

1(syntax(qn, oi) · func(qn, oi) = 1)

compiled =
1

N

N∑
n=1

max
i∈[k]

1(syntax(qn, oi) · func(qn, oi) · compiled(qn, oi) = 1)

correct =
1

N

N∑
n=1

max
i∈[k]

1(syntax(qn, oi) · func(qn, oi) · correct(qn, oi) = 1)

fastp =
1

N

N∑
n=1

max
i∈[k]

1(syntax(qn, oi) · func(qn, oi) · correct(qn, oi) · speedup(qn, oi) > p)

mean speedup =
1

N

N∑
n=1

max
i∈[k]

(syntax(qn, oi) · func(qn, oi) · correct(qn, oi) · speedup(qn, oi))

(5)

E DATA CURATION AND EXAMPLES

E.1 DATA MIXING SUBSET CREATION

We labeled difficulty level of 11k PyTorch reference codes in KernelBook based on the complexity of
kernel implementation using Qwen3-235B-Instruct (Team, 2025). For each given PyTorch reference
code, we prompt Qwen3-235B-Instruct (temperature=0.7, top p=0.8) to label the difficulty level of
replacing the PyTorch reference with Triton code as follows:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Instruction (input) example

‘‘‘ <PyTorch reference code> ‘‘‘
Assign a kernel implementation complexity level (1, 2, or 3) of the provided reference Py-
Torch architecture according to the criteria below:
• Level 1: Single primitive operation. This level includes the foundational building blocks
of AI (e.g. convolutions, matrix-vector and matrix-matrix multiplications, losses, activa-
tions, and layer normalizations). Since PyTorch makes calls to several well-optimized and
often closed-source kernels under-the-hood, it can be challenging for LMs to outperform
the baseline for these primitive operations. However, if an LM succeeds, the open-source
kernels could be an impactful alternative to the closed-source (e.g., CuBLAS [27]) kernels.
• Level 2: Operator sequences. This level includes AI workloads containing multiple prim-
itive operations, which can be fused into a single kernel for improved performance (e.g.,
a combination of a convolution, ReLU, and bias). Since compiler-based tools such as the
PyTorch compiler are effective at fusion, it can be challenging for LMs to outperform them.
However, LMs may propose more complex algorithms compared to compiler rules. • Level
3: This level includes architectures that power popular AI models, such as AlexNet and
MiniGPT, collected from popular PyTorch repositories on GitHub.

E.2 INVALID TRITON CODE EXAMPLES

Here, we provide some examples of invalid Triton code generated by the baseline models.

Example 1: Triton syntax failure (syntax = 0) – no Triton kernel. This is not a Triton kernel
because it does not include any custom @triton.jit kernel.

import torch
import torch.nn as nn
import triton
import triton.language as tl
import torch.nn.functional as F

To replace with Triton, a custom kernel would be needed (not provided
here)

class ModelNew(nn.Module):
def __init__(self) -> None:

super().__init__()

def forward(self, x):
return F.avg_pool2d(x, kernel_size=3, stride=None, padding=0)

def get_inputs():
a = torch.randn(1, 128).cuda()
b = torch.randn(1, 128).cuda()
return [a, b]

def get_init_inputs():
return []

Example 2: Functional failure (syntax = 1, func = 0) – use of high-level PyTorch module.
This implementation contains a Triton kernel, but the main computation (convolution) is still handled
by the PyTorch nn.Conv3d module. The Triton kernel is only used for a simple addition, rather
than implementing the full intended operation.

import torch
import torch.nn as nn
import triton
import triton.language as tl

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

@triton.jit
def add_bias_kernel(

out_ptr,
bias_ptr,
n_elements,
out_C,
out_D,
out_W,
out_H,
BLOCK_SIZE: tl.constexpr,

):
pid = tl.program_id(0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements

out = tl.load(out_ptr + offsets, mask=mask, other=0.0)

stride_channel = out_D * out_W * out_H
channel_idx = (offsets // stride_channel) % out_C
bias = tl.load(bias_ptr + channel_idx, mask=mask, other=0.0)

out = out + bias
tl.store(out_ptr + offsets, out, mask=mask)

def triton_add_bias(out: torch.Tensor, bias: torch.Tensor):
assert out.is_cuda and bias.is_cuda, "Tensors must be on CUDA."

out = out.contiguous()
bias = bias.contiguous()
n_elements = out.numel()
BLOCK_SIZE = 128

grid = lambda meta: (
(n_elements + meta["BLOCK_SIZE"] - 1) // meta["BLOCK_SIZE"],

