Under review as a conference paper at ICLR 2026

CONVERGENCE ANALYSIS OF TSETLIN MACHINES
UNDER NOISE-FREE AND NOISY TRAINING CONDI-
TIONS: FROM 2 BITS TO k£ BITS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Tsetlin Machine (TM) is an innovative machine learning algorithm grounded
in propositional logic, achieving state-of-the-art performance across a variety of
pattern recognition tasks. Prior theoretical work has established convergence re-
sults for the 1-bit operator under both noisy and noise-free conditions, and for the
2-bit XOR operator under noise-free conditions. This paper first extends the anal-
ysis to the 2-bit AND and OR operators. We show that the TM converges almost
surely to the correct 2-bit AND and OR operators under noise-free training, and
we identify a distinctive property of the 2-bit OR case, where a single clause can
jointly represent two sub-patterns, in contrast to the XOR operator. We further in-
vestigate noisy training scenarios, demonstrating that mislabelled samples prevent
exact convergence but still permit efficient learning, whereas irrelevant variables
do not impede almost-sure convergence. Building on the 2-bit analysis, we then
generalize the results to the k-bit setting (k > 2), providing a unified treatment
applicable to general scenarios. Together, these findings provide a robust and
comprehensive theoretical foundation for analyzing TM convergence.

1 INTRODUCTION

The Tsetlin Machine (TM) is a classification algorithm. A TM (Granmo, 2018) organizes clauses,
each associated with a team of Tsetlin Automata (TAs) (Tsetlinl [1961), to collaboratively capture
distinct sub—patterns[ for a certain class. A TA, which is the core learning entity of TM, is a kind of
learning automata (Zhang et al.| 2020} |Yazidi et al.,[2019; [Omslandseter et al, [2022)) that tackles the
multi-armed bandit problem, learning the optimal action through the interaction with its environment
which gives rewards and penalties. In a TM, all TAs play in a game orchestrated by the TM’s
feedback tables. Each TA takes care of one literal of input, which takes boolean values of either
0 or 1. Literals are basically features of the input data. A TA decides to “Include” or “Exclude”
the literal, i.e., to consider or not to consider the feature in the final classification. A clause is a
conjunction of all included literals, representing a sub-pattern of a certain class. Once distinct sub-
patterns are learned by a number of clauses, the overall pattern recognition task is completed by a
voting scheme from the clauses.

The TM and its variants (Granmo et al} 2019} [Abeyrathna et all,[2021}; [Darshana Abeyrathna et al.}
[2020; [Sharma et al., 2023) have been applied to diverse tasks, including word sense disambigua-

tion (Yadav et al., 2021c), aspect-based sentiment analysis (Yadav et al., [2021b), novelty detec-
tion (Bhattarai et al.,[2021)), interpretable text classification (Yadav et al. [Yadav et al.| [2022)),
federated learning (Q1 et al.l [2025), signal classification (Jeeru et al., 2025ab), and contextual ban-
dits 2022), where they often match or surpass state-of-the-art methods. As a symbolic
model, the TM offers transparent learning and inference (Granmo et al., 2025}, [Bhattarai et al., 2024}
[Abeyrathna et all, 2023}, [Rafiev et al.] [2022)). Its reliance solely on logical operations also makes
it hardware-friendly and energy-efficient (Maheshwari et al. 2023} [Rahman et all, 2022} [Kishore]
let all 2023}, Tunheim et al, 2025ab). Appendix [L] provides a more detailed account of real-world
application examples.

'The concept of sub-pattern will be found in the example given in Section
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The TM is proven to almost surely convergence to the Identity/NOT operator with 1-bit input
in (Zhang et al., |2022), where the role of the hyperparameter s is also revealed. In (Jiao et al.
2022), TM’s convergence to the XOR operator with 2-bit input was proven, highlighting the func-
tionality of the hyperparameter 7T'. In this paper, we first analyze the 2-bit AND and OR operators
using noise-free training samples. We then examine the convergence properties of AND, OR, and
XOR under noisy conditions, including scenarios with incorrect labels and irrelevant inputs. Finally,
we extend these results to the general k-bit case.

This paper differs from previous studies in several key aspects. While (Zhang et al.| 2022)) used
stationary distribution analysis of discrete-time Markov chains (DTMC), the current study focuses
on absorbing states. For XOR (Jiao et al., 2022), where sub-patterns are bit-wise exclusive, TM
learns and converges to sub-patterns individually. In contrast, the OR operator’s sub-patterns share
features (e.g., [r1 = 1, x5 = 1] and [z = 1, z2 = 0] share x; = 1), allowing joint representation.
We show that TM can effectively learn and represent these shared features, making the convergence
process distinct. Additionally, this paper examines the role of Type II feedback, which was omitted
in the prior XOR convergence study. Most notably, we analyze the convergence properties of the
AND, OR, and XOR operators under noisy training samples, and extend these results to the general
k-bit case, thereby making the analysis comprehensive and conclusive.

It is worth noting that learning k-bit operators with or without noise, is a well-studied problem. For
example, numerous studies in concept learning and probably approximately correct learning have
extensively explored this topic (Valiant,|1984; Haussler et al., 1994; Mansour & Parnas||1998;|Belaid
et al} [2025). While many elegant methods exist for learning conjunctions or disjunctions, their
existence does not necessarily imply that the TM converges to such operators in the same manner.
TM employs a unique approach, learning from samples to construct conjunctive expressions and
coordinating these expressions across various sub-patterns, which merits its own dedicated analysis.

2 NOTATIONS OF THE TM

To make the article self-contained, we present the TM notation. For more details on the inference
and training concept, please refer to Appendix

The input of a TM is indicated as X = [z1, 2, ..., Z,], where ;. € {0,1}, k = 1,2,...,0,and o
is the number of features. A literal is either x, in the original form or its negation —x. A clause is a
conjunction of literals. Each literal is associated with a TA. The TA is a 2-action learning automaton
whose job is to decide whether to Include/Exclude its literal in/from the clause, based on the current
state of the TA. A clause is associated with 20 TAs, forming a TA team. A TA team is denoted in
general as g;i = {TAZ,J [1 < k' < 20}, where k' is the index of the TA, j is the index of the TA
team/clause (multiple TA teams form a TM), and i is the index of the TM/class to be identified (A
TM identifies a class, multiple TMs identify multiple classes).

Suppose we are investigating the it" TM whose job is to identify class i, and that the TM is composed
of m TA teams. Then C}(X) can be used to denote the output of the §*" TA team, which is a
conjunctive clause:

Training : C; (X) = (ké\gl a:k) A (ké\gl —\wk) , foré&;, & # 0, o
J J
L for &1, € = 0.
Testing : C;(X) — (ké\gt :Dk) A (ké\sl —\mk) , for 5]-7 fj 10, ®
J J
0, for ¢, € = 0.

In Egs. (EI) and , fj‘ and EJ‘ are defined as the sets of indexes for the literals that have been included

in the clause. f? contains the indexes of included original inputs, zj,, whereas gj contains the indexes
of included negated inputs, —xy.

Each clause represents a sub-pattern associated with class ¢ by including a literal (a feature or its
negation) if it contributes to the sub-pattern, or excluding it when deemed irrelevant. Multiple
clauses, i.e., the TA teams, are assembled into a complete TM to sum up the outputs of the clauses
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[ (CH(X)) = Y Ci(X), where C'(X) is the set of clauses for class i. The output of the TM
j=1

0, for fs~(C"(X)) <Th
1, for fs~(CY(X)) > Th’
predefined threshold for classification. This is indeed a voting scheme.

is further determined by the unit step function: §° = { where Th is a

Note that the TM can assign polarity to each TA team (Granmol|2018]), and one can refer to Appendix
[Alfor more information. In this study, for ease of analysis, we consider only positive polarity clauses.
Nevertheless, this does not change the nature of TM learning.

Example: We use TM learning the OR logic as an example. A sample is classified into the OR class
if its two bits and label follow the OR logic: 01 = 1,10 =-1,11 = 1, 0r 0 0 = 0. Note that once
the TM learns the pattern outputting 1, it inherently learns the complementary pattern outputting 0.
Hence the TM’s learning and reasoning can be understood primarily as identifying the pattern that
results in an output of 1. In the OR logic, sub-patterns outputting 1 are 0 1, 1 0, and 1 1, and can be
represented by clauses —x1 A xo, 1 A "9, and z1 A o, respectively.

A clause is learned by a TA team, and a TM can be composed of multiple TA teams. A TA team is
a set of TAs, each responsible for handling one literal. A literal is an input feature, in this example,
1 Or X2, or the negation of it: -1 or —xo. In this example, each TA team consists of four TAs,
managing four literals: z;, —x1, 2, —T2, respectively.

A TA decides, by its current state (which changes according to the state-transition probabilities as
shown in Table[I] and Table [2), whether to Include or Exclude its literal in/from the final clause. In
a TA team of four TAs, if TA; includes x1, TAs excludes —x1, TA3 excludes x5, and TA, includes
—Z9, the resulting clause from this TA team will be z; A —xs.

A TM learns the pattern of the OR relationship from the input samples that follow the OR logic
(training). As the training result, some TA teams converge to clauses like —x1 A x2, others to
x1 A "T9, Or 1 A X2, all outputting 1. The process of determining whether an input conforms
to the OR logic involves summing the outputs of all the clauses. Let’s assume we have three TA
teams, each converging to one of the sub-patterns, then the sum is sum = (-1 A x2) + (21 A
—29) + (1 A x2). If a test sample {[z1, 23], y} = {[0,1],1} is put into the TM, the output will be
sum = (1A1)+(0A0)+ (0A1) =140+ 0 = 1, indicating one TA team votes for positive
classification. If the threshold T'h is defined as 1, as sum > T'h, TM evaluates the sample following
the OR logic (testing).

Training: In the training of a TM, the labeled data (X = [z1, 22, ..., 2,], ¥') is fed into the TM,
where the TAs are guided by the feedback defined in Tables [T|and [2] Type I Feedback is triggered
when the training sample has a positive label: y* = 1, while Type II feedback is utilized when
y® = 0. s controls the granularity of the clauses. NA means not applicable. Examples demonstrating
TA state transitions per feedback tables can be found in Section 3.1 in (Zhang et al.|[2022). In brief,
Type I feedback reinforces true positive and Type II feedback fights against false negative.

Value of the clause C’; (X) 1 0

Value of the Literal xj,/—xy, 1 0 1 0
P(Reward) | ==X NA 0 0

Include Literal P(Inaction) 1 NA s—1 s—1
P(Penalty) 0 NA i I
P(Reward) 0 1 1 1

Exclude Literal P(Inaction) % 521 ~:1 3:1
P(Penalty) s=1 0 0 0

Table 1: Type I Feedback — Feedback upon receiving a sample with label y® = 1, for a single TA
to decide whether to Include or Exclude a given literal xy /—xj into €. NA means not applica-
ble (Granmo, 2018]).

To avoid situations where a majority of the TA teams learn a subset of sub-patterns, forming an
incomplete representatio the hyperparameter 7' is used to regulate the resource allocation. The
strategy works as follows (Granmo) 2018)):

*In the OR example, one should avoid to have a majority of TA teams converge to =1 A T2 to represent
the sub-pattern of [0, 1], and ignore the other sub-patterns [1, 0] and [1, 1].
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Value of the clause C} (X) 1 0
Value of the Literal x, / —xy, 1 0 1 0
P(Reward) 0 NA 0 0

Include Literal P(Inaction) | 1.0 NA 1.0 1.0
P(Penalty) 0 NA 0 0
P(Reward) 0 0 0 0
Exclude Literal P(Inaction) 1.0 0 1.0 1.0
P(Penalty) 0 1.0 0 0

Table 2: Type Il Feedback — Feedback upon receiving a sample with label y* = 0, for a single TA
to decide whether to Include or Exclude a given literal z /—xy, into CJZ». (Granmo, [2018)).

Generating Type I Feedback. If the label of the training sample X is y® = 1, we generate, in
probability, Type I Feedback for each clause C; € C* according to:
T — max(~T, min(T, 5 (C(X))))

uy = 5T . 3

Generating Type II Feedback. If the label of the training sample X is y' = 0, we generate, again,
in probability, Type II Feedback to each clause C; € C* according to:

T + max(—7T, min(T, fs~(C*(X))))

= o7 . (C))
Here 7' is a positive integer, with its maximum value equal to the total number of clauses. When
multiple sub-patterns exist, 7" limits the maximum number of clauses that can be allocated to each
sub-pattern. Briefly speaking, when the number of clauses representing one sub-pattern increases,
learning from samples that correspond to that sub-pattern will decrease as the probability of trigger-
ing update will decrease. Once at least 7" clauses have learned a particular sub-pattern, any samples
matching that sub-pattern will no longer trigger TM updates (the probability of triggering feedback
is 0). This prevents additional clause resources from being spent on a subpattern that is already
considered learned (with T' clauses representing it). With an appropriate choice of 7', the clause
resources can be balanced across different sub-patterns, ensuring convergence of the system. In ad-
dition, 7" plays a crucial role in maintaining convergence when irrelevant bits are present. Further
insights and discussions on the role of " are provided in the proofs.

u2

3 CONVERGENCE ANALYSIS OF THE AND OPERATOR

A TM has converged when the states of its TAs do not change any longer. We assume that
the training samples are noise free, i.e., P(y =1jz1 = 1,22 =1) = ,P(y =0jz1 =0,z =1) =
1,P(y=0|z1 =1,22 =0) = 1, P (y = 0]z1 = 0,22 = 0) = 1. We also assume the training samples
are independently drawn at random, and the above four cases will appear with non-zero probability,
which means that all of the four types of samples will appear for infinite times.

Because the considered AND operator has only one sub-pattern of input, i.e., x; = 1,29 = 1, that
will trigger a true output, we employ one clause in this TM, and we thus can ignore the indices of the
classes and the clauses in the notation in the proof. After simplification, TAL’J becomes TA,, and
C1 becomes C. Since there are two input parameters, namely x; and x, we implement four TAs
in the clause, i.e., TA1, TAs, TAg3, and TA4. TA; has two actions, i.e., including or excluding ;.
Similarly, TAs corresponds to including or excluding —z;. TA3 and TA, determine the behavior
of z9 and —x4, respectively.

Once the TM converge correctly to the intended operation, the resulting clause will be z; A 2, with
the actions of TA1, TA,, TA3, and TA, being I, E, I, and E, respectively. Here we use “I” and “E”
as abbreviations for include and exclude respectively.

Theorem 1. Any clause will converge almost surely to x1 A\xo given noise free AND training samples
in infinite time when uy > 0 and ugy > 0.

The complete proof of Theorem|T]is in Appendix [B] We here outline the main steps of the proof.

The condition u; > 0 and uy > 0 guarantees that all types of samples are provided to the TM and no
specific type is blocked by Eqs. (3) and (@) during training. The goal of the proof is to show that the
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system transitions will guarantee that there is a unique absorbing state of the TM and the absorbing
state has the actions of TA;, TA,, TA3, and TA,4 to be I, E, I, E, respectively, corresponding to the
expression x1 A xs.

To simplify the analysis of joint TA transitions, we use quasi-stationary analysis by freezing the
transitions of the TAs for the first input bit and focusing on the transitions of the TAs corresponding
to the second input bit. Clearly, there are four possibilities when freezing the first bit ;. We name
them as cases: Case 1: TA; = E, TA, = 1, i.e, include —x;. Case 2: TA; = I, TA, = E,
i.e., include z;. Case 3: TA; = E, TA, = E, i.e., exclude both z; and —x;. Case 4: TA; =1,
TA, =1, i.e., include both z; and —z;.

In each of the above four cases, we analyze individually the transition of TA3 (TA,4) with a given
current action, under different actions of TA, (TA3). We index the possibilities as situations: Sit-
uation 1. We study the transition of TA3 when its current action is “Include”, and when TAy is
frozen to be “Include” or “Exclude”. Situation 2. We study the transition of TA3 when its current
action is “Exclude”, and when TA, is frozen to be “Include” or “Exclude”. Situation 3. We study
the transition of TA4 when its current action is “Include”, and when TAj is frozen to be “Include”
or “Exclude”. Situation 4. We study the transition of TA, when its current action is “Exclude”, and
when TAj3 is frozen to be “Include” or “Exclude”.

Within each of the situation, there are 8 possible instances, determined by 4 possible combinations
of the input samples of x; and x5, and the two possible frozen TA actions, i.e., Include and Exclude.

As an example, we randomly select an instance in Case 1, Situation 1. The selected instance is when
the training sample is ([1 = 1, xz2 = 1], y = 1), and TA4 is E. For this instance, the training sample
will trigger Type I feedback because y = 1. Based on the current status of the TAs, the clause is in
the form C' = —z1 A x2, which evaluates to O based on the input training sample. In Situation 1, the
studied TA is TA3, whose corresponding literal is zo = 1. Given y = 1, clause value 0, literal value
1, we go to Table (1] the third column of transition probabilities for “Include Literal”, and find the
transition of TAj3 to be: the penalty probability % and the inaction probability =1. To indicate the
transitions of TA3, we have plotted the transition diagram in Fig. [[] Note that the overall transition
probability is uq %, where u; is defined in Eq. . Here, we have assumed u©; > 0.

