

000
001
002
003
004
005
006
007 **CONVERGENCE ANALYSIS OF TSETLIN MACHINES**
008 **UNDER NOISE-FREE AND NOISY TRAINING CONDI-**
009 **TIONS: FROM 2 BITS TO k BITS**

010 **Anonymous authors**
011 Paper under double-blind review

012 **ABSTRACT**

013 The Tsetlin Machine (TM) is an innovative machine learning algorithm grounded
014 in propositional logic, achieving state-of-the-art performance across a variety of
015 pattern recognition tasks. Prior theoretical work has established convergence re-
016 sults for the 1-bit operator under both noisy and noise-free conditions, and for the
017 2-bit XOR operator under noise-free conditions. This paper first extends the anal-
018 ysis to the 2-bit AND and OR operators. We show that the TM converges almost
019 surely to the correct 2-bit AND and OR operators under noise-free training, and
020 we identify a distinctive property of the 2-bit OR case, where a single clause can
021 jointly represent two sub-patterns, in contrast to the XOR operator. We further in-
022 vestigate noisy training scenarios, demonstrating that mislabelled samples prevent
023 exact convergence but still permit efficient learning, whereas irrelevant variables
024 do not impede almost-sure convergence. Building on the 2-bit analysis, we then
025 generalize the results to the k -bit setting ($k > 2$), providing a unified treatment
026 applicable to general scenarios. Together, these findings provide a robust and
027 comprehensive theoretical foundation for analyzing TM convergence.

028
029 **1 INTRODUCTION**
030

031 The Tsetlin Machine (TM) is a classification algorithm. A TM (Granmo, 2018) organizes clauses,
032 each associated with a team of Tsetlin Automata (TAs) (Tsetlin, 1961), to collaboratively capture
033 distinct sub-patterns¹ for a certain class. A TA, which is the core learning entity of TM, is a kind of
034 learning automata (Zhang et al., 2020; Yazidi et al., 2019; Omslandseter et al., 2022) that tackles the
035 multi-armed bandit problem, learning the optimal action through the interaction with its environment
036 which gives rewards and penalties. In a TM, all TAs play in a game orchestrated by the TM’s
037 feedback tables. Each TA takes care of one literal of input, which takes boolean values of either
038 0 or 1. Literals are basically features of the input data. A TA decides to “Include” or “Exclude”
039 the literal, i.e., to consider or not to consider the feature in the final classification. A clause is a
040 conjunction of all included literals, representing a sub-pattern of a certain class. Once distinct sub-
041 patterns are learned by a number of clauses, the overall pattern recognition task is completed by a
042 voting scheme from the clauses.

043 The TM and its variants (Granmo et al., 2019; Abeyrathna et al., 2021; Darshana Abeyrathna et al.,
044 2020; Sharma et al., 2023) have been applied to diverse tasks, including word sense disambiguation
045 (Yadav et al., 2021c), aspect-based sentiment analysis (Yadav et al., 2021b), novelty detec-
046 tion (Bhattarai et al., 2021), interpretable text classification (Yadav et al., 2021a; Yadav et al., 2022),
047 federated learning (Qi et al., 2025), signal classification (Jeeru et al., 2025a;b), and contextual ban-
048 bands (Seraj et al., 2022), where they often match or surpass state-of-the-art methods. As a symbolic
049 model, the TM offers transparent learning and inference (Granmo et al., 2025; Bhattarai et al., 2024;
050 Abeyrathna et al., 2023; Rafiev et al., 2022). Its reliance solely on logical operations also makes
051 it hardware-friendly and energy-efficient (Maheshwari et al., 2023; Rahman et al., 2022; Kishore
052 et al., 2023; Tunheim et al., 2025a;b). [Appendix L](#) provides a more detailed account of real-world
053 application examples.

¹The concept of sub-pattern will be found in the example given in Section 2.

054 The TM is proven to almost surely convergence to the Identity/NOT operator with 1-bit input
 055 in (Zhang et al., 2022), where the role of the hyperparameter s is also revealed. In (Jiao et al.,
 056 2022), TM’s convergence to the XOR operator with 2-bit input was proven, highlighting the func-
 057 tionality of the hyperparameter T . In this paper, we first analyze the 2-bit AND and OR operators
 058 using noise-free training samples. We then examine the convergence properties of AND, OR, and
 059 XOR under noisy conditions, including scenarios with incorrect labels and irrelevant inputs. Finally,
 060 we extend these results to the general k -bit case.

061 This paper differs from previous studies in several key aspects. While (Zhang et al., 2022) used
 062 stationary distribution analysis of discrete-time Markov chains (DTMC), the current study focuses
 063 on absorbing states. For XOR (Jiao et al., 2022), where sub-patterns are bit-wise exclusive, TM
 064 learns and converges to sub-patterns individually. In contrast, the OR operator’s sub-patterns share
 065 features (e.g., $[x_1 = 1, x_2 = 1]$ and $[x_1 = 1, x_2 = 0]$ share $x_1 = 1$), allowing joint representation.
 066 We show that TM can effectively learn and represent these shared features, making the convergence
 067 process distinct. Additionally, this paper examines the role of Type II feedback, which was omitted
 068 in the prior XOR convergence study. Most notably, we analyze the convergence properties of the
 069 AND, OR, and XOR operators under noisy training samples, and extend these results to the general
 070 k -bit case, thereby making the analysis comprehensive and conclusive.

071 It is worth noting that learning k -bit operators with or without noise, is a well-studied problem. For
 072 example, numerous studies in concept learning and probably approximately correct learning have
 073 extensively explored this topic (Valiant, 1984; Haussler et al., 1994; Mansour & Parnas, 1998; Belaid
 074 et al., 2025). While many elegant methods exist for learning conjunctions or disjunctions, their
 075 existence does not necessarily imply that the TM converges to such operators in the same manner.
 076 TM employs a unique approach, learning from samples to construct conjunctive expressions and
 077 coordinating these expressions across various sub-patterns, which merits its own dedicated analysis.

078 2 NOTATIONS OF THE TM

081 To make the article self-contained, we present the TM notation. For more details on the inference
 082 and training concept, please refer to Appendix A.

083 The input of a TM is indicated as $\mathbf{X} = [x_1, x_2, \dots, x_o]$, where $x_k \in \{0, 1\}$, $k = 1, 2, \dots, o$, and o
 084 is the number of features. A literal is either x_k in the original form or its negation $\neg x_k$. A clause is a
 085 conjunction of literals. Each literal is associated with a TA. The TA is a 2-action learning automaton
 086 whose job is to decide whether to Include/Exclude its literal in/from the clause, based on the current
 087 state of the TA. A clause is associated with $2o$ TAs, forming a TA team. A TA team is denoted in
 088 general as $\mathcal{G}_j^i = \{\text{TA}_{k'}^{i,j} \mid 1 \leq k' \leq 2o\}$, where k' is the index of the TA, j is the index of the TA
 089 team/clause (multiple TA teams form a TM), and i is the index of the TM/class to be identified (A
 090 TM identifies a class, multiple TMs identify multiple classes).

091 Suppose we are investigating the i^{th} TM whose job is to identify class i , and that the TM is composed
 092 of m TA teams. Then $C_j^i(\mathbf{X})$ can be used to denote the output of the j^{th} TA team, which is a
 093 conjunctive clause:

$$095 \text{Training : } C_j^i(\mathbf{X}) = \begin{cases} \left(\bigwedge_{k \in \xi_j^i} x_k \right) \wedge \left(\bigwedge_{k \in \bar{\xi}_j^i} \neg x_k \right), & \text{for } \xi_j^i, \bar{\xi}_j^i \neq \emptyset, \\ 1, & \text{for } \xi_j^i, \bar{\xi}_j^i = \emptyset. \end{cases} \quad (1)$$

$$099 \text{Testing : } C_j^i(\mathbf{X}) = \begin{cases} \left(\bigwedge_{k \in \xi_j^i} x_k \right) \wedge \left(\bigwedge_{k \in \bar{\xi}_j^i} \neg x_k \right), & \text{for } \xi_j^i, \bar{\xi}_j^i \neq \emptyset, \\ 0, & \text{for } \xi_j^i, \bar{\xi}_j^i = \emptyset. \end{cases} \quad (2)$$

102 In Eqs. (1) and (2), ξ_j^i and $\bar{\xi}_j^i$ are defined as the sets of indexes for the literals that have been included
 103 in the clause. ξ_j^i contains the indexes of included original inputs, x_k , whereas $\bar{\xi}_j^i$ contains the indexes
 104 of included negated inputs, $\neg x_k$.

106 Each clause represents a sub-pattern associated with class i by including a literal (a feature or its
 107 negation) if it contributes to the sub-pattern, or excluding it when deemed irrelevant. Multiple
 108 clauses, i.e., the TA teams, are assembled into a complete TM to sum up the outputs of the clauses

108 $f_{\sum}(\mathcal{C}^i(\mathbf{X})) = \sum_{j=1}^m C_j^i(\mathbf{X})$, where $\mathcal{C}^i(\mathbf{X})$ is the set of clauses for class i . The output of the TM
 109
 110 is further determined by the unit step function: $\hat{y}^i = \begin{cases} 0, & \text{for } f_{\sum}(\mathcal{C}^i(\mathbf{X})) < Th \\ 1, & \text{for } f_{\sum}(\mathcal{C}^i(\mathbf{X})) \geq Th \end{cases}$, where Th is a
 111 predefined threshold for classification. This is indeed a voting scheme.
 112
 113

114 Note that the TM can assign polarity to each TA team (Granmo, 2018), and one can refer to Appendix
 115 A for more information. In this study, for ease of analysis, we consider only positive polarity clauses.
 116 Nevertheless, this does not change the nature of TM learning.
 117

118 **Example:** We use TM learning the OR logic as an example. A sample is classified into the OR class
 119 if its two bits and label follow the OR logic: $0\ 1 \Rightarrow 1$, $1\ 0 \Rightarrow 1$, $1\ 1 \Rightarrow 1$, or $0\ 0 \Rightarrow 0$. Note that once
 120 the TM learns the pattern outputting 1, it inherently learns the complementary pattern outputting 0.
 121 Hence the TM's learning and reasoning can be understood primarily as identifying the pattern that
 122 results in an output of 1. In the OR logic, sub-patterns outputting 1 are $0\ 1$, $1\ 0$, and $1\ 1$, and can be
 123 represented by clauses $\neg x_1 \wedge x_2$, $x_1 \wedge \neg x_2$, and $x_1 \wedge x_2$, respectively.
 124

125 A clause is learned by a TA team, and a TM can be composed of multiple TA teams. A TA team is
 126 a set of TAs, each responsible for handling one literal. A literal is an input feature, in this example,
 127 x_1 or x_2 , or the negation of it: $\neg x_1$ or $\neg x_2$. In this example, each TA team consists of four TAs,
 128 managing four literals: x_1 , $\neg x_1$, x_2 , $\neg x_2$, respectively.
 129

130 A TA decides, by its current state (which changes according to the [state-transition probabilities](#) as
 131 shown in Table 1 and Table 2), whether to Include or Exclude its literal in/from the final clause. In
 132 a TA team of four TAs, if TA_1 includes x_1 , TA_2 excludes $\neg x_1$, TA_3 excludes x_2 , and TA_4 includes
 133 $\neg x_2$, the resulting clause from this TA team will be $x_1 \wedge \neg x_2$.
 134

135 A TM learns the pattern of the OR relationship from the input samples that follow the OR logic
 136 (training). As the training result, some TA teams converge to clauses like $\neg x_1 \wedge x_2$, others to
 137 $x_1 \wedge \neg x_2$, or $x_1 \wedge x_2$, all outputting 1. The process of determining whether an input conforms
 138 to the OR logic involves summing the outputs of all the clauses. Let's assume we have three TA
 139 teams, each converging to one of the sub-patterns, then the sum is $sum = (\neg x_1 \wedge x_2) + (x_1 \wedge \neg x_2) + (x_1 \wedge x_2)$. If a test sample $\{[x_1, x_2], y\} = \{[0, 1], 1\}$ is put into the TM, the output will be
 140 $sum = (1 \wedge 1) + (0 \wedge 0) + (0 \wedge 1) = 1 + 0 + 0 = 1$, indicating one TA team votes for positive
 141 classification. If the threshold Th is defined as 1, as $sum \geq Th$, TM evaluates the sample following
 142 the OR logic (testing).
 143

144 **Training:** In the training of a TM, the labeled data $(\mathbf{X} = [x_1, x_2, \dots, x_o], y^i)$ is fed into the TM,
 145 where the TAs are guided by the feedback defined in Tables 1 and 2. Type I Feedback is triggered
 146 when the training sample has a positive label: $y^i = 1$, while Type II feedback is utilized when
 147 $y^i = 0$. s controls the granularity of the clauses. NA means not applicable. Examples demonstrating
 148 TA state transitions per feedback tables can be found in Section 3.1 in (Zhang et al., 2022). In brief,
 149 Type I feedback reinforces true positive and Type II feedback fights against false negative.
 150

		Value of the clause $C_j^i(\mathbf{X})$		1		0	
		Value of the Literal $x_k/\neg x_k$		1	0	1	0
Include Literal	P(Reward)	$\frac{s-1}{s}$	NA	0	0		
	P(Inaction)	$\frac{1}{s}$	NA	$\frac{s-1}{s}$	$\frac{s-1}{s}$		
	P(Penalty)	0	NA	$\frac{1}{s}$	$\frac{1}{s}$		
Exclude Literal	P(Reward)	0	$\frac{1}{s}$	$\frac{1}{s}$	$\frac{1}{s}$		
	P(Inaction)	$\frac{1}{s}$	$\frac{s-1}{s}$	$\frac{s-1}{s}$	$\frac{s-1}{s}$		
	P(Penalty)	$\frac{s-1}{s}$	0	0	0		

151 Table 1: Type I Feedback — Feedback upon receiving a sample with label $y^i = 1$, for a single TA
 152 to decide whether to Include or Exclude a given literal $x_k/\neg x_k$ into C_j^i . NA means not applica-
 153 ble (Granmo, 2018).
 154

155 To avoid situations where a majority of the TA teams learn a *subset* of sub-patterns, forming an
 156 incomplete representation², the hyperparameter T is used to regulate the resource allocation. The
 157 strategy works as follows (Granmo, 2018):
 158

159 ²In the OR example, one should avoid to have a majority of TA teams converge to $\neg x_1 \wedge x_2$ to represent
 160 the sub-pattern of $[0, 1]$, and ignore the other sub-patterns $[1, 0]$ and $[1, 1]$.
 161

	<i>Value of the clause $C_j^i(\mathbf{X})$</i>	1	0	1	0
	<i>Value of the Literal $x_k / \neg x_k$</i>	1	0	1	0
Include Literal	$P(\text{Reward})$	0	NA	0	0
	$P(\text{Inaction})$	1.0	NA	1.0	1.0
	$P(\text{Penalty})$	0	NA	0	0
Exclude Literal	$P(\text{Reward})$	0	0	0	0
	$P(\text{Inaction})$	1.0	0	1.0	1.0
	$P(\text{Penalty})$	0	1.0	0	0

Table 2: Type II Feedback — Feedback upon receiving a sample with label $y^i = 0$, for a single TA to decide whether to Include or Exclude a given literal $x_k / \neg x_k$ into C_j^i . (Granmo, 2018).

Generating Type I Feedback. If the label of the training sample \mathbf{X} is $y^i = 1$, we generate, in probability, *Type I Feedback* for each clause $C_j^i \in \mathcal{C}^i$ according to:

$$u_1 = \frac{T - \max(-T, \min(T, f_{\sum}(\mathcal{C}^i(\mathbf{X}))))}{2T}. \quad (3)$$

Generating Type II Feedback. If the label of the training sample \mathbf{X} is $y^i = 0$, we generate, again, in probability, *Type II Feedback* to each clause $C_j^i \in \mathcal{C}^i$ according to:

$$u_2 = \frac{T + \max(-T, \min(T, f_{\sum}(\mathcal{C}^i(\mathbf{X}))))}{2T}. \quad (4)$$

Here T is a positive integer, with its maximum value equal to the total number of clauses. When multiple sub-patterns exist, T limits the maximum number of clauses that can be allocated to each sub-pattern. Briefly speaking, when the number of clauses representing one sub-pattern increases, learning from samples that correspond to that sub-pattern will decrease as the probability of triggering update will decrease. Once at least T clauses have learned a particular sub-pattern, any samples matching that sub-pattern will no longer trigger TM updates (the probability of triggering feedback is 0). This prevents additional clause resources from being spent on a subpattern that is already considered learned (with T clauses representing it). With an appropriate choice of T , the clause resources can be balanced across different sub-patterns, ensuring convergence of the system. In addition, T plays a crucial role in maintaining convergence when irrelevant bits are present. Further insights and discussions on the role of T are provided in the proofs.

3 CONVERGENCE ANALYSIS OF THE AND OPERATOR

A TM has converged when the states of its TAs do not change any longer. We assume that the training samples are noise free, i.e., $P(y = 1|x_1 = 1, x_2 = 1) = 1, P(y = 0|x_1 = 0, x_2 = 1) = 1, P(y = 0|x_1 = 1, x_2 = 0) = 1, P(y = 0|x_1 = 0, x_2 = 0) = 1$. We also assume the training samples are independently drawn at random, and the above four cases will appear with non-zero probability, which means that all of the four types of samples will appear for infinite times.

Because the considered AND operator has only one sub-pattern of input, i.e., $x_1 = 1, x_2 = 1$, that will trigger a true output, we employ one clause in this TM, and we thus can ignore the indices of the classes and the clauses in the notation in the proof. After simplification, $\text{TA}_k^{i,j}$ becomes TA_k , and C_1^1 becomes C . Since there are two input parameters, namely x_1 and x_2 , we implement four TAs in the clause, i.e., $\text{TA}_1, \text{TA}_2, \text{TA}_3$, and TA_4 . TA_1 has two actions, i.e., including or excluding x_1 . Similarly, TA_2 corresponds to including or excluding $\neg x_1$. TA_3 and TA_4 determine the behavior of x_2 and $\neg x_2$, respectively.

Once the TM converge correctly to the intended operation, the resulting clause will be $x_1 \wedge x_2$, with the actions of $\text{TA}_1, \text{TA}_2, \text{TA}_3$, and TA_4 being I, E, I, and E, respectively. Here we use “I” and “E” as abbreviations for include and exclude respectively.

Theorem 1. *Any clause will converge almost surely to $x_1 \wedge x_2$ given noise free AND training samples in infinite time when $u_1 > 0$ and $u_2 > 0$.*

The complete proof of Theorem 1 is in Appendix B. We here outline the main steps of the proof.

The condition $u_1 > 0$ and $u_2 > 0$ guarantees that all types of samples are provided to the TM and no specific type is blocked by Eqs. (3) and (4) during training. The goal of the proof is to show that the

system transitions will guarantee that there is a unique absorbing state of the TM and the absorbing state has the actions of TA_1 , TA_2 , TA_3 , and TA_4 to be I , E , I , E , respectively, corresponding to the expression $x_1 \wedge x_2$.

To simplify the analysis of joint TA transitions, we use quasi-stationary analysis by freezing the transitions of the TAs for the first input bit and focusing on the transitions of the TAs corresponding to the second input bit. Clearly, there are four possibilities when freezing the first bit x_1 . We name them as cases: **Case 1:** $TA_1 = E$, $TA_2 = I$, i.e., include $\neg x_1$. **Case 2:** $TA_1 = I$, $TA_2 = E$, i.e., include x_1 . **Case 3:** $TA_1 = E$, $TA_2 = E$, i.e., exclude both x_1 and $\neg x_1$. **Case 4:** $TA_1 = I$, $TA_2 = I$, i.e., include both x_1 and $\neg x_1$.

In each of the above four cases, we analyze individually the transition of TA_3 (TA_4) with a given current action, under different actions of TA_4 (TA_3). We index the possibilities as situations: **Situation 1.** We study the transition of TA_3 when its current action is “Include”, and when TA_4 is frozen to be “Include” or “Exclude”. **Situation 2.** We study the transition of TA_3 when its current action is “Exclude”, and when TA_4 is frozen to be “Include” or “Exclude”. **Situation 3.** We study the transition of TA_4 when its current action is “Include”, and when TA_3 is frozen to be “Include” or “Exclude”. **Situation 4.** We study the transition of TA_4 when its current action is “Exclude”, and when TA_3 is frozen to be “Include” or “Exclude”.

Within each of the situation, there are 8 possible instances, determined by 4 possible combinations of the input samples of x_1 and x_2 , and the two possible frozen TA actions, i.e., Include and Exclude.

As an example, we randomly select an instance in Case 1, Situation 1. The selected instance is when the training sample is $([x_1 = 1, x_2 = 1], y = 1)$, and TA_4 is E . For this instance, the training sample will trigger Type I feedback because $y = 1$. Based on the current status of the TAs, the clause is in the form $C = \neg x_1 \wedge x_2$, which evaluates to 0 based on the input training sample. In Situation 1, the studied TA is TA_3 , whose corresponding literal is $x_2 = 1$. Given $y = 1$, clause value 0, literal value 1, we go to Table 1, the third column of transition probabilities for “Include Literal”, and find the transition of TA_3 to be: the penalty probability $\frac{1}{s}$ and the inaction probability $\frac{s-1}{s}$. To indicate the transitions of TA_3 , we have plotted the transition diagram in Fig. 1. Note that the overall transition probability is $u_1 \frac{1}{s}$, where u_1 is defined in Eq. (3). Here, we have assumed $u_1 > 0$.

Figure 1: Transition of TA_3 when its current action is Include, TA_1 , TA_2 , and TA_4 ’s actions are Exclude, Include, and Exclude, respectively, upon a training sample $(x_1 = 1, x_2 = 1, y = 1)$.

Similar to the example instance, we derive a total of 128 transition instances, which can be further summarized into the overall transition behavior of TA_3 and TA_4 . These overall transitions reveal the directional dynamics of the two TAs, from which we observe that the unique absorbing state for TA_3 and TA_4 is (I, E) , given that TA_1 and TA_2 are fixed in states I and E , respectively.