)

batch_size, out_channels, D, W, H = out.shape

add_bias_kernel[grid](
out,
bias,
n_elements,
out_channels,
D,
W,
H,
BLOCK_SIZE=BLOCK_SIZE

)

return out

class ModelNew(nn.Module):
def __init__(

self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
bias: bool = False

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

):
super(ModelNew, self).__init__()
self.conv3d = nn.Conv3d(

in_channels,
out_channels,
(kernel_size, kernel_size, kernel_size),
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias

)

def forward(self, x: torch.Tensor) -> torch.Tensor:
out = self.conv3d(x)
if self.conv3d.bias is not None:

out = triton_add_bias(out, self.conv3d.bias)
return out

Example 3: Functional failure (syntax = 1, func = 0) – hardcoded output and no meaning-
ful computation. While the Triton kernel is syntactically correct, but it doesn’t actually imple-
ment the intended operation (Group Normalization). The kernel doesn’t compute mean or variance,
which are essential for GroupNorm. To implement real GroupNorm, you’d need to compute per-
group statistics and normalize accordingly. Also, it only loads the input tensor and writes it back
unchanged.

import torch
import torch.nn as nn
import triton
import triton.language as tl

@triton.jit
def groupnorm_kernel(

x_ptr, # Pointer to x tensor
y_ptr, # Pointer to y tensor (not used here)
out_ptr, # Pointer to output tensor
n_elements, # Total number of elements
BLOCK_SIZE: tl.constexpr,

):
Each program handles a contiguous block of data of size BLOCK_SIZE
block_start = tl.program_id(0) * BLOCK_SIZE
Create a range of offsets [0..BLOCK_SIZE-1]
offsets = block_start + tl.arange(0, BLOCK_SIZE)
Mask to ensure we don’t go out of bounds
mask = offsets < n_elements
Load input value
x = tl.load(x_ptr + offsets, mask=mask, other=0.0)
Compute x squared
x_squared = x * x
Store the result
tl.store(out_ptr + offsets, x, mask=mask)

def triton_groupnorm(x: torch.Tensor, y: torch.Tensor):
assert x.is_cuda and y.is_cuda, "Tensors must be on CUDA."
x = x.contiguous()
y = y.contiguous()

Prepare output tensor
out = torch.empty_like(x)

Number of elements in the tensor

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

n_elements = x.numel()
BLOCK_SIZE = 128 # Tunable parameter for block size

Determine the number of blocks needed
grid = lambda meta: ((n_elements + meta["BLOCK_SIZE"] - 1) // meta["

BLOCK_SIZE"],)

Launch the Triton kernel
groupnorm_kernel[grid](x, y, out, n_elements, BLOCK_SIZE=BLOCK_SIZE)
return out

class ModelNew(nn.Module):
def __init__(self, num_features: int, num_groups: int) -> None:

super().__init__()
self.num_features = num_features
self.num_groups = num_groups

def forward(self, x: torch.Tensor) -> torch.Tensor:
Use Triton kernel for elementwise operations
x_triton = triton_groupnorm(x, x)
Manually compute mean and variance (as Triton kernel only handles

x)
Actual GroupNorm logic would go here
For this example, we return the Triton processed tensor
return x_triton

E.3 SFT AND RL DATASET CONSTRUCTION WITH KERNELBOOK

To synthesize SFT dataset, we extract 11,621 PyTorch reference codes from KernelBook, executable
without errors, such as

import torch
import torch.nn as nn

class Model(nn.Module):

def __init__(self):
super(Model, self).__init__()

def forward(self, neighbor):
return torch.sum(neighbor, dim=1)

def get_inputs():
return [torch.rand([4, 4, 4, 4])]

def get_init_inputs():
return [[], {}]

For each given PyTorch reference code, we construct an instruction for DeepSeek-R1 to generate
CoTs and Triton kernels as:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Instruction (input) example

Your task is to write custom Triton kernels to replace as many PyTorch operators as possi-
ble in the given architecture, aiming for maximum speedup. You may implement multiple
custom kernels, explore operator fusion (such as combining matmul and relu), or introduce
algorithmic improvements (like online softmax). You are only limited by your imagination.
You are given the following architecture:
‘‘‘ <PyTorch reference code> ‘‘‘
You have to optimize the architecture named Model with custom Triton kernels. Optimize
the architecture named Model with custom Triton kernels! Name your optimized output
architecture ModelNew. Output the new code in codeblocks. Please generate real code,
NOT pseudocode, make sure the code compiles and is fully functional. Just output the new
model code, no other text, and NO testing code! Before writing a code, reflect on your idea
to make sure that the implementation is correct and optimal.