I E
1
Urg

Penalty O/\‘O/NO O

Reward O O O O

Figure 1: Transition of TA3 when its current action is Include, TA;, TA,, and TA,’s actions are
Exclude, Include, and Exclude, respectively, upon a training sample (1 = 1, 22 = 1,y = 1).

Similar to the example instance, we derive a total of 128 transition instances, which can be further
summarized into the overall transition behavior of TA3 and TA,4. These overall transitions reveal
the directional dynamics of the two TAs, from which we observe that the unique absorbing state for
TA3 and TA4 is (I, E), given that TA; and TA are fixed in states I and E, respectively.

The transitions of TA; and TA; can be analyzed in the same manner as those of TAg and TA,.
Based on this, we conclude that the system has a unique absorbing state in its full dynamics, with
TA;, TAy, TAs, and TA, adopting the actions I, E, I, and E, respectively, and the TAs ultimately
settling in their respective deepest states.

4 CONVERGENCE ANALYSIS OF THE OR OPERATOR
We assume the training samples for the OR operator are noise free (i.e., Eq. @)), and are indepen-
dently drawn at random. All these four cases will appear with non-zero probability.

Ply=1llz1 =1l,22=1)=1,P(y=1|z; =0,z2 = 1) =1, 5)

P(y=1llz1 =1,22 =0)=1,P(y =0|z1 = 0,22 =0) = 1.

Theorem 2. The clauses in a TM can almost surely learn the 2-bit OR logic given noise free training
samples (shown in Eq. ) in infinite time, when T' < [ 3 |.
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| Theorem L

LemmalT]

Lemmal[Z]|

Lemma[d]]| |Lemma[3]] |Lemmal[3]

Figure 2: The dependence for the proof of Theorem

The proof of the theorem requires Lemma [TfLemma [5] and their dependence is shown in Fig. [2|
Clearly, there are three sub-patterns for the OR operator. In Lemma [I] we will show that any clause
is able to converge and absorb to an intended sub-pattern when the training sample of only one
sub-pattern is given, and when u; > 0 and us > 0. In Lemma 2] we will show that the TM will
not absorb when more sub-patterns jointly appear in the training samples and when u; > 0 and
up > 0. These two lemmas will be utilized in the proof of Lemma [3] Lemma [2] also reveals the
non-absorbing nature of TM for the OR operator when the functionality of 7' is not enabled, i.e.,
when u; > 0 and ug > 0. This confirms the necessity of enabling the functionality of T" in order to
converge to an absorbing state that fulfills the OR operator, to be indicated by Lemma 3} Lemma [5]
Specifically, Lemma [3}Lemma [5|analyze the system behavior when 7 is enabled and how T should
be configured for the TM to converge to the OR operator. They guarantee that when the system
reaches an absorbing state, the intended sub-patterns will have a number of clauses no less than 7'
while the unintended sub-pattern will have O clause. Then the OR operator can be inferred by setting
Th = T'. In what follows, we will present and prove the lemmas.

Lemma 1. For any one of the three sub-patterns resulting in y = 1, shown in Egs. (6)-(8), the TM
can converge to the intended sub-pattern when noise free training samples following this sub-pattern
are given, and when uy > 0, ug > 0.

P(y=1lz1 =122 =1)=P(y =0]z1 = 0,32 =0) =1, 6
P(y=1z1=0,22=1)=P(y=0[z1 =0,z =0) =1, @
P(y=1llzy =1,22=0)=P(y=0[z1 =0,22 =0) = 1. ()]

The proof of Lemma [I]involves demonstrating convergence for three sub-patterns: those governed
by Eqs. (@), (7), and (8). These analyses build upon the convergence proofs for the XOR and AND
operators. For the sub-pattern in Eq. (6), transition diagrams in Appendix [B] confirm that the TAs
converge to TA; =1, TA; = E, TA; =1, and TA4 = E, when input samples [x; = 0, 22 = 1] and
[1 = 1,22 = 0] are excluded. The other two sub-patterns are proven using similar principles. Full
details are provided in Appendix [C|

From Lemma [I] we show that the clauses converge to the intended sub-pattern when the training
samples follow that specific sub-pattern. In contrast, Lemma [2| will show that the system becomes
non-absorbing when training samples contain two or more sub-patterns. In particular, we prove that
the TM is non-absorbing for samples following Eq. (3) and Eqs. (O)—(TT) when u; > 0 and ug > 0.

Py=1llz1 =1,z2=1)=P(y=1llz1 = 1,22 =0) ©)
=P(y=0]z1 =0,z0 =0) =1,
Py=1llz1 =l,z0 =1)=P(y =1lz1 =0,z2 = 1) (10)
=P(y=0|z1 =0,z2 =0) =1,
P(y=1llz1 = 1,20 =0)=P(y =1lz1 =0,z2 = 1) an

=P (y=0]z;y =0,z0 =0) = 1.

Lemma 2. The TM becomes non-absorbing if any two or more of the three sub-patterns jointly
appear in the training samples, as shown in Egs. @), (9-(I1), when u; > 0, uy > 0.

The proof of Lemma[2|can be found in Appendix[D] Lemma2]tells us that if we always give TM the
training samples from all sub-patterns without blocking the learnt patterns by using 7" via Egs. (3)
and (@), the system is non-absorbing. In other words, if we want to have the TM converge to the
OR operator in an absorbing state, it is critical to utilize the feature of 7' to block any incoming
training samples from updating the learnt sub-patterns. Specifically, we need to configure 7" (1) so
that the absorbing states exist and (2) confirm that the absorbing states follows the OR operator. In
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what follows, we will, through Lemmas [3}5] show how T" via Egs. (3) and () can guarantee the
convergence and how the value of 7" should be configured.

Let’s revisit the functionality of 7. T can block the training samples from updating a learnt sub-
pattern. More specifically, if the number of the clauses reaches 7" for a certain sub-pattern, the new
training samples of this sub-pattern will be blocked by the TM. There are three sub-patterns in OR
operator. When the number of clauses for each of the three sub-patterns reaches 7', all training
samples associated with Type I feedback are blocked. Simultaneously, if none of the samples for
Type II feedback trigger any change to the states of the TAs, the TM reaches an absorbing state. In
Lemma 3] we detail the necessity and sufficiency of the absorbing state.

Lemma 3. The system is absorbed if and only if (1) the number of clauses for each intended sub-
pattern reaches T, i.e., fx(C(X)) = T, VX = [r1 = 0,22 = 1] or [x1 = 0,22 = 1] or
[x1 = 0,29 = 1], and (2) no clause is formed only by a negated literal or negated literals.

The proof of Lemma [3] can be found in Appendix [E} In Lemma [3] we find the conditions of the
absorbing state. In the next Lemma, we will show how to set up the value of T" so that the number
of clauses for each intended sub-pattern can indeed reach T'.

Lemma 4. T < |m/2] is required so that the number of clauses for each intended sub-pattern can
reach T.

Proof of Lemma 4 There are three intended sub-patterns in the OR operator. Given m clauses in
total, to make sure each one has at least 7" votes, we have 37" < m. This requires 7' < |m/3]| (T is
an integer). However, the nature of the OR operator offers the possibility to represent 2 sub-patterns
jointly. For example, 1" clauses in the form of x; will result in the number of clauses being 1" for
each of the following sub-patterns, i.e., [t1 = 1,20 = 0] and [x; = 1,22 = 1]. If there are other
T clauses representing the remaining sub-pattern, in total 27" clauses can garantee that each of the
intended sub-patterns is represented by 7" clauses. We thus have 7' < |m/2]. Note that the fact
that two sub-patterns can be jointly represented by one clause has been observed and confirmed in
experiments shown in Section|l]

When we have a smaller 7', different sub-patterns may be represented by distinct clauses. However,
when T > |m/2], there will always be one or two sub-patterns that cannot obtain a number of T
clauses to represent them. For this reason, the maximum integer value is T' = [m/2]. ]

In Lemma we show that the input sample [z = 0,22 = 0] will never cause the number of clauses
associated with this unintended sub-pattern to reach or exceed 7'. This is to avoid any possible false
positive upon input [x; = 0,22 = 0] in testing.

Lemma 5. When absorbing, the sample from the unintended sub-pattern, i.e., [t1 = 0,29 = 0],
will never lead to the number of clauses representing this unintended sub-pattern becoming greater
than or equal to T'.

Proof of Lemma 5}: To have a positive output from [z; = 0,22 = 0], the clause should be in the
form of C' = -z or C' = =g or C' = -2y A —x2. It has already shown in the proof of Lemma 3]
that Type II feedback will eliminate such clauses. In fact, when the system is absorbed, no clause
will be in the form of C' = —z; or C = —xg or C' = =1 A —x4. For this reason, [x1 = 0,29 = 0]
will never lead to the number of clauses greater than or equal to T'.

Proof of Theorem 2t Based on Lemmas we understand that if 7 < |[m/2] holds, Type
I feedback will eventually be blocked and Type II feedback will eventually only give “inaction”
feedback. In this situation, no actual transition will be triggered and thus the system reaches the
absorbing state. Before absorbed, the system moves back and forth in the intermediate states. Once
absorbed, any one of the intended sub-patterns will have the number of clauses for that sub-pattern
no less than 7" and the unintended sub-pattern will have O clauses. We thus have the OR logic almost
surely by setting a threshold Th = T and conclude the proof. |

Now let’s study a simple example with m = 2, T = 1. Here, C; = z; and C; = x5 can be an
instance for an absorbing case. C; = x1 and Cy = —x1 A x5 also works. Clearly, the clauses can
be in various forms, as long as the conditions in Lemma [3] fulfill. These converged clauses are not
necessarily in the exact form of the three sub-patterns, which is distinct to that of the XOR operator.

Remark 1. Although both AND and OR operators converge, the approaches are different. For AND
operator, the system is converged because the clauses become eventually absorbed to the intended
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pattern upon Type I and Type Il feedback, even if the functionality of T is disabled (uy > 0 and
ug > 0). As the TM enables the functionality of T' by default, the system will be absorbed when
T clauses converge to x1 N x2, before all clauses converge to this pattern. However, for the OR
operator, the functionality of T' is critical because the TM is non-absorbing if u; > 0 and uy > 0.
The absorbing state of the OR operator is achieved because the functionality of T blocks all Type I
feedback and Type II feedback gives only “Inaction” feedback. The concept of convergence for the
OR operator is similar to that of XOR, but the form of clauses after absorbing varies due to the
possible joint representation of sub-patterns in OR.

Remark 2. When T is greater than half the number of clauses, i.e., T > |m/2], the system will
not have an absorbing state. We conjecture that the system can still learn the sub-patterns in an
unbalanced manner, as long as T is not configured too close to the total number of clauses m.

Given T' > |m/2], Type I feedback cannot be completely blocked and the TM is non-absorbing.
Nevertheless, if 7" is not close to m, there will be clauses that possibly learn distinct sub-patterns.
In addition, Type II feedback can avoid the form of C' = =1 or C = —x5 or C' = -1 A —xo from
happening. Therefore, with T'h > 0, the TM may still learn the OR operator with high probability.

5 REVISIT THE XOR OPERATOR

Let us revisit the proof of XOR operator. As stated in (Jiao et al.|[2022)), when the system is absorbed,
the clauses follow the format C' = z1 A -2 or C' = —xq A x5 precisely. In other words, a clause
with just one literal, such as C' = z1, cannot absorb the system. The reason is that the sub-patterns
in XOR operator are mutual exclusive, i.e., the sub-patterns cannot be merged in any way. Although
Type I feedback can be blocked when T" clauses represent one sub-pattern using one literal, the Type
II feedback can force the other missing literal to be included. For example, when 7 clauses happens
to converge to C' = z1, the Type I feedback from any input samples of ([z1 = 1,29 = 0],y = 1) will
be blocked. In this situation, the Type II feedback from ([z1 = 1,22 = 1],y = 0) will encourage
the clause to include —x5. This is because upon a sample ([z7 = 1,29 = 1],y = 0), we have Type
II feedback, C' = z; = 1, and the studied literal is ~z5 = 0. When the TA for excluding —z5 is
considered, a large penalty, i.e., a penalty in probability 1, is given to the TA, moving it towards
action Include, and thus C' = x; eventually becomes C' = x; A —x3. Following the same concept,
we can analyze the development for C = —xz1, C = x5, and C' = -5, which will eventually
converge to C' = —x1 A x2 or C = x1 A —x2, upon Type II feedback.

6 CONVERGENCE ANALYSIS UNDER RANDOM NOISE

We studied the convergence properties of AND, OR, and XOR operators under training samples
with noise. The noise type is noisy completely at random (Frénay & Verleysen, 2013), categorized
as wrong labels and irrelevant input variables. A wrong label refers to an input that should be labeled
as 1 but is instead labeled as 0, or vice versa. An irrelevant input variable, on the other hand, is one
that does not contribute to the classification. We demonstrate that, with wrong labels, the TM does
not converge to the intended operators but can still learn efficiently. With irrelevant variables, the
TM converges to the intended operators almost surely. Experimental results confirmed these findings
(Appendix [J). We summarize the main findings in this section. The proof details can be found in
Appendix [ and Appendix

Theorem 3. The TM is non-absorbing given training samples with wrong labels for the AND, OR,
and XOR operators.

Remark 3. The non-absorbing property of TM indicates that there is a non-zero probability that
it cannot learn the intended operator. The primary reason for the non-absorbing behavior when
wrong labels are present is the statistically conflicting labels for the same input samples. These
inconsistency causes the TAs within a clause to learn conflicting outcomes for the same input. When
a clause learns to evaluate an input as 1 based on Type I feedback, samples with a label of 0 for
the same input prompt it to learn the opposite. This conflict in labels confuses the TM, leading to
back-and-forth learning.

Remark 4. Although wrong labels will make the TM not converge (not absorbing with 100% ac-
curacy for the intended logic), via experiments, we can still find that the TM are able to learn the
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operators efficiently, shown in Appendix [J| This property aligns with the concept of PAC learn-
able (Mansour & Parnas) [1998) or e-optimality (Zhang et al] 2020), although a formal proof re-

mains open.

Theorem 4. The clauses in a TM can almost surely learn the 2-bit AND logic given training samples
with q irrelevant input variables in infinite time, ¢ > 0, when T' < m.

Theorem 5. The clauses in a TM can almost surely learn the 2-bit XOR and OR logic given training
samples with q irrelevant input variables in infinite time, ¢ > 0, when T < |m/2|.

The proofs of Theorems [] and [3] follow the same underlying methodology (see Appendix [G). We
identify the conditions under which the TM becomes absorbed, and verify that the absorbing states
correspond to the intended subpattern(s), and no other absorbing states exist. From these proofs,
it becomes clear that 7' is critical for convergence. The presence of irrelevant bits can make the
TM non-absorbing if 7" is not functioning, whereas an appropriate configuration of 7' guarantees
convergence to the correct intended subpatterns.

Remark 5. An interesting observation is that the TM does not always exclude all irrelevant literals.
Our analysis and experiments reveal two distinct mechanisms through which TMs exhibit robustness
to irrelevant bits. When sufficient clause resources are available, the T clauses assigned to a sub-
pattern may include irrelevant bits while another T’ clauses include their negations, yet both sets vote
for the same target sub-pattern, effectively canceling out their influence. When clause resources are
limited, irrelevant bits tend to be excluded, and therefore do not affect the classification outcome.

7 CONVERGENCE ANALYSIS FOR k-BIT CASE

The analyses above focus on the 2-bit cases. In this section, we extend the results to the general
k-bit setting, where £ > 2. Since the 2-bit analyses rely heavily on exhaustive search, increasing
the number of bits immediately leads to a combinatorial explosion. To avoid this, we go from literal
level to clause level, by clustering the clause representations into three categories. By analyzing the
transition properties among these categories, rather than the literal states, we can demonstrate the
convergence behavior without being hindered by the exponential growth. We first present the main
theorems, followed by an outline of the proof. The full proofs are provided in Appendix [H]

We begin with the noise-free case. For the k-bit setting, the convergence analysis naturally splits into
two subcategories: cases with a single sub-pattern (analogous to the AND operator in the 2-bit case)
and cases with multiple sub-patterns (2 or more sub-patterns exist, analogous to OR or XOR in the
2-bit case). Formally, the single—sub-pattern category corresponds to the existence of a unique sub-
pattern among the 2* possible input combinations that is labeled as 1, while all others are labeled as
0 or remain undefined (where “undefined” means unlabeled). In contrast, the multiple—sub-pattern
category includes scenarios where more than one sub-pattern is labeled as 1.

Theorem 6. In the k-bit single sub-pattern category, any clause will converge almost surely to the
intended sub-pattern given noise free training samples in infinite time when uy > 0 and us > 0.