The transitions of TA_1 and TA_2 can be analyzed in the same manner as those of TA_3 and TA_4 . Based on this, we conclude that the system has a unique absorbing state in its full dynamics, with TA_1 , TA_2 , TA_3 , and TA_4 adopting the actions I , E , I , and E , respectively, and the TAs ultimately settling in their respective deepest states.

4 CONVERGENCE ANALYSIS OF THE OR OPERATOR

We assume the training samples for the OR operator are noise free (i.e., Eq. (5)), and are independently drawn at random. All these four cases will appear with non-zero probability.

$$\begin{aligned} P(y = 1|x_1 = 1, x_2 = 1) &= 1, P(y = 1|x_1 = 0, x_2 = 1) = 1, \\ P(y = 1|x_1 = 1, x_2 = 0) &= 1, P(y = 0|x_1 = 0, x_2 = 0) = 1. \end{aligned} \tag{5}$$

Theorem 2. *The clauses in a TM can almost surely learn the 2-bit OR logic given noise free training samples (shown in Eq. (5)) in infinite time, when $T \leq \lfloor \frac{m}{2} \rfloor$.*

Figure 2: The dependence for the proof of Theorem 2.

The proof of the theorem requires Lemma 1-Lemma 5 and their dependence is shown in Fig. 2. Clearly, there are three sub-patterns for the OR operator. In Lemma 1, we will show that any clause is able to converge and absorb to an intended sub-pattern when the training sample of only one sub-pattern is given, and when $u_1 > 0$ and $u_2 > 0$. In Lemma 2, we will show that the TM will not absorb when more sub-patterns jointly appear in the training samples and when $u_1 > 0$ and $u_2 > 0$. These two lemmas will be utilized in the proof of Lemma 3. Lemma 2 also reveals the non-absorbing nature of TM for the OR operator when the functionality of T is not enabled, i.e., when $u_1 > 0$ and $u_2 > 0$. This confirms the necessity of enabling the functionality of T in order to converge to an absorbing state that fulfills the OR operator, to be indicated by Lemma 3-Lemma 5. Specifically, Lemma 3-Lemma 5 analyze the system behavior when T is enabled and how T should be configured for the TM to converge to the OR operator. They guarantee that when the system reaches an absorbing state, the intended sub-patterns will have a number of clauses no less than T while the unintended sub-pattern will have 0 clause. Then the OR operator can be inferred by setting $Th = T$. In what follows, we will present and prove the lemmas.

Lemma 1. *For any one of the three sub-patterns resulting in $y = 1$, shown in Eqs. (6)-(8), the TM can converge to the intended sub-pattern when noise free training samples following this sub-pattern are given, and when $u_1 > 0, u_2 > 0$.*

$$P(y = 1|x_1 = 1, x_2 = 1) = P(y = 0|x_1 = 0, x_2 = 0) = 1, \quad (6)$$

$$P(y = 1|x_1 = 0, x_2 = 1) = P(y = 0|x_1 = 0, x_2 = 0) = 1, \quad (7)$$

$$P(y = 1|x_1 = 1, x_2 = 0) = P(y = 0|x_1 = 0, x_2 = 0) = 1. \quad (8)$$

The proof of Lemma 1 involves demonstrating convergence for three sub-patterns: those governed by Eqs. (6), (7), and (8). These analyses build upon the convergence proofs for the XOR and AND operators. For the sub-pattern in Eq. (6), transition diagrams in Appendix B confirm that the TAs converge to $TA_1 = I$, $TA_2 = E$, $TA_3 = I$, and $TA_4 = E$, when input samples $[x_1 = 0, x_2 = 1]$ and $[x_1 = 1, x_2 = 0]$ are excluded. The other two sub-patterns are proven using similar principles. Full details are provided in Appendix C.

From Lemma 1, we show that the clauses converge to the intended sub-pattern when the training samples follow that specific sub-pattern. In contrast, Lemma 2 will show that the system becomes non-absorbing when training samples contain two or more sub-patterns. In particular, we prove that the TM is non-absorbing for samples following Eq. (5) and Eqs. (9)–(11) when $u_1 > 0$ and $u_2 > 0$.

$$P(y = 1|x_1 = 1, x_2 = 1) = P(y = 1|x_1 = 1, x_2 = 0) \quad (9)$$

$$= P(y = 0|x_1 = 0, x_2 = 0) = 1,$$

$$P(y = 1|x_1 = 1, x_2 = 1) = P(y = 1|x_1 = 0, x_2 = 1) \quad (10)$$

$$= P(y = 0|x_1 = 0, x_2 = 0) = 1,$$

$$P(y = 1|x_1 = 1, x_2 = 0) = P(y = 1|x_1 = 0, x_2 = 1) \quad (11)$$

$$= P(y = 0|x_1 = 0, x_2 = 0) = 1.$$

Lemma 2. *The TM becomes non-absorbing if any two or more of the three sub-patterns jointly appear in the training samples, as shown in Eqs. (5), (9)–(11), when $u_1 > 0, u_2 > 0$.*

The proof of Lemma 2 can be found in Appendix D. Lemma 2 tells us that if we always give TM the training samples from all sub-patterns without blocking the learnt patterns by using T via Eqs. (3) and (4), the system is non-absorbing. In other words, if we want to have the TM converge to the OR operator in an absorbing state, it is critical to utilize the feature of T to block any incoming training samples from updating the learnt sub-patterns. Specifically, we need to configure T (1) so that the absorbing states exist and (2) confirm that the absorbing states follows the OR operator. In

what follows, we will, through Lemmas 3-5, show how T via Eqs. (3) and (4) can guarantee the convergence and how the value of T should be configured.

Let's revisit the functionality of T . T can block the training samples from updating a learnt sub-pattern. More specifically, if the number of the clauses reaches T for a certain sub-pattern, the new training samples of this sub-pattern will be blocked by the TM. There are three sub-patterns in OR operator. When the number of clauses for each of the three sub-patterns reaches T , all training samples associated with Type I feedback are blocked. Simultaneously, if none of the samples for Type II feedback trigger any change to the states of the TAs, the TM reaches an absorbing state. In Lemma 3, we detail the necessity and sufficiency of the absorbing state.

Lemma 3. *The system is absorbed if and only if (1) the number of clauses for each intended sub-pattern reaches T , i.e., $f_{\Sigma}(\mathcal{C}^i(\mathbf{X})) = T$, $\forall \mathbf{X} = [x_1 = 0, x_2 = 1]$ or $[x_1 = 0, x_2 = 1]$ or $[x_1 = 1, x_2 = 1]$, and (2) no clause is formed only by a negated literal or negated literals.*

The proof of Lemma 3 can be found in Appendix E. In Lemma 3, we find the conditions of the absorbing state. In the next Lemma, we will show how to set up the value of T so that the number of clauses for each intended sub-pattern can indeed reach T .

Lemma 4. *$T \leq \lfloor m/2 \rfloor$ is required so that the number of clauses for each intended sub-pattern can reach T .*

Proof of Lemma 4: There are three intended sub-patterns in the OR operator. Given m clauses in total, to make sure each one has at least T votes, we have $3T \leq m$. This requires $T \leq \lfloor m/3 \rfloor$ (T is an integer). However, the nature of the OR operator offers the possibility to represent 2 sub-patterns jointly. For example, T clauses in the form of x_1 will result in the number of clauses being T for each of the following sub-patterns, i.e., $[x_1 = 1, x_2 = 0]$ and $[x_1 = 1, x_2 = 1]$. If there are other T clauses representing the remaining sub-pattern, in total $2T$ clauses can guarantee that each of the intended sub-patterns is represented by T clauses. We thus have $T \leq \lfloor m/2 \rfloor$. Note that the fact that two sub-patterns can be jointly represented by one clause has been observed and confirmed in experiments shown in Section I.

When we have a smaller T , different sub-patterns may be represented by distinct clauses. However, when $T > \lfloor m/2 \rfloor$, there will always be one or two sub-patterns that cannot obtain a number of T clauses to represent them. For this reason, the maximum integer value is $T = \lfloor m/2 \rfloor$. ■

In Lemma 5, we show that the input sample $[x_1 = 0, x_2 = 0]$ will never cause the number of clauses associated with this unintended sub-pattern to reach or exceed T . This is to avoid any possible false positive upon input $[x_1 = 0, x_2 = 0]$ in testing.

Lemma 5. *When absorbing, the sample from the unintended sub-pattern, i.e., $[x_1 = 0, x_2 = 0]$, will never lead to the number of clauses representing this unintended sub-pattern becoming greater than or equal to T .*

Proof of Lemma 5: To have a positive output from $[x_1 = 0, x_2 = 0]$, the clause should be in the form of $C = \neg x_1$ or $C = \neg x_2$ or $C = \neg x_1 \wedge \neg x_2$. It has already shown in the proof of Lemma 3 that Type II feedback will eliminate such clauses. In fact, when the system is absorbed, no clause will be in the form of $C = \neg x_1$ or $C = \neg x_2$ or $C = \neg x_1 \wedge \neg x_2$. For this reason, $[x_1 = 0, x_2 = 0]$ will never lead to the number of clauses greater than or equal to T . ■

Proof of Theorem 2: Based on Lemmas 3-5, we understand that if $T \leq \lfloor m/2 \rfloor$ holds, Type I feedback will eventually be blocked and Type II feedback will eventually only give “inaction” feedback. In this situation, no actual transition will be triggered and thus the system reaches the absorbing state. Before absorbed, the system moves back and forth in the intermediate states. Once absorbed, any one of the intended sub-patterns will have the number of clauses for that sub-pattern no less than T and the unintended sub-pattern will have 0 clauses. We thus have the OR logic almost surely by setting a threshold $Th = T$ and conclude the proof. ■

Now let's study a simple example with $m = 2$, $T = 1$. Here, $C_1 = x_1$ and $C_2 = x_2$ can be an instance for an absorbing case. $C_1 = x_1$ and $C_2 = \neg x_1 \wedge x_2$ also works. Clearly, the clauses can be in various forms, as long as the conditions in Lemma 3 fulfill. These converged clauses are not necessarily in the exact form of the three sub-patterns, which is distinct to that of the XOR operator.

Remark 1. *Although both AND and OR operators converge, the approaches are different. For AND operator, the system is converged because the clauses become eventually absorbed to the intended*

378 pattern upon Type I and Type II feedback, even if the functionality of T is disabled ($u_1 > 0$ and
 379 $u_2 > 0$). As the TM enables the functionality of T by default, the system will be absorbed when
 380 T clauses converge to $x_1 \wedge x_2$, before all clauses converge to this pattern. However, for the OR
 381 operator, the functionality of T is critical because the TM is non-absorbing if $u_1 > 0$ and $u_2 > 0$.
 382 The absorbing state of the OR operator is achieved because the functionality of T blocks all Type I
 383 feedback and Type II feedback gives only “Inaction” feedback. The concept of convergence for the
 384 OR operator is similar to that of XOR, but the form of clauses after absorbing varies due to the
 385 possible joint representation of sub-patterns in OR.

386 **Remark 2.** When T is greater than half the number of clauses, i.e., $T > \lfloor m/2 \rfloor$, the system will
 387 not have an absorbing state. We conjecture that the system can still learn the sub-patterns in an
 388 unbalanced manner, as long as T is not configured too close to the total number of clauses m .

389 Given $T > \lfloor m/2 \rfloor$, Type I feedback cannot be completely blocked and the TM is non-absorbing.
 390 Nevertheless, if T is not close to m , there will be clauses that possibly learn distinct sub-patterns.
 391 In addition, Type II feedback can avoid the form of $C = \neg x_1$ or $C = \neg x_2$ or $C = \neg x_1 \wedge \neg x_2$ from
 392 happening. Therefore, with $Th > 0$, the TM may still learn the OR operator with high probability.
 393

394 5 REVISIT THE XOR OPERATOR

397 Let us revisit the proof of XOR operator. As stated in (Jiao et al., 2022), when the system is absorbed,
 398 the clauses follow the format $C = x_1 \wedge \neg x_2$ or $C = \neg x_1 \wedge x_2$ precisely. In other words, a clause
 399 with just one literal, such as $C = x_1$, cannot absorb the system. The reason is that the sub-patterns
 400 in XOR operator are mutual exclusive, i.e., the sub-patterns cannot be merged in any way. Although
 401 Type I feedback can be blocked when T clauses represent one sub-pattern using one literal, the Type
 402 II feedback can force the other missing literal to be included. For example, when T clauses happens
 403 to converge to $C = x_1$, the Type I feedback from any input samples of $([x_1 = 1, x_2 = 0], y = 1)$ will
 404 be blocked. In this situation, the Type II feedback from $([x_1 = 1, x_2 = 1], y = 0)$ will encourage
 405 the clause to include $\neg x_2$. This is because upon a sample $([x_1 = 1, x_2 = 1], y = 0)$, we have Type
 406 II feedback, $C = x_1 = 1$, and the studied literal is $\neg x_2 = 0$. When the TA for excluding $\neg x_2$ is
 407 considered, a large penalty, i.e., a penalty in probability 1, is given to the TA, moving it towards
 408 action *Include*, and thus $C = x_1$ eventually becomes $C = x_1 \wedge \neg x_2$. Following the same concept,
 409 we can analyze the development for $C = \neg x_1$, $C = x_2$, and $C = \neg x_2$, which will eventually
 410 converge to $C = \neg x_1 \wedge x_2$ or $C = x_1 \wedge \neg x_2$, upon Type II feedback.

411 6 CONVERGENCE ANALYSIS UNDER RANDOM NOISE

413 We studied the convergence properties of AND, OR, and XOR operators under training samples
 414 with noise. The noise type is *noisy completely at random* (Frénay & Verleysen, 2013), categorized
 415 as wrong labels and irrelevant input variables. A wrong label refers to an input that should be labeled
 416 as 1 but is instead labeled as 0, or vice versa. An irrelevant input variable, on the other hand, is one
 417 that does not contribute to the classification. We demonstrate that, with wrong labels, the TM does
 418 not converge to the intended operators but can still learn efficiently. With irrelevant variables, the
 419 TM converges to the intended operators almost surely. Experimental results confirmed these findings
 420 (Appendix J). We summarize the main findings in this section. The proof details can be found in
 421 Appendix F and Appendix G.

422 **Theorem 3.** The TM is non-absorbing given training samples with wrong labels for the AND, OR,
 423 and XOR operators.

424 **Remark 3.** The non-absorbing property of TM indicates that there is a non-zero probability that
 425 it cannot learn the intended operator. The primary reason for the non-absorbing behavior when
 426 wrong labels are present is the statistically conflicting labels for the same input samples. These
 427 inconsistency causes the TAs within a clause to learn conflicting outcomes for the same input. When
 428 a clause learns to evaluate an input as 1 based on Type I feedback, samples with a label of 0 for
 429 the same input prompt it to learn the opposite. This conflict in labels confuses the TM, leading to
 430 back-and-forth learning.

431 **Remark 4.** Although wrong labels will make the TM not converge (not absorbing with 100% ac-
 432 curacy for the intended logic), via experiments, we can still find that the TM are able to learn the

432 operators efficiently, shown in Appendix J. This property aligns with the concept of PAC learn-
 433 able (Mansour & Parnas, 1998) or ϵ -optimality (Zhang et al., 2020), although a formal proof re-
 434 mains open.

435 **Theorem 4.** *The clauses in a TM can almost surely learn the 2-bit AND logic given training samples
 436 with q irrelevant input variables in infinite time, $q > 0$, when $T \leq m$.*

437 **Theorem 5.** *The clauses in a TM can almost surely learn the 2-bit XOR and OR logic given training
 438 samples with q irrelevant input variables in infinite time, $q > 0$, when $T \leq \lfloor m/2 \rfloor$.*

440 The proofs of Theorems 4 and 5 follow the same underlying methodology (see Appendix G). We
 441 identify the conditions under which the TM becomes absorbed, and verify that the absorbing states
 442 correspond to the intended subpattern(s), and no other absorbing states exist. From these proofs,
 443 it becomes clear that T is critical for convergence. The presence of irrelevant bits can make the
 444 TM non-absorbing if T is not functioning, whereas an appropriate configuration of T guarantees
 445 convergence to the correct intended subpatterns.

446 **Remark 5.** *An interesting observation is that the TM does not always exclude all irrelevant literals.
 447 Our analysis and experiments reveal two distinct mechanisms through which TMs exhibit robustness
 448 to irrelevant bits. When sufficient clause resources are available, the T clauses assigned to a sub-
 449 pattern may include irrelevant bits while another T clauses include their negations, yet both sets vote
 450 for the same target sub-pattern, effectively canceling out their influence. When clause resources are
 451 limited, irrelevant bits tend to be excluded, and therefore do not affect the classification outcome.*

452 7 CONVERGENCE ANALYSIS FOR k -BIT CASE

453 The analyses above focus on the 2-bit cases. In this section, we extend the results to the general
 454 k -bit setting, where $k > 2$. Since the 2-bit analyses rely heavily on exhaustive search, increasing
 455 the number of bits immediately leads to a combinatorial explosion. To avoid this, we go from literal
 456 level to clause level, by clustering the clause representations into three categories. By analyzing the
 457 transition properties among these categories, rather than the literal states, we can demonstrate the
 458 convergence behavior without being hindered by the exponential growth. We first present the main
 459 theorems, followed by an outline of the proof. The full proofs are provided in Appendix H.

460 We begin with the noise-free case. For the k -bit setting, the convergence analysis naturally splits into
 461 two subcategories: cases with a single sub-pattern (analogous to the AND operator in the 2-bit case)
 462 and cases with multiple sub-patterns (2 or more sub-patterns exist, analogous to OR or XOR in the
 463 2-bit case). Formally, the single-sub-pattern category corresponds to the existence of a unique sub-
 464 pattern among the 2^k possible input combinations that is labeled as 1, while all others are labeled as
 465 0 or remain undefined (where “undefined” means unlabeled). In contrast, the multiple-sub-pattern
 466 category includes scenarios where more than one sub-pattern is labeled as 1.

467 **Theorem 6.** *In the k -bit single sub-pattern category, any clause will converge almost surely to the
 468 intended sub-pattern given noise free training samples in infinite time when $u_1 > 0$ and $u_2 > 0$.*

469 To prove Theorem 6, instead of examining all possible states of literals, we group the clause forms
 470 into three categories and summarize their possible transitions. The clause forms are defined as
 471 follows: (1) **Exact match:** The clause matches the intended sub-pattern exactly. A clause in this
 472 form outputs 1 when the intended sub-pattern is presented (e.g., $x_1 \wedge x_2$ for the AND operator).
 473 (2) **Partial match:** The clause does not fully match the intended sub-pattern but matches a subset
 474 of it. Such a clause also outputs 1 for the intended sub-pattern (e.g., x_1 in the AND case). (3)
 475 **Non-match:** The clause matches neither the intended sub-pattern nor any subset of it. A clause in
 476 this category outputs 0 when the intended sub-pattern is given (e.g., $\neg x_1$ for the AND case). The
 477 proof shows that once the TM reaches a clause of type (1), the system becomes absorbed, whereas
 478 (2) and (3) communicate. This guarantees the existence of a unique absorbing clause that represents
 479 the intended sub-pattern.

480 **Theorem 7.** *The clauses in a TM can almost surely learn the k -bit multiple-sub-pattern logic from
 481 noise-free training samples in infinite time, provided that $T \leq \lfloor m/e \rfloor$, where e is the number of
 482 sub-pattern clusters.*

483 In Theorem 7, a *sub-pattern cluster* is defined as a group of sub-patterns that share one or more
 484 common 1s in their corresponding input bits. For example, in the OR case, $(0, 1)$ and $(1, 1)$ belong

486 to the same cluster because they share a 1 in x_2 . In contrast, $(1, 0)$ and $(0, 1)$ do not belong to the
 487 same cluster, as they do not share any common 1s. We introduce the notion of sub-pattern clusters
 488 because sub-patterns within the same cluster can potentially be represented jointly by a clause that
 489 learns their shared feature. The proof of Theorem 7 follows the same structure as the proof of
 490 Theorem 2. We first show that when multiple sub-patterns are present, the system becomes non-
 491 absorbing if $u_1 > 0$ and $u_2 > 0$. Then, by configuring the hyperparameter T appropriately, we
 492 can suppress further feedback once the clauses have captured all individual sub-patterns, thereby
 493 ensuring convergence.

494 With irrelevant bits, we have the following conclusions.

495 **Theorem 8.** *The clauses in a TM can almost surely learn the k -bit single sub-pattern logic given
 496 training samples with q irrelevant input variables in infinite time, $k \geq 2, q > 0$, when $T \leq m$.*

497 **Theorem 9.** *Consider training samples of fixed length n , and a set of sub-patterns indexed by i ,
 498 where the i -th sub-pattern contains $k_i \geq 2$ informative bits and $q_i = n - k_i > 0$ irrelevant bits. A
 499 TM can almost surely learn all such multi-sub-pattern logic in infinite time when $T \leq \lfloor m/e \rfloor$.*

500 The proofs of Theorems 8 and 9 follow the same concept as those of Theorems 4 and 5. Experimental
 501 insights of the convergence of the k -bit cases can be found in Appendix K.

502 **Remark 6.** *By moving from the restrictive 2-bit setting to a general k -bit formulation, the results
 503 now capture the actual operating regime of all TM applications. Since practical TM systems uni-
 504 versally rely on a preprocessing to transform any input data into booleanized k -bit feature repre-
 505 sentations, the generalized theory developed here provides the first principled explanation of the
 506 mechanism that govern the TM behavior in practical settings. Consequently, the theoretical findings
 507 presented here offer a broadly applicable explanation for the convergence properties and per-
 508 formance patterns repeatedly observed across diverse prior empirical studies.*

510 8 INSIGHTS FOR PRACTICAL USAGE

511 We summarize here the insights from the proofs that are useful for the practical application of
 512 the TM. First, the hyperparameter T plays a crucial role. If one can estimate the number of sub-
 513 patterns and their clustering structure in a classification task, it becomes easier to select a good
 514 initial value for T , reducing tuning effort and improving convergence. Second, while joint learning
 515 of sub-patterns enables clauses to capture concepts more compactly, it also means that individual
 516 sub-patterns may not appear explicitly, which can hinder interpretability since a single clause may
 517 represent several sub-patterns simultaneously. Third, our robustness analysis shows that clauses can
 518 accumulate irrelevant literals when many clauses are used, adding further interpretability challenges.
 519 For applications where transparency is essential, limiting clause length or the number of clauses
 520 may therefore be beneficial. To demonstrate practical relevance, we also include real-world TM
 521 applications on publicly available benchmark datasets in Appendix L.