Given the instruction for each PyTorch reference code, we collect (CoT, Triton kernel code) pairs
fom DeepSeek-R1 and construct outputs for SFT by concatenating the pairs as follows:

Triton kernel with CoT (output) example

<think>
CoT
</think>
‘‘‘
<Triton kernel code>
‘‘‘

In this manner, for each Pytorch reference code in KernelBook, we construct 5 (input, output) SFT
samples.

For RL training, we use the same instruction input as a prompt for the same set of Pytorch reference
codes in KernelBook, without the output synthesized by DeepSeek-R1 because RL training only
requires reward feedback, which can be directly obtained from executing the generated Triton code.

F EVALUATION AND EXAMPLES

F.1 EVALUATION WITH KERNELBENCH

To evaluate the trained models, we construct prompts for 250 tasks in KernelBench. Similar to Ker-
nelBook, KernelBench provides a reference PyTorch code for each task. For each given reference
PyTorch code, we construct a prompt with one simple example pair of (PyTorch code, Triton ker-
nel code), similarly to the one-shot prompting format in KernelBench. Here, we use the following
PyTorch and Triton codes for a simple add operation as an example:

PyTorch reference code
import torch
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
def __init__(self) -> None:

super().__init__()

def forward(self, a, b):
return a + b

def get_inputs():
randomly generate input tensors based on the model architecture
a = torch.randn(1, 128).cuda()
b = torch.randn(1, 128).cuda()

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

return [a, b]

def get_init_inputs():
randomly generate tensors required for initialization based on the

model architecture
return []

Triton kernel code

import torch
import torch.nn as nn
import torch.nn.functional as F
import triton
import triton.language as tl

@triton.jit
def add_kernel(

x_ptr, # Pointer to first input
y_ptr, # Pointer to second input
out_ptr, # Pointer to output
n_elements, # Total number of elements in input/output
BLOCK_SIZE: tl.constexpr,

):
Each program handles a contiguous block of data of size BLOCK_SIZE
block_start = tl.program_id(0) * BLOCK_SIZE
Create a range of offsets [0..BLOCK_SIZE-1]
offsets = block_start + tl.arange(0, BLOCK_SIZE)
Mask to ensure we don’t go out of bounds
mask = offsets < n_elements
Load input values
x = tl.load(x_ptr + offsets, mask=mask, other=0.0)
y = tl.load(y_ptr + offsets, mask=mask, other=0.0)
Perform the elementwise addition
out = x + y
Store the result
tl.store(out_ptr + offsets, out, mask=mask)

def triton_add(x: torch.Tensor, y: torch.Tensor):
"""
This function wraps the Triton kernel call. It:
1. Ensures the inputs are contiguous on GPU.
2. Calculates the grid (blocks) needed.
3. Launches the Triton kernel.

"""
assert x.is_cuda and y.is_cuda, "Tensors must be on CUDA."
x = x.contiguous()
y = y.contiguous()

Prepare output tensor
out = torch.empty_like(x)

Number of elements in the tensor
n_elements = x.numel()
BLOCK_SIZE = 128 # Tunable parameter for block size

Determine the number of blocks needed
grid = lambda meta: ((n_elements + meta["BLOCK_SIZE"] - 1) // meta["

BLOCK_SIZE"],)

Launch the Triton kernel
add_kernel[grid](x, y, out, n_elements, BLOCK_SIZE=BLOCK_SIZE)
return out

class ModelNew(nn.Module):
def __init__(self) -> None:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

super().__init__()

def forward(self, a, b):
Instead of "return a + b", call our Triton-based addition
return triton_add(a, b)

Prompt (input) example

You write custom Triton kernels to replace the pytorch operators in the given architecture to
get speedups.
You have complete freedom to choose the set of operators you want to replace. You may
make the decision to replace some operators with custom Triton kernels and leave others
unchanged. You may replace multiple operators with custom implementations, consider op-
erator fusion opportunities (combining multiple operators into a single kernel, for example,
combining matmul+relu), or algorithmic changes (such as online softmax). You are only
limited by your imagination.
Here’s an example to show you the syntax of inline embedding custom Triton kernels in
torch. The example given architecture is:
‘‘‘ <Example PyTorch code> ‘‘‘
The example new architecture with custom Triton kernels looks like this:
‘‘‘ <Example Triton kernel code> ‘‘‘
You are given the following architecture:
‘‘‘ <PyTorch reference code> ‘‘‘
Optimize the architecture named Model with custom Triton kernels! Name your optimized
output architecture ModelNew. Output the new code in codeblocks. Please generate real
code, NOT pseudocode, make sure the code compiles and is fully functional. Just output the
new model code, no other text, and NO testing code!