To prove Theorem [f] instead of examining all possible states of literals, we group the clause forms
into three categories and summarize their possible transitions. The clause forms are defined as
follows: (1) Exact match: The clause matches the intended sub-pattern exactly. A clause in this
form outputs 1 when the intended sub-pattern is presented (e.g., 1 A xo for the AND operator).
(2) Partial match: The clause does not fully match the intended sub-pattern but matches a subset
of it. Such a clause also outputs 1 for the intended sub-pattern (e.g., x1 in the AND case). (3)
Non-match: The clause matches neither the intended sub-pattern nor any subset of it. A clause in
this category outputs 0 when the intended sub-pattern is given (e.g., a1 for the AND case). The
proof shows that once the TM reaches a clause of type (1), the system becomes absorbed, whereas
(2) and (3) communicate. This guarantees the existence of a unique absorbing clause that represents
the intended sub-pattern.

Theorem 7. The clauses in a TM can almost surely learn the k-bit multiple—sub-pattern logic from
noise-free training samples in infinite time, provided that T < |m/e|, where e is the number of
sub-pattern clusters.

In Theorem [/} a sub-pattern cluster is defined as a group of sub-patterns that share one or more
common 1s in their corresponding input bits. For example, in the OR case, (0,1) and (1, 1) belong
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to the same cluster because they share a 1 in 5. In contrast, (1,0) and (0, 1) do not belong to the
same cluster, as they do not share any common 1s. We introduce the notion of sub-pattern clusters
because sub-patterns within the same cluster can potentially be represented jointly by a clause that
learns their shared feature. The proof of Theorem [7 follows the same structure as the proof of
Theorem 2] We first show that when multiple sub-patterns are present, the system becomes non-
absorbing if u; > 0 and uy > 0. Then, by configuring the hyperparameter 1" appropriately, we
can suppress further feedback once the clauses have captured all individual sub-patterns, thereby
ensuring convergence.

With irrelevant bits, we have the following conclusions.

Theorem 8. The clauses in a TM can almost surely learn the k-bit single sub-pattern logic given
training samples with q irrelevant input variables in infinite time, k > 2, ¢ > 0, when T < m.
Theorem 9. Consider training samples of fixed length n, and a set of sub-patterns indexed by 1,
where the i-th sub-pattern contains k; > 2 informative bits and q; = n — k; > 0 irrelevant bits. A
TM can almost surely learn all such multi-sub-pattern logic in infinite time when T < |m/e].

The proofs of Theorems|[8|and[9]follow the same concept as those of Theorems[@and[5] Experimental
insights of the convergence of the k-bit cases can be found in Appendix [K]

Remark 6. By moving from the restrictive 2-bit setting to a general k-bit formulation, the results
now capture the actual operating regime of all TM applications. Since practical TM systems uni-
versally rely on a preprocessing to transform any input data into booleanized k-bit feature repre-
sentations, the generalized theory developed here provides the first principled explanation of the
mechanism that govern the TM behavior in practical settings. Consequently, the theoretical findings
presented here offer a broadly applicable explanation for the convergence properties and perfor-
mance patterns repeatedly observed across diverse prior empirical studies.

8 INSIGHTS FOR PRACTICAL USAGE

We summarize here the insights from the proofs that are useful for the practical application of
the TM. First, the hyperparameter 7' plays a crucial role. If one can estimate the number of sub-
patterns and their clustering structure in a classification task, it becomes easier to select a good
initial value for T, reducing tuning effort and improving convergence. Second, while joint learning
of sub-patterns enables clauses to capture concepts more compactly, it also means that individual
sub-patterns may not appear explicitly, which can hinder interpretability since a single clause may
represent several sub-patterns simultaneously. Third, our robustness analysis shows that clauses can
accumulate irrelevant literals when many clauses are used, adding further interpretability challenges.
For applications where transparency is essential, limiting clause length or the number of clauses
may therefore be beneficial. To demonstrate practical relevance, we also include real-world TM
applications on publicly available benchmark datasets in Appendix [}

9 CONCLUSIONS

This work establishes a comprehensive theoretical framework for understanding the convergence
behavior of the TM. By extending prior results from the 1-bit setting to the 2-bit AND, OR, and
XOR operators, and further to the general k-bit case, we demonstrate that the TM reliably con-
verges under noise-free training and irrelevant variables. The analysis highlights the critical role of
T in both multi—sub-pattern scenarios and those involving irrelevant bits. The analysis also reveals
structural properties unique to certain operators, such as the ability of OR clauses to jointly encode
multiple sub-patterns. These insights not only clarify the learning dynamics of the TM but also
provide practical guidance for model design, hyper-parameter selection, and interpretability. Col-
lectively, the results reinforce the TM as a theoretically grounded and practically effective approach
to interpretable machine learning.
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A BRIEF OVERVIEW OF THE TM

We present the basics of TM here. Those who already are familiar with the concept and notations of
TM can ignore this appendix.

A.1 BAsiCc CONCEPT OF THE TM

The input of a TM is denoted as X = [z1, 22, ..., 2|, where 2 € {0,1}, k =1,2,...,0,and 0 is
the number of features. A literal is either the ;. being 0 or 1 in the original form or its negation —xy,
being 1 or 0. A clause is a conjunction of literals, and each literal is associated with a TA. The TA is
a 2-action learning automaton whose job is to decide whether to Include/Exclude its literal in/from
the clause, and the decision is determined by the current state of the TA.

Figure [3]illustrates the structure of a TA with two actions and 2NV states, where N is the number of
states for each action. This study considers N as a finite number, which is practical for real-world
applications. When the TA is in any state between 0 to [N — 1, the action “Include” is selected. The
action becomes “Exclude” when the TA is in any state between IV to 2N — 1. The transitions among
the states are triggered by a reward or a penalty that the TA receives from the environment, which,
in this case, is determined by different types of feedback defined in the TM (to be explained later).
A larger N expands the depth of the TA’s action-state space, enhancing its robustness. This benefit,
however, comes at the cost of longer convergence times to innermost states and greater memory
requirements.

A clause is associated with 20 TAs, forming a TA team. A TA team is denoted in general as Q} =

{TAi’,j |1 < k' < 20}, where k' is the index of the TA, j is the index of the TA team/clause (multiple
TA teams form a TM), and ¢ is the index of the TM/class to be identified (A TM identifies a class,
multiple TMs identify multiple classes).

Suppose we are investigating the 7" TM whose job is to identify class i, and that the TM is composed
of m TA teams. Then C’}(X) can be used to denote the output of the j** TA team, which is a
conjunctive clause:

For training:

i /\ Tk A /\ Tk |, for gz’ gl # 03
Cj(X) = ket hee 778 (12)
1, for &, & = 0.
For inference:
I /\ Tk A /\ Tk ) for 617 EZ % wa
Ci(X) = ke ke 7 (13)
0, for 5;-, f_; = 0.

In Egs. and , 5; and 5; are defined as the sets of indexes for the literals that have been in-
cluded in the clause. f} contains the indexes of included original (non-negated) inputs, zj, whereas

§; contains the indexes of included negated inputs, —xy. 5;, {; = () means not a single literal (fea-
ture) is included in the clause. Note that in propositional logic, an empty clause is typically defined
as having a value of 1. However, empirical results indicate that TMs generally achieve higher test
accuracy on new data when empty clauses are 0-valued. Therefore, during TM training, an “empty”
clause outputs 1 to encourage the TAs to include literals, following the feedback mechanisms of the

Include Exclude

RCI0MC S OITERC IS S

Reward (R) : --»  Penalty

Figure 3: A two-action Tsetlin automaton with 2V states (Jiao et al., 2022).
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Inputs Literals TA team TA decisions Output

ry —> TA"fj —> I(x1) or E(z1)
T <
r—s TAé’j —> I(—xq) or E(—x)
3 ——| TAY |— I(x2) or E(x2)
) <

22— | TAY  |— I(~x3) or E(—a2) Ci=

< Ty ——| TAL | |— I(z,) or B(z,)
‘/I"()

“To——>| TAL |— I(=z,) or E(=z,)

k//i X <decision of TA;;/J' )

Figure 4: A TA team G; consisting of 20 TAs (Zhang et al., 2022). Here I(x;) means “include z1”

and F(z1) means “exclude z;”.

TA team 1 — C4{(X)

TA team 2 — C4(X)

TA teamm — 1 |—— Ci,_,

Figure 5: TM voting architecture (Jiao et al., [2022)).

(X)

TAteamm |—— C&(X)

> Gi(X)

TM. In contrast, during TM testing, an “empty” clause outputs 0, indicating that it does not influence
the final classification decision since it does not represent any specific sub-pattern.

Figure {4 illustrates the structure of a clause and its relationship to its literals. Here, for ease of
notation, we define I(z) = x, I(—x) = —z, and E(z) = E(—x) = 1 in the analysis of the training
procedure, with the latter meaning that an excluded literal does not contribute to the output.

Multiple clauses, i.e., the TA teams, each of which in conjunctive form, are assembled into a com-
plete TM. There are two architectures for clause assembling: Disjunctive Normal Form Architecture
and Voting Architecture. In this study, we focus on the latter one, as shown in Figure[5} The voting

consists of summing the outputs of the clauses:
f(C(X)) = CiX),
j=1

where C*(X) is the set of trained clauses for class i.

The output of the TM, in turn, is decided by the unit step function:

;[0 for fs~(C"(X)) < Th,
o {1 for fs~(C'(X)) > Th,
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where T'h is a predefined threshold for classification. For example, the classifier (x1 A—z2)+(—z1 A
Z2) captures the XOR-relation given Th = 1, meaning if any sub-pattern is satisfied, the input will
be identified as following the XOR logic.

Note that for the voting architecture, the TM can assign polarity to each TA team (Granmo, [2018).
Specifically, TA teams with odd indices have positive polarity, learning from training samples with
label 1, while those with even indices have negative polarity, learning from training samples with
label 0. The only difference between these polarities is that the output of a clause associated with an
even-indexed TA team will be flipped to its negative. The voting consists of summing the polarized
clause outputs, and the threshold Tk is set to zero. For example, for the XOR operator with four
clauses, the learned clauses with positive polarity can be Cy = 1 A —z9 and C's = -2 A xo, while
the ones with negative polarity can be Cy = =1 A x5 and Cy = —x1 A —x9. In this case, when the
testing sample [x1 = 1,29 = 0] arrives, the sum of the clause values is 1. On the contrary, when
the testing sample [z = 0,25 = 0] arrives, the sum of the clause values is —1. In this way, with
Th = 0, the system’s decision range and tolerance is expected to be larger.

In this study, we consider only positive-polarity clauses for two reasons. First, the learning and
reasoning process of the TM can be completely explained from the perspective of learning patterns
that output 1, and negative-polarity clauses, which learn patterns that output 0, follow the same
procedure. Second, this simplification offers easier analysis and better understanding.

A.2 TRAINING PROCESS OF THE TM

The training process is built on letting all the TAs take part in a decentralized game. Training data
(X = [x1,22,...,70), ¥') is obtained from a data set S, distributed according to the probability
distribution P(X,y*). In the game, each TA is guided by Type I Feedback and Type Il Feedback
defined in Table [3]and Table [4] respectively. Type I Feedback is triggered when the training sample
has a positive label, i.e., y* = 1, meaning that the sample belongs to class ?. When the training
sample is labeled as not belonging to class 4, i.e., 4° = 0, Type II Feedback is utilized for generating
feedback. Examples demonstrating TA state transitions per feedback tables can be found in Section
3.11in (Zhang et al.|[2022). In brief, Type I feedback is to reinforce true positive and Type II feedback
is to fight against false negative.

The hyperparameter s controls the granularity of the clauses and a larger s encourages more literals
to be included in each clause, which also accelerates convergence and improves stability, but at the
cost of an increased risk of overfitting in practice. Smaller s generally leads to shorter clauses and
slower convergence in practice. A more detailed analysis on hyperparameters s and /N can be found
in (Zhang et al., [2022]).

Value of the clause C';(X) 1 0

Value of the Literal xy/—xy, 1 0 1 0
P(Reward) | =1 NA 0 0

Include Literal | P(Inaction) % NA 5=l os—l
P(Penalty) | 0 NA 1 1
P(Reward) | 0 i < 1

Exclude Literal | P(Inaction) % s;l s;l s;l
P(Penalty) | =1 0 0 0

Table 3: Type I Feedback — Feedback upon receiving a sample with label y = 1, for a single TA
to decide whether to Include or Exclude a given literal xy/—x} into Cj. NA means not applica-
ble (Granmo, 2018]).

To avoid the situation that a majority of the TA teams learn only one sub-pattern (or a subset of
sub-patterns) while ignore other sub-patterns, forming an incomplete representation’} the hyperpa-
rameter 7" is used to regulate the resource allocation. If the votes, i.e., the summation f5~(C*(X)),

3For example, for the OR operator, one should avoid the situation that a majority of TA teams converge to
—x1 A x2 to represent the sub-pattern of [0, 1], and ignore the other sub-patterns [1, 0] and [1, 1], making the
learning outcome biased/unbalanced. A proper configuration of 7" can avoid this situation.
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Value of the clause CJL(X) 1 0
Value of the Literal xy,/—xy, 1 0 1 0

PReward) | 0 NA 0 0
Include Literal | P(Inaction) | 1.0 NA 1.0 1.0
P(Penalty)

P(Reward) | 0 0 0 0
Exclude Literal | P(Inaction) | 1.0 0 1.0 1.0
P(Penalty) | 0 1.0 0 0

Table 4: Type Il Feedback — Feedback upon receiving a sample with label y = 0, for a single TA
to decide whether to Include or Exclude a given literal x/—xj into C}. NA means not applica-
ble (Granmo) 2018)).

for a certain sub-pattern X already reach a total of 7" or more, neither rewards nor penalties are pro-
vided to the TAs when more training samples of this particular sub-pattern are given. In this way, we
can ensure that each specific sub-pattern can be captured by a limited number, i.e., T', of available
clauses, allowing sparse sub-pattern representations among competing sub-patterns. Formally, the
strategy works as follows:

Generating Type I Feedback. If the label of the training sample X is y' = 1, we generate, in
probability, Type I Feedback for each clause C; € C*. The probability of generating Type I Feedback
is (Granmo, [2018)):

T — max(—T, min(T, f5~(C"(X)))) .

2T (16)

uy =
Generating Type II Feedback. If the lable of the training sample X is y® = 0, we generate, again,
in probability, Type II Feedback to each clause C'; € C'. The probability is (Granmoy 2018):

uy — L+ max(=T, min(T, f(C1(X))))
2 oT '

a7

After Type I Feedback or Type II Feedback is generated for a clause, each individual TA within
each clause is given a reward/penalty/inaction according to the probability defined in the Type I and
Type II feedback tables, and then the state of the corresponding TA is updated.

17
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B DETAILED PROOF OF THE CONVERGENCE OF THE AND OPERATOR

Proof: In this Appendix, we will prove Theorem [I] The condition u; > 0 and uy > 0 guarantees
that all types of samples for AND operator, following Eq. (I8), are always given and no specific type
is blocked during training. The goal of the proof is to show that the system transitions will guarantee
the actions of TA, TAy, TA3, and TA4 to be I, E, I, E, and these actions correspond to the unique
absorbing state of the system.

Ply=1lz1 =1,20=1) =1, (18)
P(y=0jzy =0,z =1)=1,
P(y=0jz; =1,20=0) =1,

(y=0 )

In Subsections we will describe the transitions of the system in an exhaustive manner. There-
after, in the Subsection[B.2] we summarize the transitions in Subsection[B.T|and reveal the absorbing
state of the system, which is the intended AND operator.

B.1 THE TRANSITIONS OF THE TAS

In order to analyze the transitions of the system, we freeze the transition of the two TAs for the first
bit of the input and study the transition of the second bit of input. Clearly, there are four cases for
the first bit, =1, as:

e Case 1: TA; =E, TA, =1, i.e., include —z;.

e Case2: TA; =1, TA; =E, i.e., include z;.

e Case 3: TA; = E, TA, = E, i.e., exclude both x; and —x1.
e Case4: TA; =1, TAy =1, i.e., include both x; and —x;.

In what follows, we will analyze the transition of the TAs for x5, given the TAs of x; frozen in the
above four distinct cases, one by one.

B.1.1 CASE 1: INCLUDE —x;

In this subsection, we assume that the TAs for first bit is frozen as TA; = E and TA; = 1, and
thus the overall joint actions of TAs for the first bit give “—z1”. In this case, we have 4 situations to
study, detailed below:

* Situationl: We study the transition of TA3 when it has “Include” as its current action, given
different actions of TA4 (i.e., when the action of TA is frozen as “Include” or “Exclude”).

* Situation 2: We study the transition of TA3 when it has “Exclude” as its current action,
given different actions of TA, (i.e., when the action of TAy is frozen as “Include” or
“Exclude”).

* Situation 3: We study the transition of TA 4 when it has “Include” as its current action, given
different actions of TAj3 (i.e., when the action of TAj3 is frozen as “Include” or “Exclude”).

e Situation 4: We study the transition of TA4 when it has “Exclude” as its current action,
given different actions of TAg (i.e., when the action of TAg is frozen as “Include” or
“Exclude”).

In what follows, we will go through, exhaustively, the four situations.
B.1.1.1 Study TAg with Action Include
Here we study the transitions of TAs when its current action is Include, given different actions of

TA,4 and input samples. For ease of expressions, the self-loops of the transitions are not depicted
in the transition diagram. Clearly, this situation has 8 instances, depending on the variations of
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the training samples and the status of TA,4, where the first four correspond to the instances with
TA 4 = E while the remaining four represent the instances with TA, = L.

