Under review as a conference paper at ICLR 2026

CONVERGENCE ANALYSIS OF TSETLIN MACHINES
FOR BASIC BOOLEAN OPERATORS UNDER NOISE-
FREE AND NOISY TRAINING CONDITIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Tsetlin Machine (TM) is an innovative machine learning algorithm grounded
in propositional logic, achieving state-of-the-art performance in a variety of pat-
tern recognition tasks. While previous studies have analyzed its convergence prop-
erties for the 1-bit operator under both noisy and noise-free training conditions, as
well as for the XOR operator under noise-free conditions, this work extends the
theoretical analysis to the AND and OR operators, thereby providing a more com-
prehensive analysis of fundamental Boolean operations. We show that the TM
almost surely converges to correctly represent the AND and OR operators when
trained on noise-free data over an infinite time horizon. Notably, our analysis of
the OR operator reveals a distinct characteristic: the TM is capable of representing
two sub-patterns jointly within a single clause, which contrasts with its behavior
in the XOR case. Furthermore, we investigate the TM’s behavior when learn-
ing AND, OR, and XOR operators under noisy training conditions, including the
presence of mislabeled samples and irrelevant input variables. In the presence of
incorrect labels, the TM does not converge to the exact target operators but re-
mains capable of learning efficiently. In contrast, when irrelevant variables are
present, the TM still converges almost surely to the correct operators. Together,
these results offer a comprehensive theoretical foundation for understanding the
convergence behavior of TMs across basic Boolean operators.

1 INTRODUCTION

The Tsetlin Machine (TM) is a classification algorithm. A TM (Granmo, 2018)) organizes clauses,
each associated with a team of Tsetlin Automata (TAs) (Tsetlin, |[1961), to collaboratively capture
distinct sub-pattern{] for a certain class. A TA, which is the core learning entity of TM, is a kind of
learning automata (Zhang et al.,2020;|Yazidi et al.| [2019;|Omslandseter et al.|[2022) that tackles the
multi-armed bandit problem, learning the optimal action through the interaction with its environment
which gives rewards and penalties. In a TM, all TAs play in a game orchestrated by the TM’s
feedback tables. Each TA takes care of one literal of input, which takes boolean values of either
0 or 1. Literals are basically features of the input data. A TA decides to “Include” or “Exclude”
the literal, i.e., to consider or not to consider the feature in the final classification. A clause is a
conjunction of all included literals, representing a sub-pattern of a certain class. Once distinct sub-
patterns are learned by a number of clauses, the overall pattern recognition task is completed by a
voting scheme from the clauses.

The TM and its variations (Granmo et al} [2019; |Abeyrathna et al., |2021; |Darshana Abeyrathna
et al., [2020; [Sharma et al., [2023)) have been employed in many applications, such as word sense
disambiguation (Yadav et al., |2021c)), aspect-based sentiment analysis (Yadav et al., | 2021b), nov-
elty detection (Bhattarai et al, [2021), text classification (Yadav et al., [2021a) with enhanced in-
terpretability (Yadav et al.l [2022), federated learning (Qi et al., |2025)), signal classification (Jeeru
et al., 2025aib), and solving contextual bandit problems (Seraj et al. [2022)), indicating better or
competitive performance compared with most of the state-of-the-art techniques. Indeed, the TM is
a symbolic Al algorithm that can be structured into deep connected architectures similar to neural

'The concept of sub-pattern will be found in the example given in Section

Under review as a conference paper at ICLR 2026

networks. The novel algorithm design gives it the potential to tackle complex machine learning tasks
while maintaining transparent inference and learning (Bhattarai et al.,2024; |Abeyrathna et al., 2023},
Rafiev et al., 2022). Moreover, being entirely based on logical operations, TM is hardware-friendly
and low in power consumption (Maheshwari et al.,|2023; Rahman et al.} 2022} Kishore et al.| |2023;
Tunheim et al.,[2025atb).

The TM is proven to almost surely convergence to the Identity/NOT operator with 1-bit input
in (Zhang et al., 2022)), where the role of the hyperparameter s is also revealed. In (Jiao et al.,|2022),
TM'’s convergence to the XOR operator with 2-bit input was proven, highlighting the functional-
ity of the hyperparameter 7. In this paper, we focus on analyzing the AND and OR operators with
noise-free training samples, followed by an examination of the convergence properties of AND, OR,
and XOR with noisy training samples, including the presence of wrong labels and irrelevant inputs.

This paper differs from previous studies in several key aspects. While (Zhang et al. 2022)) used
stationary distribution analysis of discrete-time Markov chains (DTMC), the current study focuses
on absorbing states. For XOR (Jiao et al., [2022)), where sub-patterns are bit-wise exclusive, TM
learns and converges to sub-patterns individually. In contrast, the OR operator’s sub-patterns share
features (e.g., [r1 = 1, x2 = 1] and [x1 = 1, x5 = 0] share x; = 1), allowing joint representation.
We show that TM can effectively learn and represent these shared features, making the convergence
process distinct. Additionally, this paper examines the role of Type II feedback, which was omitted
in the prior XOR convergence study. Most notably, we analyze the convergence properties of the
AND, OR, and XOR operators under noisy training samples, substantially advancing the theoretical
understanding and contribution of this work.

It is worth noting that learning 2-bit operators with or without noise, is a well-studied problem. For
example, numerous studies in concept learning and probably approximately correct learning have
extensively explored this topic (Valiant,|1984}|Haussler et al.,[1994; Mansour & Parnas||1998;|Belaid
et al [2025). While many elegant methods exist for learning conjunctions or disjunctions, their
existence does not necessarily imply that the TM converges to such operators in the same manner.
TM employs a unique approach, learning from samples to construct conjunctive expressions and
coordinating these expressions across various sub-patterns, which merits its own dedicated analysis.

The remainder of the paper is organized as follows. In Section[2] we summarize the notation used
for the TM. Sections [3] and [] present the convergence analysis of the AND and OR operators, re-
spectively, under noise-free conditions. In Section[5] we revisit the convergence proof for the XOR
operator to underscore both its relevance and its differences. Section [6] provides the analytical re-
sults of the AND, OR, and XOR operators under noisy training conditions. Finally, the paper is
concluded in Section[7]

2 NOTATIONS OF THE TM

To make the article self-contained, we present the TM notation. For more details on the inference
and training concept, please refer to Appendix

The input of a TM is indicated as X = [z1, 2, ..., Z,], where z;, € {0,1}, k =1,2,...,0,and o
is the number of features. A literal is either x;, in the original form or its negation —x. A clause is a
conjunction of literals. Each literal is associated with a TA. The TA is a 2-action learning automaton
whose job is to decide whether to Include/Exclude its literal in/from the clause, based on the current
state of the TA. A clause is associated with 20 TAs, forming a TA team. A TA team is denoted in
general as gj = {TA}/|1 < k' < 20}, where k' is the index of the TA, j is the index of the TA
team/clause (multiple TA teams form a TM), and ¢ is the index of the TM/class to be identified (A
TM identifies a class, multiple TMs identify multiple classes).

Suppose we are investigating the it" TM whose job is to identify class i, and that the TM is composed
of m TA teams. Then C}(X) can be used to denote the output of the 4t TA team, which is a
conjunctive clause:

Training : C}(X) = (ké\% Ik) A (ké\éj ﬂxk) , forgl, & #0,)
1, for fj, E; = 0.

Under review as a conference paper at ICLR 2026

Testing : Cj(X) = (ké\& l‘k) A (ké\gi ‘\:L'k) , forgj, & #0, ®
J J
0, for ¢}, € = 0.

In Egs. (1) and , f; and E; are defined as the sets of indexes for the literals that have been included
in the clause. £¢ contains the indexes of included original inputs, xj, whereas 5_; contains the indexes
of included negated inputs, —xy.

Each clause represents a sub-pattern associated with class ¢ by including a literal (a feature or its
negation) if it contributes to the sub-pattern, or excluding it when deemed irrelevant. Multiple
clauses, i.e., the TA teams, are assembled into a complete TM to sum up the outputs of the clauses

[(CH(X)) = Y Ci(X), where C'(X) is the set of clauses for class i. The output of the TM
i=1
0, for fs~(CY(X)) <Th

1, for fs~(CY(X)) > Th’
predefined threshold for classification. This is indeed a voting scheme.

is further determined by the unit step function: §° = { where T'h is a

Note that the TM can assign polarity to each TA team (Granmol, | 2018)), and one can refer to Appendix
[Alfor more information. In this study, for ease of analysis, we consider only positive polarity clauses.
Nevertheless, this does not change the nature of TM learning.

Example: We use TM learning the OR logic as an example. A sample is classified into the OR class
if its two bits and label follow the OR logic: 01 = 1,10 =1,11 = 1, 0or 0 0 = 0. Note that once
the TM learns the pattern outputting 1, it inherently learns the complementary pattern outputting 0.
Hence the TM’s learning and reasoning can be understood primarily as identifying the pattern that
results in an output of 1. In the OR logic, sub-patterns outputting 1 are 0 1, 1 0, and 1 1, and can be
represented by clauses —z1 A x2, 1 A 29, and z1 A X2, respectively.

A clause is learned by a TA team, and a TM can be composed of multiple TA teams. A TA team is
a set of TAs, each responsible for handling one literal. A literal is an input feature, in this example,
1 or X2, or the negation of it: =2y or —x5. In this example, each TA team consists of four TAs,
managing four literals: x1, —x1, x2, —x9, respectively.

A TA decides, by its current state (which changes according to the feedback as shown in Table[I]and
Table @, whether to Include or Exclude its literal in/from the final clause. In a TA team of four TAs,
if TA; includes x1, T As excludes —x1, T'Az excludes zo, and T'A, includes —xo, the resulting
clause from this TA team will be x1 A —xs.

A TM learns the pattern of the OR relationship from the input samples that follow the OR logic
(training). As the training result, some TA teams converge to clauses like —z; A x4, others to
1 A —x, or 1 A x2, all outputting 1. The process of determining whether an input conforms
to the OR logic involves summing the outputs of all the clauses. Let’s assume we have three TA
teams, each converging to one of the sub-patterns, then the sum is sum = (—x1 A x2) + (21 A
—z3) + (1 A x2). If a test sample {[z1, z2], ¥y} = {[0,1],1} is put into the TM, the output will be
sum = (1A1)+(0A0)+(0A1) =140+ 0 = 1, indicating one TA team votes for positive
classification. If the threshold T'h is defined as 1, as sum > Th, TM evaluates the sample following
the OR logic (testing).

Training: In the training of a TM, the labeled data (X = [z, 22, ..., 2,], y*) is fed into the TM,
where the TAs are guided by the feedback defined in Tables [I|and [2} Type I Feedback is triggered
when the training sample has a positive label: y* = 1, while Type II feedback is utilized when
y® = 0. s controls the granularity of the clauses. NA means not applicable. Examples demonstrating
TA state transitions per feedback tables can be found in Section 3.1 in (Zhang et al.|[2022). In brief,
Type I feedback reinforces true positive and Type II feedback fights against false negative.

To avoid situations where a majority of the TA teams learn a subset of sub-patterns, forming an
incomplete representatio the hyperparameter 7" is used to regulate the resource allocation. The
strategy works as follows (Granmo) 2018)):

*In the OR example, one should avoid to have a majority of TA teams converge to =1 A T2 to represent
the sub-pattern of [0, 1], and ignore the other sub-patterns [1, 0] and [1, 1].

Under review as a conference paper at ICLR 2026

Value of the clause C} (X) 1 0

Value of the Literal xj,/—xy, 1 0 1 0
P(Reward) 1 NA 0 0

Include Literal P(Inaction) % NA s—1 s—1
P(Penalty) 0 NA i i
P(Reward) 0 1 1 1

Exclude Literal P(Inaction) % s = 1 = 1 *f 1
P(Penalty) | =1 0 0 0

Table 1: Type I Feedback — Feedback upon receiving a sample with label y® = 1, for a single TA
to decide whether to Include or Exclude a given literal x,/—zy into C}. NA means not applicable
(Granmo, 2018)).

Value of the clause C} (X) 1
Value of the Literal xy, / —xy, 1 0 1 0

P(Reward) 0 NA 0 0
Include Literal P(Inaction) | 1.0 NA 1.0 1.0
P(Penalty) 0 NA 0 0
P(Reward) 0 0 0 0
Exclude Literal P(Inaction) 1.0 0 1.0 1.0
P(Penalty) 0 1.0 0 0

Table 2: Type Il Feedback — Feedback upon receiving a sample with label y* = 0, for a single TA
to decide whether to Include or Exclude a given literal /—xy, into C]Z». (Granmo, [2018)).

Generating Type I Feedback. If the label of the training sample X is y* = 1, we generate, in
probability, Type I Feedback for each clause C; € C* according to:
T — max (=T, min(7, f5-(C*(X))))

up = 57 , 3)

Generating Type II Feedback. If the label of the training sample X is y® = 0, we generate, again,
in probability, Type II Feedback to each clause C; € C* according to:

T + max(~T, min(7, f5-(C(X))))
= 5T . (C))
Briefly speaking, when the number of clauses representing one sub-pattern increases (reaches 1),
learning from samples that correspond to that sub-pattern will decrease (stops) as the probability of
triggering update will decrease (becomes 0).

U2

3 CONVERGENCE ANALYSIS OF THE AND OPERATOR

A TM has converged when the states of its TAs do not change any longer. We assume that
the training samples are noise free, i.e., P(y =1jz1 =1,z =1) = 1,P(y =0|z1 =0,22 =1) =
1,P(y=0|z1 =1,22 =0) = 1, P (y = 0]z1 = 0,22 = 0) = 1, where P denotes probability. We also
assume the training samples are independently drawn at random, and the above four cases will ap-
pear with non-zero probability, which means that all of the four types of samples will appear for
infinite times.

Because the considered AND operator has only one pattern of input, i.e., x1 = 1,2 = 1, that will
trigger a true output, we employ one clause in this TM, and we thus can ignore the indices of the
classes and the clauses in our notation in the proof. After simplification, TA;C’] becomes TAy, and
C{ becomes C. Since there are two input parameters, namely x; and x5, we implement four TAs
in the clause, i.e., TA1, TAo, TA3, and TA4. TA; has two actions, i.e., including or excluding x;.
Similarly, TA5 corresponds to including or excluding —z1. TA3 and TA, determine the behavior
of x5 and —z+, respectively.

Once the TM converge correctly to the intended operation, the resulting clause will be 1 A 2, with
the actions of TA;, TAs, TA3, and TA4 being I, E, I, and E, respectively. Here we use “I” and “E”
as abbreviations for include and exclude respectively.

Theorem 1. Any clause will converge almost surely to x1 \xo given noise free AND training samples
in infinite time when uy > 0 and ugy > 0.

Under review as a conference paper at ICLR 2026

The complete proof of Theorem|[I]is in Appendix [B] We here outline the concept and the main steps
of the proof.

The condition u; > 0 and ug > 0 guarantees that all types of samples are provided to the TM and no
specific type is blocked by Egs. (3)) and (@) during training. The goal of the proof is to show that the
system transitions will guarantee that there is a unique absorbing state of the TM and the absorbing
state has the actions of TA;, TAs, TAs, and TA4 to be I, E, I, E, respectively, corresponding to the
expression x1 A Ta.

To simplify the analysis of joint TA transitions, we use quasi-stationary analysis by freezing the
transitions of the TAs for the first input bit and focusing on the transitions of the TAs corresponding
to the second input bit. Clearly, there are four possibilities when freezing the first bit ;. We name
them as cases: Case 1: TA; = E, TA;, = 1, i.e, include —x;. Case 2: TA; = I, TA, = E,
i.e., include 1. Case 3: TA; = E, TA; = E, i.e., exclude both 21 and —z;. Case 4: TA; =1,
TA5 =1, i.e., include both x; and —x;.