F.2 EXAMPLE OF TRITON CODES WITH SPEEDUP > 1

Problem 12 in KernelBench Level 1: diagonal matrix multiplication with x11 speedup.

import torch
import triton
import triton.language as tl

@triton.jit
def fused_diag_matmul_kernel(
vec_a_ptr, # Pointer to the diagonal vector A (N,)
mat_b_ptr, # Pointer to the input dense matrix B (N, M)
output_ptr, # Pointer to the output matrix (N, M)
--- Matrix dimensions ---
N, # The size of the diagonal vector A
M, # The number of columns in matrix B
TOTAL_ELEMENTS, # Total number of elements in the output matrix (N * M)
--- Tuning parameters ---
BLOCK_SIZE: tl.constexpr, # Number of elements each Triton program will

handle
):
"""
Computes C = diag(A) * B, where A is a vector representing the diagonal.
This kernel treats the operation as a simple element-wise multiplication
where each row of B is scaled by the corresponding element of A.
"""
1. CALCULATE OFFSETS: Determine which elements this program instance

will process.
pid = tl.program_id(axis=0)
block_start_offset = pid * BLOCK_SIZE
offsets = block_start_offset + tl.arange(0, BLOCK_SIZE)

2. CREATE BOUNDARY-CHECK MASK: Prevent out-of-bounds memory access.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

mask = offsets < TOTAL_ELEMENTS

3. COMPUTE 2D INDICES FROM 1D OFFSETS: Find the row for vector A.
row_indices = offsets // M

4. LOAD DATA EFFICIENTLY: Read from global memory into registers.
vec_a_elements = tl.load(vec_a_ptr + row_indices, mask=mask, other=0.0)
mat_b_elements = tl.load(mat_b_ptr + offsets, mask=mask, other=0.0)

5. PERFORM THE CORE COMPUTATION: The actual fused operation.
output = vec_a_elements * mat_b_elements

6. STORE THE RESULT: Write the computed values back to global memory.
tl.store(output_ptr + offsets, output, mask=mask)

Problem 61 in KernelBench Level 1: 3D Transposed Convolution with x1.5 speedup.
import torch
import torch.nn as nn
import triton
import triton.language as tl

@triton.jit
def conv_transpose3d_kernel(

input_ptr, weight_ptr, output_ptr,
B, IC, OC, D_in, H_in, W_in, D_out, H_out, W_out,
input_batch_stride, input_channel_stride, input_d_stride,

input_h_stride, input_w_stride,
weight_in_channels_stride, weight_out_channels_stride, weight_d_stride

, weight_h_stride, weight_w_stride,
output_batch_stride, output_channel_stride, output_d_stride,

output_h_stride, output_w_stride,
BLOCK_SIZE: tl.constexpr,

):
Each block handles BLOCK_SIZE output elements
pid = tl.program_id(0)
n_elements = B * OC * D_out * H_out * W_out

block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)

Mask to avoid out-of-bounds access in last block
mask = offsets < n_elements

Precompute for flattening and indexing
OC_D_outH_outW_out = OC * D_out * H_out * W_out
D_outH_outW_out = D_out * H_out * W_out

Decompose flat index into (batch, channel, depth, height, width)
b_idx = offsets // OC_D_outH_outW_out
residual = offsets % OC_D_outH_outW_out
oc_idx = residual // D_outH_outW_out
spatial_idx = residual % D_outH_outW_out

d_idx = spatial_idx // (H_out * W_out)
hw_idx = spatial_idx % (H_out * W_out)
h_idx = hw_idx // W_out
w_idx = hw_idx % W_out

Accumulator for output value (per element)
acc = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)

Loop over all input channels and 3x3x3 kernel positions
for ic in range(IC):

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

for kd in range(3):
for kh in range(3):

for kw in range(3):
Compute corresponding input position for each output
d_in = d_idx - kd
h_in = h_idx - kh
w_in = w_idx - kw

Check input bounds to avoid invalid memory access
in_bounds = (

(d_in >= 0) & (d_in < D_in) &
(h_in >= 0) & (h_in < H_in) &
(w_in >= 0) & (w_in < W_in)

)