Now we study the first instance, with 1 = 1, 2o = 1, y = 1, and TA,4 = E. Clearly, this training
sample will trigger Type I feedback because y = 1. Together with the current status of the other
TAs, the clause is determined to be C' = —x1 A x5 = 0 and the literal is xo = 1. From Table 3} we
know that the penalty probability is % and the inaction probability is % To indicate the transitions,
we have plotted the diagram, with the transitions for penalty below. Note that the overall transition

probability is uq %, where w4 is defined in Eq. . Here, we have assumed u©1 > 0.

Condition: 1 = 1, 22 = 1,y = 1,
TA, =E.
Thus, Type I, o = 1,
C = -] N\ Ty = 0.
1 E
%%

Penalty W O/.NO O
Reward O O O @)

We here continue with analyzing another example shown below. In this instance, it covers the
training samples: 1 = 1, z2 = 0, y = 0, and TA, = E. Clearly, the training sample will trigger
Type II feedback because y = 0. The clause output becomes C's = -1 A x2 = 0. Because we now
study TA 3, the corresponding literal is o = 0. Based on the information above, we can check from
Table ] and find the probability of “Inaction” is 1. For this reason, the transition diagram does not
have any arrow, indicating that there is “No transition” for TAj3.

Condition: 1 = 1, 220 = 0,y = 0,
TA,; = E.
Thus, Type II, z5 = 0,
C = -z N\ To =0.
I E

Penaty O O O O No transition

Reward O O O @)

The same analytical principle applies for all the other instances, and we therefore will not explain
them in detail. Instead, we just list the transition diagrams.

Condition: 1 = 0, xz2 = 1,y = 0,
TA, =E.

Thus, Type II, zo = 1,
C=-x1Nxy=1.

1 E

Peraty. OO £ O O No transition

Reward O O O @)

Condition: 1 = 0, xz2 = 0,y = 0,
TA4 =E.

Thus, Type II, z5 = 0,

C = 1 N\ T = 0.

I E
Penalty O O : O O No transition

Reward O O e
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Condition: z; = 1, 29 = 1,y = 1,
TA, =1L

Thus, Type I, zo = 1,

C =-x1 ANxog Ao = 0.

1 E

1
urg

Penalty ()/N O/NO O
Reward O O O O

Condition: 1 = 1, 23 = 0,y = 0,
TA, =1L

Thus, Type II, 2 = 0,

C =-z1 ANy A—xp =0.

1 E

Penalty O O ;O O No transition

Reward O O O @)

Condition: 1 = 0, x2 = 1,y = 0,
TA, =1
Thus, Type II, x5 = 1,
C=-x1 ANaxg Ao =0.
I E

Penalty O O O O No transition

Reward O O O O

Condition: y = 0, z2 = 0, y = 0,
TA, =1
Thus, Type II, z5 = 0,
C =-x1 ANaxg A—xo =0.
I E

Penalty O O : O O No transition

Reward O O O O
B.1.1.2 Study TAj3 with Action Exclude

Here we study the transitions of TA3 when its current action is Exclude, given different actions of
TA, and input samples. This situation has 8 instances, depending on the variations of the training
samples and the status of TAy. In this subsection and the following subsections, we will not plot the
transition diagrams for “No transition”.

Condition: 1 = 1, 20 = 1,y = 1,

TA, =E.
Thus, Type I, o = 1,
C = X = 0.

I E

Penalty O O O O

u 1%

Reward QO O o=
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Condition: 1 = 0, x2 = 0,y = 0,

TA, =E.
Thus, Type II, z3 = 0,
C= T = 1.

I E

up X 1

Penalty O OK\O'(_\O
Reward O O O O

Condition: 7 = 1,29 = 1,y = 1,
TA; =1

Thus, Type I, 2 = 1,
C:_‘Il/\_\l’gio.

1 E
Penalty O O O O

Reward O O O/NOal
H 111;
Condition: 1 = 0, x2 = 0,y = 0,
TA; =1
Thus, Type II, zo = 0,
C =21 AN—zg=1.
I E

up X 1

Penalty O OK\O'(_\O
Reward O O @) O
B.1.1.3  Study TA4 with Action Include

Here we list the transitions for TA, when its current action is Include.
Condition: 1 = 1, 20 = 1,y = 1,

TA3; =E.

Thus, Type I, mz2 = 0,

C =21 AN—zg=0.

I E
:Ul%

Penalty ()/N O/NO @)
Reward O @) O O

Condition: z; = 1, 29 = 1,y = 1,
TA; =1

Thus, Type I, x5 = 0,

C:_‘l‘l /\ZEQ/\—LZEQ:O-

I E

1
M

Penalty WWO O
Reward O O O @)
B.1.1.4 Study TA4 with Action Exclude

Here we list the transitions for TA, when its current action is Exclude.
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Condition: 1 = 1, 20 = 1,y = 1,

TA; =E.
Thus, Type I, m22 = 0,
C = T = 0.

I E

Penalty O O O O
Reward O O O/N O .
: ulg

Condition: z; = 0, z2 = 1,y = 0,
TA3 =E.
Thus, Type II, ~x2 = 0,
C = T = 1.
I E
uy X 1

Penalty O O'(\O'(_\O
Reward O O O O

Condition: 1 = 1, 20 = 1,y = 1,
TA; =1

Thus, Type I, ~z2 = 0,

C=-x1 N2y =0.

1 E
Penalty O O O O

Reward O O O/NOQI

ury
Condition: 1 = 0, xz2 = 1,y = 0,
TA; =1L
Thus, Type II, ~z2 = 0,
C = X1 A ro = 1.

I E
uy X 1

Penalty O OK\O'(_\O

Reward O O O O

B.1.2 CASE 2: INCLUDE z;

For Case 2, we assume that the actions of the TAs for the first bit are frozen as TA; = I and
TA, = E, and thus the overall joint action for the first bit is “z;”. Similar to Case 1, we also have 4
situations.

B.1.2.1 Study TAj3 with Action Include
Condition: 1 = 1, 20 = 1,y = 1,
TA, =E.
Thus, Type I, 2 = 1,
C = x1 N\ zo=1.

I E

Penalty O O O O

Reward ?pr\_/o O @)

upst
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Condition: z; = 1, 29 = 1,y = 1,
TA, =1
Thus, Type I, zo = 1,
C=x1 Nxog A9 =0.
I E
:Ul%

Penalty O/NO/NO O
Reward O O O O
B.1.2.2  Study TAg with Action Exclude

Condition: z; = 1, z9 = 1,y = 1,
TA, = E.
Thus, Type I, zo = 1,
C = xr1 = 1.
1 E
s—1

Ur—5-

Penalty O OK\O'(_\O
Reward O O O O

Condition: 1 = 1, 22 = 0,y = 0,
TA, =E.
Thus, Type II, z5 = 0,
C = Tr1 = 1.
I E

up X 1

Penalty O OK\OK_\O
Reward O O O O

Condition: 1 = 1, 20 = 1,y = 1,
TA, =1L

Thus, Type I, zo = 1,

C = X1 A X9 = 0.

I E
Penalty O O O O

Reward O O | O Oe
: Ul
Condition: x; = 1, 22 = 0, y = 0,
TA, =1
Thus, Type II, z5 = 0,
C=x1 N—xo = 1.
I E

up X 1

Penalty O OK\OK\O

Reward O O o O

B.1.2.3 Study r'FA4 with Action Include
Condition: 1 = 1, 22 = 1,y = 1,
TA3 = E.

Thus, Type I, mz2 = 0,
C = T N\ g = 0.
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I E
1
g

Penalty O/NO/.NO O
Reward O O @) O

Condition: z; = 1, z9 = 1,y = 1,
TA; =L

Thus, Type I, x5 = 0,

C=x1 Nxog AN 29 =0.

1 E

.“/1%

Penalty O/NO/NO O
Reward O O O O
B.1.2.4 Study TA4 with Action Exclude

Condition: 1 = 1, 20 = 1,y = 1,

TAs; = E.
Thus, Type I, x5 = 0,
C = xr1 = 1.

I E

Penalty O O O O

Reward O O O/NOD]

u1;

Condition: 1 = 1, 22 = 1,y = 1,
TA; =1
Thus, Type I, mz5 = 0,
C= 1 N\ T = 1.
I E

Penalty O O O O

Reward O O O/\’AODI

uly

B.1.3 CASE 3: EXCLUDE BOTH —x1 AND z;

For Case 3, we assume that the actions of TAs for the first bit are frozen as TA; = E and TA, = E,
with 4 situations. Note that in the training process, when all literals are excluded, C'is assigned to 1.

B.1.3.1 Study TAg3 with Action Include

Condition: 7y = 1, 22 = 1,y = 1,

TA, =E.
Thus, Type I, 2 = 1,
C = To = 1.

1 E
Penalty O O O O

Reward dpr\_/o O O
ui5= :

Condition: 1 = 1, 20 = 1,y = 1,

TA, =1L

Thus, Type I, zo = 1,

C=0.
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1 E
1
g

Penalty CD/N O/.NO O
Reward O O @) O

B.1.3.2 Study TAg3 with Action Exclude

Condition: 71 = 1, 29 = 1,y = 1,
TA, = E.
Thus, Type I, 2 = 1,
C=1.
I E
uls%l

Penalty O O(\O(\O
Reward O O O O

Condition: z; = 1, z9 = 0,y = 0,
TA, =E.
Thus, Type II, 2 = 0,
C=1.
I E

up X 1

Penalty O O'(\O'(_\O
Reward QO O O O

Condition: 3 = 0, z3 = 0,y = 0,
TA, = E.
Thus, Type II, x5 = 0,
C=1.
I FE

U1><1

Penalty O OK\O'(_\O

Reward O O O O

Condition: 71 = 1, 29 = 1,y = 1,
TA,; =1
Thus, Type I, 2 = 1,
C=0.
I E

Penalty O O O O

Reward O O O/NOD]
H ulg
Condition: 71 = 1, 29 = 0, y = 0,
TA, =1
Thus, Type II, z5 = 0,
C=1.
I E
uy X 1

Penalty O O'(A\O'(_\O

Reward O O O @)
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Condition: 1 = 0, x2 = 0,y = 0,
TA, =1L
Thus, Type II, 2 = 0,
C=1.
I E

up X 1

Penalty O O'(\O'(_\O
Reward QO O @) O
B.1.3.3 Study TA4 with Action Include

Condition: 1 = 1, 220 = 1,y = 1,
TA3; =E.
Thus, Type I, x5 = 0,
C = Lo = 0.
I E
E”’l%

Penalty O/NO/NO O
Reward O O O O

Condition: 1 = 1, 20 = 1,y = 1,
TA; =1

Thus, Type I, ~z5 = 0,

C = X9 N\ Ty = 0.

1 E

1
A

Penalty ()/N w O O
Reward O O O O
B.1.3.4 Study TA4 with Action Exclude

Condition: 1 = 1, 22 = 1,y = 1,
TA3; =E.

Thus, Type I, mz5 = 0,

C=1.

I E
Penalty O O O O

Reward O O O/NOD]
H u|;
Condition: 1 = 0, xz2 = 1,y = 0,
TA3; =E.
Thus, Type II, ~x2 = 0,
C=1.
I E
up X 1

Penalty O O(\O(\O
Reward O O O O

Condition: z; = 1, z9 = 1,y = 1,
TA; =L

Thus, Type I, -z, = 0,

C=1.
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1 E
Penalty O O O O
Reward O O O/NODI
: Uiy

Condition: 1 = 0, xz2 = 1,y = 0,
TA; =1
Thus, Type II, —z2 = 0,
C=1.
I E
up X 1

Penalty O OK\OK_\O

Reward O O O O

B.1.4 CASE 4: INCLUDE BOTH —x1 AND x7

For Case 4, we assume that the actions of TAs for the first bit are frozen as TA; = I and TA; =1,
and thus C' = 0 always. Similarly, we also have 4 situations, detailed below.

B.1.4.1 Study TAg3 with Action Include

Condition: 1 = 1, 20 = 1,y = 1,

TA, =E.
Thus, Type I, 2 = 1,
C=0.

I E

1
wy

Penalty O/NO/NO O
Reward O O O O

Condition: 1 = 1, 20 = 1,y = 1,

TA, =1
Thus, Type I, 2 = 1,
C=0.

I E

?11%

Penalty O/NO/NO O
Reward O O @) O
B.1.4.2 Study TA3 with Action Exclude

Condition: 1 = 1, 20 = 1,y = 1,

TA, = E.
Thus, Type I, 2 = 1,
C=0.

I E

Penalty O O O O
Reward O O o= 1
: urg

Condition: z; = 1, z9 = 1,y = 1,
TA, =1

Thus, Type I, zo = 1,

C=0.
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1 E
Penalty O O O O

Reward O O O/NODI

'ul;

B.1.4.3 Study TA 4 with Action Include

Condition: 7y = 1, 22 = 1,y = 1,

TA3; = E.
Thus, Type I, mz5 = 0,
C=0.

I E

ul

Penalty WWO O
Reward O O O O

Condition: 1 = 1, 20 = 1,y = 1,

TA; =1
Thus, Type I, ~z2 = 0,
C=0.

I E

1
urg

Penalty O/NO/.NO O
Reward O O O O
B.1.4.4 Study TA,4 with Action Exclude

Condition: 1 = 1, 20 = 1,y = 1,
TA3; =E.

Thus, Type I, mz2 = 0,

C=0.

1 E
Penalty O O O O

Reward O O O/NODI

'ul;

Condition: 1 = 1, 20 = 1,y = 1,

TA; =1.
Thus, Type I, mz2 = 0,
C=0.

I E

Penalty O O O O

Reward O O O/NODl

ury

So far, we have gone through, exhaustively, the transitions of TA3 and TA 4 for all the cases (all pos-
sible training samples and system states). Hereafter, we can summarize the direction of transitions
and study the convergence properties of the system for the given training samples, to be detailed in
the next subsection.

B.2 SUMMARIZE OF THE DIRECTIONS OF TRANSITIONS IN DIFFERENT CASES

Based on the analysis above, we summarize here what happens to TA3 and TA4, given different
status (Cases) of TA; and TA,. More specifically, we will summarize here the directions of the
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transitions for the TAs. For example, “TA3 = E” means that TA3 will move towards the action
“Exclude”, while “TA4 = E or I’ means TA, transits towards either “Exclude” or “Include”.

Scenario 1: Study TA; =TI and TA, =L

Case 1, we have: Case 3, we have:
TA3; = E. TA3 = E.
TA4 = E. TA4 = E.
Case 2, we have: Case 4, we have:
TA3; = E. TA3 = E.
TA4 = E. TA4 = E.

From the facts presented above, we can confirm that regardless the state of TA; and TA,, if TA3 =
I and TA4 =1, they (TA3 and TA,) will eventually move out of their states.

Scenario 2: Study TA3 =Iand TA; = E.

Case 1, we have: Case 3, we have:
TA; = Eorl TA, = Eorl
Case 2, we have: Case 4, we have:
TA, = E. TA4 = E.

For Scenario 2 Case 2, we can observe thatif TA; =1, TA, = E, TA; =1, and TA; = E, TA3 will
move deeper to “include” and TA, will go deeper to “exclude”. It is not difficult to derive also that
TA; will move deeper to “include” and TA, will transfer deeper to “exclude” in this circumstance.
This tells us that the TAs in states TA3 =1, TA, = E, TA; = I, and TA, = E, reinforce each other
to move deeper to their corresponding directions and they therefore construct an absorbing state of
the system. If it is the only absorbing state, we can conclude that the TM converge to the intended
“AND” operation.

In Scenario 2, we can observe for Cases 1, 3, and 4, the actions for TA3 and TA, are not ab-
sorbing because the TAs will not be reinforced to move monotonically deeper to the states of the
corresponding actions for difference cases.

For Scenario 2, Case 3, TA4 has two possible directions to transit, I or E, depending on the input
of the training sample. For action exclude, it will be reinforced when training sample x; = 1 and
xo = 1 is given, based on Type I feedback. However, TA, will transit towards “include” side when
training sample x; = 0 and z2 = 1 is given, due to Type II feedback. Therefore, the direction of the
transition for TAy is I or E, depending on the training samples. In the following paragraphs, when
“or” appears in the transition direction, the same concept applies.

Scenario 3: Study TA3 = Eand TA, =1L

Case 1, we have: Case 3, we have:
TAs = Eorl TA3 = Eorl.
TA, = E. TA4 = E.

Case 2, we have: Case 4, we have:
TAg, = EorlL TA3 = E.

TA, = E. TA4 = E.

In Scenario 3, we can see that the actions for TA3 = E and TA, = I are not absorbing because the
TAs will not be reinforced to move deeper to the states of the corresponding actions.

Scenario 4: Study TA3 = E and TA, = E.
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Case 1, we have: Case 3, we have:
TA3 = lorE. TA3 =1L

TA,; = TorE. TA, = TorE.
Case 2, we have: Case 4, we have:
TA3 =1 TA3 = E.