In each of the above four cases, we analyze individually the transition of TA3 (TA,) with a given
current action, under different actions of TA4 (TA3). We index the possibilities as situations: Sit-
uation 1. We study the transition of TA3 when its current action is “Include”, and when TA, is
frozen to be “Include” or “Exclude”. Situation 2. We study the transition of TA3 when its current
action is “Exclude”, and when TAy is frozen to be “Include” or “Exclude”. Situation 3. We study
the transition of TA4 when its current action is “Include”, and when TAj is frozen to be “Include”
or “Exclude”. Situation 4. We study the transition of TA4 when its current action is “Exclude”, and
when TAj is frozen to be “Include” or “Exclude”.

Within each of the situation, there are 8 possible instances, determined by 4 possible combinations
of the input samples of x; and 2, and the two possible frozen TA actions, i.e., Include and Exclude.

As an example, we randomly select an instance in Case 1, Situation 1. The selected instance is when
the training sample is ([x1 = 1, x2 = 1], y = 1), and TA4 is E. For this instance, the training sample
will trigger Type I feedback because y = 1. Based on the current status of the TAs, the clause is in
the form C' = —x; A 2, which evaluates to 0 based on the input training sample. In Situation 1, the
studied TA is TA3, whose corresponding literal is x5 = 1. Given y = 1, clause value 0, literal value
1, we go to Table E], the third column of transition probabilities for “Include Literal”, and find the
transition of TAg3 to be: the penalty probability % and the inaction probability 521. To indicate the
transitions of TA3, we have plotted the transition diagram in Fig. [T} Note that the overall transition
probability is uy %, where u; is defined in Eq. . Here, we have assumed u; > 0.

I E
1
urd

Penalty O/\‘O/NO O

Reward O O O O

Figure 1: Transition of TA3 when its current action is Include, TA, TA,, and TA,’s actions are
Exclude, Include, and Exclude, respectively, upon a training sample (1 = 1, 22 = 1,y = 1).

Similar to the example instance, we derive a total of 128 transition instances, which can be further
summarized into the overall transition behavior of TA3 and TA4. These overall transitions reveal
the directional dynamics of the two TAs, from which we observe that the unique absorbing state for
TAj5 and TA, is (I, E), given that TA1 and TA2 are fixed in states I and E, respectively.

The transitions of TA; and TA5 can be analyzed in the same manner as those of TA3 and TA,.
Based on this, we can conclude that the system has a unique absorbing state in the full dynamics of
the system, where TA1, TAo, TAg3, and TA, are in states of I, E, I, and E, respectively.

4 CONVERGENCE ANALYSIS OF THE OR OPERATOR
We assume the training samples for the OR operator are noise free (i.e., Eq. @), and are indepen-
dently drawn at random. All these four cases will appear with non-zero probability.

Py=llzys=1,22=1)=1,P(y=1lz1 =0,z2=1) =1, (@)
P(y=1llz1 =1,22 =0)=1,P(y =0|z1 = 0,22 = 0) = 1.

Under review as a conference paper at ICLR 2026

Theorem 2. The clauses in a TM can almost surely learn the 2-bit OR logic given noise free training
samples (shown in Eq.) in infinite time, when T < | |.

| Theorem mL

Lemmal[T]|

Lemma[Z]

LemmaH]| |Lemma3] |Lemma[5]

Figure 2: The dependence for the proof of the Theorem

The proof of the theorem requires Lemma [[}Lemma [5] and their dependence is shown in Fig. [2]
Clearly, there are three sub-patterns for the OR operator. In Lemmal(I] we will show that any clause
is able to converge to an intended sub-pattern when the training sample of only one sub-pattern is
given, and when u; > 0 and ug > 0. In Lemma@ we will show that the TM will become recurrent
(not absorbing) when more sub-patterns jointly appear in the training samples and when uw; > 0 and
ug > 0. These two lemmas will be utilized in the proof of Lemma 3] Lemma [2] also reveals the
recurrent nature of TM for the OR operator when the functionality of 7" is not enabled, i.e., when
u; > 0 and ug > 0. This confirms the necessity of enabling the functionality of 7" in order to
converge to an absorbing state that fulfills the OR operator, to be indicated by Lemma B}Lemma
Specifically, Lemma [3} Lemma [5|analyze the system behavior when 7 is enabled and how 7" should
be configured for the TM to converge to the OR operator. They guarantee that when the system
reaches an absorbing state, the intended sub-patterns will have a number of clauses no less than 7'
while the unintended sub-pattern will have O clause. Then the OR operator can be inferred by setting
Th = T. In what follows, we will present and prove the lemmas.

Lemma 1. For any one of the three sub-patterns resulting in y = 1, shown in Egs. (6)-(8), the TM
can converge to the intended sub-pattern when noise free training samples following this sub-pattern
are given, and when uy > 0, ug > 0.

Py=1lz1 =1,z2 =1) = P(y =0|z1 = 0,22 =0) =1, ©6)
P(y=1lz1 =0,22 =1) = P(y = 0lz1 = 0,32 =0) =1, (@]
P(y:1|w1:171220):P(y:0|w1:0,x2:0):l. ®)

The proof of Lemma |[l|involves demonstrating convergence for three sub-patterns: those governed
by Egs. (@), (7). and (% These analyses build upon the convergence proofs for the XOR and AND
operators. For the sub-pattern in Eq. (6), transition diagrams in Appendix [B] confirm that the TAs
converge to TA; =1, TA; = E, TA; = I, and TA4 = E, when input samples [x; = 0, z2 = 1] and
[1 = 1,25 = 0] are excluded. The other two sub-patterns are proven using similar principles. Full
details are provided in Appendix [C|

From Lemmal [I] we show that the clauses converge to the intended sub-pattern if the training sam-
ples following this particular sub-pattern are given. From Lemma [2] we will show that the system
becomes recurrent if any two or more sub-patterns of training samples are given. Specifically, we
show the TM is recurrent given samples following Eq. (5) and Eqs. (9)-(T1), when uq > 0, us > 0.

Py=1lz1 =1Lz =1)=P(y=1lz1 = 1,22 =0) ©)
=P(y=0]z;y =0,z0 =0) =1,
P(y=1llz1 =1,z =1)=P(y =1|zy = 0,22 = 1) (10)
=P(y=0|zy =0,22 =0) =1,
P(y=1llz1 =120 =0)=P(y =1|lz1 =0,z2 = 1) (11)

=P(y=0|z1 =0,z2 =0) =1.

Lemma 2. The TM becomes recurrent if any two or more of the three sub-patterns jointly appear
in the training samples, as shown in Egs. (E[), @—(@, when uy > 0, ug > 0.

The proof of Lemma [2] can be found in Appendix [D] Lemma [2] tells us that if we always give
TM the training samples from all sub-patterns without blocking the learnt patterns by using 7" via
Eqs. (3) and (@), the system is recurrent. In other words, if we want to have the TM converge to

Under review as a conference paper at ICLR 2026

the OR operator in an absorbing state, it is critical to utilize the feature of T to block any incoming
training samples from updating the learnt sub-patterns. Specifically, we need to configure 7" (1) so
that the absorbing states exist and (2) confirm that the absorbing states follows the OR operator. In
what follows, we will, through Lemmas [3}f5] show how T" via Egs. (3) and () can guarantee the
convergence and how the value of 7" should be configured.

Let’s revisit the functionality of 7. T' can block the training samples from updating a learnt sub-
pattern (clauses that have converged to one of the absorbing states) so that the clauses that have
not converged can be guided to learn the other not-yet-learned sub-patterns. More specifically, if
the number of the clauses reaches T for a certain sub-pattern, the new training samples of this sub-
pattern will be blocked by the TM. There are three sub-patterns in OR operator. When the number
of clauses for each of the three sub-patterns reaches 7', all training samples associated with Type
I feedback are blocked. Simultaneously, if none of the samples for Type II feedback trigger any
change to the states of the TAs, the TM reaches an absorbing state. In Lemma [3] we detail the
necessity and sufficiency of the absorbing state.

Lemma 3. The system is absorbed if and only if (1) the number of clauses for each intended sub-
pattern reaches T, i.e., fx(C(X)) = T, VX = [r1 = 0,29 = 1] or [x1 = 0,22 = 1] or
[x1 = 0,29 = 1], and (2) no clause is formed only by a negated literal or negated literals.

The proof of Lemma [3] can be found in Appendix [E} In Lemma [3] we find the conditions of the
absorbing state. In the next Lemma, we will show how to set up the value of 71" so that the number
of clauses for each intended sub-pattern can indeed reach 7.

Lemmad4. T < |m/2] is required so that the number of clauses for each intended sub-pattern can
reach T.

Proof of Lemma 4 There are three intended sub-patterns in the OR operator. Given m clauses in
total, to make sure each one has at least T" votes, we have 37" < m. This requires 7' < |m/3] (T is
an integer). However, the nature of the OR operator offers the possibility to represent 2 sub-patterns
jointly. For example, T clauses in the form of x; will result in the number of clauses being 7" for
each of the following sub-patterns, i.e., [ty = 1,29 = 0] and [x; = 1,25 = 1]. If there are other
T clauses representing the remaining sub-pattern, in total 27" clauses can garantee that each of the
intended sub-patterns is represented by T clauses. We thus have 7" < |m/2|. Note that the fact
that two sub-patterns can be jointly represented by one clause has been observed and confirmed in
experiments shown in Section [H]

When we have a smaller T, different sub-patterns may be represented by distinct clauses. However,
when T > |m/2], there will always be one or two sub-patterns that cannot obtain a number of T
clauses to represent them. For this reason, the maximum integer value is T' = |m/2].]

In Lemmal[5] we show that the input sample [z = 0, 22 = 0] will never cause the number of clauses
associated with this unintended sub-pattern to reach or exceed 7'. This is to avoid any possible false
positive upon input [z = 0,29 = 0] in testing.

Lemma 5. When absorbing, the sample from the unintended sub-pattern, i.e., [t1 = 0,25 = 0],
will never lead to the number of clauses representing this unintended sub-pattern becoming greater
than or equal to T'.

Proof of Lemma 5}: To have a positive output from [z; = 0,22 = 0], the clause should be in the
form of C' = -z or C' = =g or C' = -1 A —x2. It has already shown in the proof of Lemma 3]
that Type II feedback will eliminate such clauses. In fact, when the system is absorbed, no clause
will be in the form of C' = —x; or C = —xg or C' = =1 A —x5. For this reason, [x1 = 0,29 = 0]
will never lead to the number of clauses greater than or equal to T'.

Proof of Theorem 2t Based on Lemmas we understand that if 7 < |[m/2] holds, Type
I feedback will eventually be blocked and Type II feedback will eventually only give “inaction”
feedback. In this situation, no actual transition will be triggered and thus the system reaches the
absorbing state. Before absorbed, the system moves back and forth in the intermediate states. Once
absorbed, any one of the intended sub-patterns will have the number of clauses for that sub-pattern
no less than 7" and the unintended sub-pattern will have O clauses. We thus have the OR logic almost
surely by setting a threshold Th = T and conclude the proof.]

Under review as a conference paper at ICLR 2026

Now let’s study a simple example with m = 2, T" = 1. Here, C; = z; and C; = x5 can be an
instance for an absorbing case. C7; = x1 and Cy = —x1 A x5 also works. Clearly, the clauses can
be in various forms, as long as the conditions in Lemma 3| fulfill. These converged clauses are not
necessarily in the exact form of the three sub-patterns, which is distinct to that of the XOR operator.

Remark 1. Although both AND and OR operators converge, the approaches are different. For AND
operator, the system is converged because the clauses become eventually absorbed to the intended
pattern upon Type I and Type II feedback, even if the functionality of T is disabled (u1 > 0 and
ug > 0). As the TM enables the functionality of T' by default, the system will be absorbed when
T clauses converge to x1 N\ xo, before all clauses converge to this pattern. However, for the OR
operator, the functionality of T is critical because the TM is recurrent if u; > 0 and ug > 0.
The absorbing state of the OR operator is achieved because the functionality of T blocks all Type 1
feedback and Type Il feedback gives only “Inaction” feedback. The concept of convergence for the
OR operator is similar to that of XOR, but the form of clauses after absorbing varies due to the
possible joint representation of sub-patterns in OR.

Remark 2. When T is greater than half the number of clauses, i.e., T > |m/2], the system will
not have an absorbing state. We conjecture that the system can still learn the sub-patterns in an
unbalanced manner, as long as T is not configured too close to the total number of clauses m.

Given T > |m/2], Type I feedback cannot be completely blocked and the TM is recurrent. Nev-
ertheless, if T" is not close to m, there will be clauses that possibly learn distinct sub-patterns. In
addition, Type II feedback can avoid the form of C' = =2y or C' = =z or C' = —z1 A =25 from
happening. Therefore, with T'h > 0, the TM may still learn the OR operator with high probability.

5 REVISIT THE XOR OPERATOR

Let us revisit the proof of XOR operator. As stated in (Jiao et al.,[2022)), when the system is absorbed,
the clauses follow the format C' = 21 A -2 or C' = —x1 A x5 precisely. In other words, a clause
with just one literal, such as C' = z1, cannot absorb the system. The reason is that the sub-patterns
in XOR operator are mutual exclusive, i.e., the sub-patterns cannot be merged in any way. Although
Type I feedback can be blocked when T clauses represent one sub-pattern using one literal, the Type
II feedback can force the other missing literal to be included. For example, when T’ clauses happens
to converge to C' = 1, the Type I feedback from any input samples of ([z; = 1,29 = 0],y = 1) will
be blocked. In this situation, the Type II feedback from ([z; = 1,29 = 1],y = 0) will encourage
the clause to include —z5. This is because upon a sample ([z1 = 1,22 = 1],y = 0), we have Type
II feedback, C' = x7 = 1, and the studied literal is x5 = 0. When the TA for excluding —x5 is
considered, a large penalty, i.e., a penalty in probability 1, is given to the TA, moving it towards
action Include, and thus C' = x; eventually becomes C' = x7 A —x5. Following the same concept,
we can analyze the development for C' = —xy, C = x5, and C' = —x,, which will eventually
converge to C' = —x1 A 2 or C = 21 A —x2, upon Type II feedback.

6 CONVERGENCE ANALYSIS UNDER RANDOM NOISE

We studied the convergence properties of AND, OR, and XOR operators under training samples
with noise. The noise type is noisy completely at random (Frénay & Verleysen, 2013)), categorized
as wrong labels and irrelevant input variables. A wrong label refers to an input that should be labeled
as 1 but is instead labeled as 0, or vice versa. An irrelevant input variable, on the other hand, is one
that does not contribute to the classification. We demonstrate that, with wrong labels, the TM does
not converge to the intended operators but can still learn efficiently. With irrelevant variables, the
TM converges to the intended operators almost surely. Experimental results confirmed these findings
(Appendix [). We summarize the main findings in this section. The proof details can be found in
Appendix [F|and Appendix [G|

Theorem 3. The TM is recurrent given training samples with wrong labels for the AND, OR, and
XOR operators.

Remark 3. The recurrent property of TM indicates that there is a non-zero probability that it cannot
learn the intended operator. The primary reason for the recurrent behavior when wrong labels are
present is the statistically conflicting labels for the same input samples. These inconsistency causes

Under review as a conference paper at ICLR 2026

the TAs within a clause to learn conflicting outcomes for the same input. When a clause learns to
evaluate an input as 1 based on Type I feedback, samples with a label of 0 for the same input prompt
it to learn the input as 0 through Type II feedback. This conflict in labels confuses the TM, leading
to back-and-forth learning.

Remark 4. Although wrong labels will make the TM not converge (not absorbing with 100% ac-
curacy for the intended logic), via experiments, we can still find that the TM are able to learn
the operators efficiently, shown in Appendix[l} This property aligns with the concept of PAC learn-
able (Mansour & Parnas| |1998) or e-optimality (Zhang et al.| |2020), although a formal proof re-
mains open.