523 9 CONCLUSIONS

525 This work establishes a comprehensive theoretical framework for understanding the convergence
 526 behavior of the TM. By extending prior results from the 1-bit setting to the 2-bit AND, OR, and
 527 XOR operators, and further to the general k -bit case, we demonstrate that the TM reliably con-
 528 verges under noise-free training and irrelevant variables. The analysis highlights the critical role of
 529 T in both multi-sub-pattern scenarios and those involving irrelevant bits. The analysis also reveals
 530 structural properties unique to certain operators, such as the ability of OR clauses to jointly encode
 531 multiple sub-patterns. These insights not only clarify the learning dynamics of the TM but also
 532 provide practical guidance for model design, hyper-parameter selection, and interpretability. Col-
 533 lectively, the results reinforce the TM as a theoretically grounded and practically effective approach
 534 to interpretable machine learning.

536 REFERENCES

538 K. Darshana Abeyrathna, Bimal Bhattacharai, Morten Goodwin, Saeed Gorji, Ole-Christoffer Granmo,
 539 Lei Jiao, Rupsa Saha, and Rohan K. Yadav. Massively Parallel and Asynchronous Tsetlin Machine
 Architecture Supporting Almost Constant-Time Scaling. In *ICML*, 2021.

540 K Darshana Abeyrathna, Ahmed Abdulrahem Othman Abouzeid, Bimal Bhattarai, Charul Giri,
 541 Sondre Glimsdal, Ole-Christoffer Granmo, Lei Jiao, Rupsa Saha, Jivitesh Sharma, Svein Anders
 542 Tunheim, and Xuan Zhang. Building Concise Logical Patterns by Constraining Tsetlin Machine
 543 Clause Size. In *IJCAI*, 2023.

544 Mohamed-Bachir Belaid, Jivitesh Sharma, Lei Jiao, Ole-Christoffer Granmo, Per-Arne Andersen,
 545 and Anis Yazidi. Generalized Convergence Analysis of Tsetlin Automaton Based Algorithms: A
 546 Probabilistic Approach to Concept Learning. In *AAAI*, 2025.

548 Bimal Bhattarai, Ole-Christoffer Granmo, and Lei Jiao. Measuring the Novelty of Natural Language
 549 Text Using the Conjunctive Clauses of a Tsetlin Machine Text Classifier. In *ICAART*, pp. 410–
 550 417, 2021.

551 Bimal Bhattarai, Ole-Christoffer Granmo, and Lei Jiao. Explainable tsetlin machine framework for
 552 fake news detection with credibility score assessment. In *Proceedings of the Thirteenth Language
 553 Resources and Evaluation Conference*, pp. 4894–4903. European Language Resources Associa-
 554 tion, June 2022.

556 Bimal Bhattarai, Ole-Christoffer Granmo, Lei Jiao, Rohan Yadav, and Jivitesh Sharma. Tsetlin Ma-
 557 chine Embedding: Representing Words Using Logical Expressions. In *Findings of the Association
 558 for Computational Linguistics: EACL 2024*, pages 1512–1522, 2024.

559 K Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, Lei Jiao, and Morten Goodwin.
 560 The Regression Tsetlin Machine - A Novel Approach to Interpretable Non-Linear Regression.
 561 *Philosophical Transactions of the Royal Society A*, 378(2164), 2020.

563 Benoît Frénay and Michel Verleysen. Classification in the Presence of Label Noise: a Survey. *IEEE
 564 transactions on neural networks and learning systems*, 25(5):845–869, 2013.

565 Ole-Christoffer Granmo. The Tsetlin Machine - A Game Theoretic Bandit Driven Approach to
 566 Optimal Pattern Recognition with Propositional Logic. *arXiv:1804.01508*, Apr 2018.

568 Ole-Christoffer Granmo, Sondre Glimsdal, Lei Jiao, Morten Goodwin, Christian W Omlin, and
 569 Geir Thore Berge. The Convolutional Tsetlin Machine. *arXiv preprint arXiv:1905.09688*, 2019.

571 Ole-Christoffer Granmo, Youmna Abdelwahab, Per-Arne Andersen, Paul FA Clarke, Kunal Dum-
 572 bre, Ylva Grønningsæter, Vojtech Halenka, Runar Helin, Lei Jiao, Ahmed Khalid, et al. The
 573 tsetlin machine goes deep: Logical learning and reasoning with graphs. *arXiv preprint
 574 arXiv:2507.14874*, 2025.

575 Ylva Grønningsæter, Halvor S. Smørvik, and Ole-Christoffer Granmo. An optimized toolbox for
 576 advanced image processing with tsetlin machine composites. In *2024 International Symposium
 577 on the Tsetlin Machine (ISTM)*, pp. 1–8, 2024. doi: 10.1109/ISTM62799.2024.10931429.

578 David Haussler, Nick Littlestone, and Manfred K Warmuth. Predicting {0, 1}-functions on Ran-
 579 domly Drawn Points. *Information and Computation*, 115(2):248–292, 1994.

581 Sindhusha Jeeru, Lei Jiao, Per-Arne Andersen, and Ole-Christoffer Granmo. Interpretable Rule-
 582 based Architecture for GNSS Jamming Signal Classification. *IEEE Sensors Journal*, 2025a.

584 Sindhusha Jeeru, Rebekka Olsson Omslandseter, Per-Arne Andersen, Aiden James Morrison,
 585 Nadezda Sokolova, Ole-Christoffer Granmo, and Lei Jiao. MixCTME: A mixture of convolu-
 586 tional tsetlin machine experts using diverse spectrogram visualizations for jamming signal classi-
 587 fication. *IEEE Internet of Things Journal*, 2025b.

588 Lei Jiao, Xuan Zhang, Ole-Christoffer Granmo, and Kuruge Darshana Abeyrathna. On the Conver-
 589 gence of Tsetlin Machines for the XOR Operator. *IEEE Transactions on Pattern Analysis and
 590 Machine Intelligence*, 45(5):6072–6085, 2022.

592 C Kishore, Santhosh Sivasubramani, Rishad Shafik, and Amit Acharyya. Nano-Magnetic Logic
 593 based Architecture for Edge Inference using Tsetlin Machine. In *2023 21st IEEE Interregional
 NEWCAS Conference (NEWCAS)*, pp. 1–5, 2023.

594 Baizhou Lin, Yuetong Fang, Renjing Xu, Rishad Shafik, and Jagmohan Chauhan. Tsetlinkws: A
 595 65nm 16.58 uw, 0.63 mm² state-driven convolutional tsetlin machine-based accelerator for key-
 596 word spotting. *arXiv preprint arXiv:2510.24282*, 2025.

597

598 Sidharth Maheshwari, Tousif Rahman, Rishad Shafik, Alex Yakovlev, Ashur Rafiev, Lei Jiao, and
 599 Ole-Christoffer Granmo. Redress: Generating Compressed Models for Edge Inference Using
 600 Tsetlin Machines. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(9):
 601 11152–11168, 2023.

602 Yishay Mansour and Michal Parnas. Learning Conjunctions with Noise under Product Distributions.
 603 *Information Processing Letters*, 68(4):189–196, 1998.

604

605 Rebekka Olsson Omslandseter, Lei Jiao, Xuan Zhang, Anis Yazidi, and B John Oommen. The
 606 Hierarchical Discrete Pursuit Learning Automaton: A Novel Scheme with Fast Convergence and
 607 epsilon-optimality. *IEEE Transactions on Neural Networks and Learning Systems*, 2022.

608 Shannon How Shi Qi, Jagmohan Chauhan, Geoff V Merrett, and Jonathon Hare. FedTMOS: Effi-
 609 cient One-shot Federated Learning with Tsetlin Machine. In *ICLR*, 2025.

610

611 Ashur Rafiev, Jordan Morris, Fei Xia, Rishad Shafik, Alex Yakovlev, Ole-Christoffer Granmo, and
 612 Andrew Brown. Visualization of Machine Learning Dynamics in Tsetlin Machines. In *Inter-
 613 national Symposium on the Tsetlin Machine (ISTM)*, pp. 81–88, 2022.

614 Tousif Rahman, Adrian Wheeldon, Rishad Shafik, Alex Yakovlev, Jie Lei, Ole-Christoffer Granmo,
 615 and Shidhartha Das. Data Booleanization for Energy Efficient On-Chip Learning Using Logic
 616 Driven AI. In *International Symposium on the Tsetlin Machine (ISTM)*, pp. 29–36, 2022.

617

618 Raihan Seraj, Jivitesh Sharma, and Ole Christoffer Granmo. Tsetlin Machine for Solving Contextual
 619 Bandit Problems. In *NeurIPS*, 2022.

620

621 Jivitesh Sharma, Rohan Yadav, Ole-Christoffer Granmo, and Lei Jiao. Drop Clause: Enhancing
 622 Performance, Robustness and Pattern Recognition Capabilities of the Tsetlin Machine. In *AAAI*,
 623 2023.

624 Michael Lvovitch Tsetlin. On Behaviour of Finite Automata in Random Medium. *Avtomat. i Tele-
 625 mekh*, 22(10):1345–1354, 1961.

626

627 Svein Anders Tunheim, Lei Jiao, Rishad Shafik, Alex Yakovlev, and Ole-Christoffer Granmo. Con-
 628 volutional tsetlin machine-based training and inference accelerator for 2-d pattern classification.
 629 *Microprocessors and Microsystems*, 103:104949, 2023. ISSN 0141-9331.

630 Svein Anders Tunheim, Lei Jiao, Rishad Shafik, Alex Yakovlev, and Ole-Christoffer Granmo.
 631 Tsetlin Machine-Based Image Classification FPGA Accelerator With On-Device Training. *IEEE
 632 Trans. Circuits Syst. I, Reg. Papers*, 72(2):830–843, Feb. 2025a.

633

634 Svein Anders Tunheim, Yujin Zheng, Lei Jiao, Rishad Shafik, Alex Yakovlev, and Ole-Christoffer
 635 Granmo. An All-digital 65-nm Tsetlin Machine Image Classification Accelerator with 8.6 nJ per
 636 MNIST Frame at 60.3 k Frames per Second. *IEEE Trans. Circuits Syst. I, Reg. Papers, accepted*,
 637 2025b.

638 Leslie G Valiant. A Theory of the Learnable. *Communications of the ACM*, 27(11):1134–1142,
 639 1984.

640

641 Rohan Yadav, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin. Enhancing Interpretable
 642 Clauses Semantically Using Pretrained Word Representation. In *the 4th BlackboxNLP Workshop
 643 on Analyzing and Interpreting Neural Networks for NLP*, 2021a.

644 Rohan Yadav, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin. Human-Level Interpretable
 645 Learning for Aspect-Based Sentiment Analysis. In *AAAI*, 2021b.

646

647 Rohan Yadav, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin. Interpretability in Word
 Sense Disambiguation Using Tsetlin Machine. In *ICAART*, pp. 402–409, 2021c.

648 Rohan Kumar Yadav, Lei Jiao, Ole Christoffer Granmo, and Morten Goodwin. Robust Interpretable
649 Text Classification against Spurious Correlations Using AND-rules with Negation. In *IJCAI*,
650 2022.

651

652 Anis Yazidi, Xuan Zhang, Lei Jiao, and B John Oommen. The Hierarchical Continuous Pursuit
653 Learning Automation: A Novel Scheme for Environments with Large Numbers of Actions. *IEEE*
654 *Trans. Neural Netw. Learn. Sys.*, 31(2):512–526, 2019.

655 Xuan Zhang, Lei Jiao, B John Oommen, and Ole-Christoffer Granmo. A Conclusive Analysis of
656 the Finite-time Behavior of the Discretized Pursuit Learning Automaton. *IEEE Transactions on*
657 *Neural Networks and Learning Systems*, 31(1):284–294, 2020.

658 Xuan Zhang, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin. On the Convergence of
659 Tsetlin Machines for the IDENTITY- and NOT Operators. *IEEE Transactions on Pattern Analysis*
660 *and Machine Intelligence*, 44(10):6345–6359, 2022.

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A BRIEF OVERVIEW OF THE TM**
 703

704 We present the basics of TM here. Those who already are familiar with the concept and notations of
 705 TM can ignore this appendix.
 706

707 **A.1 BASIC CONCEPT OF THE TM**
 708

709 The input of a TM is denoted as $\mathbf{X} = [x_1, x_2, \dots, x_o]$, where $x_k \in \{0, 1\}$, $k = 1, 2, \dots, o$, and o is
 710 the number of features. A literal is either the x_k being 0 or 1 in the original form or its negation $\neg x_k$
 711 being 1 or 0. A clause is a conjunction of literals, and each literal is associated with a TA. The TA is
 712 a 2-action learning automaton whose job is to decide whether to Include/Exclude its literal in/from
 713 the clause, and the decision is determined by the current state of the TA.
 714

715 Figure 3 illustrates the structure of a TA with two actions and $2N$ states, where N is the number of
 716 states for each action. This study considers N as a finite number, which is practical for real-world
 717 applications. When the TA is in any state between 0 to $N - 1$, the action “Include” is selected. The
 718 action becomes “Exclude” when the TA is in any state between N to $2N - 1$. The transitions among
 719 the states are triggered by a reward or a penalty that the TA receives from the environment, which,
 720 in this case, is determined by different types of feedback defined in the TM (to be explained later).
 721 **A larger N expands the depth of the TA’s action-state space, enhancing its robustness. This benefit,**
 722 **however, comes at the cost of longer convergence times to innermost states and greater memory**
 723 **requirements.**

724 A clause is associated with $2o$ TAs, forming a TA team. A TA team is denoted in general as $\mathcal{G}_j^i =$
 725 $\{\text{TA}_{k'}^{i,j} \mid 1 \leq k' \leq 2o\}$, where k' is the index of the TA, j is the index of the TA team/clause (multiple
 726 TAs form a TM), and i is the index of the TM/class to be identified (A TM identifies a class,
 727 multiple TMs identify multiple classes).
 728

729 Suppose we are investigating the i^{th} TM whose job is to identify class i , and that the TM is composed
 730 of m TA teams. Then $C_j^i(\mathbf{X})$ can be used to denote the output of the j^{th} TA team, which is a
 731 conjunctive clause:
 732

733 For training:
 734

$$C_j^i(\mathbf{X}) = \begin{cases} \left(\bigwedge_{k \in \xi_j^i} x_k \right) \wedge \left(\bigwedge_{k \in \bar{\xi}_j^i} \neg x_k \right), & \text{for } \xi_j^i, \bar{\xi}_j^i \neq \emptyset, \\ 1, & \text{for } \xi_j^i, \bar{\xi}_j^i = \emptyset. \end{cases} \quad (12)$$

735 For inference:
 736

$$C_j^i(\mathbf{X}) = \begin{cases} \left(\bigwedge_{k \in \xi_j^i} x_k \right) \wedge \left(\bigwedge_{k \in \bar{\xi}_j^i} \neg x_k \right), & \text{for } \xi_j^i, \bar{\xi}_j^i \neq \emptyset, \\ 0, & \text{for } \xi_j^i, \bar{\xi}_j^i = \emptyset. \end{cases} \quad (13)$$

741 In Eqs. (12) and (13), ξ_j^i and $\bar{\xi}_j^i$ are defined as the sets of indexes for the literals that have been in-
 742 cluded in the clause. ξ_j^i contains the indexes of included original (non-negated) inputs, x_k , whereas
 743 $\bar{\xi}_j^i$ contains the indexes of included negated inputs, $\neg x_k$. $\xi_j^i, \bar{\xi}_j^i = \emptyset$ means not a single literal (fea-
 744 ture) is included in the clause. Note that in propositional logic, an empty clause is typically defined
 745 as having a value of 1. However, empirical results indicate that TMs generally achieve higher test
 746 accuracy on new data when empty clauses are 0-valued. Therefore, during TM training, an “empty”
 747 clause outputs 1 to encourage the TAs to include literals, following the feedback mechanisms of the
 748

Figure 3: A two-action Tsetlin automaton with $2N$ states (Jiao et al., 2022).

774 Figure 4: A TA team G_j^i consisting of $2o$ TAs (Zhang et al., 2022). Here $I(x_1)$ means “include x_1 ”
775 and $E(x_1)$ means “exclude x_1 ”.

789 Figure 5: TM voting architecture (Jiao et al., 2022).

790

791

792 TM. In contrast, during TM testing, an “empty” clause outputs 0, indicating that it does not influence
793 the final classification decision since it does not represent any specific sub-pattern.

794

795 Figure 4 illustrates the structure of a clause and its relationship to its literals. Here, for ease of
796 notation, we define $I(x) = x$, $I(\neg x) = \neg x$, and $E(x) = E(\neg x) = 1$ in the analysis of the training
797 procedure, with the latter meaning that an excluded literal does not contribute to the output.

798

799 Multiple clauses, i.e., the TA teams, each of which in conjunctive form, are assembled into a com-
800 plete TM. There are two architectures for clause assembling: Disjunctive Normal Form Architecture
801 and Voting Architecture. In this study, we focus on the latter one, as shown in Figure 5. The voting
802 consists of summing the outputs of the clauses:

803

$$f_{\sum}(\mathcal{C}^i(\mathbf{X})) = \sum_{j=1}^m C_j^i(\mathbf{X}), \quad (14)$$

804

805 where $\mathcal{C}^i(\mathbf{X})$ is the set of trained clauses for class i .

806

807 The output of the TM, in turn, is decided by the unit step function:

808

$$\hat{y}^i = \begin{cases} 0 & \text{for } f_{\sum}(\mathcal{C}^i(\mathbf{X})) < Th, \\ 1 & \text{for } f_{\sum}(\mathcal{C}^i(\mathbf{X})) \geq Th, \end{cases} \quad (15)$$

809

810 where Th is a predefined threshold for classification. For example, the classifier $(x_1 \wedge \neg x_2) + (\neg x_1 \wedge x_2)$ captures the XOR-relation given $Th = 1$, meaning if any sub-pattern is satisfied, the input will be identified as following the XOR logic.

811
812
813 Note that for the voting architecture, the TM can assign polarity to each TA team (Granmo, 2018).
814 Specifically, TA teams with odd indices have positive polarity, learning from training samples with
815 label 1, while those with even indices have negative polarity, learning from training samples with
816 label 0. The only difference between these polarities is that the output of a clause associated with an
817 even-indexed TA team will be flipped to its negative. The voting consists of summing the polarized
818 clause outputs, and the threshold Th is set to zero. For example, for the XOR operator with four
819 clauses, the learned clauses with positive polarity can be $C_1 = x_1 \wedge \neg x_2$ and $C_3 = \neg x_1 \wedge x_2$, while
820 the ones with negative polarity can be $C_2 = x_1 \wedge x_2$ and $C_4 = \neg x_1 \wedge \neg x_2$. In this case, when the
821 testing sample $[x_1 = 1, x_2 = 0]$ arrives, the sum of the clause values is 1. On the contrary, when
822 the testing sample $[x_1 = 0, x_2 = 0]$ arrives, the sum of the clause values is -1 . In this way, with
823 $Th = 0$, the system’s decision range and tolerance is expected to be larger.

824 In this study, we consider only positive-polarity clauses for two reasons. First, the learning and
825 reasoning process of the TM can be completely explained from the perspective of learning patterns
826 that output 1, and negative-polarity clauses, which learn patterns that output 0, follow the same
827 procedure. Second, this simplification offers easier analysis and better understanding.

829 A.2 TRAINING PROCESS OF THE TM

830
831 The training process is built on letting all the TAs take part in a decentralized game. Training data
832 ($\mathbf{X} = [x_1, x_2, \dots, x_o]$, y^i) is obtained from a data set \mathcal{S} , distributed according to the probability
833 distribution $P(\mathbf{X}, y^i)$. In the game, each TA is guided by Type I Feedback and Type II Feedback
834 defined in Table 3 and Table 4, respectively. Type I Feedback is triggered when the training sample
835 has a positive label, i.e., $y^i = 1$, meaning that the sample belongs to class i . When the training
836 sample is labeled as not belonging to class i , i.e., $y^i = 0$, Type II Feedback is utilized for generating
837 feedback. Examples demonstrating TA state transitions per feedback tables can be found in Section
838 3.1 in (Zhang et al., 2022). In brief, Type I feedback is to reinforce true positive and Type II feedback
839 is to fight against false negative.

840 The hyperparameter s controls the granularity of the clauses and a larger s encourages more literals
841 to be included in each clause, which also accelerates convergence and improves stability, but at the
842 cost of an increased risk of overfitting in practice. Smaller s generally leads to shorter clauses and
843 slower convergence in practice. A more detailed analysis on hyperparameters s and N can be found
844 in (Zhang et al., 2022).

Value of the clause $C_j^i(\mathbf{X})$		1		0	
		1	0	1	0
Include Literal	$P(\text{Reward})$	$\frac{s-1}{s}$	NA	0	0
	$P(\text{Inaction})$	$\frac{1}{s}$	NA	$\frac{s-1}{s}$	$\frac{s-1}{s}$
	$P(\text{Penalty})$	0	NA	$\frac{1}{s}$	$\frac{1}{s}$
Exclude Literal	$P(\text{Reward})$	0	$\frac{1}{s}$	$\frac{1}{s}$	$\frac{1}{s}$
	$P(\text{Inaction})$	$\frac{1}{s}$	$\frac{s-1}{s}$	$\frac{s-1}{s}$	$\frac{s-1}{s}$
	$P(\text{Penalty})$	$\frac{s-1}{s}$	0	0	0

854 Table 3: Type I Feedback — Feedback upon receiving a sample with label $y = 1$, for a single TA
855 to decide whether to Include or Exclude a given literal $x_k/\neg x_k$ into C_j^i . NA means not applica-
856 ble (Granmo, 2018).