TA4 = E. TA4 = E.

In Scenario 4, we see that, the actions for TA3 = E and TA, = E seem to be an absorbing state,
because the states of TAs will move deeper in Case 4. After a revisit of the condition for Case 4, i.e.,
include both —z; and x1, we understand that this condition is not absorbing. In fact, when TA; and
TA, both have “Include” as their actions, they monotonically move towards “Exclude”. Therefore,
from the overall system’s perspective, the system state TA; =1, TA; =1, TA3 = E,and TA; = E
is not absorbing. For the other cases in this scenario, there is no absorbing state.

Based on the above analysis, we understand that there is only one absorbing condition in the system,
namely, TA; = I, TA; = E, TA3 = I, and TA, = E, for the given training samples with AND
logic. The same conclusion applies when we freeze the transition of the two TAs for the second bit
of the input and study behavior of the first bit of input. Therefore, we can conclude that the TM with
a clause can learn to be the intended AND operator, almost surely, in infinite time horizon. We thus
complete the proof of Theorem I} [ |
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C PROOF OF LEMMA

The probability of the training samples for the noise-free OR operator can be presented by the
following equations.
y=1lz; =120 =1 1, (19)

1

P( )=
Ply=1z1 =022 =1) =1,
Py=1lz; =129 =0) =

P(y=0lz; =0,20 =0) =
Clearly, there are three sub-patterns of z; and zo that will give y = 1, i.e, [z; = 1, o = 1],
[t1 =1, 3 = 0], and [z; = 0, x2 = 1]. More specifically, Eq. can be split into three cases,
corresponding to the three sub-patterns:

7

Ply=1lz1=1,20=1) =1, (20)
P(y=0lzy =0,20 =0) =1,
Py=1lz; = 0,20 = 1) = 1, Q1)
P(y=0|z; =0,20 =0) =1,

and
Py=1z; =120 =0) =1, (22)
P(y=0|z; =0,20=0) = 1.

In what follows, we will show the convergence of the three sub-patterns, i.e., Lemmam

The convergence analyses of the above three sub-patterns can be derived by reusing the analyses
of the sub-patterns of the XOR operator plus the AND operator. For the sub-pattern described by
Eq. (20), we can confirm that the TAs will indeed converge to TA; = I, TA; = E, TAs = 1,
and TA, = E, by studying the transition diagrams in Subsection [B]when input samples of [z = 0,
zo = 1]and [z1 = 1, x9 = 0] are removed. In this case, the directions of the transitions for different
scenarios are summarized below.

Scenario 1: Study TAz =TI and TA, =L

Case 1, we have:
TA3; = E.
TA4 = E.
Case 2, we have:
TA3; = E.
TA4 = E.

Case 3, we have:
TA3; = E.
TA4 = E.
Case 4, we have:
TA3 = E.
TA4 = E.

Scenario 2: Study TA; =T and TA; =E

Case 1, we have:
TA3 = E.
TA4 = E.
Case 2, we have:
TA3 =1
TA4 = E.

Case 3, we have:
TA3 =L
TA4 = E.
Case 4, we have:
TA3 = E.
TA4 = E.
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Scenario 3: Study TAs = Eand TA, = 1.

Case 1, we have:
TAs = Eorl.
TA4 = E.

Case 2, we have:
TA3 = E.

TA4 = E.

Case 3, we have:
TA; = EorL
TA4 = E.

Case 4, we have:
TA3 = E.

TA4 = E.

Scenario 4: Study TA3 = E and TA, = E.

Case 1, we have:
TAs = 1orE.
TA4 = E.

Case 2, we have:
TA3 =L

TA4 = E.

Case 3, we have:
TA3 =1
TA4 = E.
Case 4, we have:
TA3 = E.
TA4 = E.

Comparing the analysis with the one in Subsection [B.2] there is apparently another possible ab-
sorbing case, which can be observed in Scenario 2, Case 3, where TAs = I and TA4 = E, given
TA; = E and TA; = E. However, given TA3 = I and TA, = E, the TAs for the first bit, i.e.,
TA; = E and TA; = E, will not move only towards Exclude. Therefore, they do not reinforce
each other to move to deeper states for their current actions. For this reason, the system in TAg =1,
TA4 = E, TA; = E, and TAy; = E, is not in an absorbing state. In addition, given TA3 = I and
TA4 = E, TA; and TA, with actions E and E will transit towards I and E, encouraging the overall
system to move towards I, E, I, and E. Consequently, the system state with TA; = I, TA; = E,
TA; =1, and TA, = E is still the only absorbing case for the given training samples following
Eq. (20).

For Eq. @]), similar to the proof of in Lemma 1 in (Jiao et al.|[2022)), we can derive that the TAs will
converge in TA; = E, TA; =1, TA3; = I, and TA, = E. The transition diagrams for the samples
of Eq. (21)) are in fact a subset of the ones presented in Subsection 3.2.1 and Appendix 2 of (Jiao
et al., 2022), when the input samples of [z; = 1 and x2 = 1] are removed. We summarize below
only the directions of transitions.

The directions of the transitions of the TAs for the second input bit, i.e., zo/—x2, When the TAs
for the first input bit are frozen, are summarized as follows (based on the subset of the transition
diagrams in Subsection 3.2.1 of (Jiao et al., [2022)).

Scenario 1: Study TAg =Tand TAy, =1

Case 1: we have
TA3 —E
TA4 —E
Case 2: we have
TA3 —E
TA; — E
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Case 3: we have
TA3 —E
TA4 —E
Case 4: we have
TA3 —E
TA4 —E

Scenario 2: Study TAz =Iand TA, = E.

Case 1: we have
TA3 — 1
TA4 —E
Case 2: we have
TA3 —E
TA4 —E

Case 3: we have
TA; — 1
TA4 —E
Case 4: we have
TA3 —E
TA4 —E

Scenario 3: Study TA; =E and TA, =1L

Case 1: we have
TA3 — I, orE
TA4 —E

Case 2: we have
TA3 —E

TA4 —E

Case 3: we have
TAs; — 1, 0orE
TA4 —E

Case 4: we have
TA4 —E

Scenario 4: Study TA3 =E and TA, =E.

Case 1: we have
TA3 —1
TA4 —E
Case 2: we have
TA3 —E
TA4 —E

Case 3: we have
TA4 —E
Case 4: we have
TA4 —E

The directions of the transitions of the TAs for the first input bit, i.e., x1/—x1, when the TAs for
the second input bit are frozen, are summarized as follows (based on the subset of the transition
diagrams in Appendix 2 of (Jiao et al., [2022)).

Scenario 1: Study TA; =Tand TA; =1.

33



Under review as a conference paper at ICLR 2026

Case 1: we have
TA]_ —E
TA2 —E
Case 2: we have
TA]_ —E
TA2 —E

Case 3: we have
TA1 —E
TA2 —E
Case 4: we have
TA1 —E
TA2 —E

Scenario 2: Study TA; =Tand TA; =E.

Case 1: we have
TA, — E
TA2 —E
Case 2: we have
TA1 —E
TA2 —E

Case 3: we have
TA1 —E
TAQ —E
Case 4: we have
TA1 —E
TAQ —E

Scenario 3: Study TA; =Eand TA; =L

Case 1: we have
TA; —1,0orE
TA2 —E

Case 2: we have
TA1 —E

TA2 —1

Case 3: we have
TA1 —1
TAQ —1
Case 4: we have
TA1 —E
TAQ —E

Scenario 4: Study TA; =E and TA, = E.

Case 1: we have
TA1 — 1, orE
TAQ —E

Case 2: we have
TA1 —E

TAQ — 1

Case 3: we have
TA1 —E
TA2 —E
Case 4: we have
TA1 —E
TA2 —E
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By analyzing the transitions of TAs for the two input bits with samples following Eq. (ZI), we can
conclude that TA; = E, TA; =1, TA3 = I, and TA, = E is an absorbing state, as the actions of
TA,-TA, reinforce each other to transit to deeper states for the current actions upon various input
samples. There are a few other cases in different scenarios that seem to be absorbing, but in fact
not. For example, the status TA3 = I and TA,; = E seems also absorbing in Scenario 2, Case 3,
i.e., when TA; = E and TA, = E hold. However, to make TA; = E and TA; = E absorbing,
the condition is TAg = I and TAy = I, or TA3 = E and TA, = E. Clearly, the status TAg = 1
and TA, = Tis not absorbing. For TA3 = E and TA, = E to be absorbing, it is required to have
TA; = Iand TA, = I to be absorbing, or TA; = I and TA, = E to be absorbing, which are not
true. Therefore, all those absorbing-like states are not absorbing. In fact, when TA3 =1, TA4 = E,
TA; = E, and TAy = E hold, the condition TA; = I, TA; = E will reinforce TA; and TA,
to move towards E, I, which is the absorbing state of the system. Based on the above analysis on
the transition directions, we can thus confirm the convergence of TM when training samples from

Eq. are given.

Following the same principle, we can also confirm that the TAs will converge to TA; =1, TA; = E,
TA3 = E, and TA, = I when training samples from Eq. (22) are given, according to the proof of
Lemma 2 in (Jiao et al.,[2022).
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D PROOF OF LEMMA 2]

Proof of Lemma[2; To show the non-absorbing property when samples following Eq. (9) are given,
we need to show that the absorbing states for Eq. @) disappear when ([x1 = 1,22 = 0],y = 1) is
given in addition, and the same applies for Eq. (8) when ([x; = 1,29 = 1],y = 1) is given.

We first show that the absorbing state of TA; = I, TA; = E, TA3 = I, TA, = E, for sub-pattern
([x1 = 1,29 = 1], y = 1) as shown in Eq. @) disappears when sub-pattern ([z; = 1,22 = 0],y =
1) is given in addition. Indeed, TA3 will move toward E when ([x; = 1,22 = 0],y = 1) is given,
because a penalty is given to TA3 as shown in Fig.[6]

1 E

M%

Penalty O/\"O/'\"O O

Reward O O O O

Figure 6: Transition of TA3 when its current action is Include, TA;, TAo, and TA,’s actions are
Include, Exclude, and Exclude, respectively, upon a training sample (x1 = 1, 22 = 0,y = 1).

Clearly, when ([z1 = 1,29 = 0],y = 1) is given in addition, TA3 has a non-zero probability to
move towards “Exclude”. Therefore, “Include” is not the only direction that TA3 moves to upon
the new input. In other words, ([z; = 1,25 = 0],y = 1) will make the state TA; = I, TA; = E,
TA3; =1, TA; = E, not absorbing any longer. For other states, the newly added training sample
will not remove any transition from the previous case. For this reason, the system will not have any
new absorbing state. Therefore, when ([z7 = 1,22 = 0],y = 1) is given in addition, the absorbing
state disappears and the system will not have any new absorbing state.

Following the same concept, we show that the absorbing state for ([z; = 1,20 = 0],y = 1)
shown in Eq. @), ie.,, TA; = 1, TA; = E, TA; = E, TA; = 1, disappears when sub-pattern
([x¢1 = 1,29 = 1],y = 1) is given in addition. Indeed, TA, will also move towards E when
([x1 = 1,29 = 1],y = 1) is given, as shown in Fig.

1 E

.ﬂl%

Penalty O/NO/NO O

Reward O O O O

Figure 7: Transition of TA4 when its current action is Include, TA;, TAo, and TA3’s actions are
Include, Exclude, and Exclude, respectively, upon a training sample (x1 = 1, 22 = 1,y = 1).

Understandably, because of the newly added sub-patterns, the absorbing states in Eqs. (€) and
disappear and no new absorbing states are generated. In other words, the TM trained based on
samples from Eq. (9) becomes non-absorbing.

Following the same concept, we can show that the system becomes non-absorbing for Egs. (3)), (10),
and (TT) as well. For the sake of conciseness, we will not provide the details here. In general, any
newly added sub-pattern will involve a probability for the learnt sub-pattern to move outside the
learnt state, making the system non-absorbing. |
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E PROOF OF LEMMA 3]

Proof of Lemma[3} In Lemma[2] the TM is non-absorbing if the functionality of 7" is disabled (i.e.,
uy > 0, ug > 0). Therefore, for the OR operator to converge, the functionality of 7" is critical to
block any feedback in order to form an absorbing state.

By design, TM will either be updated via Type I feedback or Type II feedback. We show via (1)
the condition when Type I feedback is blocked and then show via (2) when any update from Type 11
feedback is not triggered. When both happen, the system will not be updated anymore and thus
absorbed.

To prove (1) in Lemma 3] we show that the system is not absorbed when 0 or 1 intended sub-pattern
is blocked by 7. When 2 intended sub-patterns are blocked, the system will guide the clauses to
learn the remaining intended sub-pattern. Only when all 3 intended sub-patterns are blocked by 7',
the system will stop updating based on Type I feedback.

Clearly, when no intended sub-pattern is blocked by T, the training samples provided to the system
follow Eq. (3). In other words, no samples corresponding to a specific sub-pattern are blocked.
Under such training conditions, as shown in Lemma [2] the TM is non-absorbing. When only 1
intended sub-pattern is blocked by 7', the system is updated based on samples following Eqs. (9),
(TO), or (IT)), which is also non-absorbing.

We look at the cases when two intended sub-patterns are blocked by 7" but the third one is not
blocked. In other words, the number of clauses for each of the two intended sub-patterns reaches
at least T, and the number of clauses for the remaining sub-pattern is less than 7. In this case,
only one type of samples from Egs. @) or (7) or (8) will be provided to the Tl\/ﬂ Based on Lemma
we understand that all clauses, including the ones that have learnt the two blocked sub-patterns,
will be forced to learn the not-yet-blocked sub-pattern. This is due to the fact that only the samples
following the not-yet-blocked sub-pattern are triggering the update for the TM. In this circumstance,
as soon as the not-yet-blocked sub-pattern also has 7' clauses, i.e., when all three sub-patterns are
blocked by T at the same time, Type I feedback are blocked completely.

Note that the samples corresponding to the not-yet-blocked sub-pattern will encourage the learnt
clauses (i.e., the clauses for the blocked sub-patterns) to move out from the learnt sub-patterns,
and this may cause the number of clauses for the blocked sub-pattern being lower than 7' (thus
unblocked), again. If this happens before the number of clauses for the not-yet-blocked sub-pattern
reaches 7', at least two sub-patterns will be in the non-blocked state, and the system becomes one of
the three cases described by Eqgs. (9), (I0) or (IT). In other words, even if an absorbing state exists
after two intended sub-patterns are blocked by T, the system may not monotonically move towards
the absorbing state. Nevertheless, as soon as all three intended sub-patterns are blocked by reaching
T clauses, the Type I feedback will be blocked.

Here we prove (2) in Lemma [3] Type II feedback is only triggered by training sample ([x1 = O,
x2 = 0], y = 0) in the OR operator. For Type II feedback, based on Table 2] a transition is triggered
only when a penalty occurs, i.e., when the excluded literal has a value of 0 and the clause evaluates
to 1. Specifically for the OR operation, this only happens when C' = —21 A =29 or C = —x; or
C = —x9. For C = —x; A —x2, based on the Type II feedback, the TA with the action “excluding
1" and the TA with the action “excluding x2” will be penalized. In other words, the actions of the
two TAs for z1 and x2 will be encouraged to move from exclude to include side. As soon as one of
the TAs (or occasionally both of them) becomes include, the clause will become C' = x1 A—x1 A—xa
or C = —x1 A 2 A —xo (or occasionally C' = x1 A =z A x2 A —xs). In this case, input [z = 0,
9 = 0] will always result in O as the clause value and then the Type II feedback will not update the
system any longer. Following the same concept, for C' = —x2, the Type II feedback will encourage
the excluded z; to be included so that the clause becomes C' = x7 A —xy. The same applies to
C = —x1, which will eventually become C' = —x1 A x5 upon Type II feedback. When all clauses
in C = —x5 or C' = —xy are also updated to C' = x1 A -9 or C' = —x1 A 2, no Type II feedback
is triggered up on any input sample.

We summarize the requirements for an absorbing state:

“More precisely speaking, all samples will be fed into the TM, but only samples corresponding to the not-
yet-blocked sub-pattern will be used by the TM for training purpose.
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* For any sample X following sub-pattern [x; = 1,20 = 1], or [xt1 = 1,29 = 0], or
[r1 = 0,22 = 1], the number of clauses for that sub-pattern, i.e., fs(C*(X)), must be
at least 7', no matter in which form the clauses are constructed. This will block Type I
feedback.

* There are no clauses with literal(s) in only negated form, such as C' = —x; or C = -9

or or C' = —x; A —xy. This guarantees that no transition will happen upon any Type II
feedback.
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F ANALYSIS OF THE TM WITH WRONG TRAINING LABELS

In this appendix, we analyze the transition properties of the TM when training samples contain
wrong labels.

There are two types of wrong labels:

* Inputs labeled as 0, which should be 1.
* Inputs labeled as 1, which should be 0.

We begin by examining the first type of wrong label, followed by the second type, and then address
the general case.