Theorem 4. The clauses in a TM can almost surely learn the 2-bit AND logic given training samples
with k irrelevant input variables in infinite time, 0 < k < oo, when T < m.

Theorem 5. The clauses in a TM can almost surely learn the 2-bit XOR and OR logic given training
samples with k irrelevant input variables in infinite time, 0 < k < oo, when T' < |m/2].

When the number of irrelevant variables is large, the training set may not cover all possible examples
due to the required exponential space. Although not yet theoretically proven, polynomial space for
training samples seems feasible for TM, which has been confirm by experiments (Appendix [L.3).
This is because the TM can independently update the actions of a TA within a clause, as long as the
clause value and the literal value are determined by the training sample. In other words, once the
clause value and the literal value are known, the transitions triggered by Type I and Type II feedback
are fully determined. As a result, the TM does not need to observe all possible combinations of
irrelevant inputs to learn effectively. Instead, as long as the statistical irrelevance of certain inputs is
demonstrated in the training samples, the corresponding TA transitions will be triggered accordingly.
This enables the TM to learn without requiring exhaustive coverage of the input space.

7 CONCLUSIONS

In this article, we prove the convergence of the TM for the AND and OR operators with noise free
training samples. Our proof for the OR operator highlights the TM’s ability to learn joint sub-
patterns, showcasing the efficiency of its learning process. Additionally, we analyze the behavior
of the TM for the AND, OR, XOR operators in the presence of random noise in the training data.
Together with the convergence proofs in (Zhang et al., [2022) and (Jiao et al.| 2022)), this work
provides a comprehensive analysis of TM convergence for the most common digital operators.

REFERENCES

K. Darshana Abeyrathna, Bimal Bhattarai, Morten Goodwin, Saeed Gorji, Ole-Christoffer Granmo,
Lei Jiao, Rupsa Saha, and Rohan K. Yadav. Massively Parallel and Asynchronous Tsetlin Machine
Architecture Supporting Almost Constant-Time Scaling. In /ICML, 2021.

K Darshana Abeyrathna, Ahmed Abdulrahem Othman Abouzeid, Bimal Bhattarai, Charul Giri,
Sondre Glimsdal, Ole-Christoffer Granmo, Lei Jiao, Rupsa Saha, Jivitesh Sharma, Svein Anders
Tunheim, and Xuan Zhang. Building Concise Logical Patterns by Constraining Tsetlin Machine
Clause Size. In IJCAI, 2023.

Mohamed-Bachir Belaid, Jivitesh Sharma, Lei Jiao, Ole-Christoffer Granmo, Per-Arne Andersen,
and Anis Yazidi. Generalized Convergence Analysis of Tsetlin Automaton Based Algorithms: A
Probabilistic Approach to Concept Learning. In AAAI, 2025.

Bimal Bhattarai, Ole-Christoffer Granmo, and Lei Jiao. Measuring the Novelty of Natural Language
Text Using the Conjunctive Clauses of a Tsetlin Machine Text Classifier. In ICAART, pp. 410-
417, 2021.

Bimal Bhattarai, Ole-Christoffer Granmo, Lei Jiao, Rohan Yadav, and Jivitesh Sharma. Tsetlin Ma-
chine Embedding: Representing Words Using Logical Expressions. In Findings of the Association
for Computational Linguistics: EACL 2024, pages 1512—1522, 2024.

K Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, Lei Jiao, and Morten Goodwin.
The Regression Tsetlin Machine - A Novel Approach to Interpretable Non-Linear Regression.
Philosophical Transactions of the Royal Society A, 378(2164), 2020.

Under review as a conference paper at ICLR 2026

Benoit Frénay and Michel Verleysen. Classification in the Presence of Label Noise: a Survey. IEEE
transactions on neural networks and learning systems, 25(5):845-869, 2013.

Ole-Christoffer Granmo. The Tsetlin Machine - A Game Theoretic Bandit Driven Approach to
Optimal Pattern Recognition with Propositional Logic. arXiv:1804.01508, Apr 2018.

Ole-Christoffer Granmo, Sondre Glimsdal, Lei Jiao, Morten Goodwin, Christian W Omlin, and
Geir Thore Berge. The Convolutional Tsetlin Machine. arXiv preprint arXiv:1905.09688, 2019.

David Haussler, Nick Littlestone, and Manfred K Warmuth. Predicting {0, 1}-functions on Ran-
domly Drawn Points. Information and Computation, 115(2):248-292, 1994.

Sindhusha Jeeru, Lei Jiao, Per-Arne Andersen, and Ole-Christoffer Granmo. Interpretable Rule-
based Architecture for GNSS Jamming Signal Classification. IEEE Sensors Journal, 2025a.

Sindhusha Jeeru, Rebekka Olsson Omslandseter, Per-Arne Andersen, Aiden James Morrison,
Nadezda Sokolova, Ole-Christoffer Granmo, and Lei Jiao. MixCTME: A mixture of convolu-
tional tsetlin machine experts using diverse spectrogram visualizations for jamming signal classi-
fication. IEEE Internet of Things Journal, 2025b.

Lei Jiao, Xuan Zhang, Ole-Christoffer Granmo, and Kuruge Darshana Abeyrathna. On the Conver-
gence of Tsetlin Machines for the XOR Operator. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(5):6072-6085, 2022.

C Kishore, Santhosh Sivasubramani, Rishad Shafik, and Amit Acharyya. Nano-Magnetic Logic
based Architecture for Edge Inference using Tsetlin Machine. In 2023 21st IEEE Interregional
NEWCAS Conference (NEWCAS), pp. 1-5, 2023.

Sidharth Maheshwari, Tousif Rahman, Rishad Shafik, Alex Yakovlev, Ashur Rafiev, Lei Jiao, and
Ole-Christoffer Granmo. Redress: Generating Compressed Models for Edge Inference Using
Tsetlin Machines. [EEE Transactions on Pattern Analysis and Machine Intelligence, 45(9):
1115211168, 2023.

Yishay Mansour and Michal Parnas. Learning Conjunctions with Noise under Product Distributions.
Information Processing Letters, 68(4):189-196, 1998.

Rebekka Olsson Omslandseter, Lei Jiao, Xuan Zhang, Anis Yazidi, and B John Oommen. The
Hierarchical Discrete Pursuit Learning Automaton: A Novel Scheme with Fast Convergence and
epsilon-optimality. IEEE Transactions on Neural Networks and Learning Systems, 2022.

Shannon How Shi Qi, Jagmohan Chauhan, Geoff V Merrett, and Jonathon Hare. FedTMOS: Effi-
cient One-shot Federated Learning with Tsetlin Machine. In /CLR, 2025.

Ashur Rafiev, Jordan Morris, Fei Xia, Rishad Shafik, Alex Yakovlev, Ole-Christoffer Granmo, and
Andrew Brown. Visualization of Machine Learning Dynamics in Tsetlin Machines. In Interna-
tional Symposium on the Tsetlin Machine (ISTM), pp. 81-88, 2022.

Tousif Rahman, Adrian Wheeldon, Rishad Shafik, Alex Yakovlev, Jie Lei, Ole-Christoffer Granmo,
and Shidhartha Das. Data Booleanization for Energy Efficient On-Chip Learning Using Logic
Driven AL In International Symposium on the Tsetlin Machine (ISTM), pp. 29-36, 2022.

Raihan Seraj, Jivitesh Sharma, and Ole Christoffer Granmo. Tsetlin Machine for Solving Contextual
Bandit Problems. In NeurIPS, 2022.

Jivitesh Sharma, Rohan Yadav, Ole-Christoffer Granmo, and Lei Jiao. Drop Clause: Enhancing
Performance, Robustness and Pattern Recognition Capabilities of the Tsetlin Machine. In AAAI,
2023.

Michael Lvovitch Tsetlin. On Behaviour of Finite Automata in Random Medium. Avtomat. i Tele-
mekh, 22(10):1345-1354, 1961.

Svein Anders Tunheim, Lei Jiao, Rishad Shafik, Alex Yakovlev, and Ole-Christoffer Granmo.
Tsetlin Machine-Based Image Classification FPGA Accelerator With On-Device Training. IEEE
Trans. Circuits Syst. I, Reg. Papers, 72(2):830-843, Feb. 2025a.

10

Under review as a conference paper at ICLR 2026

Svein Anders Tunheim, Yujin Zheng, Lei Jiao, Rishad Shafik, Alex Yakovlev, and Ole-Christoffer
Granmo. An All-digital 65-nm Tsetlin Machine Image Classification Accelerator with 8.6 nJ per
MNIST Frame at 60.3 k Frames per Second. IEEE Trans. Circuits Syst. I, Reg. Papers, accepted,
2025b.

Leslie G Valiant. A Theory of the Learnable. Communications of the ACM, 27(11):1134-1142,
1984.

Rohan Yadav, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin. Enhancing Interpretable
Clauses Semantically Using Pretrained Word Representation. In the 4th BlackboxNLP Workshop
on Analyzing and Interpreting Neural Networks for NLP, 2021a.

Rohan Yadav, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin. Human-Level Interpretable
Learning for Aspect-Based Sentiment Analysis. In AAAZ, 2021b.

Rohan Yadav, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin. Interpretability in Word
Sense Disambiguation Using Tsetlin Machine. In ICAART, pp. 402—409, 2021c.

Rohan Kumar Yadav, Lei Jiao, Ole Christoffer Granmo, and Morten Goodwin. Robust Interpretable
Text Classification against Spurious Correlations Using AND-rules with Negation. In IJCAI,
2022.

Anis Yazidi, Xuan Zhang, Lei Jiao, and B John Oommen. The Hierarchical Continuous Pursuit
Learning Automation: A Novel Scheme for Environments with Large Numbers of Actions. /IEEE
Trans. Neural Netw. Learn. Sys., 31(2):512-526, 2019.

Xuan Zhang, Lei Jiao, B John Oommen, and Ole-Christoffer Granmo. A Conclusive Analysis of
the Finite-time Behavior of the Discretized Pursuit Learning Automaton. IEEE Transactions on
Neural Networks and Learning Systems, 31(1):284-294, 2020.

Xuan Zhang, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin. On the Convergence of
Tsetlin Machines for the IDENTITY - and NOT Operators. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(10):6345-6359, 2022.

11

Under review as a conference paper at ICLR 2026

A BRIEF OVERVIEW OF THE TM

We present the basics of TM here. Those who already are familiar with the concept and notations of
TM can ignore this appendix.

A.1 BAsic CONCEPT OF THE TM

The input of a TM is denoted as X = [z1, %2, ..., Z,), where x;, € {0,1}, k =1,2,...,0,and o is
the number of features. A literal is either the xj, being O or 1 in the original form or its negation —xy,
being 1 or 0. A clause is a conjunction of literals, and each literal is associated with a TA. The TA is
a 2-action learning automaton whose job is to decide whether to Include/Exclude its literal in/from
the clause, and the decision is determined by the current state of the TA.

Figure [3 illustrates the structure of a TA with two actions and 2V states, where IV is the number
of states for each action. This study considers IV as a finite number. When the TA is in any state
between 0 to NV — 1, the action “Include” is selected. The action becomes “Exclude” when the TA
is in any state between NN to 2V — 1. The transitions among the states are triggered by a reward or
a penalty that the TA receives from the environment, which, in this case, is determined by different
types of feedback defined in the TM (to be explained later).

A clause is associated with 20 TAs, forming a TA team. A TA team is denoted in general as g;i =

{TA%/|1 < K’ < 20}, where ¥’ is the index of the TA, j is the index of the TA team/clause (multiple
TA teams form a TM), and ¢ is the index of the TM/class to be identified (A TM identifies a class,
multiple TMs identify multiple classes).

Suppose we are investigating the 7" TM whose job is to identify class i, and that the TM is composed
of m TA teams. Then C’;(X) can be used to denote the output of the j** TA team, which is a
conjunctive clause:

For training:

i /\ Tk | A /\ T |, for 517 gl 7é ma
Ci(X) = ke ke 7 (12)
1, for &, & = 0.
For testing:
i x A - ; for 517 gz 7& (2)7
Ci(X) = ké\g; * ké\f : 7 (13)
0, for f;, 5; = (.

In Egs. and , f; and 5_; are defined as the sets of indexes for the literals that have been in-
cluded in the clause. ; contains the indexes of included original (non-negated) inputs, z, whereas
f; contains the indexes of included negated inputs, —xy. §§-, f; # () means not a single literal (fea-
ture) is included in the clause. Note that in propositional logic, an empty clause is typically defined
as having a value of 1. However, empirical results indicate that TMs generally achieve higher test
accuracy on new data when empty clauses are O-valued. Therefore, during TM training, an “empty”
clause outputs 1 to encourage the TAs to include literals, following the feedback mechanisms of the
TM. In contrast, during TM testing, an “empty’ clause outputs 0, indicating that it does not influence
the final classification decision since it does not represent any specific sub-pattern.

Include Exclude

Reward (R) : --» Penalty

Figure 3: A two-action Tsetlin automaton with 2V states |Jiao et al.| (2022).

12

Under review as a conference paper at ICLR 2026

Inputs Literals TA team TA decisions Output

1 ——| TAY |— I(z1) or E(21)
T <

w1 ——| TAY | — I(=21) or E(-a1)

-) 20 .
22 ——| TAY |— I(=x2) or E(~z2) Ci= A <decision of TAZ’,])
k=1

3 ——| TAY |— I(x2) or E(x2)
T2 <

< Ty ——| TAL | |— I(z,) or B(z,)
‘/I"()

“To——>| TAL |— I(=z,) or E(=z,)

Figure 4: A TA team G; consisting of 20 TAs|[Zhang et al.[(2022). Here I(x1) means “include z,”
and E(x1) means “exclude x”.

TA team 1 — C{(X)

TA team 2 — C4(X)

TAteamm —1 |—— Ci _(X)

m—1

TAteamm |—— C& (X)

Figure 5: TM voting architecture Jiao et al.| (2022).

Figure [] illustrates the structure of a clause and its relationship to its literals. Here, for ease of
notation, we define I(z) = z, I(—x) = -z, and E(x) = E(—z) = 1 in the analysis of the training
procedure, with the latter meaning that an excluded literal does not contribute to the output.

Multiple clauses, i.e., the TA teams, each of which in conjunctive form, are assembled into a com-
plete TM. There are two architectures for clause assembling: Disjunctive Normal Form Architecture
and Voting Architecture. In this study, we focus on the latter one, as shown in Figure[5} The voting
consists of summing the outputs of the clauses:

fo(CX) = Y- 65, (14

where C*(X) is the set of trained clauses for class i.
The output of the TM, in turn, is decided by the unit step function:
ai_ 0 fOI‘fz(C(X))<Th, (15)
1 for f5~(C(X)) > Th

where T'h is a predefined threshold for classification. For example, the classifier (21 A—z2)+(—z1 A
x9) captures the XOR-relation given Th = 1, meaning if any sub-pattern is satisfied, the input will
be identified as following the XOR logic.

13

Under review as a conference paper at ICLR 2026

Note that for the voting architecture, the TM can assign polarity to each TA team (Granmo, [2018).
Specifically, TA teams with odd indices have positive polarity, learning from training samples with
label 1, while those with even indices have negative polarity, learning from training samples with
label 0. The only difference between these polarities is that the output of a clause associated with an
even-indexed TA team will be flipped to its negative. The voting consists of summing the polarized
clause outputs, and the threshold T'h is set to zero. For example, for the XOR operator with four
clauses, the learned clauses with positive polarity can be C; = 1 A —z9 and C's = -2 A x5, while
the ones with negative polarity can be Cy = x1 A x5 and Cy = —x1 A —xo. In this case, when the
testing sample [x1 = 1,25 = 0] arrives, the sum of the clause values is 1. On the contrary, when
the testing sample [z; = 0,25 = 0] arrives, the sum of the clause values is —1. In this way, with
Th = 0, the system’s decision range and tolerance is expected to be larger.