857
858 To avoid the situation that a majority of the TA teams learn only one sub-pattern (or a subset of
859 sub-patterns) while ignore other sub-patterns, forming an incomplete representation³, the hyperpa-
860 rameter T is used to regulate the resource allocation. If the votes, i.e., the summation $f_{\sum}(C^i(\mathbf{X}))$,

861
862
863 ³For example, for the OR operator, one should avoid the situation that a majority of TA teams converge to
864 $\neg x_1 \wedge x_2$ to represent the sub-pattern of $[0, 1]$, and ignore the other sub-patterns $[1, 0]$ and $[1, 1]$, making the
865 learning outcome biased/unbalanced. A proper configuration of T can avoid this situation.

		Value of the clause $C_j^i(\mathbf{X})$	1		0	
			1	0	1	0
		$P(\text{Reward})$	0	NA	0	0
Include Literal		$P(\text{Inaction})$	1.0	NA	1.0	1.0
		$P(\text{Penalty})$	0	NA	0	0
		$P(\text{Reward})$	0	0	0	0
Exclude Literal		$P(\text{Inaction})$	1.0	0	1.0	1.0
		$P(\text{Penalty})$	0	1.0	0	0

Table 4: Type II Feedback — Feedback upon receiving a sample with label $y = 0$, for a single TA to decide whether to Include or Exclude a given literal $x_k/\neg x_k$ into C_j^i . NA means not applicable (Granmo, 2018).

for a certain sub-pattern \mathbf{X} already reach a total of T or more, neither rewards nor penalties are provided to the TAs when more training samples of this particular sub-pattern are given. In this way, we can ensure that each specific sub-pattern can be captured by a limited number, i.e., T , of available clauses, allowing sparse sub-pattern representations among competing sub-patterns. Formally, the strategy works as follows:

Generating Type I Feedback. If the label of the training sample \mathbf{X} is $y^i = 1$, we generate, in probability, *Type I Feedback* for each clause $C_j^i \in \mathcal{C}^i$. The probability of generating Type I Feedback is (Granmo, 2018):

$$u_1 = \frac{T - \max(-T, \min(T, f_{\sum}(\mathcal{C}^i(\mathbf{X}))))}{2T}. \quad (16)$$

Generating Type II Feedback. If the label of the training sample \mathbf{X} is $y^i = 0$, we generate, again, in probability, *Type II Feedback* to each clause $C_j^i \in \mathcal{C}^i$. The probability is (Granmo, 2018):

$$u_2 = \frac{T + \max(-T, \min(T, f_{\sum}(\mathcal{C}^i(\mathbf{X}))))}{2T}. \quad (17)$$

After Type I Feedback or Type II Feedback is generated for a clause, each individual TA within each clause is given a reward/penalty/inaction according to the probability defined in the Type I and Type II feedback tables, and then the state of the corresponding TA is updated.

918 B DETAILED PROOF OF THE CONVERGENCE OF THE AND OPERATOR
919

920 **Proof:** In this Appendix, we will prove Theorem 1. The condition $u_1 > 0$ and $u_2 > 0$ guarantees
921 that all types of samples for AND operator, following Eq. (18), are always given and no specific type
922 is blocked during training. The goal of the proof is to show that the system transitions will guarantee
923 the actions of TA_1 , TA_2 , TA_3 , and TA_4 to be I, E, I, E, and these actions correspond to the unique
924 absorbing state of the system.

$$\begin{aligned} P(y = 1|x_1 = 1, x_2 = 1) &= 1, \\ P(y = 0|x_1 = 0, x_2 = 1) &= 1, \\ P(y = 0|x_1 = 1, x_2 = 0) &= 1, \\ P(y = 0|x_1 = 0, x_2 = 0) &= 1. \end{aligned} \tag{18}$$

930 In Subsections B.1, we will describe the transitions of the system in an exhaustive manner. There-
931 after, in the Subsection B.2, we summarize the transitions in Subsection B.1 and reveal the absorbing
932 state of the system, which is the intended AND operator.

934 B.1 THE TRANSITIONS OF THE TAS
935

936 In order to analyze the transitions of the system, we freeze the transition of the two TAs for the first
937 bit of the input and study the transition of the second bit of input. Clearly, there are four cases for
938 the first bit, x_1 , as:

- 940 • Case 1: $TA_1 = E$, $TA_2 = I$, i.e., include $\neg x_1$.
- 941 • Case 2: $TA_1 = I$, $TA_2 = E$, i.e., include x_1 .
- 942 • Case 3: $TA_1 = E$, $TA_2 = E$, i.e., exclude both x_1 and $\neg x_1$.
- 943 • Case 4: $TA_1 = I$, $TA_2 = I$, i.e., include both x_1 and $\neg x_1$.

945 In what follows, we will analyze the transition of the TAs for x_2 , given the TAs of x_1 frozen in the
946 above four distinct cases, one by one.

948 B.1.1 CASE 1: INCLUDE $\neg x_1$
949

950 In this subsection, we assume that the TAs for first bit is frozen as $TA_1 = E$ and $TA_2 = I$, and
951 thus the overall joint actions of TAs for the first bit give “ $\neg x_1$ ”. In this case, we have 4 situations to
952 study, detailed below:

- 954 • Situation1: We study the transition of TA_3 when it has “Include” as its current action, given
955 different actions of TA_4 (i.e., when the action of TA_4 is frozen as “Include” or “Exclude”).
- 956 • Situation 2: We study the transition of TA_3 when it has “Exclude” as its current action,
957 given different actions of TA_4 (i.e., when the action of TA_4 is frozen as “Include” or
958 “Exclude”).
- 959 • Situation 3: We study the transition of TA_4 when it has “Include” as its current action, given
960 different actions of TA_3 (i.e., when the action of TA_3 is frozen as “Include” or “Exclude”).
- 961 • Situation 4: We study the transition of TA_4 when it has “Exclude” as its current action,
962 given different actions of TA_3 (i.e., when the action of TA_3 is frozen as “Include” or
963 “Exclude”).

964 In what follows, we will go through, exhaustively, the four situations.

965 B.1.1.1 Study TA_3 with Action Include
966

967 Here we study the transitions of TA_3 when its current action is *Include*, given different actions of
968 TA_4 and input samples. For ease of expressions, the self-loops of the transitions are not depicted
969 in the transition diagram. Clearly, this situation has 8 instances, depending on the variations of

972 the training samples and the status of TA_4 , where the first four correspond to the instances with
 973 $\text{TA}_4 = \text{E}$ while the remaining four represent the instances with $\text{TA}_4 = \text{I}$.
 974

975 Now we study the first instance, with $x_1 = 1$, $x_2 = 1$, $y = 1$, and $\text{TA}_4 = \text{E}$. Clearly, this training
 976 sample will trigger Type I feedback because $y = 1$. Together with the current status of the other
 977 TAs, the clause is determined to be $C = \neg x_1 \wedge x_2 = 0$ and the literal is $x_2 = 1$. From Table 3, we
 978 know that the penalty probability is $\frac{1}{s}$ and the inaction probability is $\frac{s-1}{s}$. To indicate the transitions,
 979 we have plotted the diagram, with the transitions for penalty below. Note that the overall transition
 980 probability is $u_1 \frac{1}{s}$, where u_1 is defined in Eq. (3). Here, we have assumed $u_1 > 0$.
 981

982 Condition: $x_1 = 1$, $x_2 = 1$, $y = 1$,
 983 $\text{TA}_4 = \text{E}$.

984 Thus, Type I, $x_2 = 1$,
 $C = \neg x_1 \wedge x_2 = 0$.

985 We here continue with analyzing another example shown below. In this instance, it covers the
 986 training samples: $x_1 = 1$, $x_2 = 0$, $y = 0$, and $\text{TA}_4 = \text{E}$. Clearly, the training sample will trigger
 987 Type II feedback because $y = 0$. The clause output becomes $C_3 = \neg x_1 \wedge x_2 = 0$. Because we now
 988 study TA_3 , the corresponding literal is $x_2 = 0$. Based on the information above, we can check from
 989 Table 4 and find the probability of “Inaction” is 1. For this reason, the transition diagram does not
 990 have any arrow, indicating that there is “No transition” for TA_3 .
 991

992 Condition: $x_1 = 1$, $x_2 = 0$, $y = 0$,
 993 $\text{TA}_4 = \text{E}$.

994 Thus, Type II, $x_2 = 0$,
 $C = \neg x_1 \wedge x_2 = 0$.

995 The same analytical principle applies for all the other instances, and we therefore will not explain
 996 them in detail. Instead, we just list the transition diagrams.
 997

998 Condition: $x_1 = 0$, $x_2 = 1$, $y = 0$,
 999 $\text{TA}_4 = \text{E}$.

1000 Thus, Type II, $x_2 = 1$,
 $C = \neg x_1 \wedge x_2 = 1$.

1001 Condition: $x_1 = 0$, $x_2 = 0$, $y = 0$,
 1002 $\text{TA}_4 = \text{E}$.

1003 Thus, Type II, $x_2 = 0$,
 $C = \neg x_1 \wedge x_2 = 0$.

1026 Condition: $x_1 = 1, x_2 = 1, y = 1,$

1027 $\text{TA}_4 = \text{I}.$

1028 Thus, Type I, $x_2 = 1,$

1029 $C = \neg x_1 \wedge x_2 \wedge \neg x_2 = 0.$

1035 Condition: $x_1 = 1, x_2 = 0, y = 0,$

1036 $\text{TA}_4 = \text{I}.$

1037 Thus, Type II, $x_2 = 0,$

1038 $C = \neg x_1 \wedge x_2 \wedge \neg x_2 = 0.$

1044 Condition: $x_1 = 0, x_2 = 1, y = 0,$

1045 $\text{TA}_4 = \text{I}.$

1046 Thus, Type II, $x_2 = 1,$

1047 $C = \neg x_1 \wedge x_2 \wedge \neg x_2 = 0.$

1053 Condition: $x_1 = 0, x_2 = 0, y = 0,$

1054 $\text{TA}_4 = \text{I}.$

1055 Thus, Type II, $x_2 = 0,$

1056 $C = \neg x_1 \wedge x_2 \wedge \neg x_2 = 0.$

1062 B.1.1.2 Study TA_3 with Action Exclude

1064 Here we study the transitions of TA_3 when its current action is *Exclude*, given different actions of
 1065 TA_4 and input samples. This situation has 8 instances, depending on the variations of the training
 1066 samples and the status of TA_4 . In this subsection and the following subsections, we will not plot the
 1067 transition diagrams for “No transition”.

1068 Condition: $x_1 = 1, x_2 = 1, y = 1,$

1069 $\text{TA}_4 = \text{E}.$

1070 Thus, Type I, $x_2 = 1,$

1071 $C = \neg x_1 = 0.$

1077

1078

1079

1080 Condition: $x_1 = 0, x_2 = 0, y = 0,$
 1081 $\text{TA}_4 = \text{E}.$
 1082 Thus, Type II, $x_2 = 0,$
 1083 $C = \neg x_1 = 1.$

1089 Condition: $x_1 = 1, x_2 = 1, y = 1,$
 1090 $\text{TA}_4 = \text{I}.$
 1091 Thus, Type I, $x_2 = 1,$
 1092 $C = \neg x_1 \wedge \neg x_2 = 0.$

1099 Condition: $x_1 = 0, x_2 = 0, y = 0,$
 1100 $\text{TA}_4 = \text{I}.$
 1101 Thus, Type II, $x_2 = 0,$
 1102 $C = \neg x_1 \wedge \neg x_2 = 1.$

B.1.1.3 Study TA_4 with Action Include

1109 Here we list the transitions for TA_4 when its current action is *Include*.

1110 Condition: $x_1 = 1, x_2 = 1, y = 1,$
 1111 $\text{TA}_3 = \text{E}.$
 1112 Thus, Type I, $\neg x_2 = 0,$
 1113 $C = \neg x_1 \wedge \neg x_2 = 0.$

1120 Condition: $x_1 = 1, x_2 = 1, y = 1,$
 1121 $\text{TA}_3 = \text{I}.$
 1122 Thus, Type I, $\neg x_2 = 0,$
 1123 $C = \neg x_1 \wedge x_2 \wedge \neg x_2 = 0.$

B.1.1.4 Study TA_4 with Action Exclude

1130 Here we list the transitions for TA_4 when its current action is *Exclude*.

1134 Condition: $x_1 = 1, x_2 = 1, y = 1,$
 1135 $\text{TA}_3 = \text{E}.$
 1136 Thus, Type I, $\neg x_2 = 0,$
 1137 $C = \neg x_1 = 0.$

1143 Condition: $x_1 = 0, x_2 = 1, y = 0,$
 1144 $\text{TA}_3 = \text{E}.$
 1145 Thus, Type II, $\neg x_2 = 0,$
 1146 $C = \neg x_1 = 1.$

1152 Condition: $x_1 = 1, x_2 = 1, y = 1,$
 1153 $\text{TA}_3 = \text{I}.$
 1154 Thus, Type I, $\neg x_2 = 0,$
 1155 $C = \neg x_1 \wedge x_2 = 0.$

1162 Condition: $x_1 = 0, x_2 = 1, y = 0,$
 1163 $\text{TA}_3 = \text{I}.$
 1164 Thus, Type II, $\neg x_2 = 0,$
 1165 $C = \neg x_1 \wedge x_2 = 1.$

1173 B.1.2 CASE 2: INCLUDE x_1

1174 For Case 2, we assume that the actions of the TAs for the first bit are frozen as $\text{TA}_1 = \text{I}$ and
 1175 $\text{TA}_2 = \text{E}$, and thus the overall joint action for the first bit is “ x_1 ”. Similar to Case 1, we also have 4
 1177 situations.

1178 B.1.2.1 Study TA_3 with Action Include

1180 Condition: $x_1 = 1, x_2 = 1, y = 1,$
 1181 $\text{TA}_4 = \text{E}.$
 1182 Thus, Type I, $x_2 = 1,$
 1183 $C = x_1 \wedge x_2 = 1.$

1188 Condition: $x_1 = 1, x_2 = 1, y = 1$,
 1189 $\text{TA}_4 = \text{I}$.
 1190 Thus, Type I, $x_2 = 1$,
 1191 $C = x_1 \wedge x_2 \wedge \neg x_2 = 0$.

1197 *B.1.2.2 Study TA_3 with Action Exclude*

1198 Condition: $x_1 = 1, x_2 = 1, y = 1$,
 1199 $\text{TA}_4 = \text{E}$.
 1200 Thus, Type I, $x_2 = 1$,
 1201 $C = x_1 = 1$.

1208 Condition: $x_1 = 1, x_2 = 0, y = 0$,
 1209 $\text{TA}_4 = \text{E}$.
 1210 Thus, Type II, $x_2 = 0$,
 1211 $C = x_1 = 1$.

1217 Condition: $x_1 = 1, x_2 = 1, y = 1$,
 1218 $\text{TA}_4 = \text{I}$.
 1219 Thus, Type I, $x_2 = 1$,
 1220 $C = x_1 \wedge \neg x_2 = 0$.

1226 Condition: $x_1 = 1, x_2 = 0, y = 0$,
 1227 $\text{TA}_4 = \text{I}$.
 1228 Thus, Type II, $x_2 = 0$,
 1229 $C = x_1 \wedge \neg x_2 = 1$.

1235 *B.1.2.3 Study TA_4 with Action Include*

1236 Condition: $x_1 = 1, x_2 = 1, y = 1$,
 1237 $\text{TA}_3 = \text{E}$.
 1238 Thus, Type I, $\neg x_2 = 0$,
 1239 $C = x_1 \wedge \neg x_2 = 0$.

1241

1280 For Case 3, we assume that the actions of TAs for the first bit are frozen as $TA_1 = E$ and $TA_2 = E$,
 1281 with 4 situations. Note that in the training process, when all literals are excluded, C is assigned to 1.

1282 **B.1.3.1 Study TA_3 with Action Include**
 1283

1284 Condition: $x_1 = 1, x_2 = 1, y = 1$,
 1285 $TA_4 = E$.
 1286 Thus, Type I, $x_2 = 1$,
 1287 $C = x_2 = 1$.

B.1.3.2 Study TA₃ with Action Exclude

1302 Condition: $x_1 = 1, x_2 = 1, y = 1,$
 1303 $\text{TA}_4 = \text{E}.$
 1304 Thus, Type I, $x_2 = 1,$
 1305 $C = 1.$

1311 Condition: $x_1 = 1, x_2 = 0, y = 0,$
 1312 $\text{TA}_4 = \text{E}.$
 1313 Thus, Type II, $x_2 = 0,$
 1314 $C = 1.$
 1315

1320 Condition: $x_1 = 0, x_2 = 0, y = 0,$
 1321 $\text{TA}_4 = E.$
 1322 Thus, Type II, $x_2 = 0,$
 1323 $C = 1.$

Condition: $x_1 = 1, x_2 = 1, y = 1,$
 $\text{TA}_4 = \text{I}.$
 Thus, Type I, $x_2 = 1,$
 $C = 0.$

	<i>I</i>		<i>E</i>	
<i>Penalty</i>	○	○	○	○
<i>Reward</i>	○	○	○	○

1339 Condition: $x_1 = 1, x_2 = 0, y = 0,$
 1340 $TA_4 = I.$
 1341 Thus, Type II, $x_2 = 0,$
 1342 $C = 1.$

1347
1348
1349

1350 Condition: $x_1 = 0, x_2 = 0, y = 0,$
 1351 $\text{TA}_4 = \text{I}.$
 1352 Thus, Type II, $x_2 = 0,$
 1353 $C = 1.$

1359 *B.1.3.3 Study TA_4 with Action Include*

1360 Condition: $x_1 = 1, x_2 = 1, y = 1,$
 1361 $\text{TA}_3 = \text{E}.$
 1362 Thus, Type I, $\neg x_2 = 0,$
 1363 $C = \neg x_2 = 0.$

1369 Condition: $x_1 = 1, x_2 = 1, y = 1,$
 1370 $\text{TA}_3 = \text{I}.$
 1371 Thus, Type I, $\neg x_2 = 0,$
 1372 $C = \neg x_2 \wedge x_2 = 0.$

1379 *B.1.3.4 Study TA_4 with Action Exclude*

1380 Condition: $x_1 = 1, x_2 = 1, y = 1,$
 1381 $\text{TA}_3 = \text{E}.$
 1382 Thus, Type I, $\neg x_2 = 0,$
 1383 $C = 1.$

1389 Condition: $x_1 = 0, x_2 = 1, y = 0,$
 1390 $\text{TA}_3 = \text{E}.$
 1391 Thus, Type II, $\neg x_2 = 0,$
 1392 $C = 1.$

1398 Condition: $x_1 = 1, x_2 = 1, y = 1,$
 1399 $\text{TA}_3 = \text{I}.$
 1400 Thus, Type I, $\neg x_2 = 0,$
 1401 $C = 1.$

1402
 1403

1409 Condition: $x_1 = 0, x_2 = 1, y = 0,$
 1410 $\text{TA}_3 = \text{I}.$
 1411 Thus, Type II, $\neg x_2 = 0,$
 1412 $C = 1.$

1420 B.1.4 CASE 4: INCLUDE BOTH $\neg x_1$ AND x_1

1423 For Case 4, we assume that the actions of TAs for the first bit are frozen as $\text{TA}_1 = \text{I}$ and $\text{TA}_2 = \text{I}$,
 1424 and thus $C = \mathbf{0}$ **always**. Similarly, we also have 4 situations, detailed below.

1425 B.1.4.1 Study TA_3 with Action Include

1426 Condition: $x_1 = 1, x_2 = 1, y = 1,$
 1427 $\text{TA}_4 = \text{E}.$
 1428 Thus, Type I, $x_2 = 1,$
 1429 $C = 0.$

1435 Condition: $x_1 = 1, x_2 = 1, y = 1,$
 1436 $\text{TA}_4 = \text{I}.$
 1437 Thus, Type I, $x_2 = 1,$
 1438 $C = 0.$

1444 B.1.4.2 Study TA_3 with Action Exclude

1446 Condition: $x_1 = 1, x_2 = 1, y = 1,$
 1447 $\text{TA}_4 = \text{E}.$
 1448 Thus, Type I, $x_2 = 1,$
 1449 $C = 0.$

1455 Condition: $x_1 = 1, x_2 = 1, y = 1,$
 1456 $\text{TA}_4 = \text{I}.$
 1457 Thus, Type I, $x_2 = 1,$
 1458 $C = 0.$

1463 *B.1.4.3 Study TA₄ with Action Include*

1464
1465 Condition: $x_1 = 1, x_2 = 1, y = 1,$
1466 $\text{TA}_3 = E.$
1467 Thus, Type I, $\neg x_2 = 0,$
1468 $C = 0.$

1474 Condition: $x_1 = 1, x_2 = 1, y = 1,$
1475 $\text{TA}_3 = I.$
1476 Thus, Type I, $\neg x_2 = 0,$
1477 $C = 0.$

1483 *B.1.4.4 Study TA₄ with Action Exclude*

1484
1485 Condition: $x_1 = 1, x_2 = 1, y = 1,$
1486 $\text{TA}_3 = E.$
1487 Thus, Type I, $\neg x_2 = 0,$
1488 $C = 0.$

1493
1494 Condition: $x_1 = 1, x_2 = 1, y = 1,$
1495 $\text{TA}_3 = I.$
1496 Thus, Type I, $\neg x_2 = 0,$
1497 $C = 0.$

1503 So far, we have gone through, exhaustively, the transitions of TA_3 and TA_4 for all the cases (all possible training samples and system states). Hereafter, we can summarize the direction of transitions
1504 and study the convergence properties of the system for the given training samples, to be detailed in
1505 the next subsection.