Compute input tensor offset
input_offsets = (

b_idx * input_batch_stride +
ic * input_channel_stride +
d_in * input_d_stride +
h_in * input_h_stride +
w_in * input_w_stride

)

Load input values with masking (zeros for out-of-bounds)
input_val = tl.load(input_ptr + input_offsets, mask=

in_bounds, other=0.0)

Compute weight tensor offset (flipped in transpose)
weight_offsets = (

oc_idx * weight_out_channels_stride +
ic * weight_in_channels_stride +
kd * weight_d_stride +
kh * weight_h_stride +
kw * weight_w_stride

)

weight_val = tl.load(weight_ptr + weight_offsets)

Accumulate product into output accumulator
acc += input_val * weight_val

Store the final output value
output_offsets = (

b_idx * output_batch_stride +
oc_idx * output_channel_stride +
d_idx * output_d_stride +
h_idx * output_h_stride +
w_idx * output_w_stride

)

Store with mask for thread-safety
tl.store(output_ptr + output_offsets, acc, mask=mask)

def triton_conv_transpose3d(x: torch.Tensor, weight: torch.Tensor) ->
torch.Tensor:
B, IC, D_in, H_in, W_in = x.shape
OC = weight.shape[1]

Output dimensions for stride=1, padding=0, kernel=3
D_out = D_in + 2
H_out = H_in + 2
W_out = W_in + 2

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Allocate output tensor
output = torch.empty((B, OC, D_out, H_out, W_out), device=x.device,

dtype=x.dtype)

Launch grid size: enough blocks to cover all output elements
BLOCK_SIZE = 256
grid = (triton.cdiv(B * OC * D_out * H_out * W_out, BLOCK_SIZE),)

Launch the kernel
conv_transpose3d_kernel[grid](

x, weight, output,
B, IC, OC, D_in, H_in, W_in, D_out, H_out, W_out,
x.stride(0), x.stride(1), x.stride(2), x.stride(3), x.stride(4),
weight.stride(0), weight.stride(1), weight.stride(2), weight.stride

(3), weight.stride(4),
output.stride(0), output.stride(1), output.stride(2), output.stride

(3), output.stride(4),
BLOCK_SIZE

)

return output

class ModelNew(nn.Module):
def __init__(

self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
output_padding: int = 0,
groups: int = 1,
bias: bool = False

):
super().__init__()

This implementation is hardcoded for kernel_size=3, stride=1, no
padding, no bias

assert (
kernel_size == 3 and stride == 1 and
padding == 0 and output_padding == 0 and
groups == 1 and not bias

)

self.in_channels = in_channels
self.out_channels = out_channels

Weight shape: [in_channels, out_channels, 3, 3, 3]
self.weight = nn.Parameter(torch.empty(in_channels, out_channels,

3, 3, 3))

Initialize with Kaiming uniform
nn.init.kaiming_uniform_(self.weight, a=5**0.5)

def forward(self, x: torch.Tensor) -> torch.Tensor:
return triton_conv_transpose3d(x, self.weight)

Problem 35 in KernelBench Level 1: Group Normalization with x1.1 speedup.
import torch
import torch.nn as nn
import triton
import triton.language as tl

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

@triton.jit
def group_norm_reduce_kernel(

x_ptr,
mean_group_ptr,
var_group_ptr,
N, C, H, W, num_groups, M,
BLOCK_SIZE_REDUCE: tl.constexpr

):
Program IDs for parallel execution across batch and groups
pid0 = tl.program_id(0) # batch index
pid1 = tl.program_id(1) # group index

group_size = M * H * W
group_start = pid0 * (C * H * W) + pid1 * group_size

Use float accumulators for numerical stability
sum1 = 0.0
sum2 = 0.0

Loop over the group in chunks for better cache usage
for i in range(0, group_size, BLOCK_SIZE_REDUCE):

offset = i + tl.arange(0, BLOCK_SIZE_REDUCE)
mask = offset < group_size # avoid out-of-bounds loads

offsets = group_start + offset

Efficient memory access with masking and zero-padding
chunk = tl.load(x_ptr + offsets, mask=mask, other=0.0)

Accumulate sum and squared sum
sum1 += tl.sum(chunk, axis=0)
sum2 += tl.sum(chunk * chunk, axis=0)

Numerically stable variance computation
mean = sum1 / group_size
var = (sum2 - mean * sum1) / group_size

Store per-group mean and variance
mean_idx = pid0 * num_groups + pid1
tl.store(mean_group_ptr + mean_idx, mean)
tl.store(var_group_ptr + mean_idx, var)