In this study, we consider only positive polarity clauses. The reason is two-folds: firstly, in the
AND/OR case, once the TM has learned out the pattern that outputs 1, it also has learned the pattern
that outputs 0, as they are complementary. Therefore, the learning/reasoning process of TM can be
explained from the perspective of learning the pattern that outputs 1. Secondly, for the sake of easy
analysis and better understanding.

A.2 TRAINING PROCESS OF THE TM

The training process is built on letting all the TAs take part in a decentralized game. Training data
(X = [z1,22,..., %), y') is obtained from a data set S, distributed according to the probability
distribution P(X,y%). In the game, each TA is guided by Type I Feedback and Type II Feedback
defined in Table|3|and Table |4} respectively. Type I Feedback is triggered when the training sample
has a positive label, i.e., y* = 1, meaning that the sample belongs to class . When the training
sample is labeled as not belonging to class i, i.e., y* = 0, Type Il Feedback is utilized for generating
feedback. Examples demonstrating TA state transitions per feedback tables can be found in Section
3.11in (Zhang et al.l[2022). In brief, Type I feedback is to reinforce true positive and Type II feedback
is to fight against false negative.

The parameter, s, controls the granularity of the clauses and a larger s encourages more literals to
be included in each clause. A more detailed analysis on parameter s can be found in (Zhang et al.,
2022).

Value of the clause C';(X) 1 0

Value of the Literal x/—xy 1 0 1 0
P(Reward) | =1 NA 0 0

Include Literal | P(Inaction) % NA =1 s—1
P(Penalty) | 0 NA i i
P(Reward) 0 i 1 1

Exclude Literal | P(Inaction) % = 1 = 1 = 1
P(Penalty) | =1 0 0 0

Table 3: Type I Feedback — Feedback upon receiving a sample with label y = 1, for a single TA
to decide whether to Include or Exclude a given literal xy/—xy into Cj. NA means not applica-
ble (Granmo, 2018]).

To avoid the situation that a majority of the TA teams learn only one sub-pattern (or a subset of
sub-patterns) while ignore other sub-patterns, forming an incomplete representatior}’, the hyperpa-
rameter T is used to regulate the resource allocation. If the votes, i.e., the summation fs~(C*(X)),
for a certain sub-pattern X already reach a total of 7" or more, neither rewards nor penalties are pro-
vided to the TAs when more training samples of this particular sub-pattern are given. In this way, we
can ensure that each specific sub-pattern can be captured by a limited number, i.e., T, of available
clauses, allowing sparse sub-pattern representations among competing sub-patterns. Formally, the
strategy works as follows:

3For example, for the OR operator, one should avoid the situation that a majority of TA teams converge to
—x1 A x2 to represent the sub-pattern of [0, 1], and ignore the other sub-patterns [1, 0] and [1, 1], making the
learning outcome biased/unbalanced. A proper configuration of 7" can avoid this situation.

14

Under review as a conference paper at ICLR 2026

Value of the clause CJL(X) 1 0
Value of the Literal xy,/—xy, 1 0 1 0

PReward) | 0 NA 0 0
Include Literal | P(Inaction) | 1.0 NA 1.0 1.0
P(Penalty) | 0 NA 0 0
P(Reward) | 0 0 0 0
Exclude Literal | P(Inaction) | 1.0 0 1.0 1.0
P(Penalty) | 0 1.0 0 0

Table 4: Type Il Feedback — Feedback upon receiving a sample with label y = 0, for a single TA
to decide whether to Include or Exclude a given literal x/—xj into C}. NA means not applica-
ble (Granmo) 2018)).

Generating Type I Feedback. If the label of the training sample X is y* = 1, we generate, in

probability, Type I Feedback for each clause Cj € C'. The probability of generating Type I Feedback

is (Granmo, 2018)):

T — max(~T, min(T, f5(C'(X))))
2T '

uy =

(16)
Generating Type II Feedback. If the lable of the training sample X is y® = 0, we generate, again,
in probability, Type II Feedback to each clause C'; € C*. The probability is (Granmoy 2018):

_ T+ max(=T, min(T, f(C"(X))))
2T '

U a7

After Type I Feedback or Type Il Feedback is generated for a clause, each individual TA within each
clause is given a reward/penalty/inaction according to the probability defined in the Type I and Type
2 feedback tables, and then the state of the corresponding TA is updated.

B DETAILED PROOF OF THE CONVERGENCE OF THE AND OPERATOR

Proof: In this Appendix, we will prove Theorem [I] The condition v; > 0 and uy > 0 guarantees
that all types of samples for AND operator, following Eq. (I8), are always given and no specific type
is blocked during training. The goal of the proof is to show that the system transitions will guarantee
the actions of TA, TA,, TAg, and TA4 to be I, E, I, E, and these actions correspond to the unique
absorbing state of the system.

=1 (18)

In Subsections [B.1] we will describe the transitions of the system in an exhaustive manner. There-
after, in the Subsection[B.2] we summarize the transitions in Subsection[B.I]and reveal the absorbing
state of the system, which is the intended AND operator.

B.1 THE TRANSITIONS OF THE TAS

In order to analyze the transitions of the system, we freeze the transition of the two TAs for the first
bit of the input and study the transition of the second bit of input. Clearly, there are four cases for
the first bit, z1, as:

e Case 1: TA; = E, TA; =1, i.e., include —x7.

e Case2: TA; =1, TA; =E, i.e., include z.

e Case 3: TA; = E, TA, =E, i.e., exclude both z; and —z;.
e Case4: TA; =1, TA, =1, i.e., include both z; and —x;.

15

Under review as a conference paper at ICLR 2026

In what follows, we will analyze the transition of the TAs for x5, given the TAs of x; frozen in the
above four distinct cases, one by one.

B.1.1 CASE 1: INCLUDE —x1

In this subsection, we assume that the TAs for first bit is frozen as TA; = E and TAy = I, and
thus the overall joint actions of TAs for the first bit give “—z;”. In this case, we have 4 situations to
study, detailed below:

* Situationl: We study the transition of TA3 when it has “Include” as its current action, given
different actions of TA,4 (i.e., when the action of TA is frozen as “Include” or “Exclude”.).

e Situation 2: We study the transition of TA3 when it has “Exclude” as its current action,
given different actions of TA, (i.e., when the action of TAy is frozen as “Include” or
“Exclude”.).

* Situation 3: We study the transition of TA4 when it has “Include” as its current action, given
different actions of TAj3 (i.e., when the action of TAj is frozen as “Include” or “Exclude”.).

* Situation 4: We study the transition of TA4 when it has “Exclude” as its current action,
given different actions of TAg (i.e., when the action of TAj is frozen as “Include” or
“Exclude”.).

In what follows, we will go through, exhaustively, the four situations.
B.1.1.1 Study TAj3 with Action Include

Here we study the transitions of TA3 when its current action is Include, given different actions of
TA,4 and input samples. For ease of expressions, the self-loops of the transitions are not depicted
in the transition diagram. Clearly, this situation has 8 instances, depending on the variations of
the training samples and the status of TA,4, where the first four correspond to the instances with
TA, = E while the remaining four represent the instances with TA, = L.

Now we study the first instance, with 1 = 1, x5 = 1, y = 1, and TA4 = E. Clearly, this training
sample will trigger Type I feedback because y = 1. Together with the current status of the other
TAs, the clause is determined to be C' = —x1 A 25 = 0 and the literal is zo = 1. From Table 3} we
know that the penalty probability is % and the inaction probability is *;—1 To indicate the transitions,
we have plotted the diagram, with the transitions for penalty below. Note that the overall transition
probability is uy % where u; is defined in Eq. . Here, we have assumed u; > 0.

Condition: 1 = 1, 20 = 1,y = 1,
TA, = E.
Thus, Type I, 2 = 1,
C=-x1 N2y =0.
I E
gulé

Penalty O/NO/NO O
Reward O O O @)

We here continue with analyzing another example shown below. In this instance, it covers the
training samples: 1 = 1, o = 0, y = 0, and TA, = E. Clearly, the training sample will trigger
Type II feedback because y = 0. The clause output becomes C's = —x; A zo = 0. Because we now
study TAs3, the corresponding literal is 3 = 0. Based on the information above, we can check from
Table [4] and find the probability of “Inaction” is 1. For this reason, the transition diagram does not
have any arrow, indicating that there is “No transition” for TAg.

Condition: 1 = 1, 22 = 0, y = 0,
TA, =E.

Thus, Type II, zo = 0,

C = -1 A\ Zo =0.

16

Under review as a conference paper at ICLR 2026

1 E

Penalty O O : O O No transition

Reward O O O O

The same analytical principle applies for all the other instances, and we therefore will not explain
them in detail. Instead, we just list the transition diagrams.

Condition: 1 = 0, x2 = 1,y = 0,
TA, =E.
Thus, Type II, x5 = 1,
C=-x1Nxy=1.

I E

Penalty O O o O No transition

Reward O O O O

Condition: x; = 0, xz2 = 0,y = 0,
TA, =E.

Thus, Type II, z5 = 0,

C = -] A\ T = 0.

1 E

Penaty O O : O O No transition

Reward O O O O

Condition: z; = 1, z9 = 1,y = 1,
TA, =1

Thus, Type I, zo = 1,

C=-z1 Nzo Ay = 0.

1 E

1
v

Penalty O/NO/NO O
Reward O O O O

Condition: y = 1, 22 = 0, y = 0,
TA, =1
Thus, Type II, z5 = 0,
C =-x21 ANxog A~z = 0.
I E

Penalty O O : O O No transition

Reward O O O O
Condition: 1 = 0, x2o = 1,y = 0,
TA, =1L
Thus, Type II, x5 = 1,
C =21 ANaxg Ao =0.
I E

Penalty O O 1 O O No transition

Reward O O O O

17

Under review as a conference paper at ICLR 2026

Condition: 1 = 0, x2 = 0,y = 0,
TA, =1
Thus, Type II, z3 = 0,
C =21 ANxg A—xo =0.
I E

Penalty O O O O No transition

Reward O O O O
B.1.1.2 Study TAg with Action Exclude

Here we study the transitions of TAs when its current action is Exclude, given different actions of
TA4 and input samples. This situation has 8 instances, depending on the variations of the training
samples and the status of TA4. In this subsection and the following subsections, we will not plot the
transition diagrams for “No transition”.

Condition: 1 = 1, 20 = 1,y = 1,

TA, = E.
Thus, Type I, zo = 1,
C=-x=0.

I E

Penalty O O O O

1

H Uy
Reward O O O/NODS

Condition: 1 = 0, xz2 = 0,y = 0,

TA, =E.
Thus, Type II, z5 = 0,
C = X = 1.

I E

up X 1

Penalty O OK\OK_\O
Reward O O O O

Condition: 1 = 1, 20 = 1,y = 1,
TA, =1L

Thus, Type I, zo = 1,

C =-x1 A—x9 =0.

1 E
Penalty O O O O

Reward O O O/N ODI

ulg

Condition: x; = 0, xz2 = 0, y = 0,
TA, =1
Thus, Type II, z5 = 0,
C:_‘ZL'l/_\ZL'QZ]..

I E

:oug X1

Penalty O OK.\OK_\O
Reward O O O O
B.1.1.3 Study TA4 with Action Include

Here we list the transitions for TA4 when its current action is Include.

18

Under review as a conference paper at ICLR 2026

Condition: 1 = 1, 20 = 1,y = 1,
TA; = E.
Thus, Type I, m22 = 0,
C =21 A—xzg=0.
I E

111/1%

Penalty ()/N O/NO O
Reward O O O O

Condition: 7 = 1,29 = 1,y = 1,
TA; =1.

Thus, Type I, mz5 = 0,

C =-z1 Ny A—xp =0.

1 E
wg
Penalty O/NO/.NO O
Reward O O O @)
B.1.1.4 Study TA 4 with Action Exclude

Here we list the transitions for TA, when its current action is Exclude.

Condition: 1 = 1, 29 = 1,y = 1,

TA3; = E.
Thus, Type I, mz5 = 0,
C = T = 0.

I E

Penalty O O O O

Reward O O O/NODI
H u];
Condition: 1 = 0, xz2 = 1,y = 0,
TA3; =E.
Thus, Type II, ~x2 = 0,
C= T = 1.
I E

Uf_)><1

Penalty O OK\O'(_\O
Reward O O @) O

Condition: z; = 1, 29 = 1,y = 1,
TA; =1

Thus, Type I, x5 = 0,

C = 1 N\ To = 0.

I E
Penalty O O O O

Reward O O O/NODl
H u|;

Condition: 1 = 0, xz2 = 1,y = 0,

TA; =1

Thus, Type II, ~22 = 0,

C = Xy A\ T = 1.

19

Under review as a conference paper at ICLR 2026

1 E
up X 1

Penalty O OK‘\OK_\O

Reward O O O O

B.1.2 CASE 2: INCLUDE z;

For Case 2, we assume that the actions of the TAs for the first bit are frozen as TA; = I and
TA5 = E, and thus the overall joint action for the first bit is “z;”. Similar to Case 1, we also have 4
situations.

B.1.2.1 Study TAg3 with Action Include

Condition: 1 = 1, 0 = 1,y = 1,

TA, = E.
Thus, Type I, zo = 1,
C = X1 A Z‘2=1.

I E

Penalty O O O O

Rew (zV'{Qp&_/O O O

“15%

Condition: 1 = 1, 22 = 1,y = 1,
TA, =1

Thus, Type I, o = 1,
C=x1 ANxog N 29 =0.

1 E
g
Penalty O/NO/.NO O
Reward O O O O
B.1.2.2 Study TAj3 with Action Exclude

Condition: 1 = 1, 20 = 1,y = 1,

TA, =E.
Thus, Type I, 2 = 1,
C = T = 1.

I E

Uy —":1

Penalty O O'(\O'(_\O
Reward QO O O O

Condition: 1 = 1, xz0 = 0,y = 0,

TA, = E.
Thus, Type II, 2 = 0,
C = xr1 = 1.

I E

up X 1

Penalty O OK\O'(_\O

Reward O O O O

Condition: z1 = 1,25 = 1,y = 1,
TA; =1L

Thus, Type I, 2 = 1,
C = xr1 N\ g = 0.

20

Under review as a conference paper at ICLR 2026

1 E
Penalty O O O O
Reward O O O/NODI

H 'ul;

Condition: 1 = 1, 22 = 0,y = 0,
TA, =1L
Thus, Type II, z2 = 0,
C=x1N—-xy=1.

1 E
up X 1

Penalty O OK\O'(_\O
Reward O O O O
B.1.2.3 Study TA, with Action Include
Condition: 1 = 1, 20 = 1,y = 1,
TA3; =E.
Thus, Type I, ~22 = 0,
C = T A Lo = 0.
I E

.“1%

Penalty ()/N O/NO O
Reward O O O O

Condition: 1 = 1, 22 = 1,y = 1,
TA; =1

Thus, Type I, mz5 = 0,
C=x1 Nxog AN—x9 = 0.

1 E
1
urg

Penalty O/NO/NO O
Reward O O O O
B.1.2.4 Study TA,4 with Action Exclude

Condition: 1 = 1, 20 = 1,y = 1,
TA3; =E.

Thus, Type I, mz2 = 0,

C= 1 = 1.

I E
Penalty O O O O
Reward QO O O/NO@l
: Urg

Condition: 1 = 1, 0 = 1,y = 1,
TA; =L

Thus, Type I, x5 = 0,

C = X1 A To = 1.