1507

1508

1509 **B.2 SUMMARIZE OF THE DIRECTIONS OF TRANSITIONS IN DIFFERENT CASES**

1510

1511

Based on the analysis above, we summarize here what happens to TA_3 and TA_4 , given different status (Cases) of TA_1 and TA_2 . More specifically, we will summarize here the directions of the

1512 transitions for the TAs. For example, “ $TA_3 \Rightarrow E$ ” means that TA_3 will move towards the action
 1513 “Exclude”, while “ $TA_4 \Rightarrow E$ or I ” means TA_4 transits towards either “Exclude” or “Include”.
 1514

1515 **Scenario 1:** Study $TA_3 = I$ and $TA_4 = I$.

1516 **Case 1**, we have: **Case 3**, we have:

1517 $TA_3 \Rightarrow E$. $TA_3 \Rightarrow E$.

1518 $TA_4 \Rightarrow E$. $TA_4 \Rightarrow E$.

1519 **Case 2**, we have: **Case 4**, we have:

1520 $TA_3 \Rightarrow E$. $TA_3 \Rightarrow E$.

1521 $TA_4 \Rightarrow E$. $TA_4 \Rightarrow E$.

1522

1523 From the facts presented above, we can confirm that regardless the state of TA_1 and TA_2 , if $TA_3 =$
 1524 I and $TA_4 = I$, they (TA_3 and TA_4) will eventually move out of their states.

1525

1526 **Scenario 2:** Study $TA_3 = I$ and $TA_4 = E$.

1527 **Case 1**, we have: **Case 3**, we have:

1528 $TA_3 \Rightarrow E$. $TA_3 \Rightarrow I$.

1529 $TA_4 \Rightarrow E$ or I . $TA_4 \Rightarrow E$ or I .

1530 **Case 2**, we have: **Case 4**, we have:

1531 $TA_3 \Rightarrow I$. $TA_3 \Rightarrow E$.

1532 $TA_4 \Rightarrow E$. $TA_4 \Rightarrow E$.

1533

1534 For Scenario 2 Case 2, we can observe that if $TA_3 = I$, $TA_4 = E$, $TA_1 = I$, and $TA_2 = E$, TA_3 will
 1535 move deeper to “include” and TA_4 will go deeper to “exclude”. It is not difficult to derive also that
 1536 TA_1 will move deeper to “include” and TA_2 will transfer deeper to “exclude” in this circumstance.
 1537 This tells us that the TAs in states $TA_3 = I$, $TA_4 = E$, $TA_1 = I$, and $TA_2 = E$, reinforce each other
 1538 to move deeper to their corresponding directions and they therefore construct an absorbing state of
 1539 the system. If it is the only absorbing state, we can conclude that the TM converge to the intended
 1540 “AND” operation.

1541

1542 In Scenario 2, we can observe for Cases 1, 3, and 4, the actions for TA_3 and TA_4 are not ab-
 1543 sorbing because the TAs will not be reinforced to move monotonically deeper to the states of the
 1544 corresponding actions for difference cases.

1545

1546 For Scenario 2, Case 3, TA_4 has two possible directions to transit, I or E , depending on the input
 1547 of the training sample. For action exclude, it will be reinforced when training sample $x_1 = 1$ and
 1548 $x_2 = 1$ is given, based on Type I feedback. However, TA_4 will transit towards “include” side when
 1549 training sample $x_1 = 0$ and $x_2 = 1$ is given, due to Type II feedback. Therefore, the direction of the
 1550 transition for TA_4 is I or E , depending on the training samples. In the following paragraphs, when
 1551 “or” appears in the transition direction, the same concept applies.

1552

1553 **Scenario 3:** Study $TA_3 = E$ and $TA_4 = I$.

1554 **Case 1**, we have: **Case 3**, we have:

1555 $TA_3 \Rightarrow E$ or I . $TA_3 \Rightarrow E$ or I .

1556 $TA_4 \Rightarrow E$. $TA_4 \Rightarrow E$.

1557 **Case 2**, we have: **Case 4**, we have:

1558 $TA_3 \Rightarrow E$ or I . $TA_3 \Rightarrow E$.

1559 $TA_4 \Rightarrow E$. $TA_4 \Rightarrow E$.

1560

1561 **Scenario 4:** Study $TA_3 = E$ and $TA_4 = E$.

1562

1563

1564

1565

1566 **Case 1**, we have: **Case 3**, we have:
 1567 $TA_3 \Rightarrow I$ or E . $TA_3 \Rightarrow I$.
 1568 $TA_4 \Rightarrow I$ or E . $TA_4 \Rightarrow I$ or E .
 1569 **Case 2**, we have: **Case 4**, we have:
 1570 $TA_3 \Rightarrow I$. $TA_3 \Rightarrow E$.
 1571 $TA_4 \Rightarrow E$. $TA_4 \Rightarrow E$.

1572 In Scenario 4, we see that, the actions for $TA_3 = E$ and $TA_4 = E$ seem to be an absorbing state,
 1573 because the states of TAs will move deeper in Case 4. After a revisit of the condition for Case 4, i.e.,
 1574 include both $\neg x_1$ and x_1 , we understand that this condition is not absorbing. In fact, when TA_1 and
 1575 TA_2 both have “Include” as their actions, they monotonically move towards “Exclude”. Therefore,
 1576 from the overall system’s perspective, the system state $TA_1 = I$, $TA_2 = I$, $TA_3 = E$, and $TA_4 = E$
 1577 is not absorbing. For the other cases in this scenario, there is no absorbing state.

1578 Based on the above analysis, we understand that there is only one absorbing condition in the system,
 1579 namely, $TA_1 = I$, $TA_2 = E$, $TA_3 = I$, and $TA_4 = E$, for the given training samples with AND
 1580 logic. The same conclusion applies when we freeze the transition of the two TAs for the second bit
 1581 of the input and study behavior of the first bit of input. Therefore, we can conclude that the TM with
 1582 a clause can learn to be the intended AND operator, almost surely, in infinite time horizon. We thus
 1583 complete the proof of Theorem 1. ■

1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620 **C PROOF OF LEMMA 1**

1621
 1622 The probability of the training samples for the noise-free OR operator can be presented by the
 1623 following equations.

1624 $P(y = 1|x_1 = 1, x_2 = 1) = 1,$ (19)
 1625 $P(y = 1|x_1 = 0, x_2 = 1) = 1,$
 1626 $P(y = 1|x_1 = 1, x_2 = 0) = 1,$
 1627 $P(y = 0|x_1 = 0, x_2 = 0) = 1.$

1628 Clearly, there are three sub-patterns of x_1 and x_2 that will give $y = 1$, i.e., $[x_1 = 1, x_2 = 1]$,
 1629 $[x_1 = 1, x_2 = 0]$, and $[x_1 = 0, x_2 = 1]$. More specifically, Eq. (19) can be split into three cases,
 1630 corresponding to the three sub-patterns:

1631 $P(y = 1|x_1 = 1, x_2 = 1) = 1,$ (20)
 1632 $P(y = 0|x_1 = 0, x_2 = 0) = 1,$
 1633 $P(y = 1|x_1 = 0, x_2 = 1) = 1,$ (21)
 1634 $P(y = 0|x_1 = 0, x_2 = 0) = 1,$

1635 and

1636 $P(y = 1|x_1 = 1, x_2 = 0) = 1,$ (22)
 1637 $P(y = 0|x_1 = 0, x_2 = 0) = 1.$

1638 In what follows, we will show the convergence of the three sub-patterns, i.e., Lemma 1.

1639 The convergence analyses of the above three sub-patterns can be derived by reusing the analyses
 1640 of the sub-patterns of the XOR operator plus the AND operator. For the sub-pattern described by
 1641 Eq. (20), we can confirm that the TAs will indeed converge to $TA_1 = I$, $TA_2 = E$, $TA_3 = \bar{I}$,
 1642 and $TA_4 = E$, by studying the transition diagrams in Subsection B when input samples of $[x_1 = 0,$
 1643 $x_2 = 1]$ and $[x_1 = 1, x_2 = 0]$ are removed. In this case, the directions of the transitions for different
 1644 scenarios are summarized below.

1645 **Scenario 1:** Study $TA_3 = I$ and $TA_4 = E$.

1646 **Case 1**, we have:

1647 $TA_3 \Rightarrow E.$

1648 $TA_4 \Rightarrow E.$

1649 **Case 2**, we have:

1650 $TA_3 \Rightarrow E.$

1651 $TA_4 \Rightarrow E.$

1652 **Case 3**, we have:

1653 $TA_3 \Rightarrow E.$

1654 $TA_4 \Rightarrow E.$

1655 **Case 4**, we have:

1656 $TA_3 \Rightarrow E.$

1657 $TA_4 \Rightarrow E.$

1658 **Scenario 2:** Study $TA_3 = I$ and $TA_4 = E$.

1659 **Case 1**, we have:

1660 $TA_3 \Rightarrow E.$

1661 $TA_4 \Rightarrow E.$

1662 **Case 2**, we have:

1663 $TA_3 \Rightarrow I.$

1664 $TA_4 \Rightarrow E.$

1665 **Case 3**, we have:

1666 $TA_3 \Rightarrow I.$

1667 $TA_4 \Rightarrow E.$

1668 **Case 4**, we have:

1669 $TA_3 \Rightarrow E.$

1670 $TA_4 \Rightarrow E.$

1671 **Scenario 3:** Study $TA_3 = \bar{I}$ and $TA_4 = E$.

1672 **Case 1**, we have:

1673 $TA_3 \Rightarrow E.$

1674 $TA_4 \Rightarrow E.$

1674 **Scenario 3:** Study $TA_3 = E$ and $TA_4 = I$.
 1675

1676 **Case 1,** we have:

1677 $TA_3 \Rightarrow E$ or I .

1678 $TA_4 \Rightarrow E$.

1679 **Case 2,** we have:

1680 $TA_3 \Rightarrow E$.

1681 $TA_4 \Rightarrow E$.

1682 **Case 3,** we have:

1683 $TA_3 \Rightarrow E$ or I .

1684 $TA_4 \Rightarrow E$.

1685 **Case 4,** we have:

1686 $TA_3 \Rightarrow E$.

1687 $TA_4 \Rightarrow E$.

1688 **Scenario 4:** Study $TA_3 = E$ and $TA_4 = E$.
 1689

1690 **Case 1,** we have:

1691 $TA_3 \Rightarrow I$ or E .

1692 $TA_4 \Rightarrow E$.

1693 **Case 2,** we have:

1694 $TA_3 \Rightarrow I$.

1695 $TA_4 \Rightarrow E$.

1696 **Case 3,** we have:

1697 $TA_3 \Rightarrow I$.

1698 $TA_4 \Rightarrow E$.

1699 **Case 4,** we have:

1700 $TA_3 \Rightarrow E$.

1701 $TA_4 \Rightarrow E$.

1702 Comparing the analysis with the one in Subsection B.2, there is apparently another possible ab-
 1703 sorbing case, which can be observed in Scenario 2, Case 3, where $TA_3 = I$ and $TA_4 = E$, given
 1704 $TA_1 = E$ and $TA_2 = E$. However, given $TA_3 = I$ and $TA_4 = E$, the TAs for the first bit, i.e.,
 1705 $TA_1 = E$ and $TA_2 = E$, will not move only towards Exclude. Therefore, they do not reinforce
 1706 each other to move to deeper states for their current actions. For this reason, the system in $TA_3 = I$,
 1707 $TA_4 = E$, $TA_1 = E$, and $TA_2 = E$, is not in an absorbing state. In addition, given $TA_3 = I$ and
 1708 $TA_4 = E$, TA_1 and TA_2 with actions E and E will transit towards I and E , encouraging the overall
 1709 system to move towards I , E , I , and E . Consequently, the system state with $TA_1 = I$, $TA_2 = E$,
 1710 $TA_3 = I$, and $TA_4 = E$ is still the only absorbing case for the given training samples following
 1711 Eq. (20).

1712 For Eq. (21), similar to the proof of in Lemma 1 in (Jiao et al., 2022), we can derive that the TAs will
 1713 converge in $TA_1 = E$, $TA_2 = I$, $TA_3 = I$, and $TA_4 = E$. The transition diagrams for the samples
 1714 of Eq. (21) are in fact a subset of the ones presented in Subsection 3.2.1 and Appendix 2 of (Jiao
 1715 et al., 2022), when the input samples of $[x_1 = 1$ and $x_2 = 1]$ are removed. We summarize below
 1716 only the directions of transitions.

1717 The directions of the transitions of the TAs for the second input bit, i.e., $x_2/\neg x_2$, when the TAs
 1718 for the first input bit are frozen, are summarized as follows (based on the subset of the transition
 1719 diagrams in Subsection 3.2.1 of (Jiao et al., 2022)).

1720 **Scenario 1:** Study $TA_3 = I$ and $TA_4 = I$.
 1721

1722 **Case 1:** we have

1723 $TA_3 \rightarrow E$

1724 $TA_4 \rightarrow E$

1725 **Case 2:** we have

1726 $TA_3 \rightarrow E$

1727 $TA_4 \rightarrow E$

1728 **Case 3:** we have
 1729 $TA_3 \rightarrow E$
 1730 $TA_4 \rightarrow E$
 1731 **Case 4:** we have
 1732 $TA_3 \rightarrow E$
 1733 $TA_4 \rightarrow E$
 1734
 1735 **Scenario 2:** Study $TA_3 = I$ and $TA_4 = E$.
 1736 **Case 1:** we have
 1737 $TA_3 \rightarrow I$
 1738 $TA_4 \rightarrow E$
 1739 **Case 2:** we have
 1740 $TA_3 \rightarrow E$
 1741 $TA_4 \rightarrow E$
 1742 **Case 3:** we have
 1743 $TA_3 \rightarrow I$
 1744 $TA_4 \rightarrow E$
 1745 **Case 4:** we have
 1746 $TA_3 \rightarrow E$
 1747 $TA_4 \rightarrow E$
 1748
 1749 **Scenario 3:** Study $TA_3 = E$ and $TA_4 = I$.
 1750
 1751 **Case 1:** we have
 1752 $TA_3 \rightarrow I$, or E
 1753 $TA_4 \rightarrow E$
 1754 **Case 2:** we have
 1755 $TA_3 \rightarrow E$
 1756 $TA_4 \rightarrow E$
 1757 **Case 3:** we have
 1758 $TA_3 \rightarrow I$, or E
 1759 $TA_4 \rightarrow E$
 1760 **Case 4:** we have
 1761 $TA_3 \rightarrow E$
 1762 $TA_4 \rightarrow E$
 1763
 1764 **Scenario 4:** Study $TA_3 = E$ and $TA_4 = E$.
 1765 **Case 1:** we have
 1766 $TA_3 \rightarrow I$
 1767 $TA_4 \rightarrow E$
 1768 **Case 2:** we have
 1769 $TA_3 \rightarrow E$
 1770 $TA_4 \rightarrow E$
 1771 **Case 3:** we have
 1772 $TA_3 \rightarrow I$
 1773 $TA_4 \rightarrow E$
 1774 **Case 4:** we have
 1775 $TA_3 \rightarrow E$
 1776 $TA_4 \rightarrow E$
 1777
 1778 The directions of the transitions of the TAs for the first input bit, i.e., $x_1/\neg x_1$, when the TAs for
 1779 the second input bit are frozen, are summarized as follows (based on the subset of the transition
 1780 diagrams in Appendix 2 of (Jiao et al., 2022)).
 1781 **Scenario 1:** Study $TA_1 = I$ and $TA_2 = I$.

1782 **Case 1:** we have
 1783 $TA_1 \rightarrow E$
 1784 $TA_2 \rightarrow E$
 1785 **Case 2:** we have
 1786 $TA_1 \rightarrow E$
 1787 $TA_2 \rightarrow E$
 1788 **Case 3:** we have
 1789 $TA_1 \rightarrow E$
 1790 $TA_2 \rightarrow E$
 1791 **Case 4:** we have
 1792 $TA_1 \rightarrow E$
 1793 $TA_2 \rightarrow E$
 1794
 1795 **Scenario 2:** Study $TA_1 = I$ and $TA_2 = E$.
 1796 **Case 1:** we have
 1797 $TA_1 \rightarrow E$
 1798 $TA_2 \rightarrow E$
 1799 **Case 2:** we have
 1800 $TA_1 \rightarrow E$
 1801 $TA_2 \rightarrow E$
 1802 **Case 3:** we have
 1803 $TA_1 \rightarrow E$
 1804 $TA_2 \rightarrow E$
 1805 **Case 4:** we have
 1806 $TA_1 \rightarrow E$
 1807 $TA_2 \rightarrow E$
 1808
 1809 **Scenario 3:** Study $TA_1 = E$ and $TA_2 = I$.
 1810
 1811 **Case 1:** we have
 1812 $TA_1 \rightarrow I$, or E
 1813 $TA_2 \rightarrow E$
 1814 **Case 2:** we have
 1815 $TA_1 \rightarrow E$
 1816 $TA_2 \rightarrow I$
 1817 **Case 3:** we have
 1818 $TA_1 \rightarrow I$
 1819 $TA_2 \rightarrow I$
 1820 **Case 4:** we have
 1821 $TA_1 \rightarrow E$
 1822 $TA_2 \rightarrow E$
 1823
 1824 **Scenario 4:** Study $TA_1 = E$ and $TA_2 = E$.
 1825 **Case 1:** we have
 1826 $TA_1 \rightarrow I$, or E
 1827 $TA_2 \rightarrow E$
 1828 **Case 2:** we have
 1829 $TA_1 \rightarrow E$
 1830 $TA_2 \rightarrow I$
 1831 **Case 3:** we have
 1832 $TA_1 \rightarrow E$
 1833 $TA_2 \rightarrow E$
 1834 **Case 4:** we have
 1835 $TA_1 \rightarrow E$
 1835 $TA_2 \rightarrow E$

1836 By analyzing the transitions of TAs for the two input bits with samples following Eq. (21), we can
 1837 conclude that $TA_1 = E$, $TA_2 = I$, $TA_3 = I$, and $TA_4 = E$ is an absorbing state, as the actions of
 1838 TA_1 – TA_4 reinforce each other to transit to deeper states for the current actions upon various input
 1839 samples. There are a few other cases in different scenarios that seem to be absorbing, but in fact
 1840 not. For example, the status $TA_3 = I$ and $TA_4 = E$ seems also absorbing in Scenario 2, Case 3,
 1841 i.e., when $TA_1 = E$ and $TA_2 = E$ hold. However, to make $TA_1 = E$ and $TA_2 = E$ absorbing,
 1842 the condition is $TA_3 = I$ and $TA_4 = I$, or $TA_3 = E$ and $TA_4 = E$. Clearly, the status $TA_3 = I$
 1843 and $TA_4 = I$ is not absorbing. For $TA_3 = E$ and $TA_4 = E$ to be absorbing, it is required to have
 1844 $TA_1 = I$ and $TA_2 = I$ to be absorbing, or $TA_1 = I$ and $TA_2 = E$ to be absorbing, which are not
 1845 true. Therefore, all those absorbing-like states are not absorbing. In fact, when $TA_3 = I$, $TA_4 = E$,
 1846 $TA_1 = E$, and $TA_2 = E$ hold, the condition $TA_3 = I$, $TA_4 = E$ will reinforce TA_1 and TA_2
 1847 to move towards E , I , which is the absorbing state of the system. Based on the above analysis on
 1848 the transition directions, we can thus confirm the convergence of TM when training samples from
 1849 Eq. (21) are given.

1850 Following the same principle, we can also confirm that the TAs will converge to $TA_1 = I$, $TA_2 = E$,
 1851 $TA_3 = E$, and $TA_4 = I$ when training samples from Eq. (22) are given, according to the proof of
 1852 Lemma 2 in (Jiao et al., 2022).

1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889

1890 **D PROOF OF LEMMA 2**
 1891

1892 **Proof of Lemma 2:** To show the non-absorbing property when samples following Eq. (9) are given,
 1893 we need to show that the absorbing states for Eq. (6) disappear when $([x_1 = 1, x_2 = 0], y = 1)$ is
 1894 given in addition, and the same applies for Eq. (8) when $([x_1 = 1, x_2 = 1], y = 1)$ is given.
 1895

1896 We first show that the absorbing state of $TA_1 = I$, $TA_2 = E$, $TA_3 = I$, $TA_4 = E$, for sub-pattern
 1897 $([x_1 = 1, x_2 = 1], y = 1)$ as shown in Eq. (6), disappears when sub-pattern $([x_1 = 1, x_2 = 0], y = 1)$ is
 1898 given in addition. Indeed, TA_3 will move toward E when $([x_1 = 1, x_2 = 0], y = 1)$ is given,
 1899 because a penalty is given to TA_3 as shown in Fig. 6.

1900
 1901
 1902
 1903
 1904
 1905
 1906 Figure 6: Transition of TA_3 when its current action is Include, TA_1 , TA_2 , and TA_4 's actions are
 1907 Include, Exclude, and Exclude, respectively, upon a training sample $(x_1 = 1, x_2 = 0, y = 1)$.

1908 Clearly, when $([x_1 = 1, x_2 = 0], y = 1)$ is given in addition, TA_3 has a non-zero probability to
 1909 move towards “Exclude”. Therefore, “Include” is not the only direction that TA_3 moves to upon
 1910 the new input. In other words, $([x_1 = 1, x_2 = 0], y = 1)$ will make the state $TA_1 = I$, $TA_2 = E$,
 1911 $TA_3 = I$, $TA_4 = E$, not absorbing any longer. For other states, the newly added training sample
 1912 will not remove any transition from the previous case. For this reason, the system will not have any
 1913 new absorbing state. Therefore, when $([x_1 = 1, x_2 = 0], y = 1)$ is given in addition, the absorbing
 1914 state disappears and the system will not have any new absorbing state.

1915 Following the same concept, we show that the absorbing state for $([x_1 = 1, x_2 = 0], y = 1)$
 1916 shown in Eq. (8), i.e., $TA_1 = I$, $TA_2 = E$, $TA_3 = E$, $TA_4 = I$, disappears when sub-pattern
 1917 $([x_1 = 1, x_2 = 1], y = 1)$ is given in addition. Indeed, TA_4 will also move towards E when
 1918 $([x_1 = 1, x_2 = 1], y = 1)$ is given, as shown in Fig. 7.