F.1 THE AND OPERATOR WITH THE FIRST TYPE OF WRONG LABELS

To formally define training samples with the first type of wrong label, we use the following formulas:

Ply=1lzy =122 =1) =a,a € (0,1) (23)
y=0jzy =120 =1)=1—a,

y=0|z1 =0,20=1) =1,

y=0]z; =1,20 =0)
y=0lz1 =0,20 =0) = 1.

P
P
P :
P

In this case, the label for training samples representing the intended logic [z; = 1,29 = 1] is
y = 1 with probability @ and y = 0 with probability 1 — a. In other words, in addition to the

training samples detailed in Subsection B} a new training sample will appear to the system, namely
([t1 = 1,20 = 1],y = 0).

Lemma 6. The TM exhibits non-absorbing for the training samples defined in Eq. (23).

Proof: To prove this lemma, we analyze the TM’s transitions as follows. First, we examine the
transitions assuming u; > 0 and we > 0, similar to the analysis in Subsection as detailed in
Subsection [F1.T] Next, we study the impact of 7" to determine whether it leads to convergence
(absorption), as discussed in Subsection [F.1.2]

F.1.1 TRANSITION OF TM WITH AND OPERATOR GIVEN u; > 0 AND ug > 0

Following the approach in Subsection [B| we examine the transitions of TAg and TA, when the
additional training sample ([z1 = 1,75 = 1],y = 0) is introduced, considering Cases 1 to 4 as
defined in Subsection [B] Since y = 0 for this sample, only Type II feedback can be triggered to
cause transitions. As TAj is responsible for the literal x5, which is always 1 for this sample, Type
IT feedback does not trigger any transitions for TA3z. Therefore, we focus on studying the potential
transitions of TA, in the four cases defined in Subsection [B.1}

In Case 1, where TA; = E and TAy = 1, the clause value will always be 0 for the training sample
because —x; is included in the clause, regardless of the action TA4 takes. According to the Type 11
feedback transition table, no transition occurs when C' = 0, so no transitions are triggered for TA,.
Similarly, in Case 4, where TA; = I and TAy = I, the clause value will always be 0 due to the
presence of x; A -z in the clause. As a result, there are no transitions for TA 4.

In Case 2, where TA; = I and TA, = E, the literal z; will always appear in the clause. When
TA, = I, the clause includes the literal -z, which results in a clause value of 0. Therefore, no
transition is triggered. However, when TA 4 = E, the literal 21 will always appear in the clause, and
the value of x5 is 1, making the clause value 1 regardless of TAj3’s action (whether it includes or
excludes x3). According to the Type II feedback table, with the literal value of -z being 0 and the
clause value being 1, the transition for TAy = E is:

Condition: 1 =1,z =1,y = 0.
Thus, Type II, —z2 = 0,
C=1.
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1 E
up X 1

Penalty O OK‘\OK_\O
Reward O O O @)

In Case 3, where TA; = E and TA, = E, the clause value is fully determined by TA3 and TA,.
When TA,’s action is to include, the clause value is 0 for this sample because it includes the literal
-9, resulting in no transition for TA 4. However, when TA4’s action is to exclude, the clause value
is always 1, regardless of TA3’s action. Specifically, when TAj3 includes s, the clause value is 1,
as the literal value of x5 is 1. When it is exclude, all literals are excluded and then the clause value
becomes 1 by definition. By examining the transitions of TA,4, we can summarize the following
graph:
Condition: 1 = 1,20 =1,y = 0.
Thus, Type II, mx2 = 0,
C=1.

I E

up X 1

Penalty O OK\O'(_\O
Reward O O O O

We summarize the directions of the transitions when the new wrongly labeled sample is added, with
the newly added actions highlighted in red.

Scenario 1: Study TA; =T and TA, =L

Case 1, we have: Case 3, we have:
TA3; = E. TA3; = E.
TA4 = E. TA4 = E.
Case 2, we have: Case 4, we have:
TA3; = E. TA3; = E.
TA4 = E. TA4 = E.

Scenario 2: Study TA; = I and TA, =E.

Case 1, we have: Case 3, we have:
TA3; = E. TA3 =1L
TA;=EorlL TA; = Eorl.
Case 2, we have: Case 4, we have:
TA; = L TA3 = E.

TA4 = EorlL TA4 = E.

Scenario 3: Study TA; = Eand TA, = 1.

Case 1, we have: Case 3, we have:
TA; = EorL TAs; = EorL
TA, = E. TA, = E.

Case 2, we have: Case 4, we have:
TA3 =EorlL TA3 = E.

TA, = E. TA, = E.

Scenario 4: Study TA3 = E and TA, = E.

Case 1, we have: Case 3, we have:
TA3 = lorE. TA3 =L

TA; = TorE. TA4 = TorE.
Case 2, we have: Case 4, we have:
TA3 =L TA3 = E.

TA4 = Eorl TA4 = E.
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Clearly, the only absorbing state (TA3 = I and TA, = E) becomes non-absorbing due to the newly
added transition (the red I for TA4). As a result, the system is non-absorbing when w; > 0 and
ug > 0.

F.1.2 TRANSITION OF TM WITH AND OPERATOR WHEN 7' CAN BLOCK TYPE I FEEDBACK

Based on the above analysis, we understand that the system is non-absorbing when u; > 0 and
ug > 0. Next, we examine whether it is possible for the system to become absorbing when 7" can
block Type I feedback.

When T clauses have learned the intended pattern X = [z1 = 1,25 = 1], i.e., when f5~(C*(X)) =
T, then u; = 0 holds, and Type I feedback is blocked. In this situation, only Type II feedback
can occur. Due to the presence of the wrong label, ie., ([zr1 = 1,22 = 1],y = 0), Type II
feedback triggers transitions in the TAs that have already learned the intended logic (([z1 = 1,22 =
1],y = 1)). For example, Type II feedback will cause a transition in TAs of a learned clause
C = z1 N x2, making the clause deviate from its learned state (e.g., changing from x1 A x2 to
1 A g A —x2). Once this happens, u; > 0 holds, and Type I feedback is triggered by samples of
([x1 = 1,29 = 1],y = 1), encouraging TAs in this clause to move back toward the action Exclude.
Thus, even when T blocks all Type I feedback samples (setting ©; = 0), the system remains non-
absorbing due to the wrong label and Type II feedback. Notably, no value of f5~(C*(X)) can make
bothu; =0and us =0 simultaneouslyﬂ Therefore, Type I and Type II feedback cannot be blocked
simultaneously, ensuring the system is non-absorbing. |

F.2 THE AND OPERATOR WITH THE SECOND TYPE OF WRONG LABELS

To properly define the training samples with the second type of wrong label, we employ the follow-
ing formulas:

Ply=1llz1=LlLa=1)=1, 24)
P(y=0jzy =1,z =0) =a,a € (0,1)
Ply=1lz1=122=0)=1—aq,

P(y=0]z1 =0,20=1) =1,

P(y=0]z1 =0,20=0) =1.

In this case, clearly, label of the training samples [x; = 1,25 = 0] are wrongly labeled as 1 with
probability 1 — a. In other words, in addition to the training samples detailed in Subsection[B] a new
type (wrongly labeled) of training sample will appear to the system, namely ([z1 = 1,22 = 0],y =
1).

Lemma 7. The TM is non-absorbing for the training samples given by Eq. (24).

Proof: Similar to the proof of Lemma |6 we first consider the transitions of TM with u; > 0 and
ug > 0, and then examine the impact of T’ for the system transition.

When u; > 0 and up > 0, there is a non-zero probability in which the training sample ([z; =
1,29 = 0],y = 1) will appear to the system. The appearance of this sample will involve transition
of TA3 moving from action Include toward Exclude, as shown in Fig. [6| making the system non-
absorbing.

When T clauses have learned the intended pattern X = [z = 1,22 = 1], i.e., fy-(CY(X)) = T,
then u; = 0, and thus Type I feedback is blocked for this training sample. In this situation, the TM
can only see the training samples of the following:

P(y=0|z1 =1,20 =0) =a,a € (0,1) (25)
Ply=1lz1=12,=0)=1—aq,

P(y=0jz1 =0,z =1)=1,

P(y=0|z1 =0,20=0)=1.

>In this study, we focus only on positive polarity thus uz > 0 always holds. When negative polarity is
enabled (i.e., when a set of clauses learns sub-patterns with label y = 0), u2 becomes 0 when T clauses learn
a sample with y = 0. However, it remains true that no value of fs~(C*(X)) can make both u; and uz equal to
0 simultaneously.
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Following the same concept as the proof of Lemmal[6] we can conclude that the TM is non-absorbing
for the samples in Eq. (25). Clearly, the system is non-absorbing, regardless of the value of u.
Therefore, we can conclude that the TM is non-absorbing for the training samples described in

Eq. 249).

Following the same principle, we can also prove that the TM is non-absorbing when other training
samples, i.e., [t = 0,22 = 1], and [z = 0,25 = 0], or their combinations, have wrong labels. We
thus can conclude that the TM is non-absorbing for the second type of wrong labels. ]

So far, we have proven that the TM is non-absorbing when only one type of wrong label exists for
the AND operator. It is straightforward to conclude that the TM remains non-absorbing when both
types of wrong labels are present. The key reason is that adding both types of wrong labels does
not eliminate any transitions between system states in non-absorbing systems. Therefore, the TM
is non-absorbing for training samples with general wrong labels for the AND operator. Using the
same reasoning, we can extend this conclusion to the XOR and OR operators. Thus, the following
theorem holds.

Theorem 10. The TM is non-absorbing given training samples with wrong labels for the AND, OR,
and XOR operators.

Remark 7. The primary reason for the non-absorbing behavior of the TM when wrong labels are
present is the introduction of statistically conflicting labels for the same input samples. These incon-
sistency causes the TAs within a clause to learn conflicting outcomes for the same input due to the
corresponding Type I and Type II feedback for label 1 and 0 respectively. When a clause learns to
evaluate an input as 1 based on Type I feedback, samples with a label of 0 for the same input prompt
it to learn the input as 0 through Type Il feedback. This conflict in labels confuses the TM, leading
to back-and-forth learning.

Remark 8. Note that although wrong labels will make the TM not converge (not absorbing with
100% accuracy for the intended logic), via simulations, we find that the TM can still learn the
operators efficiently, which has been demonstrated in Section )} especially when the probability of
wrong label is small. Interestingly, when the probability of the second type of wrong label is large,
TM will consider it as a sub-pattern, and learn it, which aligns with the nature of learning.
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G ANALYSIS OF THE TM WITH AN IRRELEVANT INPUT VARIABLE

In this appendix, we examine the impact of irrelevant input noise on the TM. Irrelevant noise refers
to an input bit with a random value that does not affect the classification result. For instance, in the
AND operator, a third input bit, z3, may appear in the training sample with random 1 and O values,
but its value does not influence the output of the AND operator. In other words, the output is entirely
determined by the values of x; and x5. Formally, we have:

; (26)

Ply=1lz1=1,z20=1,23=00r1) =1
P(y=0jzy =122 =0,23=00r1) =1,
)=1
)=1

)

P(y=0|z1 =0,22=1,23 =00r1) =
P(y=0|z1 =0,20=0,23 =00r1
Here 3 = 0 or 1 means P(z3 =0) =a, P(z3=1)=1—a,a € (0,1).

G.1 CONVERGENCE ANALYSIS OF THE AND OPERATOR WITH IRRELEVANT VARIABLE

Theorem 11. The clauses in a TM can almost surely learn the AND logic given training samples in
Eq. (20)) in infinite time, when T' < m.

Proof: The proof of Theorem I T|consists of two steps: (1) Identifying a set of absorbing conditions
and confirming that the TM, when in these conditions, satisfies the requirements of the AND opera-
tor. (2) Demonstrating that any state of the TM that deviates from the conditions defined in step (1)
is not absorbing.

The TM will be absorbed when the following conditions fulfill:

1. Condition to block Type I feedback: For any input sample X = [z7 = 1,20 = 1,23],
regardless of whether x3 = 1 or 0, the TM has at least T" clauses that output 1.

2. Conditions to guarantee no action upon Type II feedback:

(a) When z3 or —z3 appears in a clause in the TM: The literals that are included in the
clause for the first two input variables must result in a clause value of O for the input
samples X = [r1 = 0,22 = L,23], X = [z1 = 1,29 = O,z3] and X = [z7 =
0,9 = 0, x3]. This ensures that C' = 0 for these input samples, regardless of the value
of x3, thereby preventing transitions caused by any Type II feedback. The portion of
the clause involving the first two input variables can be, e.g., 1 Ax2 or 1 A—x1 AT,
while the overall clauses can be, e.g., C' = 1 Azg Axs, or C' = x1 A—x1 Ao A3,
as long as the resulted clause value is 0 for those input samples.

(b) When x5 or ~z3 does NOT appear in a clause in the TM: There is no clause that is in
the formof C = 21, C = x9, C = 1 A —xo, C = —21 A9, C = =21, C = —xq, O
C = sl A —T9.

Clearly, when the above conditions fulfill, the system has absorbed because no feedback appears
to the system. Additionally, this absorbing state follows AND operator. Based on the statement of
the condition to block Type I feedback, there are at least 7" clauses that output 1 for input sample
X = [z = 1,29 = 1, 23], regardless x5 = 1 or 0. Studying the conditions for Type II feedback, we
can conclude that the clause outputs 0 for all input samples X = [z; = 1,25 = 0, 23], X = [x1 =
0,29 = 1,23], or X = [#1 = 0,22 = 0,23]. We can then setup the Th = T to confirm the AND
logic.

The next step is to show that any state of the TM deviating from the above conditions is not absorb-
ing. To demonstrate this, we can simply confirm that transitions, which might change the current
actions of the TAs, will occur due to updates from Type I or Type II feedback.

When literal z3 or literal -3 is included as a part of the clause, the probability for C' = 0 is non-
zero due to the randomness of input variable z3. As a result, Type I Feedback will encourage the TA
for the included literal x5 or —x3 to move away from its current action, thus preventing the system
from becoming absorbing.

For the case where literal x5 or literal —x3 is not included in the clause, the system operates purely
based on the first two input variables, namely x1 and x2. According our previous analysis for

43



Under review as a conference paper at ICLR 2026

the noise free AND case (Theorem E]), there is only one absorbing status, which is C' = 1 A 3.
However, this absorbing state disappears because Type I feedback will encourage the excluded literal
z3 to be included when x5 = 1, and similarly encourage the excluded literal —x3 to be included
when z3 = 0. Once either x3 or —x3 is included, the analysis in the previous paragraph applies, and
thus the system is not absorbing.

From the above discussion, it is clear that Type I feedback is the key driver of action changes in
non-absorbing cases. If Type I feedback is not blocked, the system cannot reach an absorbing state.
Therefore, blocking Type I feedback is critical for achieving convergence. The condition T' < m
is to guarantee that 7" should not be greater than the total number of clauses, making it feasible to
block Type I feedback. ]

Remark 9. Due to the existence of the irrelevant input x3, the system requires the functionality of T
to block Type I feedback in order to converge. This contrasts with the noise-free case, where the TM
will almost surely converge to the AND operator even when Type I feedback is consistently present
(u; > 0).

G.2 CONVERGENCE ANALYSIS OF THE OR OPERATOR WITH IRRELEVANT VARIABLE

For the OR case, we have
Ply=1llz1s=1l,zea=1,25=00r1) =1, 27
Ply=1lz1=1,20=0,23=00r1) =1,
Ply=1z1=0,z20=1,23=00r1) =1
P(y=0|z1 =0,20=0,23 =00r1) = 1.

Theorem 12. The clauses in a TM can almost surely learn the OR logic given training samples in
Eq. in infinite time, when T < |m//2].

)

Proof: The proof of Theorem |12 follows a similar structure to that of the AND case and involves
two steps: (1) Identifying a set of absorbing conditions and verifying that, under these conditions,
the TM satisfies the requirements of the OR operator. (2) demonstrating that any state of the TM
deviating from these conditions is not absorbing.

1. Condition to block Type I feedback: For any input sample X = [z1 = 1,22 = 1,23],
X =[xy = 1,29 = 0,23], and X = [x; = 0,22 = 1, x3] regardless of whether x3 = 1 or
0, the TM has at least 7" clauses that output 1.

2. Conditions to guarantee no action upon Type II feedback:

(a) When x3 or —z3 appears in a clause in the TM: The literals included in the clause
for the first two input variables must ensure a clause value of O for the input samples
X = [x1 = 0,29 = 0,x3]. This is to guarantee that C' = 0 for those input samples,
irrespective of the value of z3, thereby preventing any transitions caused by Type II
feedback. The portion of the clause involving the first two input variables can take the
form such as x1, 1 A—x2, 1 AZ2, 1 A—x1 Axo. Correspondingly, the overall clauses
can take the form such as C = 1 A 23, C = 1 A 29 A x3, C = 21 AN 22 A\ 3,
or C'= a1 A —~x1 A 29 A\ —x3, as long as the resulted clause value is O for those input
samples.

(b) When z3 or —x3 does not appear in a clause in the TM: There are no clauses with
literal(s) in only negated form, such as C' = —x1, C' = —z9, or C' = —x1 A 7xo.