I E
Penalty O O O O

Reward O O O/N ODI

ulg

21

Under review as a conference paper at ICLR 2026

B.1.3 CASE 3: EXCLUDE BOTH —x1 AND x7

For Case 3, we assume that the actions of TAs for the first bit are frozen as TA; = E and TAy = E,
with 4 situations. Note that in the training process, when all literals are excluded, C'is assigned to 1.

B.1.3.1 Study TAg3 with Action Include

Condition: 1 = 1, 20 = 1,y = 1,

TA, =E.
Thus, Type I, zo = 1,
C = To = 1.

I E

Penalty O O O O

R@“’f”'fdp,&/() O O
ut s

Condition: ;1 = 1, 29 = 1,y = 1,

TA; =1
Thus, Type I, 2 = 1,
C=0.

I E

.“1%

Penalty ()/N O/NO O
Reward O O O O
B.1.3.2 Study TAj3 with Action Exclude

Condition: 1 = 1, 20 = 1,y = 1,

TA,; = E.
Thus, Type I, 2 = 1,
C=1.

I E

ust

Penalty O OK\O'(_\O
Reward O O O O

Condition: y = 1, 22 = 0, y = 0,

TA, =E.
Thus, Type II, z5 = 0,
C=1

1 FE

up X 1

Penalty O O'(\O'(_\O
Reward O O O @)

Condition: 1 = 0, x2 = 0,y = 0,

TA, = E.
Thus, Type 11, zo = 0,
C=1.

I E

up X 1

Penalty O OK\OK_\O

Reward O O O O

22

Under review as a conference paper at ICLR 2026

Condition: z; = 1, 29 = 1,y = 1,
TA, =1

Thus, Type I, zo = 1,

C=0.

1 E
Penalty O O O O

Reward QO O O/NOQI
: uly
Condition: z; = 1, z9 = 0,y = 0,
TA, =1L
Thus, Type II, 2 = 0,
C =1
1 E

up X 1

Penalty O OK\O'(_\O
Reward O O O O

Condition: z; = 0, z2 = 0,y = 0,
TA,; =1
Thus, Type II, z5 = 0,
C=1L
I E
ug X 1

Penalty O OK\O'(_\O
Reward O O O O
B.1.3.3 Study TA, with Action Include

Condition: 1 = 1, 20 = 1,y = 1,
TA3; = E.

Thus, Type I, ~z5 = 0,

C=-x5=0.

I E
1
s

Penalty O/NO/.NO O
Reward O O O @)

Condition: 1 = 1, 20 = 1,y = 1,
TA; =1
Thus, Type I, mz2 = 0,
C =-a9ANxo =0.
I E
:Ulé

Penalty O7 OO O

Reward O O O O

B.1.3.4 Study 'fA4 with Action Exclude
Condition: 1 = 1, 20 = 1,y = 1,
TA; =E.

Thus, Type I, m22 = 0,
C=1

23

Under review as a conference paper at ICLR 2026

1 E
Penalty O O O O
Reward O O O/NODI

H 'ul;

Condition: 1 = 0, xz2 = 1,y = 0,
TA; = E.
Thus, Type II, —z2 = 0,
C=1.

1 E

up X 1

Penalty O OK\OK_\O
Reward O O O O

Condition: 1 = 1, 20 = 1,y = 1,

TA; =L
Thus, Type I, x5 = 0,
C=1.

I E

Penalty O O O O
Reward O O O/NODI

ulg

Condition: 1 = 0, xz2 = 1,y = 0,
TAs; =1
Thus, Type II, x5 = 0,
C=1.
I E

up X 1

Penalty O OK\O'(_\O

Reward O O O O

B.1.4 CASE 4: INCLUDE BOTH —x1 AND x7

For Case 4, we assume that the actions of TAs for the first bit are frozen as TA; = I and TA; =1,
and thus C' = 0 always. Similarly, we also have 4 situations, detailed below.

B.1.4.1 Study TAg3 with Action Include

Condition: 1 = 1, 20 = 1,y = 1,

TA, =E.
Thus, Type I, 2 = 1,
C=0.

I E

1
Uy
Penalty WWO O
Reward O O O O
Condition: 1 = 1, 20 = 1,y = 1,
TA, =1

Thus, Type I, zo = 1,
C=0.

24

Under review as a conference paper at ICLR 2026

I E
1
urg

Penalty O/NO/.NO O
Reward O O O O
B.1.4.2 Study TAj3 with Action Exclude

Condition: 1 = 1, 20 = 1,y = 1,
TA, =E.

Thus, Type I, 2 = 1,

C=0.

1 E
Penalty O O O O

Reward O O O/NOal
H ulg

Condition: 1 = 1, 20 = 1,y = 1,

TA; =1

Thus, Type I, 2 = 1,

C=0.

1 E
Penalty O O O O

Reward O O O/\’AODI

uly

B.1.4.3 Study TA, with Action Include

Condition: 1 = 1, 22 = 1,y = 1,
TA3; =E.
Thus, Type I, mzo = 0,
C=0.
I E
urd

Penalty WWO O
Reward O O O O

Condition: 1 = 1, 20 = 1,y = 1,
TA; =L

Thus, Type I, mz2 = 0,

C=0.

1 E

1
s

Penalty 07 OO O

Reward O O O O

B.1.4.4 Study r'FA4 with Action Exclude
Condition: 1 = 1, 20 = 1,y = 1,
TA3; =E.

Thus, Type I, x5 = 0,
C=0.

25

Under review as a conference paper at ICLR 2026

1 E
Penalty O O O O

Reward O O O/NODI

'ul;

Condition: 1 = 1, 20 = 1,y = 1,

TA; =1.
Thus, Type I, mz2 = 0,
C=0.

I E

Penalty O O O O

Reward O O O/N O
’11,1%
So far, we have gone through, exhaustively, the transitions of TA3 and TA 4 for all the cases (all pos-
sible training samples and system states). Hereafter, we can summarize the direction of transitions
and study the convergence properties of the system for the given training samples, to be detailed in
the next subsection.

B.2 SUMMARIZE OF THE DIRECTIONS OF TRANSITIONS IN DIFFERENT CASES

Based on the analysis above, we summarize here what happens to TA; and TA,, given different
status (Cases) of TA; and TA,. More specifically, we will summarize here the directions of the
transitions for the TAs. For example, “TA3 = E” means that TA3 will move towards the action
“Exclude”, while “TA4 = E or I” means TA 4 transits towards either “Exclude” or “Include”.

Scenario 1: Study TAg =Tand TAy, =1

Case 1, we have: Case 3, we have:
TA3 = E. TA3 = E.
TA4 = E. TA4 = E.
Case 2, we have: Case 4, we have:
TA3 = E. TA3 = E.
TA4 = E. TA4 = E.

From the facts presented above, we can confirm that regardless the state of TA; and TA,, if TA3 =
Iand TA, =1, they (TA3 and TA,) will eventually move out of their states.

Scenario 2: Study TA3 =Iand TA, = E.

Case 1, we have: Case 3, we have:
TA3 = E. TA3 =1L

TA; = Eorl TA, = Eorl.
Case 2, we have: Case 4, we have:
TA3 =1 TA3 = E.

TA4 = E. TA4 = E.

For Scenario 2 Case 2, we can observe that if TA; =1, TA; = E, TA; =1, and TA; = E, TA3 will
move deeper to “include” and TA4 will go deeper to “exclude”. It is not difficult to derive also that
TA; will move deeper to “include” and TA, will transfer deeper to “exclude” in this circumstance.
This tells us that the TAs in states TAs = I, TA; = E, TA; = I, and TA, = E, reinforce each other
to move deeper to their corresponding directions and they therefore construct an absorbing state of
the system. If it is the only absorbing state, we can conclude that the TM converge to the intended
“AND” operation.

In Scenario 2, we can observe for Cases 1, 3, and 4, the actions for TAs and TA, are not ab-
sorbing because the TAs will not be reinforced to move monotonically deeper to the states of the
corresponding actions for difference cases.

26

Under review as a conference paper at ICLR 2026

For Scenario 2, Case 3, TA4 has two possible directions to transit, I or E, depending on the input
of the training sample. For action exclude, it will be reinforced when training sample xz; = 1 and
xo = 1 is given, based on Type I feedback. However, TA, will transit towards “include” side when
training sample x; = 0 and z2 = 1 is given, due to Type II feedback. Therefore, the direction of the
transition for TA, is I or E, depending on the training samples. In the following paragraphs, when
“or” appears in the transition direction, the same concept applies.

Scenario 3: Study TA; = Eand TA, = 1.

Case 1, we have: Case 3, we have:
TAs = Eorl. TAz; = Eorl.
TA4 = E. TA4 = E.

Case 2, we have: Case 4, we have:
TAs = Eorl. TA3; = E.

TA4 = E. TA4 = E.

In Scenario 3, we can see that the actions for TA3 = E and TA4 = I are not absorbing because the
TAs will not be reinforced to move deeper to the states of the corresponding actions.

Scenario 4: Study TA; = E and TA, = E.

Case 1, we have: Case 3, we have:
TAs; = TorE. TA3 =1L

TA, = TorE. TA, = TorE.
Case 2, we have: Case 4, we have:
TA; = L TA3 = E.

TA4 = E. TA4 = E.

In Scenario 4, we see that, the actions for TA3 = E and TA, = E seem to be an absorbing state,
because the states of TAs will move deeper in Case 4. After a revisit of the condition for Case 4, i.e.,
include both —x; and x1, we understand that this condition is not absorbing. In fact, when TA; and
TAs both have “Include” as their actions, they monotonically move towards “Exclude”. Therefore,
from the overall system’s perspective, the system state TA; =1, TA; =1, TA3 = E,and TA; = E
is not absorbing. For the other cases in this scenario, there is no absorbing state.

Based on the above analysis, we understand that there is only one absorbing condition in the system,
namely, TA; = I, TA; = E, TA3 = I, and TA, = E, for the given training samples with AND
logic. The same conclusion applies when we freeze the transition of the two TAs for the second bit
of the input and study behavior of the first bit of input. Therefore, we can conclude that the TM with
a clause can learn to be the intended AND operator, almost surely, in infinite time horizon. We thus
complete the proof of Theorem |

C PROOF OF LEMMAI]

The probability of the training samples for the noise-free OR operator can be presented by the
following equations.

Ply=1z1 =120 =1) =1, (19)

Py=1z; =020 =1) =1,

Ply=1llzy =120 =0) =1,

P(y=0|z1 =0,20=0)=1.
Clearly, there are three sub-patterns of x; and xo that will give y = 1, ie., [x1 = 1, o = 1],
[t1 =1, o = 0], and [z; = 0, x2 = 1]. More specifically, Eq. can be split into three cases,
corresponding to the three sub-patterns:

Ply=1z; =120 =1) =1, (20)
P(y=0|z; =0,20 =0) =1,
Py=1z1 =020 =1) =1, 21
P(y=0|z; =0,20 =0) =1,

27

Under review as a conference paper at ICLR 2026

and

P(y=1lz1 =129 =0) =1, (22)
P(y=0Jzy =0,20 =0) = 1.

In what follows, we will show the convergence of the three sub-patterns, i.e., Lemmam

The convergence analyses of the above three sub-patterns can be derived by reusing the analyses
of the sub-patterns of the XOR operator plus the AND operator. For the sub-pattern described by
Eq. (20), we can confirm that the TAs will indeed converge to TA; = I, TA; = E, TA; = 1,
and TA, = E, by studying the transition diagrams in Subsection [B]when input samples of [z = 0,
zo = 1]and [z1 = 1, x9 = 0] are removed. In this case, the directions of the transitions for different
scenarios are summarized below.

Scenario 1: Study TA; =T and TA, =L

Case 1, we have:
TA3; = E.
TA4 = E.
Case 2, we have:
TA3; = E.
TA4 = E.

Case 3, we have:
TA3; = E.
TA4 = E.
Case 4, we have:
TA3 = E.
TA4 = E.

Scenario 2: Study TA; =TI and TA, = E.

Case 1, we have:
TA3 = E.
TA4 = E.
Case 2, we have:
TA3 =1
TA4 = E.

Case 3, we have:
TA3 =L
TA4 = E.
Case 4, we have:
TA3 = E.
TA4 = E.

Scenario 3: Study TA; = Eand TA, = 1.

Case 1, we have:
TAs = Eorl.
TA4 = E.

Case 2, we have:
TA3 = E.

TA4 = E.

Case 3, we have:
TAs = Eorl.
TA, = E.

Case 4, we have:
TA, = E.

28

Under review as a conference paper at ICLR 2026

Scenario 4: Study TA3 = E and TA, = E.

Case 1, we have:
TAs = 1orE.
TA4 = E.

Case 2, we have:
TA3 =L

TA4 = E.

Case 3, we have:
TA3 =1
TA4 = E.
Case 4, we have:
TA3 = E.
TA4 = E.

Comparing the analysis with the one in Subsection [B.2] there is apparently another possible ab-
sorbing case, which can be observed in Scenario 2, Case 3, where TAs = I and TA4 = E, given
TA; = E and TAy, = E. However, given TA3 = I and TA,; = E, the TAs for the first bit, i.e.,
TA; = E and TA; = E, will not move only towards Exclude. Therefore, they do not reinforce
each other to move to deeper states for their current actions. For this reason, the system in TAg =1,
TA4 = E, TA; = E, and TAy; = E, is not in an absorbing state. In addition, given TA3 = I and
TA4 = E, TA; and TA, with actions E and E will transit towards I and E, encouraging the overall
system to move towards I, E, I, and E. Consequently, the system state with TA; = I, TA; = E,
TA; = 1, and TA, = E is still the only absorbing case for the given training samples following
Eq. (20).

For Eq. @]), similar to the proof of in Lemma 1 in (Jiao et al.|[2022)), we can derive that the TAs will
converge in TA; = E, TA; =1, TA3; = I, and TA, = E. The transition diagrams for the samples
of Eq. (21)) are in fact a subset of the ones presented in Subsection 3.2.1 and Appendix 2 of (Jiao
et al., 2022), when the input samples of [z; = 1 and x2 = 1] are removed. We summarize below
only the directions of transitions.

The directions of the transitions of the TAs for the second input bit, i.e., zo/—x2, When the TAs
for the first input bit are frozen, are summarized as follows (based on the subset of the transition
diagrams in Subsection 3.2.1 of (Jiao et al., [2022)).

Scenario 1: Study TAg =Tand TAy, =1

Case 1: we have
TA3 —E
TA4 —E
Case 2: we have
TA3 —E
TA4 —E

Case 3: we have
TA3 —E
TA4 —E
Case 4: we have
TA3 —E
TA4 —E

Scenario 2: Study TAg =Tand TA; =E.

Case 1: we have
TA3 —1
TA4 —E
Case 2: we have
TA3 —E
TA4 —E

29

Under review as a conference paper at ICLR 2026

Case 3: we have
TA3 — 1
TA4 —E
Case 4: we have
TA3 —E
TA4 —E

Scenario 3: Study TA; =E and TA, =1

Case 1: we have
TA3 — 1, 0orE
TA4 —E

Case 2: we have
TA3 —E

TA4 —E

Case 3: we have
TAs; -1, 0orE
TA4 —E

Case 4: we have
TA3 —E

TA4 —E

Scenario 4: Study TA; =E and TA, =E.

Case 1: we have
TA3 — 1
TA4 —E
Case 2: we have
TA3 —E
TA4 —E

Case 3: we have
TA4 —E
Case 4: we have
TA4 —E

The directions of the transitions of the TAs for the first input bit, i.e., x1/—x1, when the TAs for
the second input bit are frozen, are summarized as follows (based on the subset of the transition
diagrams in Appendix 2 of (Jiao et al., [2022)).

Scenario 1: Study TA; =Tand TA; =1.