1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926 Figure 7: Transition of TA_4 when its current action is Include, TA_1 , TA_2 , and TA_3 's actions are
 1927 Include, Exclude, and Exclude, respectively, upon a training sample $(x_1 = 1, x_2 = 1, y = 1)$.

1928 Understandably, because of the newly added sub-patterns, the absorbing states in Eqs. (6) and (8)
 1929 disappear and no new absorbing states are generated. In other words, the TM trained based on
 1930 samples from Eq. (9) becomes non-absorbing.
 1931

1932 Following the same concept, we can show that the system becomes non-absorbing for Eqs. (5), (10),
 1933 and (11) as well. For the sake of conciseness, we will not provide the details here. In general, any
 1934 newly added sub-pattern will involve a probability for the learnt sub-pattern to move outside the
 1935 learnt state, making the system non-absorbing. \blacksquare

1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943

1944 **E PROOF OF LEMMA 3**

1945
 1946 **Proof of Lemma 3:** In Lemma 2, the TM is non-absorbing if the functionality of T is disabled (i.e.,
 1947 $u_1 > 0, u_2 > 0$). Therefore, for the OR operator to converge, the functionality of T is critical to
 1948 block any feedback in order to form an absorbing state.

1949 By design, TM will either be updated via Type I feedback or Type II feedback. We show via (1)
 1950 the condition when Type I feedback is blocked and then show via (2) when any update from Type II
 1951 feedback is not triggered. When both happen, the system will not be updated anymore and thus
 1952 absorbed.

1953 To prove (1) in Lemma 3, we show that the system is not absorbed when 0 or 1 intended sub-pattern
 1954 is blocked by T . When 2 intended sub-patterns are blocked, the system will guide the clauses to
 1955 learn the remaining intended sub-pattern. Only when all 3 intended sub-patterns are blocked by T ,
 1956 the system will stop updating based on Type I feedback.

1957 Clearly, when no intended sub-pattern is blocked by T , the training samples provided to the system
 1958 follow Eq. (5). In other words, no samples corresponding to a specific sub-pattern are blocked.
 1959 Under such training conditions, as shown in Lemma 2, the TM is non-absorbing. When only 1
 1960 intended sub-pattern is blocked by T , the system is updated based on samples following Eqs. (9),
 1961 (10), or (11), which is also non-absorbing.

1962 We look at the cases when two intended sub-patterns are blocked by T but the third one is not
 1963 blocked. In other words, the number of clauses for each of the two intended sub-patterns reaches
 1964 at least T , and the number of clauses for the remaining sub-pattern is less than T . In this case,
 1965 only one type of samples from Eqs. (6) or (7) or (8) will be provided to the TM⁴. Based on Lemma
 1966 1, we understand that all clauses, including the ones that have learnt the two blocked sub-patterns,
 1967 will be forced to learn the not-yet-blocked sub-pattern. This is due to the fact that only the samples
 1968 following the not-yet-blocked sub-pattern are triggering the update for the TM. In this circumstance,
 1969 as soon as the not-yet-blocked sub-pattern also has T clauses, i.e., when all three sub-patterns are
 1970 blocked by T at the same time, Type I feedback are blocked completely.

1971 Note that the samples corresponding to the not-yet-blocked sub-pattern will encourage the learnt
 1972 clauses (i.e., the clauses for the blocked sub-patterns) to move out from the learnt sub-patterns,
 1973 and this may cause the number of clauses for the blocked sub-pattern being lower than T (thus
 1974 unblocked), again. If this happens before the number of clauses for the not-yet-blocked sub-pattern
 1975 reaches T , at least two sub-patterns will be in the non-blocked state, and the system becomes one of
 1976 the three cases described by Eqs. (9), (10) or (11). In other words, even if an absorbing state exists
 1977 after two intended sub-patterns are blocked by T , the system may not monotonically move towards
 1978 the absorbing state. Nevertheless, as soon as all three intended sub-patterns are blocked by reaching
 1979 T clauses, the Type I feedback will be blocked.

1980 Here we prove (2) in Lemma 3. Type II feedback is only triggered by training sample ($[x_1 = 0,$
 1981 $x_2 = 0], y = 0$) in the OR operator. For Type II feedback, based on Table 2, a transition is triggered
 1982 only when a penalty occurs, i.e., when the excluded literal has a value of 0 and the clause evaluates
 1983 to 1. Specifically for the OR operation, this only happens when $C = \neg x_1 \wedge \neg x_2$ or $C = \neg x_1$ or
 1984 $C = \neg x_2$. For $C = \neg x_1 \wedge \neg x_2$, based on the Type II feedback, the TA with the action “excluding
 1985 x_1 ” and the TA with the action “excluding x_2 ” will be penalized. In other words, the actions of the
 1986 two TAs for x_1 and x_2 will be encouraged to move from exclude to include side. As soon as one of
 1987 the TAs (or occasionally both of them) becomes include, the clause will become $C = x_1 \wedge \neg x_1 \wedge \neg x_2$
 1988 or $C = \neg x_1 \wedge x_2 \wedge \neg x_2$ (or occasionally $C = x_1 \wedge \neg x_1 \wedge x_2 \wedge \neg x_2$). In this case, input $[x_1 = 0,$
 1989 $x_2 = 0]$ will always result in 0 as the clause value and then the Type II feedback will not update the
 1990 system any longer. Following the same concept, for $C = \neg x_2$, the Type II feedback will encourage
 1991 the excluded x_1 to be included so that the clause becomes $C = x_1 \wedge \neg x_2$. The same applies to
 1992 $C = \neg x_1$, which will eventually become $C = \neg x_1 \wedge x_2$ upon Type II feedback. When all clauses
 1993 in $C = \neg x_2$ or $C = \neg x_1$ are also updated to $C = x_1 \wedge \neg x_2$ or $C = \neg x_1 \wedge x_2$, no Type II feedback
 1994 is triggered up on any input sample.

1995 We summarize the requirements for an absorbing state:

1996
 1997 ⁴More precisely speaking, all samples will be fed into the TM, but only samples corresponding to the not-
 yet-blocked sub-pattern will be used by the TM for training purpose.

1998 • For any sample \mathbf{X} following sub-pattern $[x_1 = 1, x_2 = 1]$, or $[x_1 = 1, x_2 = 0]$, or
1999 $[x_1 = 0, x_2 = 1]$, the number of clauses for that sub-pattern, i.e., $f_{\Sigma}(\mathcal{C}^i(\mathbf{X}))$, must be
2000 at least T , no matter in which form the clauses are constructed. This will block Type I
2001 feedback.

2002 • There are no clauses with literal(s) in only negated form, such as $C = \neg x_1$ or $C = \neg x_2$
2003 or or $C = \neg x_1 \wedge \neg x_2$. This guarantees that no transition will happen upon any Type II
2004 feedback. \blacksquare

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

F ANALYSIS OF THE TM WITH WRONG TRAINING LABELS

In this appendix, we analyze the transition properties of the TM when training samples contain wrong labels.

There are two types of wrong labels:

- Inputs labeled as 0, which should be 1.
- Inputs labeled as 1, which should be 0.

We begin by examining the first type of wrong label, followed by the second type, and then address the general case.

F.1 THE AND OPERATOR WITH THE FIRST TYPE OF WRONG LABELS

To formally define training samples with the first type of wrong label, we use the following formulas:

$$\begin{aligned}
 P(y=1|x_1=1, x_2=1) &= a, a \in (0, 1) \\
 P(y=0|x_1=1, x_2=1) &= 1-a, \\
 P(y=0|x_1=0, x_2=1) &= 1, \\
 P(y=0|x_1=1, x_2=0) &= 1, \\
 P(y=0|x_1=0, x_2=0) &= 1.
 \end{aligned} \tag{23}$$

In this case, the label for training samples representing the intended logic $[x_1 = 1, x_2 = 1]$ is $y = 1$ with probability a and $y = 0$ with probability $1 - a$. In other words, in addition to the training samples detailed in Subsection B, a new training sample will appear to the system, namely $([x_1 = 1, x_2 = 1], y = 0)$.

Lemma 6. *The TM exhibits non-absorbing for the training samples defined in Eq. (23).*

Proof: To prove this lemma, we analyze the TM's transitions as follows. First, we examine the transitions assuming $u_1 > 0$ and $u_2 > 0$, similar to the analysis in Subsection B, as detailed in Subsection F.1.1. Next, we study the impact of T to determine whether it leads to convergence (absorption), as discussed in Subsection F.1.2.

E.1.1 TRANSITION OF TM WITH AND OPERATOR GIVEN $u_1 \geq 0$ AND $u_2 \geq 0$

Following the approach in Subsection B, we examine the transitions of TA_3 and TA_4 when the additional training sample $([x_1 = 1, x_2 = 1], y = 0)$ is introduced, considering Cases 1 to 4 as defined in Subsection B. Since $y = 0$ for this sample, only Type II feedback can be triggered to cause transitions. As TA_3 is responsible for the literal x_2 , which is always 1 for this sample, Type II feedback does not trigger any transitions for TA_3 . Therefore, we focus on studying the potential transitions of TA_4 in the four cases defined in Subsection B.1.

In Case 1, where $TA_1 = E$ and $TA_2 = I$, the clause value will always be 0 for the training sample because $\neg x_1$ is included in the clause, regardless of the action TA_4 takes. According to the Type II feedback transition table, no transition occurs when $C = 0$, so no transitions are triggered for TA_4 . Similarly, in Case 4, where $TA_1 = I$ and $TA_2 = I$, the clause value will always be 0 due to the presence of $x_1 \wedge \neg x_1$ in the clause. As a result, there are no transitions for TA_4 .

In Case 2, where $TA_1 = I$ and $TA_2 = E$, the literal x_1 will always appear in the clause. When $TA_4 = I$, the clause includes the literal $\neg x_2$, which results in a clause value of 0. Therefore, no transition is triggered. However, when $TA_4 = E$, the literal x_1 will always appear in the clause, and the value of x_2 is 1, making the clause value 1 regardless of TA_3 's action (whether it includes or excludes x_2). According to the Type II feedback table, with the literal value of $\neg x_2$ being 0 and the clause value being 1, the transition for $TA_4 = E$ is:

Condition: $x_1 = 1, x_2 = 1, y = 0$.

Thus, Type II, $\neg x_2 = 0$,

$$C = 1.$$

2160 Clearly, the only absorbing state ($TA_3 = I$ and $TA_4 = E$) becomes non-absorbing due to the newly
 2161 added transition (the red I for TA_4). As a result, the system is non-absorbing when $u_1 > 0$ and
 2162 $u_2 > 0$.
 2163

2164 F.1.2 TRANSITION OF TM WITH AND OPERATOR WHEN T CAN BLOCK TYPE I FEEDBACK

2165 Based on the above analysis, we understand that the system is non-absorbing when $u_1 > 0$ and
 2166 $u_2 > 0$. Next, we examine whether it is possible for the system to become absorbing when T can
 2167 block Type I feedback.
 2168

2169 When T clauses have learned the intended pattern $\mathbf{X} = [x_1 = 1, x_2 = 1]$, i.e., when $f_{\sum}(\mathcal{C}^i(\mathbf{X})) =$
 2170 T , then $u_1 = 0$ holds, and Type I feedback is blocked. In this situation, only Type II feedback
 2171 can occur. Due to the presence of the wrong label, i.e., $([x_1 = 1, x_2 = 1], y = 0)$, Type II
 2172 feedback triggers transitions in the TAs that have already learned the intended logic $([x_1 = 1, x_2 =$
 2173 $1], y = 1)$. For example, Type II feedback will cause a transition in TAs of a learned clause
 2174 $C = x_1 \wedge x_2$, making the clause deviate from its learned state (e.g., changing from $x_1 \wedge x_2$ to
 2175 $x_1 \wedge x_2 \wedge \neg x_2$). Once this happens, $u_1 > 0$ holds, and Type I feedback is triggered by samples of
 2176 $([x_1 = 1, x_2 = 1], y = 1)$, encouraging TAs in this clause to move back toward the action Exclude.
 2177 Thus, even when T blocks all Type I feedback samples (setting $u_1 = 0$), the system remains non-
 2178 absorbing due to the wrong label and Type II feedback. Notably, no value of $f_{\sum}(\mathcal{C}^i(\mathbf{X}))$ can make
 2179 both $u_1 = 0$ and $u_2 = 0$ simultaneously⁵. Therefore, Type I and Type II feedback cannot be blocked
 2180 simultaneously, ensuring the system is non-absorbing. ■
 2181

2182 F.2 THE AND OPERATOR WITH THE SECOND TYPE OF WRONG LABELS

2183 To properly define the training samples with the second type of wrong label, we employ the following
 2184 formulas:
 2185

$$\begin{aligned} P(y = 1|x_1 = 1, x_2 = 1) &= 1, \\ P(y = 0|x_1 = 1, x_2 = 0) &= a, a \in (0, 1) \\ P(y = 1|x_1 = 1, x_2 = 0) &= 1 - a, \\ P(y = 0|x_1 = 0, x_2 = 1) &= 1, \\ P(y = 0|x_1 = 0, x_2 = 0) &= 1. \end{aligned} \tag{24}$$

2191 In this case, clearly, label of the training samples $[x_1 = 1, x_2 = 0]$ are wrongly labeled as 1 with
 2192 probability $1 - a$. In other words, in addition to the training samples detailed in Subsection B, a new
 2193 type (wrongly labeled) of training sample will appear to the system, namely $([x_1 = 1, x_2 = 0], y =$
 2194 1).

2195 **Lemma 7.** *The TM is non-absorbing for the training samples given by Eq. (24).*

2196 **Proof:** Similar to the proof of Lemma 6, we first consider the transitions of TM with $u_1 > 0$ and
 2197 $u_2 > 0$, and then examine the impact of T for the system transition.
 2198

2199 When $u_1 > 0$ and $u_2 > 0$, there is a non-zero probability in which the training sample $([x_1 =$
 2200 $1, x_2 = 0], y = 1)$ will appear to the system. The appearance of this sample will involve transition
 2201 of TA_3 moving from action Include toward Exclude, as shown in Fig. 6, making the system non-
 2202 absorbing.

2203 When T clauses have learned the intended pattern $\mathbf{X} = [x_1 = 1, x_2 = 1]$, i.e., $f_{\sum}(\mathcal{C}^i(\mathbf{X})) = T$,
 2204 then $u_1 = 0$, and thus Type I feedback is blocked for this training sample. In this situation, the TM
 2205 can only see the training samples of the following:
 2206

$$\begin{aligned} P(y = 0|x_1 = 1, x_2 = 0) &= a, a \in (0, 1) \\ P(y = 1|x_1 = 1, x_2 = 0) &= 1 - a, \\ P(y = 0|x_1 = 0, x_2 = 1) &= 1, \\ P(y = 0|x_1 = 0, x_2 = 0) &= 1. \end{aligned} \tag{25}$$

2211 ⁵In this study, we focus only on positive polarity thus $u_2 > 0$ always holds. When negative polarity is
 2212 enabled (i.e., when a set of clauses learns sub-patterns with label $y = 0$), u_2 becomes 0 when T clauses learn
 2213 a sample with $y = 0$. However, it remains true that no value of $f_{\sum}(\mathcal{C}^i(\mathbf{X}))$ can make both u_1 and u_2 equal to
 0 simultaneously.

2214 Following the same concept as the proof of Lemma 6, we can conclude that the TM is non-absorbing
 2215 for the samples in Eq. (25). Clearly, the system is non-absorbing, regardless of the value of u_1 .
 2216 Therefore, we can conclude that the TM is non-absorbing for the training samples described in
 2217 Eq. (24).

2218 Following the same principle, we can also prove that the TM is non-absorbing when other training
 2219 samples, i.e., $[x_1 = 0, x_2 = 1]$, and $[x_1 = 0, x_2 = 0]$, or their combinations, have wrong labels. We
 2220 thus can conclude that the TM is non-absorbing for the second type of wrong labels. \blacksquare
 2221

2222 So far, we have proven that the TM is non-absorbing when only one type of wrong label exists for
 2223 the AND operator. It is straightforward to conclude that the TM remains non-absorbing when both
 2224 types of wrong labels are present. The key reason is that adding both types of wrong labels does
 2225 not eliminate any transitions between system states in non-absorbing systems. Therefore, the TM
 2226 is non-absorbing for training samples with general wrong labels for the AND operator. Using the
 2227 same reasoning, we can extend this conclusion to the XOR and OR operators. Thus, the following
 2228 theorem holds.

2229 **Theorem 10.** *The TM is non-absorbing given training samples with wrong labels for the AND, OR,
 2230 and XOR operators.*

2231 **Remark 7.** *The primary reason for the non-absorbing behavior of the TM when wrong labels are
 2232 present is the introduction of statistically conflicting labels for the same input samples. These incon-
 2233 sistency causes the TAs within a clause to learn conflicting outcomes for the same input due to the
 2234 corresponding Type I and Type II feedback for label 1 and 0 respectively. When a clause learns to
 2235 evaluate an input as 1 based on Type I feedback, samples with a label of 0 for the same input prompt
 2236 it to learn the input as 0 through Type II feedback. This conflict in labels confuses the TM, leading
 2237 to back-and-forth learning.*

2238 **Remark 8.** *Note that although wrong labels will make the TM not converge (not absorbing with
 2239 100% accuracy for the intended logic), via simulations, we find that the TM can still learn the
 2240 operators efficiently, which has been demonstrated in Section J, especially when the probability of
 2241 wrong label is small. Interestingly, when the probability of the second type of wrong label is large,
 2242 TM will consider it as a sub-pattern, and learn it, which aligns with the nature of learning.*

2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267

2268 **G ANALYSIS OF THE TM WITH AN IRRELEVANT INPUT VARIABLE**
 2269

2270 In this appendix, we examine the impact of irrelevant input noise on the TM. Irrelevant noise refers
 2271 to an input bit with a random value that does not affect the classification result. For instance, in the
 2272 AND operator, a third input bit, x_3 , may appear in the training sample with random 1 and 0 values,
 2273 but its value does not influence the output of the AND operator. In other words, the output is entirely
 2274 determined by the values of x_1 and x_2 . Formally, we have:

$$\begin{aligned} P(y = 1|x_1 = 1, x_2 = 1, x_3 = 0 \text{ or } 1) &= 1, \\ P(y = 0|x_1 = 1, x_2 = 0, x_3 = 0 \text{ or } 1) &= 1, \\ P(y = 0|x_1 = 0, x_2 = 1, x_3 = 0 \text{ or } 1) &= 1, \\ P(y = 0|x_1 = 0, x_2 = 0, x_3 = 0 \text{ or } 1) &= 1. \end{aligned} \quad (26)$$

2280 Here $x_3 = 0$ or 1 means $P(x_3 = 0) = a$, $P(x_3 = 1) = 1 - a$, $a \in (0, 1)$.
 2281

2282 **G.1 CONVERGENCE ANALYSIS OF THE AND OPERATOR WITH IRRELEVANT VARIABLE**
 2283

2284 **Theorem 11.** *The clauses in a TM can almost surely learn the AND logic given training samples in*
 2285 *Eq. (26) in infinite time, when $T \leq m$.*

2286 **Proof:** The proof of Theorem 11 consists of two steps: (1) Identifying a set of absorbing conditions
 2287 and confirming that the TM, when in these conditions, satisfies the requirements of the AND opera-
 2288 tor. (2) Demonstrating that any state of the TM that deviates from the conditions defined in step (1)
 2289 is not absorbing.

2290 The TM will be absorbed when the following conditions fulfill:
 2291

- 2292 1. Condition to block Type I feedback: For any input sample $\mathbf{X} = [x_1 = 1, x_2 = 1, x_3]$,
 2293 regardless of whether $x_3 = 1$ or 0, the TM has at least T clauses that output 1.
- 2294 2. Conditions to guarantee no action upon Type II feedback:
 - 2295 (a) When x_3 or $\neg x_3$ appears in a clause in the TM: The literals that are included in the
 2296 clause for the first two input variables must result in a clause value of 0 for the input
 2297 samples $\mathbf{X} = [x_1 = 0, x_2 = 1, x_3]$, $\mathbf{X} = [x_1 = 1, x_2 = 0, x_3]$ and $\mathbf{X} = [x_1 =$
 2298 $0, x_2 = 0, x_3]$. This ensures that $C = 0$ for these input samples, regardless of the value
 2299 of x_3 , thereby preventing transitions caused by any Type II feedback. The portion of
 2300 the clause involving the first two input variables can be, e.g., $x_1 \wedge x_2$ or $x_1 \wedge \neg x_1 \wedge x_2$,
 2301 while the overall clauses can be, e.g., $C = x_1 \wedge x_2 \wedge x_3$, or $C = x_1 \wedge \neg x_1 \wedge x_2 \wedge \neg x_3$,
 2302 as long as the resulted clause value is 0 for those input samples.
 - 2303 (b) When x_3 or $\neg x_3$ does NOT appear in a clause in the TM: There is no clause that is in
 2304 the form of $C = x_1$, $C = x_2$, $C = x_1 \wedge \neg x_2$, $C = \neg x_1 \wedge x_2$, $C = \neg x_1$, $C = \neg x_2$, or
 2305 $C = \neg x_1 \wedge \neg x_2$.

2306 Clearly, when the above conditions fulfill, the system has absorbed because no feedback appears
 2307 to the system. Additionally, this absorbing state follows AND operator. Based on the statement of
 2308 the condition to block Type I feedback, there are at least T clauses that output 1 for input sample
 2309 $\mathbf{X} = [x_1 = 1, x_2 = 1, x_3]$, regardless $x_3 = 1$ or 0. Studying the conditions for Type II feedback, we
 2310 can conclude that the clause outputs 0 for all input samples $\mathbf{X} = [x_1 = 1, x_2 = 0, x_3]$, $\mathbf{X} = [x_1 =$
 2311 $0, x_2 = 1, x_3]$, or $\mathbf{X} = [x_1 = 0, x_2 = 0, x_3]$. We can then setup the $Th = T$ to confirm the AND
 2312 logic.

