Adaptable Adapters

Anonymous ACL submission

Abstract

State-of-the-art pretrained NLP models con-
tain a hundred million to trillion parameters.
Adapters provide a parameter-efficient alterna-
tive for the full finetuning in which we can
only finetune lightweight neural network lay-
ers on top of pretrained weights. Adapter lay-
ers are initialized randomly. However, exist-
ing work uses the same adapter architecture—
i.e., the same adapter layer on top of each layer
of the pretrained model—for every dataset, re-
gardless of the properties of the dataset or
the amount of available training data. In this
work, we introduce adaptable adapters that
contain (1) learning different activation func-
tions for different layers and different input
data, and (2) a learnable switch to select and
only use the beneficial adapter layers. We
show that adaptable adapters achieve on-par
performances with the standard adapter ar-
chitecture while using a considerably smaller
number of adapter layers. In addition, we show
that the selected adapter architecture by adapt-
able adapters transfers well across different
data settings and similar tasks. We propose to
use adaptable adapters for designing efficient
and effective adapter architectures. The result-
ing adapters (a) contain about 50% of the learn-
ing parameters of the standard adapter and are
therefore more efficient at training and infer-
ence, and require less storage space, and (b)
achieve considerably higher performances in
low-resource scenarios.

1 Introduction

Recent improvements in NLP are heavily skewed
towards using larger pretrained models (Roberts
et al., 2020) and given their considerably better
performances, using them is becoming unavoid-
able (Kaplan et al., 2020). Their improvements,
however, come at the cost of significant computa-
tional resources at training and inference times. For

!The code will be publicly available upon publication.

instance, the number of parameters in recent pre-
trained models can vary from 110M in BERT-base
(Devlin et al., 2019) to 11 billion in TO (Sanh et al.,
2021) to trillion parameters in Switch Transformers
(Fedus et al., 2021). Using such models for each
downstream application requires a vast amount of
storage, training, and inference computation budget
that is not accessible for every user.

Instead of fine-tuning these massive numbers of
parameters for each downstream task, we can use
adapter architectures (Houlsby et al., 2019; Pfeiffer
et al., 2020). Adapters are lightweight neural net-
work layers that are added on top of each layer of
the pretrained model. As opposed to the standard
model fine-tuning, in which all layers are fine-tuned
for the target task, adapter-based tuning freezes the
transformer layers and only trains the newly added
adapter layers. Since the majority of parameters—
i.e., the layers of the large pretrained model—are
shared between different downstream tasks, the use
of adapters results in parameter-efficient transfer
learning. In addition to their parameter-efficiency,
He et al. (2021) show that training adapter-layers
(a) outperforms fine-tuning the whole model on
low-resource and cross-lingual settings, and (b) is
more robust to overfitting.

Existing work suggests that (a) different layers
of the pretrained models may capture different as-
pects of the form, syntax, or meaning of the input
text (Tenney et al., 2019; Clark et al., 2019), and
(b) they may not be all needed for performing a
given task (Houlsby et al., 2019; Fan et al., 2020;
Riicklé et al., 2021). In addition, adapter layers are
initialized randomly. Therefore, it is not necessary
to use the same adapter architecture for different
downstream tasks and given different amounts of
annotated data. However, existing works use the
same adapter architecture for all the different in-
put data, i.e., (a) one adapter layer on top of all
the pretrained layers while using all the layers may
not be necessary, and (b) the same activation func-

tion for all the layers and different tasks while the
best activation function may vary for different tasks
(Delfosse et al., 2021).

In this paper, we propose a systematic approach
for designing more adequate and flexible adapter
architectures by introducing the adaptable adapter
(AA). Adaptable adapters (1) use a learnable activa-
tion function—called Rational activation (Molina
et al., 2019)—instead of a constant activation in
adapter layers allowing the adapter model to learn
different activation functions at different adapter
layers and for different tasks, and (2) consist of a
learnable switch at each adapter layer to determine
the beneficial adapter layers during training and to
only use the selected layers during inference.