Case 1: we have
TA1 —E
TA2 —E
Case 2: we have
TA1 —E
TA2 —E

Case 3: we have
TA1 —E
TA2 —E
Case 4: we have
TA1 —E
TA2 —E

Scenario 2: Study TA; =Tand TA; =E.

30

Under review as a conference paper at ICLR 2026

Case 1: we have
TA]_ —E
TA2 —E
Case 2: we have
TA]_ —E
TA2 —E

Case 3: we have
TA1 —E
TA2 —E
Case 4: we have
TA1 —E
TA2 —E

Scenario 3: Study TA; =Eand TA; =1

Case 1: we have
TA; -1, 0orE
TA2 —E

Case 2: we have
TA1 —E

TA2 —1

Case 3: we have
TA1 —1
TAQ — 1
Case 4: we have
TA1 —E
TAQ —E

Scenario 4: Study TA; =E and TA,; = E.

Case 1: we have
TA; —1,0orE
TA2 —E

Case 2: we have
TA1 —E

TA2 —1

Case 3: we have
TA1 —E
TA2 —E
Case 4: we have
TA1 —E
TA2 —E

By analyzing the transitions of TAs for the two input bits with samples following Eq. (1)), we can
conclude that TA; = E, TA; = I, TA3 = I, and TA, = E is an absorbing state, as the actions of
TA,-TA, reinforce each other to transit to deeper states for the current actions upon various input
samples. There are a few other cases in different scenarios that seem to be absorbing, but in fact
not. For example, the status TAs = I and TA, = E seems also absorbing in Scenario 2, Case 3,
i.e., when TA; = E and TA, = E hold. However, to make TA; = E and TA, = E absorbing,
the condition is TA3 = Iand TAy = 1, or TA3 = E and TA, = E. Clearly, the status TA3 = 1
and TA, = T is not absorbing. For TA3 = E and TA, = E to be absorbing, it is required to have
TA; = I and TA; = I to be absorbing, or TA; = I and TAs = E to be absorbing, which are not
true. Therefore, all those absorbing-like states are not absorbing. In fact, when TA3 =1, TA; = E,
TA; = E, and TAs = E hold, the condition TA3; = I, TA, = E will reinforce TA; and TA,
to move towards E, I, which is the absorbing state of the system. Based on the above analysis on
the transition directions, we can thus confirm the convergence of TM when training samples from

Eq. (Z1) are given.

31

Under review as a conference paper at ICLR 2026

Following the same principle, we can also confirm that the TAs will converge to TA; = I, TA; = E,
TA3 = E, and TA; = I when training samples from Eq. are given, according to the proof of
Lemma 2 in (Jiao et al., 2022).

D PROOF OF LEMMA

Proof of Lemma 2} To show the recurrent property when samples following Eq. (9) are given, we
need to show that the absorbing states for Eq. (@) disappear when ([z1 = 1,22 = 0],y = 1) is given
in addition, and the same applies for Eq. (8) when ([z1 = 1,25 = 1],y = 1) is given.

We first show that the absorbing state of TA; = I, TA; = E, TA3 = I, TA, = E, for sub-pattern
([x1 = 1,29 = 1], y = 1) as shown in Eq. @) disappears when sub-pattern ([z; = 1,22 = 0],y =
1) is given in addition. Indeed, TA3 will move toward E when ([x; = 1,22 = 0],y = 1) is given,
because a penalty is given to TA3 as shown in Fig.[6

1 E
1
g

Penalty O/\‘O/\)O O

Reward O O O O

Figure 6: Transition of TA3 when its current action is Include, TA;, TAo, and TA,’s actions are
Include, Exclude, and Exclude, respectively, upon a training sample (z; = 1, xz2 =0,y = 1).

Clearly, when ([z1 = 1,29 = 0],y = 1) is given in addition, TA3 has a non-zero probability to
move towards “Exclude”. Therefore, “Include” is not the only direction that TA3 moves to upon
the new input. In other words, ([z1 = 1,22 = 0],y = 1) will make the state TA; = I, TAy = E,
TAs = I, TA4 = E, not absorbing any longer. For other states, the newly added training sample
will not remove any transition from the previous case. For this reason, the system will not have any
new absorbing state. Therefore, when ([x; = 1,29 = 0],y = 1) is given in addition, the absorbing
state disappears and the system will not have any new absorbing state.

Following the same concept, we show that the absorbing state for ([x; = 1,20 = 0,y = 1)
shown in Eq. @, ie.,, TA; = 1, TA; = E, TA; = E, TA; = 1, disappears when sub-pattern
([x1 = 1,29 = 1],y = 1) is given in addition. Indeed, TA, will also move towards E when
([x1 = 1,29 = 1],y = 1) is given, as shown in Fig.

I E
1
wg

Penalty O/NO/\)O O

Reward O O O O

Figure 7: Transition of TA, when its current action is Include, TA, TAs, and TA3’s actions are
Include, Exclude, and Exclude, respectively, upon a training sample (1 = 1, 22 = 1,y = 1).

Understandably, because of the newly added sub-patterns, the absorbing states in Eqs. (6) and
disappear and no new absorbing states are generated. In other words, the TM trained based on
samples from Eq. () becomes recurrent.

Following the same concept, we can show that the system becomes recurrent for Eqs. (3)), (I0), and
(TT) as well. For the sake of conciseness, we will not provide the details here. In general, any newly
added sub-pattern will involve a probability for the learnt sub-pattern to move outside the learnt
state, making the system recurrent.]

32

Under review as a conference paper at ICLR 2026

E PROOF OF LEMMA 3]

Proof of Lemma [3} In Lemma [2] the TM is recurrent if the functionality of T is disabled (i.e.,
uy > 0, ug > 0). Therefore, for the OR operator to converge, the functionality of 7" is critical to
block any feedback in order to form an absorbing state.

By design, TM will either be updated via Type I feedback or Type II feedback. We show via (1)
the condition when Type I feedback is blocked and then show via (2) when any update from Type 11
feedback is not triggered. When both happen, the system will not be updated anymore and thus
absorbed.

To prove (1) in Lemma 3] we show that the system is not absorbed when 0 or 1 intended sub-pattern
is blocked by 7. When 2 intended sub-patterns are blocked, the system will guide the clauses to
learn the remaining intended sub-pattern. Only when all 3 intended sub-patterns are blocked by 7',
the system will stop updating based on Type I feedback.

Clearly, when no intended sub-pattern is blocked by T, the training samples provided to the system
follow Eq. (3). In other words, no samples corresponding to a specific sub-pattern are blocked.
Under such training conditions, as shown in Lemma 2] the TM is recurrent. When only 1 intended
sub-pattern is blocked by 7', the system is updated based on samples following Eqs. (9), (I0), or
@, which is also recurrent.

We look at the cases when two intended sub-patterns are blocked by 7" but the third one is not
blocked. In other words, the number of clauses for each of the two intended sub-patterns reaches
at least T, and the number of clauses for the remaining sub-pattern is less than 7. In this case,
only one type of samples from Egs. @) or (7) or (8) will be provided to the Tl\/ﬂ Based on Lemma
we understand that all clauses, including the ones that have learnt the two blocked sub-patterns,
will be forced to learn the not-yet-blocked sub-pattern. This is due to the fact that only the samples
following the not-yet-blocked sub-pattern are triggering the update for the TM. In this circumstance,
as soon as the not-yet-blocked sub-pattern also has 7' clauses, i.e., when all three sub-patterns are
blocked by T at the same time, Type I feedback are blocked completely.

Note that the samples corresponding to the not-yet-blocked sub-pattern will encourage the learnt
clauses (i.e., the clauses for the blocked sub-patterns) to move out from the learnt sub-patterns,
and this may cause the number of clauses for the blocked sub-pattern being lower than 7' (thus
unblocked), again. If this happens before the number of clauses for the not-yet-blocked sub-pattern
reaches 7', at least two sub-patterns will be in the non-blocked state, and the system becomes one of
the three cases described by Eqgs. (9), (I0) or (IT). In other words, even if an absorbing state exists
after two intended sub-patterns are blocked by T, the system may not monotonically move towards
the absorbing state. Nevertheless, as soon as all three intended sub-patterns are blocked by reaching
T clauses, the Type I feedback will be blocked.

Here we prove (2) in Lemma [3] Type II feedback is only triggered by training sample ([x1 = O,
x2 = 0], y = 0) in the OR operator. For Type II feedback, based on Table 2] a transition is triggered
only when a penalty occurs, i.e., when the excluded literal has a value of 0 and the clause evaluates
to 1. Specifically for the OR operation, this only happens when C' = —21 A =29 or C = —x; or
C = —x9. For C = —x; A —x2, based on the Type II feedback, the TA with the action “excluding
1" and the TA with the action “excluding x2” will be penalized. In other words, the actions of the
two TAs for z1 and x2 will be encouraged to move from exclude to include side. As soon as one of
the TAs (or occasionally both of them) becomes include, the clause will become C' = x1 A—x1 A—xa
or C = —x1 A 2 A —xo (or occasionally C' = x1 A =z A x2 A —xs). In this case, input [z = 0,
9 = 0] will always result in O as the clause value and then the Type II feedback will not update the
system any longer. Following the same concept, for C' = —x2, the Type II feedback will encourage
the excluded z; to be included so that the clause becomes C' = x7 A —xy. The same applies to
C = —x1, which will eventually become C' = —x1 A x5 upon Type II feedback. When all clauses
in C = —x5 or C' = —xy are also updated to C' = x1 A -9 or C' = —x1 A 2, no Type II feedback
is triggered up on any input sample.

We summarize the requirements for an absorbing state:

“More precisely speaking, all samples will be fed into the TM, but only samples corresponding to the not-
yet-blocked sub-pattern will be used by the TM for training purpose.

33

Under review as a conference paper at ICLR 2026

* For any sample X following sub-pattern [x; = 1,20 = 1], or [xt1 = 1,29 = 0], or
[r1 = 0,22 = 1], the number of clauses for that sub-pattern, i.e., fs(C*(X)), must be
at least 7', no matter in which form the clauses are constructed. This will block Type I
feedback.

* There are no clauses with literal(s) in only negated form, such as C' = —x; or C' = —x4
or or C = —x; A —xy. This guarantees that no transition will happen upon any Type II
feedback.

F ANALYSIS OF THE TM WITH WRONG TRAINING LABELS

In this appendix, we analyze the transition properties of the TM when training samples contain
wrong labels.

There are two types of wrong labels:

¢ Inputs labeled as 0, which should be 1.
* Inputs labeled as 1, which should be 0.

We begin by examining the first type of wrong label, followed by the second type, and then address
the general case.

F.1 THE AND OPERATOR WITH THE FIRST TYPE OF WRONG LABELS

To formally define training samples with the first type of wrong label, we use the following formulas:
Ply=1z1 =129 =1)=a,a € (0,1) (23)
Ply=0lzy1=1,z2=1)=1—a,

P(y=0jz1 =0,20=1) =1,
P(y=0jz1 =1,20=0) =1,
P(y=0]z1 =0,20=0)=1.

In this case, the label for training samples representing the intended logic [z; = 1,29 = 1] is
y = 1 with probability a and y = 0 with probability 1 — a. In other words, in addition to the
training samples detailed in Subsection [B] a new training sample will appear to the system, namely
(71 =122 =1],y=0).

Lemma 6. The TM exhibits recurrence for the training samples defined in Eq. (23).

Proof: To prove this lemma, we analyze the TM’s transitions as follows. First, we examine the
transitions assuming w; > 0 and ug > 0, similar to the analysis in Subsection [B| as detailed in
Subsection Next, we study the impact of 7" to determine whether it leads to convergence
(absorption), as discussed in Subsection [F.1.2]

F.1.1 TRANSITION OF TM WITH AND OPERATOR GIVEN u; > 0 AND us > 0

Following the approach in Subsection [B| we examine the transitions of TAg and TA, when the
additional training sample ([z; = 1,22 = 1],y = 0) is introduced, considering Cases 1 to 4 as
defined in Subsection [B] Since y = 0 for this sample, only Type II feedback can be triggered to
cause transitions. As TAj is responsible for the literal zo, which is always 1 for this sample, Type
II feedback does not trigger any transitions for TA3z. Therefore, we focus on studying the potential
transitions of TA, in the four cases defined in Subsection [B.1}

In Case 1, where TA; = E and TA, = I, the clause value will always be O for the training sample
because —x; is included in the clause, regardless of the action TA4 takes. According to the Type 11
feedback transition table, no transition occurs when C' = 0, so no transitions are triggered for TA,.
Similarly, in Case 4, where TA; = I and TAy = I, the clause value will always be 0 due to the
presence of x; A —z1 in the clause. As a result, there are no transitions for TA 4.

In Case 2, where TA; = [and TA; = E, the literal ; will always appear in the clause. When
TA, = I, the clause includes the literal —zo, which results in a clause value of 0. Therefore, no

34

Under review as a conference paper at ICLR 2026

transition is triggered. However, when TA, = F, the literal 27 will always appear in the clause,
and the value of x5 is 1, making the clause value 1 regardless of TA3’s action (whether it includes
or excludes x3). According to the Type II feedback table, with the literal value of —z5 being 0 and
the clause value being 1, the transition for TA, = E is:

Condition: 1 = 1,22 =1,y = 0.
Thus, Type II, ~z2 = 0,
C=1

I E

up X 1

Penalty O OK\O'(_\O
Reward O O O O

In Case 3, where TA; = E and TA, = F, the clause value is fully determined by TA3 and TA,.
When TA,’s action is to include, the clause value is O for this sample because it includes the literal
—x9, resulting in no transition for TA4. However, when TA,’s action is to exclude, the clause value
is always 1, regardless of TAj’s action. Specifically, when TA, includes x5, the clause value is 1,
as the literal value of x5 is 1. When it is exclude, all literals are excluded and then the clause value
becomes 1 by definition. By examining the transitions of TA4, we can summarize the following
graph:
Condition: x1 = 1,20 =1,y = 0.
Thus, Type II, ~x2 = 0,
C=1.

1 FE

up X 1

Penalty O O'(\O'(_\O
Reward O O O @)

We summarize the directions of the transitions when the new wrongly labeled sample is added, with
the newly added actions highlighted in red.

Scenario 1: Study TA; =Iand TA, =L

Case 1, we have: Case 3, we have:
TA3 = E. TA3 = E.
TA4 = E. TA4 = E.
Case 2, we have: Case 4, we have:
TA3 = E. TA3 = E.
TA4 = E. TA4 = E.

Scenario 2: Study TA3 =Iand TA, = E.

Case 1, we have: Case 3, we have:
TA3 = E. TA3 =L

TAy; = Eorl TAy=Eorl
Case 2, we have: Case 4, we have:
TA3 =1L TA3 = E.

TA4 = Eorl TA4 = E.

Scenario 3: Study TAs = Eand TAy, = 1.

Case 1, we have: Case 3, we have:
TAs = Eorl. TAs; = EorL
TA,; = E. TA, = E.

Case 2, we have: Case 4, we have:
TA3 = Eorl TA3 = E.

TA,; = E. TA4 = E.

35

Under review as a conference paper at ICLR 2026

Scenario 4: Study TA3 = E and TA, = E.

Case 1, we have: Case 3, we have:
TA3 = lorE. TA3 =L

TA; = TorE. TAy = TorE.
Case 2, we have: Case 4, we have:
TA3 =L TA3 = E.

TA4 = Eorl TA4 = E.

Clearly, the only absorbing state (TA3 = I and TA; = F) becomes recurrent due to the newly
added transition (the red I for TA,4). As a result, the system is recurrent when u; > 0 and us > 0.

F.1.2 TRANSITION OF TM WITH AND OPERATOR WHEN 7' CAN BLOCK TYPE I FEEDBACK

Based on the above analysis, we understand that the system is recurrent when u; > 0 and uy > 0.
Next, we examine whether it is possible for the system to become absorbing when 7" can block Type
I feedback.