2313 The next step is to show that any state of the TM deviating from the above conditions is not absor-
 2314 bing. To demonstrate this, we can simply confirm that transitions, which might change the current
 2315 actions of the TAs, will occur due to updates from Type I or Type II feedback.

2316 When literal x_3 or literal $\neg x_3$ is included as a part of the clause, the probability for $C = 0$ is non-
 2317 zero due to the randomness of input variable x_3 . As a result, Type I Feedback will encourage the TA
 2318 for the included literal x_3 or $\neg x_3$ to move away from its current action, thus preventing the system
 2319 from becoming absorbing.

2320 For the case where literal x_3 or literal $\neg x_3$ is not included in the clause, the system operates purely
 2321 based on the first two input variables, namely x_1 and x_2 . According our previous analysis for

the noise free AND case (Theorem 1), there is only one absorbing status, which is $C = x_1 \wedge x_2$. However, this absorbing state disappears because Type I feedback will encourage the excluded literal x_3 to be included when $x_3 = 1$, and similarly encourage the excluded literal $\neg x_3$ to be included when $x_3 = 0$. Once either x_3 or $\neg x_3$ is included, the analysis in the previous paragraph applies, and thus the system is not absorbing.

From the above discussion, it is clear that Type I feedback is the key driver of action changes in non-absorbing cases. If Type I feedback is not blocked, the system cannot reach an absorbing state. Therefore, blocking Type I feedback is critical for achieving convergence. The condition $T < m$ is to guarantee that T should not be greater than the total number of clauses, making it feasible to block Type I feedback. ■

Remark 9. *Due to the existence of the irrelevant input x_3 , the system requires the functionality of T to block Type I feedback in order to converge. This contrasts with the noise-free case, where the TM will almost surely converge to the AND operator even when Type I feedback is consistently present ($u_1 > 0$).*

G.2 CONVERGENCE ANALYSIS OF THE OR OPERATOR WITH IRRELEVANT VARIABLE

For the OR case, we have

$$\begin{aligned} P(y = 1|x_1 = 1, x_2 = 1, x_3 = 0 \text{ or } 1) &= 1, \\ P(y = 1|x_1 = 1, x_2 = 0, x_3 = 0 \text{ or } 1) &= 1, \\ P(y = 1|x_1 = 0, x_2 = 1, x_3 = 0 \text{ or } 1) &= 1, \\ P(y = 0|x_1 = 0, x_2 = 0, x_3 = 0 \text{ or } 1) &= 1. \end{aligned} \tag{27}$$

Theorem 12. *The clauses in a TM can almost surely learn the OR logic given training samples in Eq. (27) in infinite time, when $T \leq \lfloor m/2 \rfloor$.*

Proof: The proof of Theorem 12 follows a similar structure to that of the AND case and involves two steps: (1) Identifying a set of absorbing conditions and verifying that, under these conditions, the TM satisfies the requirements of the OR operator. (2) demonstrating that any state of the TM deviating from these conditions is not absorbing.

1. Condition to block Type I feedback: For any input sample $\mathbf{X} = [x_1 = 1, x_2 = 1, x_3]$, $\mathbf{X} = [x_1 = 1, x_2 = 0, x_3]$, and $\mathbf{X} = [x_1 = 0, x_2 = 1, x_3]$ regardless of whether $x_3 = 1$ or 0, the TM has at least T clauses that output 1.
2. Conditions to guarantee no action upon Type II feedback:
 - (a) When x_3 or $\neg x_3$ appears in a clause in the TM: The literals included in the clause for the first two input variables must ensure a clause value of 0 for the input samples $\mathbf{X} = [x_1 = 0, x_2 = 0, x_3]$. This is to guarantee that $C = 0$ for those input samples, irrespective of the value of x_3 , thereby preventing any transitions caused by Type II feedback. The portion of the clause involving the first two input variables can take the form such as $x_1, x_1 \wedge \neg x_2, x_1 \wedge x_2, x_1 \wedge \neg x_1 \wedge x_2$. Correspondingly, the overall clauses can take the form such as $C = x_1 \wedge \neg x_3, C = x_1 \wedge \neg x_2 \wedge x_3, C = x_1 \wedge x_2 \wedge x_3$, or $C = x_1 \wedge \neg x_1 \wedge x_2 \wedge \neg x_3$, as long as the resulted clause value is 0 for those input samples.
 - (b) When x_3 or $\neg x_3$ does not appear in a clause in the TM: There are no clauses with literal(s) in only negated form, such as $C = \neg x_1, C = \neg x_2$, or $C = \neg x_1 \wedge \neg x_2$.

Clearly, when the above conditions fulfill, the system is absorbing because no feedback triggers state transitions in the system. Additionally, this absorbing state adheres to the OR operator. Based on the condition required to block Type I feedback, there are at least T clauses that output 1 for input sample $\mathbf{X} = [x_1 = 1, x_2 = 1, x_3]$, $\mathbf{X} = [x_1 = 1, x_2 = 0, x_3]$, or $\mathbf{X} = [x_1 = 0, x_2 = 1, x_3]$ regardless of whether $x_3 = 1$ or 0. Analyzing the conditions for Type II feedback, we find that the clause outputs 0 for all input samples $\mathbf{X} = [x_1 = 0, x_2 = 0, x_3]$. We can then setup the $Th = T$ to confirm the OR logic.

The next step is to demonstrate that any state of the TM that deviates from the above conditions outlined above is not absorbing. To do this, we can confirm that transitions which may alter the current actions of the TAs will occur due to updates from Type I and Type II feedback.

2376 When literal x_3 or literal $\neg x_3$ is included in the clause, there is a non-zero probability for $C = 0$
 2377 due to the randomness of the input variable x_3 . In this case, Type I Feedback will move the included
 2378 literal x_3 or $\neg x_3$ towards action Exclude, preventing the system from being absorbing.
 2379

2380 For the case where literal x_3 or literal $\neg x_3$ is not included as a part of the clause, the system operates
 2381 purely based on the first two input variables, namely x_1 and x_2 . Based on our previous analysis
 2382 for the noise free OR case shown in Lemma 2, the system is non-absorbing. This non-absorbing
 2383 behavior can also lead the system to a state where the excluded literal, either x_3 or $\neg x_3$, is encour-
 2384 aged to be included. For example, if the TM has a clause $C = x_1 \wedge x_2$, upon a training sample
 2385 $\mathbf{X} = [x_1 = 1, x_2 = 1, x_3 = 0]$, the Type I feedback will encourage the excluded literal $\neg x_3$ to
 2386 be included. Once one of the excluded literal, x_3 or $\neg x_3$, is included, the analysis in the previous
 2387 paragraph applies, meaning the system is not absorbing.

2388 Clearly, if Type I feedback is not blocked, the system will not be absorbing. As blocking Type I
 2389 feedback is critical, condition $T \leq \lfloor m/2 \rfloor$ is necessary, refer to Lemma 4. ■
 2390

2391 When T clauses have learned the intended sub-patterns of OR operation, the Type I feedback will
 2392 be blocked. At the same time, Type II feedback will eliminate all clauses that output 1 for input
 2393 sample following $\mathbf{X} = [x_1 = 0, x_2 = 0, x_3]$, removing false positives. At this point, the system has
 2394 converged. The presence of x_3 does not change the convergence feature, but it adds more dynamics
 2395 to the TM.

2396 G.3 CONVERGENCE ANALYSIS OF THE XOR OPERATOR WITH IRRELEVANT VARIABLE

2397 **Theorem 13.** *The clauses in a TM can almost surely learn the XOR logic given training samples in
 2398 Eq. (28) in infinite time, when $T \leq \lfloor m/2 \rfloor$.*

$$2400 \begin{aligned} P(y = 0|x_1 = 1, x_2 = 1, x_3 = 0 \text{ or } 1) &= 1, \\ 2401 P(y = 1|x_1 = 1, x_2 = 0, x_3 = 0 \text{ or } 1) &= 1, \\ 2402 P(y = 1|x_1 = 0, x_2 = 1, x_3 = 0 \text{ or } 1) &= 1, \\ 2403 P(y = 0|x_1 = 0, x_2 = 0, x_3 = 0 \text{ or } 1) &= 1. \end{aligned} \quad (28)$$

2404 The proof for XOR follows the same principles as the AND and OR cases, and therefore, we do not
 2405 present it explicitly here.

2406 G.4 CONVERGENCE ANALYSIS OF THE OPERATORS WITH MULTIPLE IRRELEVANT 2407 VARIABLES

2408 In the previous subsections, we demonstrated that if a single irrelevant bit is present in the training
 2409 samples, the system will almost surely converge to the intended operators. This conclusion can
 2410 be readily extended to scenarios involving multiple irrelevant variables. Here, “multiple irrelevant
 2411 variables” refers to the presence of additional variables, beyond x_3 , in the training samples that do
 2412 not contribute to the classification.

2413 **Theorem 14.** *The clauses in a TM can almost surely learn the 2-bit AND logic given training
 2414 samples with q irrelevant input variables in infinite time, $q > 0$, when $T \leq m$.*

2415 **Theorem 15.** *The clauses in a TM can almost surely learn the 2-bit XOR and OR logic given
 2416 training samples with q irrelevant input variables in infinite time, $q > 0$, when $T \leq \lfloor m/2 \rfloor$.*

2417 **Proof:** The proofs of Theorems 14 and 15 are straightforward. It suffices to verify whether the
 2418 conditions for blocking Type I and Type II feedback remain valid when multiple irrelevant variables
 2419 are present.

2420 The condition for blocking Type I feedback remains valid because Type I feedback is only deter-
 2421 mined by the first two input bits and is not a function of the irrelevant variables. For Type II feedback,
 2422 its effect depends on whether the literals for the irrelevant inputs are present in the clause. In cases
 2423 where the literals of the irrelevant bits are not included in the clause, the analysis holds, as those
 2424 literals are absent. When the literals of the irrelevant bits are included, their number does not impact
 2425 the analysis. This is because the clause value is entirely determined by the first two bits, and the
 2426 clause value remains $C = 0$, regardless of the number of irrelevant variables. ■

2430 H CONVERGENCE ANALYSIS OF TM IN k -BIT CASES

2432 H.1 PROOF OF THEOREM 6

2434 **Proof:** In this setting, the training samples are noise-free, and there exists exactly one intended
 2435 sub-pattern to be learned among the 2^k possible combinations. The conditions $u_1 > 0$ and $u_2 > 0$
 2436 ensure that T has no effect. In particular, training samples are always presented to the TM, and no
 2437 sample type is suppressed.

2438 To establish Theorem 6, we avoid enumerating all possible states in literal level and instead group
 2439 the clause forms into the following three categories:

- 2441 (1) **Exact match:** The clause matches the intended sub-pattern exactly (e.g., $C = x_1 \wedge x_2$ in
 2442 the 2-bit AND case). Such a clause outputs 1 when the intended sub-pattern is presented.
- 2443 (2) **Partial match:** The clause matches a strict subset of the intended sub-pattern (e.g., $C =$
 2444 x_1 in the 2-bit AND case). Such clauses also output 1 when the intended sub-pattern is
 2445 presented.
- 2446 (3) **Non-match:** The clause matches neither the intended sub-pattern nor any of its subsets
 2447 (e.g., $C = \neg x_1$ in the 2-bit AND case). Such clauses output 0 when the intended sub-
 2448 pattern is presented.

2449 We show that clauses of type (1) are absorbing, whereas clauses of types (2) and (3) are non-
 2450 absorbing. Consequently, the system possesses a unique absorbing clause form corresponding to
 2451 the intended sub-pattern.

2453 Type (1): Exact match is absorbing.

2455 A clause of type (1) is absorbing because once it matches the intended sub-pattern, no transition
 2456 can alter its form. Under Type I feedback (i.e., when the unique positive sample with $y = 1$ is
 2457 presented), the clause outputs 1. All included literals evaluate to 1, and all excluded literals evaluate
 2458 to 0. The Type I feedback table prescribes *reward* for both included and excluded literals in this
 2459 situation, meaning that no TA changes its action. Therefore, the clause remains unchanged.

2460 Under Type II feedback (i.e., when samples with $y = 0$ are presented), the clause outputs 0, since
 2461 it matches the positive sub-pattern exactly and thus rejects all negative samples. According to the
 2462 Type II feedback rules, no updates are applied when the clause output is 0.

2463 Thus, neither Type I nor Type II feedback can modify the clause. Type (1) clauses are therefore
 2464 absorbing.

2466 Type (2): Partial match is non-absorbing.

2467 We next show that clauses of type (2) are non-absorbing. Under Type I feedback, such clauses output
 2468 1. Any literal that *should* be part of the exact match but is currently in the *exclude* action receives a
 2469 penalty (Type I table, case $C = 1$, literal value = 1 on the excluded side), encouraging a transition
 2470 from *exclude* to *include*. Thus the clause will eventually change its form.

2472 To prove non-absorbency, it suffices to exhibit a single transition with non-zero probability. Never-
 2473 theless, we also examine Type II feedback for completeness. A transition under Type II feedback
 2474 occurs whenever the clause outputs 1 and an excluded literal has value 0. Such literals receive a
 2475 penalty and are encouraged to shift from *exclude* to *include*. This situation can arise for partial-
 2476 match clauses. For example, in the 2-bit AND case, the clause $C = x_1$ outputs 1 for the negative
 2477 sample $x_1 = 1, x_2 = 0$ (with $y = 0$). The excluded literal corresponding to x_2 takes value 0, so
 2478 Type II feedback encourages it to transition to *include*. The clause therefore moves toward $x_1 \wedge x_2$.

2479 A special instance of this category is the empty clause, where all literals are in the *exclude* action.
 2480 Such a clause outputs 1 for all samples by definition in the training process. Under Type I feedback,
 2481 all literals belonging to the intended sub-pattern are encouraged to move from *exclude* to *include*.
 2482 Under Type II feedback, every literal with value 0 is likewise encouraged to transition from *exclude*
 2483 to *include*. Hence the empty clause cannot remain unchanged.

Thus, clauses of type (2) are non-absorbing.

2484 **Type (3): Non-match is non-absorbing.**
24852486 Finally, clauses of type (3) are also non-absorbing. Such clauses output 0 for the intended sub-
2487 pattern. Under Type I feedback, when $C = 0$, the Type I transition table prescribes penalties for
2488 all included literals, encouraging them to move from *include* to *exclude*. Hence the clause cannot
2489 remain in its current form.2490 Under Type II feedback, depending on the clause, it is possible for the clause to output 1 for some
2491 negative sample. When this occurs, any excluded literal with value 0 receives a penalty and is
2492 encouraged to shift from *exclude* to *include*. For example, in the 2-bit AND case, the clause $C =$
2493 $\neg x_1$ outputs 1 on the sample $x_1 = 0, x_2 = 0$ (with $y = 0$). Type II feedback then penalizes both
2494 excluded literals, pushing them toward inclusion. The clause therefore changes form. Thus, clauses
2495 of type (3) are non-absorbing.2496 Although the clause space grows combinatorially, grouping clauses into the three categories above
2497 reveals that absorbing/non-absorbing behavior is identical within each category, regardless of the
2498 specific form of a clause. Since type (1) clauses are absorbing whereas types (2) and (3) are non-
2499 absorbing, the TM has a unique absorbing state: the exact match of the intended sub-pattern. Con-
2500sequently, convergence is guaranteed given infinite time. ■2501 **H.2 PROOF OF THEOREM 7**
25022503 The proof of Theorem 7 follows the same structure as the proof of Theorem 2. We show that when
2504 two or more sub-patterns appear in the training samples, the absorbing clauses that exist in the
2505 single-sub-pattern setting disappear. In other words, the system no longer possesses any absorbing
2506 state as in the single sub-pattern case. To restore an absorbing state, the role of the threshold T
2507 becomes critical. Analogous to the OR proof, we first show that the system becomes non-absorbing
2508 when multiple sub-patterns are present, and then show how to configure T so that convergence is
2509 guaranteed.2510 We begin by showing that if two or more sub-patterns occur in the training samples, the system is
2511 non-absorbing. In the k -bit setting, the existence of multiple sub-patterns implies that there is at
2512 least one bit whose value differs across sub-patterns. That is, the bit is 1 in one sub-pattern but 0
2513 in another. For example, in the 2-bit OR case, between the sub-patterns $(1, 0)$ and $(1, 1)$, x_2 is a
2514 conflicting bit: it is 0 in the former sub-pattern and 1 in the latter. We refer to such bits as *conflicting*
2515 *bits*. Because conflicting bits are present, the absorbing clauses that existed in the single-sub-pattern
2516 setting can no longer remain absorbing. The core argument is to show that any clause that was
2517 absorbing in the single-sub-pattern case ceases to be absorbing once additional sub-patterns, and
2518 thus conflicting bits, appear.2519 Without loss of generality, assume that the third bit is the conflicting bit in the multiple-sub-pattern
2520 setting. Suppose the clause has reached the absorbing form

2521
$$([x_i = *, x_3 = 0], y = 1),$$

2522

2523 where $i \in \{1, \dots, k\} \setminus \{3\}$, and “*” denotes an arbitrary assignment to the non-conflicting bits.
2524 To show that the system is non-absorbing, we must demonstrate that this clause loses its absorbing
2525 property once an additional sub-pattern

2526
$$([x_i = *, x_3 = 1], y = 1)$$

2527

2528 is introduced.

2529 In the absorbing form, the clause must include the literal $\neg x_3$ in order to match the sub-pattern
2530 exactly. However, when training samples corresponding to

2531
$$([x_i = *, x_3 = 1], y = 1)$$

2532

2533 appear, the clause will output 0 due to the conflicting bit $x_3 = 1$. Consequently, Type I feedback
2534 will reinforce the exclusion of the currently included literals, regardless of their literal value. This
2535 process breaks the absorbing condition, meaning the clause is no longer absorbing.

2536 By the same reasoning, if the absorbing sub-pattern were

2537
$$([x_i = *, x_3 = 1], y = 1),$$

2538 then introducing samples of

$$([x_i = *, x_3 = 0], y = 1)$$

2539 would likewise eliminate the absorbing property. Therefore, the specific literal value (0 or 1) of
 2540 the conflicting bit in the original absorbing state does not matter. Moreover, as additional sub-
 2541 patterns introduce more conflicting bits, the clauses remain non-absorbing. This clearly indicates
 2542 that when $u_1 > 0$ and $u_2 > 0$, the clauses are non-absorbing in the presence of multiple sub-
 2543 patterns. Consequently, the functionality of T must be enabled to ensure that the clauses become
 2544 absorbing, by preventing Type I feedback from being triggered.

2545 Similar to Lemma 3, we obtain the following result.

2546 **Lemma 8.** *The system is absorbed if and only if (1) the number of clauses for each sub-pattern
 2547 reaches T , and (2) no clause outputs 1 for training samples with label 0, i.e., no false positives
 2548 occur.*

2549 The proof of Lemma 8 is immediate. Condition (1) blocks all Type I feedback, and the argument
 2550 follows directly from Lemma 3. Condition (2) ensures that no transitions are triggered by Type II
 2551 feedback. When Type I feedback is blocked and Type II feedback induces no further transitions, the
 2552 system is absorbing.

2553 To establish Theorem 7, it remains to verify that the condition $T \leq \lfloor \frac{m}{e} \rfloor$ is sufficient to guarantee
 2554 that all sub-patterns are covered by at least T clauses. Since e denotes the number of sub-pattern
 2555 clusters, that is, the number of clusters in which all sub-patterns share one or more bits in common,
 2556 we may represent each such cluster with a single clause. Thus, if $T \leq \lfloor \frac{m}{e} \rfloor$, then at least T clauses
 2557 can be assigned to each cluster. Therefore, the convergence requirement in condition (1) is satisfied.
 2558 We can now prove Theorem 7.

2559 **Proof:** From the above arguments, we observe that if

$$T \leq \left\lfloor \frac{m}{e} \right\rfloor$$

2560 holds, then Type I feedback will eventually be completely blocked, and Type II feedback will even-
 2561 tually produce only “inaction” responses. In this situation, no further state transitions occur, and the
 2562 system reaches an absorbing state. Prior to absorption, the system may move back and forth among
 2563 intermediate states, but it will not become absorbed until the above condition is met.

2564 Once absorbed, every sub-pattern with label 1 will have at least T clauses assigned to it, while the
 2565 sub-pattern with label 0 will have none. This means that the TM can almost surely learn the intended
 2566 multiple sub-patterns in infinite time. Once learnt, for inference, it can classify the class by setting
 2567 the threshold $Th = T$. This completes the proof. \blacksquare

2568 H.3 PROOF OF THEOREM 8 AND THEOREM 9

2569 **Proof of Theorem 8:** The proof of Theorem 8 consists of two steps: (1) Identifying a set of ab-
 2570 sorbing conditions and confirming that the TM, when in these conditions, satisfies the require-
 2571 ments of the intended unique sub-pattern. (2) Demonstrating that any state of the TM that de-
 2572 viates from the conditions defined in step (1) is not absorbing. Without loss of generality, we
 2573 consider a general $k + q$ input Boolean vector with k -bit useful bits plus q bit irrelevant bits, as

$$2574 \mathbf{X} = [x_1, x_2, \dots, x_k, x_{k+1}, \dots, x_{k+q}].$$

2575 The TM will be absorbed when the following conditions are satisfied:

- 2576 1. **Condition to block Type I feedback:** For any input sample belonging to the intended sub-
 2577 pattern, and for any bits $x_j \in \{0, 1\}$ with $j \in [k + 1, k + q]$, the TM must have at least T
 2578 clauses that output 1.
- 2579 2. **Condition to guarantee no transitions under Type II feedback:** No clause outputs 1 for
 2580 training samples with label 0. That is, no false positives occur.