We evaluate adaptable adapters on the GLUE
benchmark (Wang et al., 2018) that consists of var-
ious text classification tasks and based on different
data settings in which different amounts of anno-
tated examples are available for training.

Our results show that adaptable adapters achieve
on-par performances with the full adapter architec-
ture while using considerably fewer adapter lay-
ers at the inference. We further propose to use
adaptable adapters for designing efficient adapter
architectures—i.e., to only add an adapter layer
to the layers that are selected by the adaptable
adapter. We show that while the selected adapter
architecture by AA, called AA-focused, is consider-
ably more efficient at both training and inference
times and would require less storage, it achieves
on-par performances with the full adapter archi-
tecture when trained on all available training data
and considerably outperforms it on low-resource
scenarios. In addition, we show that the selected
adapter architecture by AA transfers well across
similar tasks and different data settings. Therefore,
we can train AA using a limited amount of training
data and for one of the tasks, and then use the re-
sulting AA-focused architecture for different data
settings and other similar tasks.

Overall, the contributions of this paper are as
follows:

* We propose adaptable adapters that introduce
flexibility in adapter architectures by (a) se-
lecting the adapter layers to use, and (b) learn-
ing the suitable activation function for each
layer and each task.

* We propose to use adaptable adapters to de-
sign efficient adapters that require less training
time, inference time, and storage space.

* We show that using fewer adapter layers with
a learnable activation function considerably
improves the performance on low-resource
scenarios.

2 Related Work

2.1 Rational Activation

Rational activation functions, empirically intro-
duced as Padé Activation Units (Molina et al.,
2019), are learnable activation functions that can
approximate common activation functions as well
as learn new ones. The rational activation function
R(z) of order m, n is defined as follows:

o ajxd
1 [be|

where a; and by, are learnable parameters. These ra-
tional functions use an absolute value in the denom-
inator to avoid potential poles, which will make the
training unstable. Such rational activation func-
tions provide stable training, as empirically shown
on image classification and reinforcement learning
(Molina et al., 2019; Delfosse et al., 2021). R(z)
can be initialized to initially approximate any of the
known activation functions or with constant func-
tions. Molina et al. (2019) show that rationals out-
perform other commonly used activation functions
in common image classification tasks. Rational
activation functions are also integrated in Gener-
ative Adversarial Networks (Boull€ et al., 2020).
Delfosse et al. (2021) show that some of the layers
in very deep pretrained Residual Networks tend
to approximate activation functions’ behavior, and
we can achieve on-par or better performances with
the full network by replacing some of the complete
layers with rational activation functions. Similar to
this observation, as we show in § 5, using rational
activation functions instead of a constant activation
(ReLU) in adapters allows them to achieve high
accuracy using a fewer number of adapter layers.

R(x)

)]

2.2 Reducing Model’s Size for Efficiency

Improving the efficiency of large pretrained models
has received particular attention for the inference
time. The argument is that the effect of training cost
is limited, i.e., the model can be trained once but it
will be used many times. However, the inference
time has a wide impact on the everyday use of NLP
models.

Existing approaches for improving the inference-
time efficiency belong to two different categories:

(a) the distillation and pruning techniques that cre-
ate a smaller model for inference but require re-
training or fine-tuning the smaller model (Tang
et al., 2019; Sanh et al., 2019; Voita et al., 2019;
Sun et al., 2020; Bai et al., 2021), and (b) on-
demand network size reduction at the inference
time.> There are two different approaches in the
second category, namely layer dropping and early
exiting.

Fan et al. (2020) uses layer dropping during the
training that randomly drops the model’s layers to
make the model robust to the inference time layer
selection. They show that it is possible to select
sub-networks of any depth from large models at in-
ference with limited impact on the performance and
without the need for additional finetuning. Layer
dropping was previously investigated by Huang
et al. (2016) who propose to drop layers during
training for regularizing the model and reducing
the training time of deep convolutional networks.
Riicklé et al. (2021) investigate the impact of layer
dropping for adapter architectures. They show that
by randomly dropping adapter layers during train-
ing, they can prune the adapter model on-demand
at the inference time.