When T clauses have learned the intended pattern X = [2; = 1,25 = 1], i.e., when f5~(C'(X)) =
T, then u; = 0 holds, and Type I feedback is blocked. In this situation, only Type II feedback
can occur. Due to the presence of the wrong label, ie., ([zr1 = 1,22 = 1],y = 0), Type II
feedback triggers transitions in the TAs that have already learned the intended logic (([z1 = 1,29 =
1],y = 1)). For example, Type II feedback will cause a transition in TAs of a learned clause
C = z1 N x2, making the clause deviate from its learned state (e.g., changing from x1 A x3 to
x1 A 22 A ~xg). Once this happens, u; > 0 holds, and Type I feedback is triggered by samples
of ([x;y = 1,22 = 1],y = 1), encouraging TAs in this clause to move back toward the action
Exclude. Thus, even when T blocks all Type I feedback samples (setting u; = 0), the system
remains recurrent due to the wrong label and Type II feedback. Notably, no value of fs~(C*(X))
can make both u; = 0 and us = 0 simultaneouslyﬂ Therefore, Type I and Type II feedback cannot
be blocked simultaneously, ensuring the system is recurrent. |

F.2 THE AND OPERATOR WITH THE SECOND TYPE OF WRONG LABELS

To properly define the training samples with the second type of wrong label, we employ the follow-
ing formulas:

Ply=1llzy1=1La=1)=1, 24)
P(y=0|ry =1,z =0) =a,a € (0,1)
Ply=1lz1 =120 =0)=1—aq,

P(y=0jz1 =0,20=1) =1,

P(y=0]zy =0,20=0)=1

In this case, clearly, label of the training samples [z = 1,25 = 0] are wrongly labeled as 1 with
probability 1 — a. In other words, in addition to the training samples detailed in Subsection[B] a new
type (wrongly labeled) of training sample will appear to the system, namely ([x1 = 1,z = 0],y =
1).

Lemma 7. The TM is recurrent for the training samples given by Eq. (24).

Proof: Similar to the proof of Lemma[6] we first consider the transitions of TM with u; > 0 and
ug > 0, and then examine the impact of 7" for the system transition.

When u; > 0 and ug > 0, there is a non-zero probability in which the training sample ([z; =
1,z = 0],y = 1) will appear to the system. The appearance of this sample will involve transition of
TA3 moving from action Include toward Exclude, as shown in Fig.[f] making the system recurrent.

When T clauses have learned the intended pattern X = [z; = 1,2, = 1], ie., fs-(CY(X)) = T,
then u; = 0, and thus Type I feedback is blocked for this training sample. In this situation, the TM

>In this study, we focus only on positive polarity thus uz > 0 always holds. When negative polarity is
enabled (i.e., when a set of clauses learns sub-patterns with label y = 0), u2 becomes 0 when T clauses learn
a sample with y = 0. However, it remains true that no value of fs~(C*(X)) can make both u; and uz equal to
0 simultaneously.

36

Under review as a conference paper at ICLR 2026

can only see the training samples of the following:
P(y=0lzy =120 =0) =
Ply=1z1=1,20=0) =
P(y=0lz1 =0,20 =1) =
P(y=0|z1 =0,20=0) =

=a,a € (0,1) (25)

~— ~— — —
I
—_
|
Qe

Following the same concept as the proof of Lemma[6] we can conclude that the TM is recurrent for
the samples in Eq. (25). Clearly, the system is recurrent, regardless of the value of u;. Therefore,
we can conclude that the TM is recurrent for the training samples described in Eq.(24).

Following the same principle, we can also prove that the TM is recurrent when other training sam-
ples, i.e., [t1 = 0,29 = 1], and [z; = 0,25 = 0], or their combinations, have wrong labels. We
thus can conclude that the TM is recurrent for the second type of wrong labels.]

So far, we have proven that the TM is recurrent when only one type of wrong label exists for the
AND operator. It is straightforward to conclude that the TM remains recurrent when both types
of wrong labels are present. The key reason is that adding both types of wrong labels does not
eliminate any transitions between system states in recurrent systems. Therefore, the TM is recurrent
for training samples with general wrong labels for the AND operator. Using the same reasoning, we
can extend this conclusion to the XOR and OR operators. Thus, the following theorem holds.

Theorem 6. The TM is recurrent given training samples with wrong labels for the AND, OR, and
XOR operators.

Remark 5. The primary reason for the recurrent behavior of the TM when wrong labels are present
is the introduction of statistically conflicting labels for the same input samples. These inconsis-
tency causes the TAs within a clause to learn conflicting outcomes for the same input due to the
corresponding Type I and Type II feedback for label 1 and 0 respectively. When a clause learns to
evaluate an input as 1 based on Type I feedback, samples with a label of 0 for the same input prompt
it to learn the input as 0 through Type Il feedback. This conflict in labels confuses the TM, leading
to back-and-forth learning.

Remark 6. Note that although wrong labels will make the TM not converge (not absorbing with
100% accuracy for the intended logic), via simulations, we find that the TM can still learn the
operators efficiently, which has been demonstrated in Section|l| especially when the probability of
wrong label is small. Interestingly, when the probability of the second type of wrong label is large,
TM will consider it as a sub-pattern, and learn it, which aligns with the nature of learning.

G ANALYSIS OF THE TM WITH AN IRRELEVANT INPUT VARIABLE

In this appendix, we examine the impact of irrelevant input noise on the TM. Irrelevant noise refers
to an input bit with a random value that does not affect the classification result. For instance, in the
AND operator, a third input bit, z3, may appear in the training sample with random 1 and 0 values,
but its value does not influence the output of the AND operator. In other words, the output is entirely
determined by the values of 21 and x,. Formally, we have:

Ply=1lzr1=1,z2=1,23=00r1) =1, (26)

Py=0jzy =1,20=0,23 =00r1) =1,

P(y=0|z1 =0,z =1,23=00r1) =1,

P(y=0]|z1 =0,20 =0,25 =00r1) = 1.
Here 3 = 0 or 1 means P(z3 =0) =a, P(zg =1)=1—-a,a € (0,1).
G.1 CONVERGENCE ANALYSIS OF THE AND OPERATOR WITH IRRELEVANT VARIABLE

Theorem 7. The clauses in a TM can almost surely learn the AND logic given training samples in
Eq. (20)) in infinite time, when T' < m.

Proof: The proof of Theorem [7] consists of two steps: (1) Identifying a set of absorbing conditions
and confirming that the TM, when in these conditions, satisfies the requirements of the AND opera-
tor. (2) Demonstrating that any state of the TM that deviates from the conditions defined in step (1)
is not absorbing.

37

Under review as a conference paper at ICLR 2026

The TM will be absorbed when the following conditions fulfill:

1. Condition to block Type I feedback: For any input sample X = [z; = 1,22 = 1,z3],
regardless of whether 3 = 1 or 0, the TM has at least 7" clauses that output 1.

2. Conditions to guarantee no action upon Type II feedback:

(a) When x3 or -z appears in a clause in the TM: The literals that are included in the
clause for the first two input variables must result in a clause value of O for the input
samples X = [z1 = 0,29 = 1,23], X = [z; = 1,20 = 0,23] and X = [z7 =
0, z2 = 0, x3]. This ensures that C' = 0 for these input samples, regardless of the value
of x3, thereby preventing transitions caused by any Type II feedback. The portion of
the clause involving the first two input variables can be, e.g., 1 Axg or 1 A~z Ao,
while the overall clauses can be, e.g., C = x1 Axo Axz, or C = 21 Az Axg A3,
as long as the resulted clause value is O for those input samples.

(b) When x3 or ~x3 does NOT appear in a clause in the TM: There is no clause that is in
the formof C = x1,C = 29, C = 21 Ao, C = —x1 Ao, C = =1, C = -9, O
C= =Xy A\ TZo.

Clearly, when the above conditions fulfill, the system has absorbed because no feedback appears
to the system. Additionally, this absorbing state follows AND operator. Based on the statement of
the condition to block Type I feedback, there are at least 7" clauses that output 1 for input sample
X = [z1 = 1,22 = 1, 23], regardless x3 = 1 or 0. Studying the conditions for Type II feedback, we
can conclude that the clause outputs 0 for all input samples X = [z1 = 1,20 = 0,23), X = [11 =
0,29 = 1,23], or X = [= 0,22 = 0, 2z3]. We can then setup the Th = T to confirm the AND
logic.

The next step is to show that any state of the TM deviating from the above conditions is not absorb-
ing. To demonstrate this, we can simply confirm that transitions, which might change the current
actions of the TAs, will occur due to updates from Type I or Type II feedback.

When literal z3 or literal -3 is included as a part of the clause, the probability for C' = 0 is non-
zero due to the randomness of input variable z3. As a result, Type I Feedback will encourage the TA
for the included literal x3 or —x3 to move away from its current action, thus preventing the system
from becoming absorbing.

For the case where literal x3 or literal —x3 is not included in the clause, the system operates purely
based on the first two input variables, namely z; and z5. According our previous analysis for
the noise free AND case (Theorem , there is only one absorbing status, which is C' = x7 A xo.
However, this absorbing state disappears because Type I feedback will encourage the excluded literal
x3 to be included when z3 = 1, and similarly encourage the excluded literal —x3 to be included
when x3 = 0. Once either z3 or —z3 is included, the analysis in the previous paragraph applies, and
thus the system is not absorbing.

From the above discussion, it is clear that Type I feedback is the key driver of action changes in
non-absorbing cases. If Type I feedback is not blocked, the system cannot reach an absorbing state.
Therefore, blocking Type I feedback is critical for achieving convergence. The condition 7' < m
is to guarantee that 7" should not be greater than the total number of clauses, making it feasible to
block Type I feedback. |

Remark 7. Due to the existence of the noisy input xs, the system requires the functionality of T to
block Type I feedback in order to converge. This contrasts with the noise-free case, where the TM
will almost surely converge to the AND operator even when Type I feedback is consistently present

(u1 > 0).

G.2 CONVERGENCE ANALYSIS OF THE OR OPERATOR WITH IRRELEVANT VARIABLE

For the OR case, we have

=1llzy =1l,za=1,z3=00r1) =1, 27

=1lz1 =122 =0,23 =00r1) =1,

=1z =020 =1, z3=00r1) =1,
)=1

=0lzy =0,z = 0,23 =00r1

38

Under review as a conference paper at ICLR 2026

Theorem 8. The clauses in a TM can almost surely learn the OR logic given training samples in
Eq. in infinite time, when T < |m /2].

Proof: The proof of Theorem [§| follows a similar structure to that of the AND case and involves
two steps: (1) Identifying a set of absorbing conditions and verifying that, under these conditions,
the TM satisfies the requirements of the OR operator. (2) demonstrating that any state of the TM
deviating from these conditions is not absorbing.

1. Condition to block Type I feedback: For any input sample X = [z; = 1,22 = 1,x3],
X =[z; =1,29 = 0,23),and X = [z1 = 0,29 = 1, 23] regardless of whether x5 = 1 or
0, the TM has at least 7" clauses that output 1.

2. Conditions to guarantee no action upon Type II feedback:

(a) When x3 or -3 appears in a clause in the TM: The literals included in the clause
for the first two input variables must ensure a clause value of O for the input samples
X = [z1 = 0,29 = 0, x3]. This is to guarantee that C' = 0 for those input samples,
irrespective of the value of z3, thereby preventing any transitions caused by Type 11
feedback. The portion of the clause involving the first two input variables can take the
form such as x1, 1 A—x2, 1 AZ2, 1 A—x1 Axo. Correspondingly, the overall clauses
can take the form such as C = 1 A 23, C = 21 A a9 A 23, C = 21 A 22 N\ 23,
or C' = x1 A =x1 A\ x2 A\ T3, as long as the resulted clause value is O for those input
samples.

(b) When z3 or —x3 does not appear in a clause in the TM: There are no clauses with
literal(s) in only negated form, such as C' = —z1, C' = —x9, or C = —z1 A 2.

Clearly, when the above conditions fulfill, the system is absorbing because no feedback appears to
the system. Additionally, this absorbing state adheres to the OR operator. Based on the condition
required to block Type I feedback, there are at least T clauses that output 1 for input sample X =
[x1 =1,20 =1, 23], X = [x1 = 1,22 = 0, 23], or X = [z; = 0,22 = 1, z3] regardless of whether
x3 = 1 or 0. Analyzing the conditions for Type II feedback, we find that the clause outputs O for all
input samples X = [z1 = 0,22 = 0, 23]. We can then setup the Th = T to confirm the OR logic.

The next step is to demonstrate that any state of the TM that deviates from the above conditions
outlined above is not absorbing. To do this, we can confirm that transitions which may alter the
current actions of the TAs will occur due to updates from Type I and Type II feedback.

When literal x5 or literal —z3 is included in the clause, there is a non-zero probability for C' = 0
due to the randomness of the input variable 3. In this case, Type I Feedback will move the included
literal x5 or —z3 towards action Exclude, preventing the system from being absorbing.

For the case where literal x3 or literal —z3 is not included as a part of the clause, the system operates
purely based on the first two input variables, namely x1 and x2. Based on our previous analysis for
the noise free OR case shown in Lemma [2] the system is recurrent. This recurrent behavior will
eventually lead the system to a state where the excluded literal, either 3 or —x3, is encouraged to
be included. For example, if the TM has a clause C' = x1 A 22, upon a training sample X = [z =
1,29 = 1, 23 = 0], the Type I feedback will encourage the excluded literal —x3 to be included. Once
one of the excluded literal, x3 or —x3, is included, the analysis in the previous paragraph applies,
meaning the system is not absorbing.

Clearly, if Type I feedback is not blocked, the system will not be absorbing. As blocking Type I
feedback is critical, condition T < |m/2] is necessary, refer to Lemma 4] |

When T clauses have learned the intended sub-patterns of OR operation, the Type I feedback will
be blocked. At the same time, Type II feedback will eliminate all clauses that output 1 for input
sample following X = [z1 = 0, 3 = 0, 23], removing false positives. At this point, the system has
converged. The presence of z3 does not change the convergence feature, but it adds more dynamics
to the TM.

G.3 CONVERGENCE ANALYSIS OF THE XOR OPERATOR WITH IRRELEVANT VARIABLE

Theorem 9. The clauses in a TM can almost surely learn the XOR logic given training samples in
Eq. in infinite time, when T < |m//2].

39

Under review as a conference paper at ICLR 2026

Ply=0lz1 =1,z =1,23=00r1) =1, (28)
Ply=1lz1=1,22=0,23=00r1) =1,
Py=1z1=0,20=1,23=00r1) =1,
P(y=0|z1 =0,20 =0,23 =00r1) = 1.

The proof for XOR follows the same principles as the AND and OR cases, and therefore, we do not
present it explicitly here.

G.4 CONVERGENCE ANALYSIS OF THE OPERATORS WITH MULTIPLE IRRELEVANT
VARIABLES

In the previous subsections, we demonstrated that if a single irrelevant bit is present in the training
samples, the system will almost surely converge to the intended operators. This conclusion can
be readily extended to scenarios involving multiple irrelevant variables. Here, “multiple irrelevant
variables” refers to the presence of additional variables, beyond x3, in the training samples that do
not contribute to the classification.

Theorem 10. The clauses in a TM can almost surely learn the 2-bit AND logic given training
samples with k irrelevant input variables in infinite time, 0 < k < oo, whenT' < m.

Theorem 11. The clauses in a TM can almost surely learn the 2-bit XOR and OR logic given
training samples with k irrelevant input variables in infinite time, 0 < k < oo, when T < |m/2].

Proof: The proofs of Theorems [10| and |1 1] are straightforward. It suffices to verify whether the
conditions for blocking Type I and Type II feedback remain valid when multiple irrelevant variables
are present.