2581 Clearly, when the above conditions are satisfied, the system is absorbed, since no further feedback is
 2582 produced. Moreover, this absorbing state corresponds to the intended sub-pattern. It is worth noting
 2583 that the irrelevant bits do not induce any transitions under Type II feedback once no clause outputs 1

2592 for training samples with label 0, i.e., once no false positives occur. This is because the absence of
 2593 false positives implies that all samples labeled 0 produce a clause output of 0, fully determined by
 2594 the learned sub-patterns from the k useful bits. Since the irrelevant bits do not influence the label,
 2595 they likewise do not affect the clause output once learning has converged. In other words, regardless
 2596 of the values of the irrelevant bits, the clause output is already determined by the k -bit useful pattern,
 2597 giving 0 in this case. Hence, the randomness of the irrelevant bits cannot change the clause output
 2598 from 0. According to the Type II feedback table, no transitions occur when $C = 0$.

2599 The next step is to show that any state of the TM that violates these conditions is not absorbing. To
 2600 establish this, it suffices to confirm that such states will trigger transitions, arising from either Type I
 2601 or Type II feedback, that modify the current form of the clauses.

2602 We begin with Type I feedback. Before this feedback is blocked by the threshold T , the random
 2603 irrelevant bits make the system non-absorbing. The reason is analogous to the conflict-bit argument
 2604 presented in Subsection H.2. The conflict bits take the value 1 for some sub-patterns and 0 for
 2605 others, pushing the system to learn in inconsistent directions. The random irrelevant bits behave
 2606 in exactly the same manner. Therefore, the mechanism provided by T is essential. The condition
 2607 $T < m$ guarantees that T does not exceed the total number of clauses, ensuring that blocking Type I
 2608 feedback is feasible.

2609 For Type II feedback, any false positive will trigger transitions that move literals with value 0 (and
 2610 currently excluded) toward the include side until all false positives have been eliminated. As long
 2611 as false positives remain, Type II feedback continues to update the system, and thus the state is not
 2612 absorbing.

2613 Based on the above discussion, it follows that any violation of the listed conditions prevents the
 2614 system from being absorbing. Therefore, only the listed conditions fulfill the absorbing states, which
 2615 covers the intended sub-pattern. ■

2616 **Proof of Theorem 9:** The proof of Theorem 9 follows the same structure and reasoning as the proof
 2617 of Theorem 8. In particular, we identify two conditions that ensure the system is absorbing.

2619

- 2620 **1. Condition to block Type I feedback:** For input samples of fixed length n , containing
 2621 multiple intended sub-patterns where the i -th sub-pattern consists of k_i informative bits
 2622 and $n - k_i$ irrelevant bits (with the positions of both bit types arbitrary), the TM must have
 2623 at least T clauses that output 1 for each intended sub-pattern.
- 2624 **2. Condition to prevent transitions under Type II feedback:** No clause outputs 1 for train-
 2625 ing samples with label 0, i.e., no false positives occur.

2626 Different from the condition $T \leq m$ in Theorem 8, here we require $T \leq \lfloor m/e \rfloor$. The arguments
 2627 showing that these conditions lead to an absorbing state, as well as the arguments establishing that
 2628 any other clause configuration is non-absorbing, are identical to those presented in the proof of
 2629 Theorem 8. We therefore omit the details to avoid repetition. ■

2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645

2646 **I EXPERIMENT RESULTS OF 2-BIT CASES WITH NOISE-FREE TRAINING**
 2647 **SAMPLES**

2649 To validate the theoretical analyses, we here present the experiment results⁶ for both the AND and
 2650 the OR operators.

2669 Figure 8: The convergence of a TM with 7 clauses when $T = 5$ for the AND operator.

2671 Figure 8 shows the convergence of TM for the AND operator when $m = 7$, $T = 5$, $s = 4$, and
 2672 $N = 50$ (N is the number of states for each action in each TA). More specifically, we plot the
 2673 number of clauses that learn the AND operator, namely, $x_1 = x_2 = 1$, and the number of system
 2674 updates as a function of epochs. From these figures, we can clearly see that after a few epochs,
 2675 the TM has 5 clauses that learn the AND operator and then the system stops updating because no
 2676 update is triggered anymore. Note that if we control T so that $u_1 > 0$ always holds, all clauses
 2677 will converge to the AND operator, which has been validated via experiments. These observations
 2678 confirm Theorem 1. Although the theorem says it may require infinite time in principle, the actual
 2679 convergence can be much faster.

2697 Figure 9: The convergence of a TM with 7 clauses when $T = 3$ for the OR operator.

2698 ⁶The code for validating the convergence can be found at <https://github.com/JaneGlim/Convergence-of-Tsetline-Machine-for-the-AND-OR-operators>.

Figure 10: The behavior of a TM with 7 clauses when $T = 4$ for the OR operator.

In Fig. 9, we illustrate the number of clauses in distinct sub-patterns when we employ $m = 7$, $T = 3$, $s = 4$, and $N = 50$ for the OR operator. Based on the analytical result, i.e., Theorem 2, the system will be absorbed, where each sub-pattern will have at least 3 clauses and no update will happen afterwards. From the figure, we can clearly observe that after a few epochs, the system becomes indeed absorbed as no updates are observed. When absorbed, the three intended sub-patterns have 3, 4, 5 clauses to represent them respectively, while the unintended sub-pattern has 0 clause, which is consistent with the theorem. Indeed, the list of the converged clauses are: $C_1 = x_1$, $C_2 = x_1$, $C_3 = x_2$, $C_4 = x_1 \wedge \neg x_2$, $C_5 = x_1 \wedge x_2$, $C_6 = x_2$, and $C_7 = \neg x_1 \wedge x_2$, explaining the number of converged clauses in different sub-patterns shown in the figure. Clearly, in this example, some clauses, i.e., C_1 , C_2 , C_3 and C_6 , can each cover multiple sub-patterns. This indicates that in real world applications, if distinct sub-patterns have certain bits in common, which can be used to differentiate it from other classes, it is possible for TM to learn those bits as joint features, confirming the efficiency of the TM.

Note that there are many other possible absorbing states that are different from the shown example, which have been observed when we run multiple instances of the experiments. As long as each intended sub-pattern is represented by at least T clauses in the OR operator, the system converges.

In Fig. 10, the configuration is identical to that in Fig. 9 except that $T = 4$. In this case, as stated in Remark 2, the system will not become absorbing, but will still cover the intended sub-patterns with high probability. From this figure, we can observe that each intended sub-pattern is represented by at least two clauses, and that the unintended sub-pattern has zero clause. At the same time, the TAs do not stop updating their states, which can be seen in the bottom figure. It is worth mentioning that we have occasionally observed in other rounds of experiments, that one intended sub-pattern is covered by only 1 clause. In this case, it is still possible to set up $Th \geq 1$ to have successful classification. Nevertheless, there is no guarantee that each intended sub-pattern will be represented by at least one (or Th) clause(s) in this configuration, thus no guaranteed successful classification.

Figure 11: The behavior of TM when $m = 7$, $T = 4$ for the OR operator with wrong training labels.

J EXPERIMENT RESULTS OF 2-BIT CASES WITH NOISY TRAINING SAMPLES

We present the experimental results for the operators under noisy conditions. First, we show the results when incorrect labels are present, followed by the results involving irrelevant variables. The final subsection addresses a case where both incorrect labels and irrelevant variables are present.

J.1 EXPERIMENT RESULTS FOR WRONG LABELS

To evaluate the performance of the TM when exposed to mislabeled samples, we introduced incorrectly labeled data into the system. The key observation is that the TM does not converge to the intended logic, meaning it does not absorb into a state where the correct logic is consistently represented. However, with carefully chosen hyperparameters, the TM can still learn the intended logic with high probability.

To demonstrate the TM’s behavior, we first conduct experiments on the OR operator, which satisfies the following equation:

$$\begin{aligned}
 P(y = 1|x_1 = 1, x_2 = 1) &= 90\%, \\
 P(y = 1|x_1 = 1, x_2 = 0) &= 90\%, \\
 P(y = 1|x_1 = 0, x_2 = 0) &= 90\%, \\
 P(y = 0|x_1 = 0, x_2 = 0) &= 1.
 \end{aligned} \tag{29}$$

In this scenario, 10% of the input samples that should be labeled as 1 were incorrectly labeled as 0. To train the TM and evaluate its performance, we used the following hyperparameters: $m = 7$, $T = 4$, $Th = 2$, $s = 3$, and $N = 100$. Fig. 11 shows the number of updates and the number of clauses that learn distinct sub-patterns, as a function of epochs. As shown in Fig. 11, the number of updates is big, and thus the system did not converge. Nevertheless, when examining the number of clauses associated with each sub-pattern, we observed that each sub-pattern was covered by at least two clauses, ensuring that the OR operator remained valid. Similar results were observed in experiments conducted on the AND and XOR operators.

Interestingly and understandably, when the proportion of mislabeled samples increases to an extreme level, where inputs that should be labeled as 0 are instead labeled as 1, the TM begins to treat the noise as a sub-pattern. For instance, consider the AND operator with input $\mathbf{X} = [x_1 = 0, x_2 = 1]$, which is mislabeled as 1 in 90% of the cases, as shown in Eq. (30). Using the hyperparameters $m = 7$, $T = 3$, $s = 3.0$, and $N = 100$, we observed from experiments that the TM generates three

2808 clauses with an output of 1 for $\mathbf{X} = [x_1 = 0, x_2 = 1]$ and another three clauses with an output of
 2809 1 for $\mathbf{X} = [x_1 = 1, x_2 = 1]$. This behavior indicates that the TM has incorporated the noise as a
 2810 learned sub-pattern. Such outcomes align with the TM’s underlying principle of learning, where it
 2811 identifies and models sub-patterns associated with the label 1.
 2812
 2813

$$\begin{aligned} 2814 \quad P(y = 1|x_1 = 1, x_2 = 1) &= 1, \\ 2815 \quad P(y = 0|x_1 = 1, x_2 = 0) &= 1, \\ 2816 \quad P(y = 0|x_1 = 0, x_2 = 1) &= 10\%, \\ 2817 \quad P(y = 0|x_1 = 0, x_2 = 0) &= 1. \end{aligned} \quad (30)$$

2820 J.2 EXPERIMENT RESULTS FOR IRRELEVANT VARIABLE

2821 To confirm the convergence property of TM with irrelevant variable, we setup the experiments for
 2822 the AND, OR, and XOR operators when one irrelevant variable, namely, x_3 , exists. The probability
 2823 of x_3 being 1 in the training and testing samples is 50%.

2824 For the AND operator, we use the hyperparameters $m = 5, T = 2, s = 3, Th = 2$, and $N = 100$.
 2825 Fig. 12 illustrates the convergence of TM for the AND operator in the presence of an irrelevant bit.
 2826 The results confirm that the TM can correctly learn the AND operator without uncertainty, validating
 2827 the correctness of Theorem 11.
 2828
 2829
 2830

2848 Figure 12: Convergence of TM when $m = 5, T = 2$ for the AND operator with an irrelevant label.
 2849

2850 Interestingly, upon convergence, the form of the included literals varies. For instance, with the
 2851 aforementioned hyperparameters, we observe that the converged TM includes two clauses of the
 2852 form $x_1 \wedge x_2 \wedge x_3$ and another two clauses of the form $x_1 \wedge x_2 \wedge \neg x_3$. This suggests that, instead
 2853 of excluding the irrelevant bit x_3 , the TM includes at least T clauses containing x_3 and at least T
 2854 clauses containing $\neg x_3$, which ensures correct classification regardless of the value of x_3 . However,
 2855 when the hyperparameters are set to $m = 1, T = 1, s = 3, Th = 1$, and $N = 100$, where only a
 2856 single clause exists in the TM, the converged clause takes the form $x_1 \wedge x_2$, excluding the literals
 2857 x_3 and $\neg x_3$.
 2858

2859 As T increases ($T > m/2$), we observe that convergence becomes challenging. This difficulty
 2860 arises because the TM cannot simultaneously learn T clauses containing x_3 and another T clauses
 2861 containing $\neg x_3$. In such cases, the TM must rely on T clauses in the form $x_1 \wedge x_2$ to achieve
 2862 convergence, which can be particularly demanding.

Figure 13: Convergence of TM when $m = 5, T = 2$ for the OR operator with an irrelevant label.Figure 14: Convergence of TM when $m = 7, T = 2$ for the XOR operator with an irrelevant label.

For the OR operator, we use the hyperparameters $m = 5, T = 2, s = 3, Th = 2$, and $N = 100$. Figure 13 illustrates the convergence of the TM for the OR operator in the presence of an irrelevant bit. The results confirm that TM successfully learns the OR operator without ambiguity, validating the correctness of Theorem 12. The results also confirm that the TM is capable of presenting two sub-patterns jointly.

Indeed, the OR operator has multiple absorbing states, corresponding to multiple clause forms. Some clause forms may include x_3 or $\neg x_3$, depending on the hyperparameter configuration. Regardless of the value of x_3 , as long as the vote sum of the clauses is greater than or equal to T , the correct classification can be guaranteed.

We have also studied the XOR operator. The convergence instance is shown in Fig. 14, confirming Theorem 13. Here we use $m = 7, T = 2, s = 3, Th = 2$.

2916
2917

J.3 EXPERIMENT RESULTS FOR BOTH WRONG LABELS AND IRRELEVANT VARIABLES

2918
2919
2920
2921

In this experiment, we assess the performance of the TM in the presence of both mislabeled data and irrelevant variables. Specifically, we evaluate the TM’s ability to learn the XOR operator when 40% of the samples are incorrectly labeled, and 10 irrelevant variables are added. The input comprises 12 bits, with only the first two bits determining the output based on the XOR logic.

2922
2923
2924
2925

The hyperparameters are configured as follows: $m = 20$, $T = 15$, $s = 3.9$, and $N = 100$ with polarity enabled. Experimental results reveal that the TM successfully learns the XOR operator in 99% of 200 independent runs. These findings demonstrate the robustness of the TM training in noisy environments.

2926
2927
2928
2929
2930
2931

In another experiment, we configured the TM to learn a noisy XOR function with 2 useful input bits and 18 irrelevant input bits (hyper parameters: $N = 128$, $m = 20$, $T = 10$, $s = 3$, label noise 0.1). Remarkably, the TM was still able to learn the XOR operator with 100% accuracy using just 5000 training samples. If all possible input combinations were required in the training samples, it would require $2^{20} = 1048576$ samples. Clearly, the TM does not rely on the entire combinatorial input space to learn effectively.

2932
2933
2934
2935
2936
2937
2938
2939
2940
2941

When many variables are irrelevant, the training set may not cover all possible input combinations due to the exponential size of the input space. Although not yet theoretically established, polynomial-sized training sets appear sufficient for the TM, as confirmed by experiments. This is because each TA within a clause updates independently once the clause value and the literal value are determined by a sample. The resulting Type I and Type II transitions are then fully specified. Consequently, the TM does not need to observe every combination of irrelevant inputs. It only requires enough samples to reveal their statistical irrelevance, which triggers the appropriate TA transitions. Furthermore, the influence of irrelevant bits can be neutralized when T clauses capture their negated form and T clauses capture their original form for the same sub-pattern. Together, these properties allow the TM to learn effectively without exhaustive coverage of the input space.

2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

2970 **K EXPERIMENT RESULTS FOR THE k -BIT CASES**
29712972 **K.1 EXPERIMENT RESULTS FOR NOISE FREE CASE**
29732974 In this experiment⁷, we tested the TM on a 5-bit scenario using both a single sub-pattern and multiple
2975 sub-patterns. For the single sub-pattern case, the pattern $(1, 0, 1, 0, 1)$ was used with parameters
2976 $m = 3, T = 5, s = 3, Th = 3$, and $N = 100$. Here we configure $T > m$ deliberately to make
2977 $u_1 > 0$ always true. For the multiple sub-patterns case, the pattern $(1, 0, 1, 0, 0)$ was added in
2978 addition with $m = 5, T = 2, s = 3, Th = 2$, and $N = 100$. In all cases, the TM achieved 100%
2979 convergence to the correct intended sub-pattern(s), demonstrating its reliable learning capability in
2980 the noise-free case.
29812982 **K.2 EXPERIMENT RESULTS WITH IRRELEVANT BITS**
29832984 We first evaluated convergence in the single-sub-pattern case, where each sample contains 8 bits
2985 and includes one intended sub-pattern, $(1, 0, 1, 0, x, x, x, x)$, with x denoting irrelevant bits. The
2986 hyperparameters for this experiment were configured as $m = 3, T = 2, s = 3, Th = 2$, and
2987 $N = 100$.2988 For the multiple-sub-pattern case, we first introduced an additional intended sub-pattern, $(x, x, x, x,$
2989 $0, 1, 0, 1)$, and used the configuration $m = 5, T = 2, s = 3, Th = 2$, and $N = 100$. Thereafter, in
2990 order to test when the informative bits are unbalanced in numbers among sub-patterns, we replaced
2991 $(x, x, x, x, 0, 1, 0, 1)$ by $(x, x, x, x, x, 1, 0, 1)$.
29922993 All experiments demonstrated 100% convergence to the correct intended sub-pattern(s), confirming
2994 that the TM consistently identifies and converges to the desired patterns. These results highlight the
2995 robustness of the TM for samples with irrelevant bits.
29962997 **K.3 EXPERIMENT RESULTS FOR BOTH WRONG LABELS AND IRRELEVANT BITS**
29982999 To illustrate the performance of the TM in this case, we directly use the Noisy XOR problem and
3000 take its results from the literature (Tunheim et al., 2023). The Two-dimensional (2D) Noisy XOR
3001 dataset consists of 4×4 single-channel Boolean images. Figure 15 shows the patterns for Class 1
3002 (blue) and Class 0 (orange), positioned in the middle of the two upper rows, with x 's representing
3003 random Boolean values. The dataset is balanced, with equal numbers of examples for each class
3004 and sub-pattern. Class 1 corresponds to a diagonal line, while Class 0 represents either a horizontal
3005 or vertical line. Each image contains 4 informative bits and 12 irrelevant bits. To test robustness
3006 against label noise, 40% of the training labels are randomly inverted.
30073008 Using 2,500 training samples and 8,192 test samples, the TM implementation⁸ achieves a mean test
3009 accuracy of 99.99% (Tunheim et al., 2023), demonstrating strong robustness in the presence of noisy
3010 labels and irrelevant features.
30113013 Figure 15: Patterns representing Class 1 (blue) and Class 0 (Orange) for the 2D Noisy XOR
3014 dataset (Tunheim et al., 2023).
30153016 ⁷The code for validating the convergence can be found at <https://github.com/JaneGlim/Convergence-of-Tsetlin-Machine-for-the-AND-OR-operators>.
30173018 ⁸Here a Convolutional TM (CTM) is employed, where the learning principle is identical to the TM used in
3019 this work. The difference is that CTM processes 2-D images through patches.
3020

3024 L APPLICATION EXAMPLES OF TM

3025
 3026 Although our manuscript focuses on the theoretical properties of TMs, it is important to note that
 3027 TMs have already demonstrated strong empirical performance across a broad range of real-world
 3028 applications. Published results in these areas demonstrate that TMs can serve as competitive, inter-
 3029 pretable, and resource-efficient alternatives to neural networks. Below we provide a few examples
 3030 of real-world experiments from recent literature.

3031 **Low-Power and Edge Computing** A substantial line of research has explored TM deployments on
 3032 constrained hardware platforms. The REDRESS framework (Maheshwari et al., 2023) demonstrates
 3033 that TM-based models outperform binarized neural networks across multiple datasets while offering
 3034 5–5700 \times speed and energy gains on microcontroller hardware. Dedicated TM accelerators have
 3035 achieved state-of-the-art energy efficiency, including a 65nm implementation requiring only 8.6nJ
 3036 per MNIST frame (Tunheim et al., 2025b), currently the lowest reported for MNIST inference in
 3037 digital circuits. TM-based end to end keyword spotting system, TsetlinKWS (Lin et al., 2025),
 3038 operates at merely 16.58 μ W while maintaining high accuracy, enabled by compression techniques,
 3039 convolutional TM variants, and custom low-power hardware for Google Speech Commands Dataset.

3040 **Contextual Decision Making** TMs have also been successfully integrated into sequential decision-
 3041 making settings. By framing the classification task as a contextual multi-armed bandit problem, the
 3042 TM-Thompson sampling method outperforms other algorithms, including neural network-based ap-
 3043 proaches, on eight of the nine benchmark environments (Iris, Breast Cancer, MNIST, Adult, Cover-
 3044 type, MovieLens, Statlog, Noisy XOR, and Simulated Article) (Seraj et al., 2022).

3045 **Federated Learning** Recent work has explored TMs in privacy-preserving distributed training.
 3046 FedTMOS (Qi et al., 2025) introduces a one-shot federated learning (OFL) framework that replaces
 3047 conventional knowledge distillation with a TM-based, data-free mechanism. It significantly out-
 3048 performs its ensemble counterpart by an average of 6.16%, and the leading state-of-the-art OFL
 3049 baselines by 7.22% across various OFL settings. In addition, it results in significantly lower com-
 3050 plexity, reduced storage requirements, and improved computational and communication efficiency,
 3051 while retaining strong accuracy and scalability.

3052 **Image Recognition and Classification** TMs have been applied to standard benchmarks such as
 3053 MNIST (Tunheim et al., 2025b) and CIFAR-10 (Grønningssæter et al., 2024), as well as domain-
 3054 specific visual tasks. Recent work demonstrates that TM-based models can match or surpass neural
 3055 network performance while operating at significantly lower computational cost. For example, Mix-
 3056 CTME (Jeeru et al., 2025b) achieves robust classification of GPS jamming signals in spectrogram
 3057 data, outperforming conventional deep learning approaches (99.46% vs. 95.72% on an open bench-
 3058 mark dataset).

3059 **Natural Language Processing.** In NLP, TMs offer interpretable alternatives to dense neural em-
 3060 beddings and opaque text classifiers. TM Embeddings (Bhattarai et al., 2024) demonstrate that word
 3061 semantics can be captured using compact, human-readable logical clauses rather than latent vectors.
 3062 Other studies highlight the advantages of TM-based reasoning for interpretable and robust text clas-
 3063 sification (Yadav et al., 2022) as well as fake news detection (Bhattarai et al., 2022), where TMs
 3064 match or surpass prior baselines while providing transparent, clause-level explanations for their
 3065 predictions. Their performance has been consistently validated on widely used open benchmark
 3066 datasets.

3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077