Schwartz et al. (2020) propose to add an output
layer to each transformer layer. At inference time,
while the model calculates the layer-wise represen-
tation, from the bottom layer to the top layer, it
also makes the prediction using the associated clas-
sification layer. They use the output labels’ scores
of the classification layers as confidence scores to
decide whether to exit early if the classifier is con-
fident or to proceed to process the input with the
next layers. This hierarchical architecture offers
an inference time-accuracy tradeoff by setting the
confidence threshold. The early exiting approach
is similar to layer dropping in which the dropped
layers are always from the last top layers.

All these approaches select the number of lay-
ers to drop and the dropped layers heuristically
at the inference time with the goal of improving
the inference time. Instead, the adaptable adapter
is a systematic approach for selecting the useful
adapter layers for the given task during training.
Besides layer selection, an adaptable adapter al-
lows for learning the desired activation function for

There is another category that requires changes in the
models’ architectures. However, it would require re-training
the large model. E.g., Sukhbaatar et al. (2019) propose new
attention mechanisms that can process larger context with no
additional computational or memory costs.

different inputs. As we show, we can use adaptable
adapters to design efficient adapter architectures
with a considerably smaller number of training pa-
rameters with on-par or considerably higher per-
formances, especially with larger models and in
low-resource scenarios.

3 Proposed Architecture

3.1 Learnable Activation

Empirical observations of performances have led
experts of several fields to use different activation
functions for different tasks. Functions from the
ReLU family are usually used for neural network-
based visual computing, tanh has been used in PPO
for reinforcement learning, while GeLU has pro-
gressively been adopted in transformers. With the
growth of the models, and the complexity of the
tasks they are applied on, choosing one fixed acti-
vation function to equip the complete architecture
is suboptimal. By using rational (§ 2.1), we let the
adapter layer learn the suitable activation function
at each different adapter layer, task, and dataset.
In adaptable adapters, we replace the constant acti-
vation function of each adapter layer—i.e., ReLU
in the default configuration used in AdapterHub
(Pfeiffer et al., 2020)—with rational.

Figure 1 shows a standard adapter layer as well
as an adapter layer in adaptable adapters.

ol | elelelelelele)}

HOOOOOOC
| |
1\\\ \,\,,

Feedforward down-project i | Feedforward down-project | !

(@ (b)

Figure 1: (a) a standard adapter layer with linear feed-
forward layers and a fixed activation, (b) an adapter
layer in adaptable adapters with linear feedforward lay-
ers and a rational activation.

3.2 Learnable Layer Selection

Houlsby et al. (2019) examined various choices
of adapter architectures. They report that using

two feedforward linear layers—one down-project
and one up-project layer—results in good perfor-
mances while only introducing a few parameters.
Assuming d is the dimensionality of the input—i.e.,
the embedding size of the transformer layer—the
down-project layer maps the input dimension to
n where n < d, and the up-project layer maps
the input dimension back to d. n is called the hid-
den size of the adapter. Each adapter contains a
skip-connection that lets an adapter layer approx-
imate an identity function, i.e., to pass the input
of a transformer layer unchanged to the next layer.
The learnable switches in adaptable adapter explic-
itly model the selection between the feedforward
adapter layer and the identity function. By exam-
ining the switch probabilities we can determine
the adapter layers that are beneficial for the overall
performance of the model.