Clearly, when the above conditions fulfill, the system is absorbing because no feedback triggers state
transitions in the system. Additionally, this absorbing state adheres to the OR operator. Based on
the condition required to block Type I feedback, there are at least 7" clauses that output 1 for input
sample X = [l‘l = 1, To = 1, 1‘3], X = [.Il = 1, To = O, .133], or X = [.131 = 0, To = 1, $3]
regardless of whether 23 = 1 or 0. Analyzing the conditions for Type II feedback, we find that the
clause outputs O for all input samples X = [z1 = 0,22 = 0, 23]. We can then setup the Th = T to
confirm the OR logic.

The next step is to demonstrate that any state of the TM that deviates from the above conditions
outlined above is not absorbing. To do this, we can confirm that transitions which may alter the
current actions of the TAs will occur due to updates from Type I and Type II feedback.
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When literal x5 or literal -3 is included in the clause, there is a non-zero probability for C' = 0
due to the randomness of the input variable 3. In this case, Type I Feedback will move the included
literal x5 or —x3 towards action Exclude, preventing the system from being absorbing.

For the case where literal x3 or literal —z3 is not included as a part of the clause, the system operates
purely based on the first two input variables, namely x; and x2. Based on our previous analysis
for the noise free OR case shown in Lemma [2] the system is non-absorbing. This non-absorbing
behavior can also lead the system to a state where the excluded literal, either x3 or —x3, is encour-
aged to be included. For example, if the TM has a clause C' = x1 A x5, upon a training sample
X = [z1 = 1,29 = 1,23 = 0], the Type I feedback will encourage the excluded literal —z3 to
be included. Once one of the excluded literal, 3 or —x3, is included, the analysis in the previous
paragraph applies, meaning the system is not absorbing.

Clearly, if Type I feedback is not blocked, the system will not be absorbing. As blocking Type I
feedback is critical, condition T < |m/2] is necessary, refer to Lemma 4] |

When T’ clauses have learned the intended sub-patterns of OR operation, the Type I feedback will
be blocked. At the same time, Type II feedback will eliminate all clauses that output 1 for input
sample following X = [z1 = 0, 3 = 0, 23], removing false positives. At this point, the system has
converged. The presence of x3 does not change the convergence feature, but it adds more dynamics
to the TM.

G.3 CONVERGENCE ANALYSIS OF THE XOR OPERATOR WITH IRRELEVANT VARIABLE

Theorem 13. The clauses in a TM can almost surely learn the XOR logic given training samples in
Eq. in infinite time, when T < |m /2].

Py=0jz1 =1,z =1,23=00r1) =1, (28)
Py=1z1=1,20=0,23 =00r1
P(
P(

b

1
L
1

~— ~— ~—
I

y=1lz1 =0,29 = 1,23 =00r1

y=0|z; = 0,20 =0,23 =0o0r1)

The proof for XOR follows the same principles as the AND and OR cases, and therefore, we do not
present it explicitly here.

G.4 CONVERGENCE ANALYSIS OF THE OPERATORS WITH MULTIPLE IRRELEVANT
VARIABLES

In the previous subsections, we demonstrated that if a single irrelevant bit is present in the training
samples, the system will almost surely converge to the intended operators. This conclusion can
be readily extended to scenarios involving multiple irrelevant variables. Here, “multiple irrelevant
variables” refers to the presence of additional variables, beyond x3, in the training samples that do
not contribute to the classification.

Theorem 14. The clauses in a TM can almost surely learn the 2-bit AND logic given training
samples with q irrelevant input variables in infinite time, ¢ > 0, when T' < m.

Theorem 15. The clauses in a TM can almost surely learn the 2-bit XOR and OR logic given
training samples with q irrelevant input variables in infinite time, ¢ > 0, when T' < |m/2].

Proof: The proofs of Theorems [14| and |15| are straightforward. It suffices to verify whether the
conditions for blocking Type I and Type II feedback remain valid when multiple irrelevant variables
are present.

The condition for blocking Type I feedback remains valid because Type I feedback is only deter-
mined by the first two input bits and is not a function of the irrelevant variables. For Type II feedback,
its effect depends on whether the literals for the irrelevant inputs are present in the clause. In cases
where the literals of the irrelevant bits are not included in the clause, the analysis holds, as those
literals are absent. When the literals of the irrelevant bits are included, their number does not impact
the analysis. This is because the clause value is entirely determined by the first two bits, and the
clause value remains C' = 0, regardless of the number of irrelevant variables. |
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H CONVERGENCE ANALYSIS OF TM IN k-BIT CASES

H.1 PROOF OF THEOREMI[G]

Proof: In this setting, the training samples are noise-free, and there exists exactly one intended
sub-pattern to be learned among the 2* possible combinations. The conditions ©; > 0 and uy > 0
ensure that 7" has no effect. In particular, training samples are always presented to the TM, and no
sample type is suppressed.

To establish Theorem [f] we avoid enumerating all possible states in literal level and instead group
the clause forms into the following three categories:

(1) Exact match: The clause matches the intended sub-pattern exactly (e.g., C' = x1 A 2 in
the 2-bit AND case). Such a clause outputs 1 when the intended sub-pattern is presented.

(2) Partial match: The clause matches a strict subset of the intended sub-pattern (e.g., C' =
x1 in the 2-bit AND case). Such clauses also output 1 when the intended sub-pattern is
presented.

(3) Non-match: The clause matches neither the intended sub-pattern nor any of its subsets
(e.g., C' = —x; in the 2-bit AND case). Such clauses output 0 when the intended sub-
pattern is presented.

We show that clauses of type (1) are absorbing, whereas clauses of types (2) and (3) are non-
absorbing. Consequently, the system possesses a unique absorbing clause form corresponding to
the intended sub-pattern.

Type (1): Exact match is absorbing.

A clause of type (1) is absorbing because once it matches the intended sub-pattern, no transition
can alter its form. Under Type I feedback (i.e., when the unique positive sample with y = 1 is
presented), the clause outputs 1. All included literals evaluate to 1, and all excluded literals evaluate
to 0. The Type I feedback table prescribes reward for both included and excluded literals in this
situation, meaning that no TA changes its action. Therefore, the clause remains unchanged.

Under Type II feedback (i.e., when samples with y = 0 are presented), the clause outputs 0, since
it matches the positive sub-pattern exactly and thus rejects all negative samples. According to the
Type II feedback rules, no updates are applied when the clause output is 0.

Thus, neither Type I nor Type II feedback can modify the clause. Type (1) clauses are therefore
absorbing.

Type (2): Partial match is non-absorbing.

We next show that clauses of type (2) are non-absorbing. Under Type I feedback, such clauses output
1. Any literal that should be part of the exact match but is currently in the exclude action receives a
penalty (Type I table, case C' = 1, literal value = 1 on the excluded side), encouraging a transition
from exclude to include. Thus the clause will eventually change its form.

To prove non-absorbency, it suffices to exhibit a single transition with non-zero probability. Never-
theless, we also examine Type II feedback for completeness. A transition under Type II feedback
occurs whenever the clause outputs 1 and an excluded literal has value 0. Such literals receive a
penalty and are encouraged to shift from exclude to include. This situation can arise for partial-
match clauses. For example, in the 2-bit AND case, the clause C' = 1 outputs 1 for the negative
sample 1 = 1,29 = 0 (with y = 0). The excluded literal corresponding to =2 takes value 0, so
Type II feedback encourages it to transition to include. The clause therefore moves toward x; A xs.

A special instance of this category is the empty clause, where all literals are in the exclude action.
Such a clause outputs 1 for all samples by definition in the training process. Under Type I feedback,
all literals belonging to the intended sub-pattern are encouraged to move from exclude to include.
Under Type II feedback, every literal with value 0 is likewise encouraged to transition from exclude
to include. Hence the empty clause cannot remain unchanged.

Thus, clauses of type (2) are non-absorbing.
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Type (3): Non-match is non-absorbing.

Finally, clauses of type (3) are also non-absorbing. Such clauses output O for the intended sub-
pattern. Under Type I feedback, when C' = 0, the Type I transition table prescribes penalties for
all included literals, encouraging them to move from include to exclude. Hence the clause cannot
remain in its current form.

Under Type II feedback, depending on the clause, it is possible for the clause to output 1 for some
negative sample. When this occurs, any excluded literal with value O receives a penalty and is
encouraged to shift from exclude to include. For example, in the 2-bit AND case, the clause C' =
—x1 outputs 1 on the sample x; = 0,29 = 0 (with y = 0). Type II feedback then penalizes both
excluded literals, pushing them toward inclusion. The clause therefore changes form. Thus, clauses
of type (3) are non-absorbing.

Although the clause space grows combinatorially, grouping clauses into the three categories above
reveals that absorbing/non-absorbing behavior is identical within each category, regardless of the
specific form of a clause. Since type (1) clauses are absorbing whereas types (2) and (3) are non-
absorbing, the TM has a unique absorbing state: the exact match of the intended sub-pattern. Con-
sequently, convergence is guaranteed given infinite time. |

H.2 PROOF OF THEOREM[]]

The proof of Theorem 7] follows the same structure as the proof of Theorem[2} We show that when
two or more sub-patterns appear in the training samples, the absorbing clauses that exist in the
single—sub-pattern setting disappear. In other words, the system no longer possesses any absorbing
state as in the single sub-pattern case. To restore an absorbing state, the role of the threshold T’
becomes critical. Analogous to the OR proof, we first show that the system becomes non-absorbing
when multiple sub-patterns are present, and then show how to configure 7" so that convergence is
guaranteed.

We begin by showing that if two or more sub-patterns occur in the training samples, the system is
non-absorbing. In the k-bit setting, the existence of multiple sub-patterns implies that there is at
least one bit whose value differs across sub-patterns. That is, the bit is 1 in one sub-pattern but 0
in another. For example, in the 2-bit OR case, between the sub-patterns (1,0) and (1,1), 22 is a
conflicting bit: it is 0 in the former sub-pattern and 1 in the latter. We refer to such bits as conflicting
bits. Because conflicting bits are present, the absorbing clauses that existed in the single—sub-pattern
setting can no longer remain absorbing. The core argument is to show that any clause that was
absorbing in the single—sub-pattern case ceases to be absorbing once additional sub-patterns, and
thus conflicting bits, appear.

Without loss of generality, assume that the third bit is the conflicting bit in the multiple—sub-pattern
setting. Suppose the clause has reached the absorbing form

([wi =%, 23 =0], y =1),

where i € {1,...,k} \ {3}, and “+” denotes an arbitrary assignment to the non-conflicting bits.
To show that the system is non-absorbing, we must demonstrate that this clause loses its absorbing
property once an additional sub-pattern

([#; =%, 23 =1],y=1)
is introduced.

In the absorbing form, the clause must include the literal —x3 in order to match the sub-pattern
exactly. However, when training samples corresponding to

([w; =%, 23 =1],y=1)

appear, the clause will output 0 due to the conflicting bit 3 = 1. Consequently, Type I feedback
will reinforce the exclusion of the currently included literals, regardless of their literal value. This
process breaks the absorbing condition, meaning the clause is no longer absorbing.

By the same reasoning, if the absorbing sub-pattern were

([x; =%, 23 =1],y =1),
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then introducing samples of

([wi =% 23=0,y=1)
would likewise eliminate the absorbing property. Therefore, the specific literal value (0 or 1) of
the conflicting bit in the original absorbing state does not matter. Moreover, as additional sub-
patterns introduce more conflicting bits, the clauses remain non-absorbing. This clearly indicates
that when u; > 0 and uy > 0, the clauses are non-absorbing in the presence of multiple sub-
patterns. Consequently, the functionality of 7" must be enabled to ensure that the clauses become
absorbing, by preventing Type I feedback from being triggered.

Similar to Lemma 3] we obtain the following result.

Lemma 8. The system is absorbed if and only if (1) the number of clauses for each sub-pattern
reaches T', and (2) no clause outputs 1 for training samples with label 0, i.e., no false positives
occur.

The proof of Lemma [§]is immediate. Condition (1) blocks all Type I feedback, and the argument
follows directly from Lemma@ Condition (2) ensures that no transitions are triggered by Type II
feedback. When Type I feedback is blocked and Type II feedback induces no further transitions, the
system is absorbing.

m

To establish Theorem it remains to verify that the condition 7" < L;J is sufficient to guarantee
that all sub-patterns are covered by at least 7" clauses. Since e denotes the number of sub-pattern
clusters, that is, the number of clusters in which all sub-patterns share one or more bits in common,
we may represent each such cluster with a single clause. Thus, if 7" < L%J , then at least " clauses
can be assigned to each cluster. Therefore, the convergence requirement in condition (1) is satisfied.

We can now prove Theorem 7]

Proof: From the above arguments, we observe that if

< %]
e
holds, then Type I feedback will eventually be completely blocked, and Type II feedback will even-
tually produce only “inaction” responses. In this situation, no further state transitions occur, and the
system reaches an absorbing state. Prior to absorption, the system may move back and forth among
intermediate states, but it will not become absorbed until the above condition is met.

Once absorbed, every sub-pattern with label 1 will have at least 7" clauses assigned to it, while the
sub-pattern with label 0 will have none. This means that the TM can almost surely learn the intended
multiple sub-patterns in infinite time. Once learnt, for inference, it can classify the class by setting
the threshold T'h = T'. This completes the proof. |

H.3 PROOF OF THEOREM[§|AND THEOREM [9]

Proof of Theorem [8; The proof of Theorem [§] consists of two steps: (1) Identifying a set of ab-
sorbing conditions and confirming that the TM, when in these conditions, satisfies the require-
ments of the intended unique sub-pattern. (2) Demonstrating that any state of the TM that de-
viates from the conditions defined in step (1) is not absorbing. Without lose of generality, we
consider a general k + ¢ input Boolean vector with k-bit useful bits plus ¢ bit irrelevant bits, as
X =[21,%2, .. Ty Thp 1y - - - Thopq)-

The TM will be absorbed when the following conditions are satisfied:

1. Condition to block Type I feedback: For any input sample belonging to the intended sub-
pattern, and for any bits z; € {0,1} with j € [k + 1,k + ¢J, the TM must have at least T’
clauses that output 1.

2. Condition to guarantee no transitions under Type II feedback: No clause outputs 1 for
training samples with label 0. That is, no false positives occur.

Clearly, when the above conditions are satisfied, the system is absorbed, since no further feedback is

produced. Moreover, this absorbing state corresponds to the intended sub-pattern. It is worth noting
that the irrelevant bits do not induce any transitions under Type II feedback once no clause outputs 1
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for training samples with label 0, i.e., once no false positives occur. This is because the absence of
false positives implies that all samples labeled 0 produce a clause output of 0, fully determined by
the learned sub-patterns from the % useful bits. Since the irrelevant bits do not influence the label,
they likewise do not affect the clause output once learning has converged. In other words, regardless
of the values of the irrelevant bits, the clause output is already determined by the k-bit useful pattern,
giving 0 in this case. Hence, the randomness of the irrelevant bits cannot change the clause output
from 0. According to the Type II feedback table, no transitions occur when C' = 0.

The next step is to show that any state of the TM that violates these conditions is not absorbing. To
establish this, it suffices to confirm that such states will trigger transitions, arising from either Type I
or Type II feedback, that modify the current form of the clauses.

We begin with Type I feedback. Before this feedback is blocked by the threshold 7', the random
irrelevant bits make the system non-absorbing. The reason is analogous to the conflict-bit argument
presented in Subsection The conflict bits take the value 1 for some sub-patterns and O for
others, pushing the system to learn in inconsistent directions. The random irrelevant bits behave
in exactly the same manner. Therefore, the mechanism provided by 7' is essential. The condition
T < m guarantees that 7" does not exceed the total number of clauses, ensuring that blocking Type I
feedback is feasible.

For Type II feedback, any false positive will trigger transitions that move literals with value 0 (and
currently excluded) toward the include side until all false positives have been eliminated. As long
as false positives remain, Type II feedback continues to update the system, and thus the state is not
absorbing.

Based on the above discussion, it follows that any violation of the listed conditions prevents the
system from being absorbing. Therefore, only the listed conditions fulfill the absorbing states, which
covers the intended sub-pattern. ]

Proof of Theorem[9; The proof of Theorem|9]follows the same structure and reasoning as the proof
of Theorem 8] In particular, we identify two conditions that ensure the system is absorbing.

1. Condition to block Type I feedback: For input samples of fixed length n, containing
multiple intended sub-patterns where the ¢-th sub-pattern consists of k; informative bits
and n — k; irrelevant bits (with the positions of both bit types arbitrary), the TM must have
at least 7" clauses that output 1 for each intended sub-pattern.

2. Condition to prevent transitions under Type II feedback: No clause outputs 1 for train-
ing samples with label 0, i.e., no false positives occur.

Different from the condition 7 < m in Theorem [8] here we require T < |m/e|. The arguments
showing that these conditions lead to an absorbing state, as well as the arguments establishing that
any other clause configuration is non-absorbing, are identical to those presented in the proof of
Theorem [8] We therefore omit the details to avoid repetition. u

49



Under review as a conference paper at ICLR 2026

I EXPERIMENT RESULTS OF 2-BIT CASES WITH NOISE-FREE TRAINING
SAMPLES

To validate the theoretical analyses, we here present the experiment resultf] for both the AND and
the OR operators.
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Figure 8: The convergence of a TM with 7 clauses when T' = 5 for the AND operator.