@triton.jit
def group_norm_forward_kernel(

x_ptr,
out_ptr,
mean_group_ptr,
var_group_ptr,
weight_ptr,
bias_ptr,
N, C, H, W, num_groups, M, eps,
BLOCK_SIZE: tl.constexpr

):
1D parallelism across total number of elements
pid = tl.program_id(0)
total_elements = N * C * H * W

block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < total_elements # bounds checking

Flattened indexing to recover n, c from offset
total2 = H * W

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

total3 = C * total2

n = offsets // total3
rest = offsets - n * total3
c = rest // total2
group_index = c // M # which group the channel belongs to

Memory load with masking
x_offsets = offsets
x_val = tl.load(x_ptr + x_offsets, mask=mask)

Load per-sample, per-group mean and variance
mean_idx = n * num_groups + group_index
mean_val = tl.load(mean_group_ptr + mean_idx)
var_val = tl.load(var_group_ptr + mean_idx)

Load affine transformation parameters per channel
gamma = tl.load(weight_ptr + c)
beta = tl.load(bias_ptr + c)

Avoid negative variance (numerical safety)
var_val = tl.maximum(var_val, 0)
std = tl.sqrt(var_val + eps)

Normalize and apply affine transformation
normalized = (x_val - mean_val) / std
out_val = normalized * gamma + beta

Store result with mask to handle edge threads
tl.store(out_ptr + x_offsets, out_val, mask=mask)

class ModelNew(nn.Module):
def __init__(self, num_features, num_groups):

super().__init__()
self.num_groups = num_groups
self.num_features = num_features

Learnable affine parameters
self.weight = nn.Parameter(torch.ones(num_features))
self.bias = nn.Parameter(torch.zeros(num_features))

def forward(self, x):
x = x.contiguous() # ensure contiguous memory layout for Triton

N, C, H, W = x.shape
M = C // self.num_groups # channels per group

Allocate buffers for per-group statistics
mean_group = torch.empty((N, self.num_groups), device=x.device)
var_group = torch.empty((N, self.num_groups), device=x.device)

Launch reduction kernel: one thread per (N, group)
grid_reduce = (N, self.num_groups)
group_norm_reduce_kernel[grid_reduce](

x, mean_group, var_group,
N, C, H, W, self.num_groups, M,
BLOCK_SIZE_REDUCE=1024 # large block size for better throughput

)

Allocate output tensor
out = torch.empty_like(x)
total_elements = N * C * H * W

Launch forward kernel: 1D block across all elements

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

grid_forward = (triton.cdiv(total_elements, 1024),)
group_norm_forward_kernel[grid_forward](

x, out, mean_group, var_group,
self.weight, self.bias,
N, C, H, W, self.num_groups, M, 1e-5,
BLOCK_SIZE=1024 # tuneable block size

)

return out

G HYPERPARAMETERS OF SFT AND RL TRAINING

For data preparation, we use temperature=0.6, top p=0.95 for DeepSeek-R1 (Guo et al., 2025). To
label difficulty, we further label tasks into three difficulty levels using Qwen3-235B-Instruct (Team,
2025) (temperature=0.7, top p=0.8).

For SFT, we training for 2 epochs with a batch size of 16, a learning rate of 1 × 10−5, and a
maximum sequence length of 12,288 tokens. We train the model for 2 epochs using the VeRL
framework (Sheng et al., 2025) with a batch size of 32, a learning rate of 1 × 10−6, the maximum
prompt length 2, 048, and the maximum response length 16, 384. We use 8 NVIDIA A100 80GB
GPUs for both SFT and RL training.

H ADDITIONAL EXPERIMENT RESULTS

H.1 OVERALL PERFORMANCE COMPARISON

Model #Params LEVEL1 LEVEL1 (W/O ROBUST)

valid compiled / correct fast1 / fast2 valid compiled / correct fast1 / fast2

Qwen3 (base) 8B 73.0 40.0 / 14.0 0.0 / 0.0 54.0 52.0 / 15.0 0.0 / 0.0
Qwen3 14B 82.0 65.0 / 17.0 0.0 / 0.0 66.0 71.0 / 16.0 0.0 / 0.0
Qwen3 32B 75.0 61.0 / 16.0 2.0 / 0.0 52.0 50.0 / 15.0 2.0 / 0.0