The condition for blocking Type I feedback remains valid because Type I feedback is only deter-
mined by the first two input bits and is not a function of the irrelevant variables. For Type II feedback,
its effect depends on whether the literals for the irrelevant inputs are present in the clause. In cases
where the literals of the irrelevant bits are not included in the clause, the analysis holds, as those
literals are absent. When the literals of the irrelevant bits are included, their number does not impact
the analysis. This is because the clause value is entirely determined by the first two bits, and the
clause value remains C' = 0, regardless of the number of irrelevant variables. |

H EXPERIMENT RESULTS WITH NOISE-FREE TRAINING SAMPLES

To validate the theoretical analyses, we here present the experiment resultﬁ for both the AND and
the OR operators.

Figure B] shows the convergence of TM for the AND operator when m = 7, T = 5, s = 4, and
N = 50 (N is the number of states for each action in each Tsetlin Automaton). More specifically,
we plot the number of clauses that learn the AND operator, namely, ;1 = z2 = 1, and the number
of system updates as a function of epochs. From these figures, we can clearly see that after a few
epochs, the TM has 5 clauses that learn the AND operator and then the system stops updating
because no update is triggered anymore. Note that if we control 7" so that u; > 0 always holds,
all clauses will converge to the AND operator, which has been validated via experiments. These
observations confirm Theorem[I] Although the theorem says it may require infinite time in principle,
the actual convergence can be much faster.

In Fig. 9] we illustrate the number of clauses in distinct sub-patterns when we employ m = 7,
T = 3,s =4,and N = 50 for the OR operator. Based on the analytical result, i.e., Theorem@
the system will be absorbed, where each sub-pattern will have at least 3 clauses and no update will
happen afterwards. From the figure, we can clearly observe that after a few epochs, the system
becomes indeed absorbed as no updates are observed. When absorbed, the three intended sub-
patterns have 3, 4, 5 clauses to represent them respectively, while the unintended sub-pattern has 0

SThe code for validating the convergence of AND and OR operators can be found at https://github.
com/JaneGlim/Convergence-of-Tsetline-Machine-for-the-AND-OR-operatorsl

40

https://github.com/JaneGlim/Convergence-of-Tsetline-Machine-for-the-AND-OR-operators
https://github.com/JaneGlim/Convergence-of-Tsetline-Machine-for-the-AND-OR-operators

Under review as a conference paper at ICLR 2026

wn
8 o
* X1, Xo] =
,?,5 X X X x x x X X X X [x1, x21 = [0, 0]
S, [x1, x2] = [0, 1]
« 41
5] + [x1, x2] =11, 0]
L3<
2 X [x1, x2] =11, 1]
£ 21
=]
c 1
(]
|EO * * * * * * * * * i'r * * *
0 2 4 6 8 10 12 14
0
2
t5 404
°
Q
3 30
«—
o
T 201
el
glo~
c
2 o]
= 0 2 4 6 8 10 12 14

Epochs

Figure 8: The convergence of a TM with 7 clauses when 7" = 5 for the AND operator.

%]
@6 B3
* X1, X2] =10, 0
%5 X X X X X X [x1, x2l = []
>, o [x1, x21 =10, 1]
.
N + Ix1, x21 =11, 0]
3 X + + + + + +
2 x[x1, x2] =11, 1]
g2 + + +
>
c 14
]
= 0 * * * * * * * * * * * * *
[T T T T T T T T
0 2 4 6 8 10 12 14
[%2]
9 100 {
©
8 04
o
‘S 60+
—_
2 40
€
S 20
c
& o;
T T T
= 0 2 4 8 10 12 14

6
Epochs

Figure 9: The convergence of a TM with 7 clauses when 7" = 3 for the OR operator.

clause, which is consistent with the theorem. Indeed, the list of the converged clauses are: C; = x4,
Cy =x1,C35 = 29, Cy = 21 AN 3, C5 = 21 A 29, Cg = x3, and C7 = —x1 A x2, explaining the
number of converged clauses in different sub-patterns shown in the figure. Clearly, in this example,
some clauses, i.e., C1, Cs, C3 and Cj, can each cover multiple sub-patterns. This indicates that in
real world applications, if distinct sub-patterns have certain bits in common, which can be used to
differentiate it from other classes, it is possible for TM to learn those bits as joint features, confirming
the efficiency of the TM.

Note that there are many other possible absorbing states that are different from the shown example,
which have been observed when we run multiple instances of the experiments. As long as each
intended sub-pattern is represented by at least 7" clauses in the OR operator, the system converges.

In Fig.[I0] the configuration is identical to that in Fig.[9]except that 7" = 4. In this case, as stated in
Remark 2] the system will not become absorbing, but will still cover the intended sub-patterns with
high probability. From this figure, we can observe that each intended sub-pattern is represented by at
least two clauses, and that the unintended sub-pattern has zero clause. At the same time, the TAs do
not stop updating their states, which can be seen in the bottom figure. It is worth mentioning that we
have occasionally observed in other rounds of experiments, that one intended sub-pattern is covered

41

Under review as a conference paper at ICLR 2026

o

* [x1, x21 =0, 0]

[x1, x2] = [0, 1]
+ Ix1, x2] =11, 0]
xIx1, x2] =11, 1]

«
x
x

IS
x
x
x
*
x
x
x
x
x

The number of clauses
N ow
x
x
x
x
x
x

o
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

The number of updates

Epochs

Figure 10: The behavior of a TM with 7 clauses when T = 4 for the OR operator.

by only 1 clause. In this case, it is still possible to set up T'h > 1 to have successful classification.
Nevertheless, there is no guarantee that each intended sub-pattern will be represented by at least one
(or T'h) clause(s) in this configuration, thus no guaranteed successful classification.

I EXPERIMENT RESULTS WITH NOISY TRAINING SAMPLES

We present the experimental results for the operators under noisy conditions. First, we show the
results when incorrect labels are present, followed by the results involving irrelevant variables. The
final subsection addresses a case where both incorrect labels and irrelevant variables are present.

1.1 EXPERIMENT RESULTS FOR WRONG LABELS

To evaluate the performance of the TM when exposed to mislabeled samples, we introduced incor-
rectly labeled data into the system. The key observation is that the TM does not converge to the
intended logic, meaning it does not absorb into a state where the correct logic is consistently repre-
sented. However, with carefully chosen hyperparameters, the TM can still learn the intended logic
with high probability.

To demonstrate the TM’s behavior, we first conduct experiments on the OR operator, which satisfies
the following equation:

Ply= —1) = 90%, (29)
P(y= 1\9;1—1 xo = 0) = 90%,

P(y =1z, =1, J;2:O)—90%,

P(y=0|z1 =0,20=0) =

In this scenario, 10% of the input samples that should be labeled as 1 were incorrectly labeled as
0. To train the TM and evaluate its performance, we used the following hyperparameters: m = 7,
T =4,Th =2,s = 3,and N = 100. Fig. shows the number of updates and the number of
clauses that learn distinct sub-patterns, as a function of epochs. As shown in Fig. the number
of updates is big, and thus the system did not converge. Nevertheless, when examining the number
of clauses associated with each sub-pattern, we observed that each sub-pattern was covered by at
least two clauses, ensuring that the OR operator remained valid. Similar results were observed in
experiments conducted on the AND and XOR operators.

Interestingly and understandably, when the proportion of mislabeled samples increases to an extreme
level, where inputs that should be labeled as O are instead labeled as 1, the TM begins to treat the

42

Under review as a conference paper at ICLR 2026

%]
95 MW I3 x> X XX X X XX X X
2 * [x1, x21 =1[0, 0]
_— 1 DO RCEIOIMOORS
(] 4 [x1, x21 =10, 1]
—
©34 + [x1,x]=1[1,0]
—
L.l x [x,x]=I[11]
IS
gl‘ * kk * * k X K * Kk Yk k kK ok * *hk kK K
]
< 0
= T T T T T .
0 200 400 600 800 1000
%]
9]
©
5 58001
a
S 5600
bS]
O 5400
9]
Q 5200
€
5000
c
L 48001
= 0 200 400 600 800 1000
Epochs

Figure 11: The behavior of TM when m = 7,T" = 4 for the OR operator with wrong training labels.

noise as a sub-pattern. For instance, consider the AND operator with input X = [z; = 0,22 = 1],
which is mislabeled as 1 in 90% of the cases, as shown in Eq. (30). Using the hyperparameters
m="7T=3,s=3.0,and N = 100, we observed from experiments that the TM generates three
clauses with an output of 1 for X = [z7 = 0,22 = 1] and another three clauses with an output of
1 for X = [z1 = 1,z2 = 1]. This behavior indicates that the TM has incorporated the noise as a
learned sub-pattern. Such outcomes align with the TM’s underlying principle of learning, where it
identifies and models sub-patterns associated with the label 1.

Ply=1z1 =120 =1) =1, (30)
Py=0jz1=1,20=0) =1,

P (y=0]zy = 0,22 = 1) = 10%,

P(y=0|z1 =0,20=0) =

1.2 EXPERIMENT RESULTS FOR IRRELEVANT VARIABLE

To confirm the convergence property of TM with irrelevant variable, we setup the experiments for
the AND, OR, and XOR operators when one irrelevant variable, namely, x3, exists. The probability
of x5 being 1 in the training and testing samples is 50%.

For the AND operator, we use the hyperparameters m = 5,7 = 2, s = 3, Th = 2, and N = 100.
Fig. [[2]illustrates the convergence of TM for the AND operator in the presence of an irrelevant bit.
The results confirm that the TM can correctly learn the AND operator without uncertainty, validating
the correctness of Theorem [7]

Interestingly, upon convergence, the form of the included literals varies. For instance, with the
aforementioned hyperparameters, we observe that the converged TM includes two clauses of the
form z; A 3 A x3 and another two clauses of the form z; A 2o A —x3. This suggests that, instead
of excluding the irrelevant bit x3, the TM includes at least 7" clauses containing =3 and at least T’
clauses containing -3, which ensures correct classification regardless of the value of 3. However,
when the hyperparameters are settom = 1,7 =1, s = 3, Th = 1, and N = 100, where only a
single clause exists in the TM, the converged clause takes the form z; A x2, excluding the literals
x3 and —x3.

As T increases (T > m/2), we observe that convergence becomes challenging. This difficulty
arises because the TM cannot simultaneously learn 7' clauses containing x3 and another 7' clauses

43

Under review as a conference paper at ICLR 2026

wn

95 X

3 * [x1, x21 =10, 0]
B 4

v} [x1, x21 =10, 1]
“—

o 3 X X X X X X X X X X + [x1, x2]1 =11, 0]
—

.1 « % X [x1, x2] =11, 1]
IS

g 1 + * * * * * * * * * * * * * * * *
)

'_S 0 * % k ¥

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

1]

9]

©
8 30

Q

S5

‘S 20

=

o

Q

£ 104

S

c

2 o

= 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Epochs

Figure 12: Convergence of TM when m = 5, T" = 2 for the AND operator with an irrelevant label.

n

84 * X X X X X X M ¥ ¥ X X X X

3 * [x1, x2] = [0, 0]

03 * * X X X + + + o+ o+ o+ [X1,X2]=[0, 1]

—

° + Ix1, x2l =11, 0]

2 x X + +

3 x o [x1, %] =1[1, 1]

£

c

(]

'EO Xk k k k k k Kk Kk *k k Kk * Kk *k k * Kk *
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

")

g

m50<

g

34O<

“—

O 304

—_

[

QO 20

§

ClO‘

g ol , , , : : : :

= 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Epochs

Figure 13: Convergence of TM when m = 5, T = 2 for the OR operator with an irrelevant label.

containing —x3. In such cases, the TM must rely on 7" clauses in the form z; A x5 to achieve
convergence, which can be particularly demanding.

For the OR operator, we use the hyperparameters m = 5,7 = 2, s = 3, Th = 2, and N = 100.
Figure [T3]illustrates the convergence of the TM for the OR operator in the presence of an irrelevant
bit. The results confirm that TM successfully learns the OR operator without ambiguity, validating
the correctness of Theorem 8] The results also confirm that the TM is capable of presenting two

sub-patterns jointly.

Indeed, the OR operator has multiple absorbing states, corresponding to multiple clause forms.
Some clause forms may include x5 or —x3, depending on the hyperparameter configuration. Re-
gardless of the value of x3, as long as the vote sum of the clauses is greater than or equal to T, the

correct classification can be guaranteed.

44

Under review as a conference paper at ICLR 2026

0
5] <

(%)

2 * [x1, x2] =10, 0]

— 4 +

O [x1, x21 = [0, 1]

—

631 + [x,x]=1[1,0] -+ +

—

(] =

Q 2 X [Xl’XZ] [1'1] X * 4+ o+ + + 4+ o+ o+ o+ o+
IS

21 x % * X X X K kK x Kk E K
[

,‘SO**** * * X X X X X X X X

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5

[%]

(]
©
_0250

o

3 20041
bS]

o 1504
3

100 4

IS

>

2 50
& o
= 0.0 25 5.0 7.5 10.0 12.5 15.0 17.5

Epochs

Figure 14: Convergence of TM when m = 7, T' = 2 for the XOR operator with an irrelevant label.

We have also studied the XOR operator. The convergence instance is shown in Fig. [I4] confirming
Theorem[Q] Here weuse m =7, T = 2,5 =3,Th = 2.

1.3 EXPERIMENT RESULTS FOR BOTH WRONG LABELS AND IRRELEVANT VARIABLES

In this experiment, we assess the performance of the TM in the presence of both mislabeled data and
irrelevant variables. Specifically, we evaluate the TM’s ability to learn the XOR operator when 40%
of the samples are incorrectly labeled, and 10 irrelevant variables are added. The input comprises
12 bits, with only the first two bits determining the output based on the XOR logic.

The hyperparameters are configured as follows: m = 20, T" = 15, s = 3.9, and N = 100 with
polarity enabled. Experimental results reveal that the TM successfully learns the XOR operator in
99% of 200 independent runs. These findings demonstrate the robustness of the TM training in noisy
environments.

In another experiment, we configured the TM to learn a noisy XOR function with 2 useful input bits
and 18 irrelevant input bits (hyper parameters: N = 128, m = 20, T' = 10, s = 3, label noise 0.1).
Remarkably, the TM was still able to learn the XOR operator with 100% accuracy using just 5000
training samples. If all possible input combinations were required in the training samples, it would
require 22° = 1048576 samples. Clearly, the TM does not rely on the entire combinatorial input
space to learn effectively.

45

	Introduction
	Notations of the TM
	Convergence Analysis of the AND Operator
	Convergence Analysis of the OR Operator
	Revisit the XOR Operator
	Convergence Analysis under Random Noise
	Conclusions
	Brief Overview of the TM
	Basic Concept of the TM
	 Training Process of the TM

	Detailed proof of the convergence of the AND operator
	The Transitions of the TAs
	Case 1: Include x1
	Case 2: Include x1
	Case 3: Exclude Both x1 and x1
	Case 4: Include Both x1 and x1

	Summarize of the Directions of Transitions in Different Cases

	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Analysis of the TM with Wrong Training Labels
	The AND Operator with the First Type of Wrong Labels
	Transition of TM with AND Operator Given u1>0 and u2>0
	Transition of TM with AND Operator when T can block Type I feedback

	The AND Operator with the Second Type of Wrong Labels

	Analysis of the TM with an Irrelevant Input Variable
	Convergence Analysis of the AND Operator with Irrelevant Variable
	Convergence Analysis of the OR Operator with Irrelevant Variable
	Convergence Analysis of the XOR Operator with Irrelevant Variable
	Convergence Analysis of the Operators with Multiple Irrelevant Variables

	Experiment Results with Noise-Free Training Samples
	Experiment Results with Noisy Training Samples
	Experiment results for Wrong Labels
	Experiment Results for Irrelevant Variable
	Experiment results for both Wrong Labels and Irrelevant Variables