Figure |8 shows the convergence of TM for the AND operator when m = 7, T = 5, s = 4, and
N = 50 (N is the number of states for each action in each TA). More specifically, we plot the
number of clauses that learn the AND operator, namely, 1 = x3 = 1, and the number of system
updates as a function of epochs. From these figures, we can clearly see that after a few epochs,
the TM has 5 clauses that learn the AND operator and then the system stops updating because no
update is triggered anymore. Note that if we control 7" so that u; > 0 always holds, all clauses
will converge to the AND operator, which has been validated via experiments. These observations
confirm Theorem|[I] Although the theorem says it may require infinite time in principle, the actual
convergence can be much faster.
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Figure 9: The convergence of a TM with 7 clauses when 7" = 3 for the OR operator.

The code for validating the convergence can be found at https://github.com/JaneGlim/
Convergence-of-Tsetline—-Machine-for-the-AND-OR-operators.
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Figure 10: The behavior of a TM with 7 clauses when T = 4 for the OR operator.

In Fig. 0] we illustrate the number of clauses in distinct sub-patterns when we employ m = 7,
T = 3,s = 4,and N = 50 for the OR operator. Based on the analytical result, i.e., Theorem
the system will be absorbed, where each sub-pattern will have at least 3 clauses and no update will
happen afterwards. From the figure, we can clearly observe that after a few epochs, the system
becomes indeed absorbed as no updates are observed. When absorbed, the three intended sub-
patterns have 3, 4, 5 clauses to represent them respectively, while the unintended sub-pattern has 0
clause, which is consistent with the theorem. Indeed, the list of the converged clauses are: C; = x4,
02 = 1, C3 = T2, C4 =x1 A\ T2, 05 = x1 N\ Ta, 06 = X2, and C7 = =11 A\ o, explaining the
number of converged clauses in different sub-patterns shown in the figure. Clearly, in this example,
some clauses, i.e., Cy, C3, C5 and Cg, can each cover multiple sub-patterns. This indicates that in
real world applications, if distinct sub-patterns have certain bits in common, which can be used to
differentiate it from other classes, it is possible for TM to learn those bits as joint features, confirming
the efficiency of the TM.

Note that there are many other possible absorbing states that are different from the shown example,
which have been observed when we run multiple instances of the experiments. As long as each
intended sub-pattern is represented by at least " clauses in the OR operator, the system converges.

In Fig. the configuration is identical to that in Fig.[9]except that 7" = 4. In this case, as stated in
Remark 2] the system will not become absorbing, but will still cover the intended sub-patterns with
high probability. From this figure, we can observe that each intended sub-pattern is represented by at
least two clauses, and that the unintended sub-pattern has zero clause. At the same time, the TAs do
not stop updating their states, which can be seen in the bottom figure. It is worth mentioning that we
have occasionally observed in other rounds of experiments, that one intended sub-pattern is covered
by only 1 clause. In this case, it is still possible to set up T'h > 1 to have successful classification.
Nevertheless, there is no guarantee that each intended sub-pattern will be represented by at least one
(or T'h) clause(s) in this configuration, thus no guaranteed successful classification.
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Figure 11: The behavior of TM when m = 7,T" = 4 for the OR operator with wrong training labels.

J EXPERIMENT RESULTS OF 2-BIT CASES WITH NOISY TRAINING SAMPLES

We present the experimental results for the operators under noisy conditions. First, we show the
results when incorrect labels are present, followed by the results involving irrelevant variables. The
final subsection addresses a case where both incorrect labels and irrelevant variables are present.

J.1 EXPERIMENT RESULTS FOR WRONG LABELS

To evaluate the performance of the TM when exposed to mislabeled samples, we introduced incor-
rectly labeled data into the system. The key observation is that the TM does not converge to the
intended logic, meaning it does not absorb into a state where the correct logic is consistently repre-
sented. However, with carefully chosen hyperparameters, the TM can still learn the intended logic
with high probability.

To demonstrate the TM’s behavior, we first conduct experiments on the OR operator, which satisfies
the following equation:

(y l\ml = 1 , Tg = 0) = 90%,
(y= 1\3;1 =1,25=0) = 90%,
(y = =0)=

In this scenario, 10% of the input samples that should be labeled as 1 were incorrectly labeled as
0. To train the TM and evaluate its performance, we used the following hyperparameters: m = 7,
T =4,Th =2,s = 3,and N = 100. Fig. shows the number of updates and the number of
clauses that learn distinct sub-patterns, as a function of epochs. As shown in Fig.[T1] the number
of updates is big, and thus the system did not converge. Nevertheless, when examining the number
of clauses associated with each sub-pattern, we observed that each sub-pattern was covered by at
least two clauses, ensuring that the OR operator remained valid. Similar results were observed in
experiments conducted on the AND and XOR operators.

Interestingly and understandably, when the proportion of mislabeled samples increases to an extreme
level, where inputs that should be labeled as O are instead labeled as 1, the TM begins to treat the
noise as a sub-pattern. For instance, consider the AND operator with input X = [z; = 0,29 = 1],
which is mislabeled as 1 in 90% of the cases, as shown in Eq. (30). Using the hyperparameters
m="7T=3,s=3.0,and N = 100, we observed from experiments that the TM generates three

52



Under review as a conference paper at ICLR 2026

clauses with an output of 1 for X = [z1 = 0,22 = 1] and another three clauses with an output of
1 for X = [z1 = 1,z2 = 1]. This behavior indicates that the TM has incorporated the noise as a
learned sub-pattern. Such outcomes align with the TM’s underlying principle of learning, where it
identifies and models sub-patterns associated with the label 1.

(30)

J.2 EXPERIMENT RESULTS FOR IRRELEVANT VARIABLE

To confirm the convergence property of TM with irrelevant variable, we setup the experiments for
the AND, OR, and XOR operators when one irrelevant variable, namely, x3, exists. The probability
of x3 being 1 in the training and testing samples is 50%.

For the AND operator, we use the hyperparameters m = 5,7 = 2, s = 3, Th = 2, and N = 100.
Fig. [12]illustrates the convergence of TM for the AND operator in the presence of an irrelevant bit.
The results confirm that the TM can correctly learn the AND operator without uncertainty, validating

the correctness of Theorem [T11
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Figure 12: Convergence of TM when m = 5, T' = 2 for the AND operator with an irrelevant label.

Interestingly, upon convergence, the form of the included literals varies. For instance, with the
aforementioned hyperparameters, we observe that the converged TM includes two clauses of the
form x1 A x2 A x3 and another two clauses of the form x1 A 22 A —x3. This suggests that, instead
of excluding the irrelevant bit 3, the TM includes at least 7" clauses containing z3 and at least T’
clauses containing —z3, which ensures correct classification regardless of the value of 3. However,
when the hyperparameters are settom = 1, T = 1,s = 3, Th = 1, and N = 100, where only a
single clause exists in the TM, the converged clause takes the form x; A 2, excluding the literals

I3 and —x3.

As T increases (I' > m/2), we observe that convergence becomes challenging. This difficulty
arises because the TM cannot simultaneously learn 7" clauses containing x3 and another 7" clauses
containing —xs. In such cases, the TM must rely on 7" clauses in the form z; A z5 to achieve
convergence, which can be particularly demanding.
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Figure 13: Convergence of TM when m = 5, T' = 2 for the OR operator with an irrelevant label.
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Figure 14: Convergence of TM when m = 7, T = 2 for the XOR operator with an irrelevant label.

For the OR operator, we use the hyperparameters m = 5,7 = 2, s = 3, Th = 2, and N = 100.
Figure[13]illustrates the convergence of the TM for the OR operator in the presence of an irrelevant
bit. The results confirm that TM successfully learns the OR operator without ambiguity, validating
the correctness of Theorem [I2] The results also confirm that the TM is capable of presenting two
sub-patterns jointly.

Indeed, the OR operator has multiple absorbing states, corresponding to multiple clause forms.
Some clause forms may include x3 or —z3, depending on the hyperparameter configuration. Re-
gardless of the value of =3, as long as the vote sum of the clauses is greater than or equal to 7, the
correct classification can be guaranteed.

We have also studied the XOR operator. The convergence instance is shown in Fig. [T4] confirming
Theorem[I3] Here weuse m =7, T = 2,s = 3, Th = 2.

54



Under review as a conference paper at ICLR 2026

J.3  EXPERIMENT RESULTS FOR BOTH WRONG LABELS AND IRRELEVANT VARIABLES

In this experiment, we assess the performance of the TM in the presence of both mislabeled data and
irrelevant variables. Specifically, we evaluate the TM’s ability to learn the XOR operator when 40%
of the samples are incorrectly labeled, and 10 irrelevant variables are added. The input comprises
12 bits, with only the first two bits determining the output based on the XOR logic.

The hyperparameters are configured as follows: m = 20, T" = 15, s = 3.9, and N = 100 with
polarity enabled. Experimental results reveal that the TM successfully learns the XOR operator in
99% of 200 independent runs. These findings demonstrate the robustness of the TM training in noisy
environments.

In another experiment, we configured the TM to learn a noisy XOR function with 2 useful input bits
and 18 irrelevant input bits (hyper parameters: N = 128, m = 20, T = 10, s = 3, label noise 0.1).
Remarkably, the TM was still able to learn the XOR operator with 100% accuracy using just 5000
training samples. If all possible input combinations were required in the training samples, it would
require 220 = 1048576 samples. Clearly, the TM does not rely on the entire combinatorial input
space to learn effectively.

When many variables are irrelevant, the training set may not cover all possible input combina-
tions due to the exponential size of the input space. Although not yet theoretically established,
polynomial-sized training sets appear sufficient for the TM, as confirmed by experiments. This is
because each TA within a clause updates independently once the clause value and the literal value are
determined by a sample. The resulting Type I and Type II transitions are then fully specified. Con-
sequently, the TM does not need to observe every combination of irrelevant inputs. It only requires
enough samples to reveal their statistical irrelevance, which triggers the appropriate TA transitions.
Furthermore, the influence of irrelevant bits can be neutralized when 7T clauses capture their negated
form and T clauses capture their original form for the same sub-pattern. Together, these properties
allow the TM to learn effectively without exhaustive coverage of the input space.
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K EXPERIMENT RESULTS FOR THE k-BIT CASES

K.1 EXPERIMENT RESULTS FOR NOISE FREE CASE

In this experimenﬂ we tested the TM on a 5-bit scenario using both a single sub-pattern and multiple
sub-patterns. For the single sub-pattern case, the pattern (1, 0, 1, 0, 1) was used with parameters
m=3,T =5,s=3,Th = 3,and N = 100. Here we configure 7' > m deliberately to make
u; > 0 always true. For the multiple sub-patterns case, the pattern (1, 0, 1, 0, 0) was added in
addition withm = 5,7 = 2,s = 3, Th = 2, and N = 100. In all cases, the TM achieved 100%
convergence to the correct intended sub-pattern(s), demonstrating its reliable learning capability in
the noise-free case.

K.2 EXPERIMENT RESULTS WITH IRRELEVANT BITS

We first evaluated convergence in the single—sub-pattern case, where each sample contains 8 bits
and includes one intended sub-pattern, (1, 0, 1, 0, x, X, X, X), with x denoting irrelevant bits. The
hyperparameters for this experiment were configured as m = 3,7 = 2, s = 3, Th = 2, and
N =100.

For the multiple—sub-pattern case, we first introduced an additional intended sub-pattern, (X, X, X, X,
0, 1, 0, 1), and used the configuration m = 5,7 = 2, s = 3, Th = 2, and N = 100. Thereafter, in
order to test when the informative bits are unbalanced in numbers among sub-patterns, we replaced
x, X, X x0,1,0, 1) by (x, X, X, X, X, 1, 0, 1).

All experiments demonstrated 100% convergence to the correct intended sub-pattern(s), confirming
that the TM consistently identifies and converges to the desired patterns. These results highlight the
robustness of the TM for samples with irrelevant bits.

K.3 EXPERIMENT RESULTS FOR BOTH WRONG LABELS AND IRRELEVANT BITS

To illustrate the performance of the TM in this case, we directly use the Noisy XOR problem and
take its results from the literature (Tunheim et al [2023). The Two-dimensional (2D) Noisy XOR
dataset consists of 4 x 4 single-channel Boolean images. Figure [I3] shows the patterns for Class 1
(blue) and Class 0 (orange), positioned in the middle of the two upper rows, with x’s representing
random Boolean values. The dataset is balanced, with equal numbers of examples for each class
and sub-pattern. Class 1 corresponds to a diagonal line, while Class O represents either a horizontal
or vertical line. Each image contains 4 informative bits and 12 irrelevant bits. To test robustness
against label noise, 40% of the training labels are randomly inverted.

Using 2,500 training samples and 8,192 test samples, the TM implementatiotﬂ achieves a mean test
accuracy of 99.99% (Tunheim et al.}[2023), demonstrating strong robustness in the presence of noisy
labels and irrelevant features.

x| 1]0|x x| 1[1(x x| 0[0|x
x[0|1]|x x|[0|[0|x x| 1 |[1][x
X X X X X X X X X X X X
x| x| x|[x X | x| x|x X| x| x|x
x[0|1]x x| 1[0(x x| 0|[1]|x
x[1]0]x x| 1[0|x x| 0[1]|x
x| x| x|x X| x| x|x X[ x| x|x
X X X X X X X X X X X X

Figure 15: Patterns representing Class 1 (blue) and Class 0 (Orange) for the 2D Noisy XOR

dataset (Tunheim et a1.|, 2023)).

"The code for validating the convergence can be found at https://github.com/JaneGlim/
Convergence-of-Tsetline-Machine-for-the-AND-OR-operators.

*Here a Convolutional TM (CTM) is employed, where the learning principle is identical to the TM used in
this work. The difference is that CTM processes 2-D images through patches.
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L APPLICATION EXAMPLES OF TM

Although our manuscript focuses on the theoretical properties of TMs, it is important to note that
TMs have already demonstrated strong empirical performance across a broad range of real-world
applications. Published results in these areas demonstrate that TMs can serve as competitive, inter-
pretable, and resource-efficient alternatives to neural networks. Below we provide a few examples
of real-world experiments from recent literature.

Low-Power and Edge Computing A substantial line of research has explored TM deployments on
constrained hardware platforms. The REDRESS framework (Maheshwari et al., 2023 demonstrates
that TM-based models outperform binarized neural networks across multiple datasets while offering
5-5700x speed and energy gains on microcontroller hardware. Dedicated TM accelerators have
achieved state-of-the-art energy efficiency, including a 65nm implementation requiring only 8.6n.J
per MNIST frame (Tunheim et al., [2025b), currently the lowest reported for MNIST inference in
digital circuits. TM-based end to end keyword spotting system, TsetlinKWS$ 2025),
operates at merely 16.58..1/ while maintaining high accuracy, enabled by compression techniques,
convolutional TM variants, and custom low-power hardware for Google Speech Commands Dataset.

Contextual Decision Making TMs have also been successfully integrated into sequential decision-
making settings. By framing the classification task as a contextual multi-armed bandit problem, the
TM-Thompson sampling method outperforms other algorithms, including neural network-based ap-
proaches, on eight of the nine benchmark environments (Iris, Breast Cancer, MNIST, Adult, Cover-

type, MovieLens, Statlog, Noisy XOR, and Simulated Article) (Seraj et al., [2022]).

Federated Learning Recent work has explored TMs in privacy-preserving distributed training.
FedTMOS introduces a one-shot federated learning (OFL) framework that replaces
conventional knowledge distillation with a TM-based, data-free mechanism. It significantly out-
performs its ensemble counterpart by an average of 6.16%, and the leading state-of-the-art OFL
baselines by 7.22% across various OFL settings. In addition, it results in significantly lower com-
plexity, reduced storage requirements, and improved computational and communication efficiency,
while retaining strong accuracy and scalability.

Image Recognition and Classification TMs have been applied to standard benchmarks such as
MNIST (Tunheim et all, 2025b) and CIFAR-10 (Grgnningsater et all} [2024), as well as domain-
specific visual tasks. Recent work demonstrates that TM-based models can match or surpass neural
network performance while operating at significantly lower computational cost. For example, Mix-
CTME (Jeeru et al 2025b) achieves robust classification of GPS jamming signals in spectrogram
data, outperforming conventional deep learning approaches (99.46% vs. 95.72% on an open bench-
mark dataset).

Natural Language Processing. In NLP, TMs offer interpretable alternatives to dense neural em-
beddings and opaque text classifiers. TM Embeddings (Bhattarai et al.,[2024) demonstrate that word
semantics can be captured using compact, human-readable logical clauses rather than latent vectors.
Other studies highlight the advantages of TM-based reasoning for interpretable and robust text clas-
sification (Yadav et al [2022) as well as fake news detection (Bhattarai et al., 2022)), where TMs
match or surpass prior baselines while providing transparent, clause-level explanations for their
predictions. Their performance has been consistently validated on widely used open benchmark
datasets.
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