KernelLLM 8B 42.0 40.0 / 20.0 0.0 / 0.0 100.0 98.0 / 29.0 2.0 / 0.0
AutoTriton 8B 97.0 78.0 / 50.0 2.0 / 1.0 100.0 95.0 / 70.0 8.0 / 1.0
TRITONRL (ours) 8B 99.0 82.0 / 56.0 5.0 / 1.0 99.0 83.0 / 58.0 5.0 / 1.0

w/o RL (SFT only) 8B 97.0 88.0 / 44.0 4.0 / 2.0 98.0 93.0 / 47.0 5.0 / 2.0

GPT-oss 120B 100.0 100.0 / 74.0 7.0 / 2.0 100.0 100.0 / 78.0 7.0 / 2.0
Claude-3.7 - 99.0 99.0 / 53.0 3.0 / 1.0 100.0 100.0 / 64.0 8.0 / 1.0
DeepSeek-R1 685B 100.0 100.0 / 66.0 6.0 / 2.0 100.0 100.0 / 72.0 6.0 / 2.0

Table 5: Main results on KernelBench Level 1. All metrics are reported in terms of pass@10
(%). We obtained the best result in model parameter sizes < 32B. The left side shows the results
where the validity of generated codes is verified using the robust verifier, checking both syntax
and functionality. The right side (w/o robust) shows the results without the robust verifier, where
functionality is not checked.

H.2 PASS@K RESULTS

In addition to the pass@10 results shown in the main text, we also report pass@1 and pass@5 results
for KernelBench Level 1 and Level 2 tasks in Table 7 and Table 8. These results further demonstrate
the strong performance of TRITONRL in generating valid, correct, and efficient Triton code across
various pass@k metrics.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Model #Params LEVEL2 LEVEL2 (W/O ROBUST)

valid compiled / correct fast1 / fast2 valid compiled / correct fast1 / fast2

Qwen3 (base) 8B 56.0 1.0 /0.0 0.0 / 0.0 94.0 52.0 / 11.0 1.0 / 0.0
Qwen3 14B 35.0 24.0 / 1.0 0.0 / 0.0 100.0 94.0 / 65.0 14.0 / 1.0
Qwen3 32B 31.0 16.0 / 0.0 0.0 / 0.0 90.0 73.0 / 22.0 7.0 / 1.0

KernelLLM 8B 0.0 0.0 / 0.0 0.0 / 0.0 98.0 96.0 / 3.0 3.0 / 1.0
AutoTriton 8B 70.0 3.0 / 0.0 0.0 / 0.0 100.0 97.0 / 76.0 15.0 / 0.0
TRITONRL (ours) 8B 69.0 41.0 / 10.0 0.0 / 0.0 100.0 88.0 / 42.0 13.0 / 1.0

w/o RL (SFT only) 8B 67.0 32.0 / 6.0 0.0 / 0.0 100.0 98.0 / 41.0 11.0 / 1.0

GPT-oss 120B 39.0 38.0 / 12.0 0.0 / 0.0 100.0 99.0 / 74.0 23.0 / 1.0
Claude-3.7 - 34.0 34.0 / 12.0 1.0 / 0.0 100.0 98.0 / 60.0 18.0 / 1.0
DeepSeek-R1 685B 30.0 29.0 / 10.0 0.0 / 0.0 100.0 98.0 / 72.0 25.0 / 3.0

Table 6: Main results on KernelBench level 2 tasks. All metrics are reported in terms of pass@10
(%). We obtained the best result in model parameter sizes < 32B. The left side shows the results
where the validity of generated codes is verified using the robust verifier, checking both syntax
and functionality. The right side (w/o robust) shows the results without the robust verifier, where
functionality is not checked.

Model PASS@1 PASS@5 PASS@10

valid compiled / correct fast1 / fast2 valid compiled / correct fast1 / fast2 valid compiled / correct fast1 / fast2

Qwen3 (8B) 24.0 14.0 / 4.0 0.0 / 0.0 54.0 33.0 / 14.0 0.0 / 0.0 73.0 40.0 / 14.0 0.0 / 0.0
Qwen3 (14B) 25.0 22.0 / 10.0 0.0 / 0.0 66.0 53.0 / 14.0 0.0 / 0.0 82.0 65.0 / 17.0 0.0 / 0.0
Qwen3 (32B) 19.0 16.0 / 4.0 0.0 / 0.0 52.0 41.0 / 14.0 2.0 / 0.0 75.0 61.0 / 16.0 2.0 / 0.0