As mentioned in § 1, existing work show that
different layers of the pretrained models capture
different aspects of the input data, and not all of
them are necessary for performing various tasks.
Therefore, for different input data, different layers
may be of different importance. Adding a learnable
switch at each adapter layer provides a more sys-
tematic approach to determine the beneficial layers
for each input task during training. We use the
Gumbel Softmax (GS) estimator as an end-to-end
differentiable switch (hard attention) to make the
network to attend to an element of a set (S). As-
suming 7; are the probabilities of selecting each

element of S—i.e., V;m; > 0,>,m = 1—GS
estimates the hard attention y; as follows:
l . .
cap((log(m) +90/7)

Vi S eap((log(my) + 9,)/7)

where g; are i.i.d. samples from a Gumbel distribu-
tion, and 7 is a temperature parameter. Setting 7 to
small values results in distributions that are similar
to categorical ones.

3.3 Adaptable Adapters

The adaptable adapter (AA) is the combination of
the learnable layer selection and the learnable ac-
tivation function. The learnable layer selection—
i.e., a Gumbel Softmax estimator—selects between
an adapter layer, with no skip connection, and an
identity function with zero parameters that passes
the input without any changes to the next layer.
The adapter layers in adaptable adapters consist
of two linear layers—i.e., down-project and up-

P
| Gumbel Softmax

C YO OO
Feedforward up-project]
Rational W

() (
Feedforward down-project J
raYaYaYaYataYe

Figure 2: The adaptable adapter layer that consist of a
Gumbel Softmax to choose between an adapter layer
with a rational activation and an identity function.

project layers—, and the non-linearity function be-
tween these two linear layers consists of a rational
activation function. The adaptable adapter allows
to learn different adapter architectures for different
input data by (a) learning to use a subset of adapter
layers, and (b) learning a potentially different ac-
tivation function at each layer. Figure 3 shows the
structure of an adapter layer in adaptable adapters.

4 Experimental Setup

4.1 Datasets

We use the English text classification datasets from
the GLUE benchmark (Wang et al., 2019) including
MNLI (Williams et al., 2018), QQP3, QNLI (Ra-
jpurkar et al., 2016), SST-2 (Socher et al., 2013),
CoL A (Warstadt et al., 2019), STS-B (Cer et al.,
2017), MRPC (Dolan and Brockett, 2005), RTE
(Dagan et al., 2006), and WNLI (Levesque et al.,
2011). Table 1 shows the number of training exam-
ples and the evaluation metric for each dataset.

Dataset [Trainl Metric ‘ Dataset [Trainl Metric

MNLI 393k acc. STS-B 7k Pearson/Spearman
QQP 364k acc./Fl MRPC 3.7k acc./Fl

QNLI 105k acc. RTE 2.5k acc.

SST-2 67k acc. ‘WNLI 634 acc.

CoLA 8.5k Matthews

Table 1: GLUE datasets with their number of training
examples and the corresponding evaluation metric.

*https://www.quora.com/
profile/Ricky-Riche-2/

First-Quora—-Dataset—-Release—Question—-Pairs

https://www.quora.com/profile/Ricky-Riche-2/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/profile/Ricky-Riche-2/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/profile/Ricky-Riche-2/First-Quora-Dataset-Release-Question-Pairs

4.2 Transformer Model

As the base model, we use the BERT-large models
(Devlin et al., 2019). BERT-large contains 24 lay-
ers, an embedding size of 1024, and a total number
of 340M parameters.*

4.3 Adapter Models

Baseline As a baseline adapter, we use the
adapter layers with the pfeiffer configuration from
AdapterHub (Pfeiffer et al., 2020). The adapter
layers with the pfeiffer configuration are similar to
the one in Figure 1, in which learnable parameters
include two feedforward layers. For BERT-base,
each pfeiffer layer consists of 73.7k parameters’
resulting in the total number of 884.7K. For BERT-
large, the number of parameters for each adapter
layer is 131K, and the total number of parameters
is 3.1M. We see that as the underlying model gets
larger, the number of parameters in adapters also
increases notably. Therefore, adapter architecture
selection using AA is a potential solution to control
this exponential increase to some extent.