KernelLLM 32.0 29.0 / 14.0 0.0 / 0.0 41.0 39.0 / 19.0 0.0 / 0.0 42.0 40.0 / 20.0 0.0 / 0.0
AutoTriton 61.0 42.0 / 18.0 0.0 / 0.0 94.0 73.0 / 40.0 1.0 / 1.0 97.0 78.0 / 50.0 2.0 / 1.0
TRITONRL (ours) 70.0 51.0 / 21.0 0.0 / 0.0 97.0 80.0 / 47.0 3.0 / 1.0 99.0 82.0 / 56.0 5.0 / 1.0

w/o RL (SFT only) 48.0 37.0 /12.0 0.0 / 0.0 94.0 77.0 / 31.0 2.0 /1.0 97.0 88.0 / 44.0 4.0 / 2.0

GPT-oss 82.0 82.0 / 38.0 3.0 / 1.0 100.0 100.0 / 64.0 7.0 / 2.0 100.0 100.0 / 74.0 7.0 / 2.0
Claude-3.7 78.0 73.0 / 25.0 1.0 / 1.0 99.0 98.0 / 40.0 1.0 / 1.0 99.0 99.0 / 53.0 3.0 / 1.0
DeepSeek-R1 87.0 86.0 / 29.0 1.0 / 0.0 99.0 98.0 / 51.0 4.0 / 2.0 100.0 100.0 / 66.0 6.0 / 2.0

Table 7: Pass@k performance comparison for k = 1, 5, 10 on KernelBench Level 1 tasks.

Model PASS@1 PASS@5 PASS@10

valid compiled / correct fast1 / fast2 valid compiled / correct fast1 / fast2 valid compiled / correct fast1 / fast2

Qwen3 (8B) 9.0 0.0 / 0.0 0.0 / 0.0 30.0 1.0 / 0.0 0.0 / 0.0 56.0 1.0 / 0.0 0.0 / 0.0
Qwen3 (14B) 4.0 2.0 / 1.0 0.0 / 0.0 23.0 17.0 / 1.0 0.0 / 0.0 35.0 24.0 / 1.0 0.0 / 0.0
Qwen3 (32B) 4.0 3.0 / 0.0 0.0 / 0.0 19.0 9.0 / 0.0 0.0 / 0.0 31.0 16.0 / 0.0 0.0 / 0.0

KernelLLM 0.0 0.0 / 0.0 0.0 / 0.0 0.0 0.0 / 0.0 0.0 / 0.0 0.0 0.0 / 0.0 0.0 / 0.0
AutoTriton 21.0 0.0 / 0.0 0.0 / 0.0 57.0 1.0 / 0.0 0.0 / 0.0 70.0 3.0 / 0.0 0.0 / 0.0
TRITONRL (ours) 16.0 10.0 / 0.0 0.0 / 0.0 56.0 20.0 / 4.0 0.0 / 0.0 71.0 29.0 / 7.0 0.0 / 0.0

w/o RL (SFT only) 15.0 8.0 / 0.0 0.0 / 0.0 51.0 25.0 / 5.0 0.0 / 0.0 67.0 32.0 / 6.0 0.0 / 0.0

GPT-oss 9.0 8.0 / 2.0 0.0 / 0.0 30.0 28.0 / 7.0 0.0 / 0.0 39.0 38.0 / 12.0 0.0 / 0.0
Claude-3.7 15.0 13.0 / 1.0 0.0 / 0.0 31.0 30.0 / 10.0 1.0 / 0.0 34.0 34.0 / 12.0 1.0 / 0.0
DeepSeek-R1 6.0 4.0 / 0.0 0.0 / 0.0 23.0 22.0 / 4.0 0.0 / 0.0 30.0 29.0 / 10.0 0.0 / 0.0

Table 8: Pass@k performance comparison for k = 1, 5, 10 on KernelBench Level 2 tasks.

28

	Introduction
	TritonRL
	Triton Knowledge Distillation via Supervised Fine-Tuning
	Reinforcement Learning with Hierarchical Reward Decomposition

	Experiments
	Training and Evaluation Setups
	Main Experiment Results

	Conclusion
	LLM Usage
	Related Work
	LLM for Kernel Generation
	Reinforcement Learning with Verifiable Rewards

	Notations
	Metrics
	Data curation and examples
	Data Mixing Subset Creation
	Invalid Triton code examples
	SFT and RL Dataset construction with KernelBook

	Evaluation and examples
	Evaluation with KernelBench
	Example of Triton codes with speedup >1

	Hyperparameters of SFT and RL Training
	Additional Experiment Results
	Overall Performance Comparison
	Pass@k Results