Adaptable Adapter (AA) For the rational acti-
vation, similar to Molina et al. (2019), we use order
m = 5 and n = 4 for rational. Therefore, the
rational activation function only consists of ten
learnable parameters. The rational activation can
be initialized to initially estimate an existing func-
tion. Based on our preliminary experiments, using
f(z) = 1 for initializing R(z) results in better
performances on the GLUE benchmark.

For the Gumble-Softmax switch, we set the tem-
perature parameter 7 to 0.1, and we initialize 7; to
0.5 for both inputs—i.e., the same initial probabil-
ity for the rational adapter and the identity function.

AA-focused We can use the selected architecture
by AA for designing a new adapter architecture, i.e.,
to only include an adapter layer—with a rational
function—at layers in which the switch has selected
the adapter layer over the identity function. We call
this architecture AA-focused. Note that compared
to AA, AA-focused is more efficient both at training
and inference time, as it includes a fewer number of
layers and no switch functions. It also requires less
storage space for saving the new adapter weights.
Also, training AA includes both the architecture

“The results for BERT-base are reported in the supplemen-
tary materials. BERT-base contains 12 layers, an embedding
size of 768, and 110M parameters.

3The reduction factor in the down-project layer is 16 which
results in (768/16) x 768 x 2 parameters for each adapter layer.

selection and training the adapter layers, which are
initialized randomly, simultaneously. As a result,
as we see in our evaluations, AA-focused achieves
higher performances as its training is only focused
on training the adapter layers.

AdapterDrop (Riicklé et al., 2021) During
training, AdapterDrop randomly drops the first n
layers in which n varies for different iterations. At
inference, n can be set to any desired number of
layers. In our experiments, we select n based on
the number of dropped layers by AA, i.e., the num-
ber of layers that are not selected by the switch
functions.

4.4 Experiments

We evaluate the models in different settings: (a)
using full training data, and (b) low-resource sce-
narios. For all the experiments, we consider 25%
of the training data as the development set and use
the official development sets as the test data. We
perform the low-resource evaluations when 100,
300, and 500 annotated examples are available.®
The test data is the same for all the evaluations. We
run all the low-resource experiments for 20 epochs
and five different random seeds’. We report the
average and standard deviation over the five dif-
ferent runs. When training on full datasets, the
experiments are computationally very expensive
using BERT-large. Therefore, for this setting, we
only report the results using the first random seed.
All experiments are done on one A100 NVIDIA
GPU. All implementations are based on Adapter-
Hub (Pfeiffer et al., 2020).

5 [Evaluation

Table 2 presents the results of Baseline, Adapter-
Drop, AA, and AA-focused. AA selects different lay-
ers for different tasks and different random seeds.®
We evaluate three configurations for AA-focused:

* AA-focused®P““: for each task, we design the
corresponding AA-focused based on the se-
lected architecture by AA for that task given
the first random seed (42). For instance, the
AA-focused architecture is the same for all the

®Selected training examples for low-resource experiments
are the same for all models given the same random seed.

742,92, 111, 245, and 651.

8For instance, the selected layers for RTE are as follows
for different runs of Low-resource-100: {0, 2, 5, 11, 12, 13,
16,17}, {3,4,5,6,7,8,9, 10, 12, 13, 15, 19, 21}, {2, 3, 4, 6,
9,12, 14, 16, 17, 18, 20, 22, 23}, {0, 2, 6, 8,9, 11, 13, 14, 17,
19, 23}, {1, 2, 5, 10, 11, 14, 16, 20, 21, 22, 23}.

MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Avg
Low-resource-100
Baseline 33.893_02 30.650_33 58.784_31 56.0]3_63 5.204_3,1 40.009_64 74.800_0 49~392.86 55.213_01 44.87
AA 33.64266 30.88039 59.61619 51.28252 -0.55187 45181417 74.8000 50.11344 5548246 44.49
AdapterDropAA 33‘722.84 30.620.40 57‘505.78 5401259 410795 3653893 74.80,0 49.392_36 56.061_38 44.08
AdapterDrop“‘ 33~712.76‘ 30.610_4 58.394_27 53.442_56 3917.6 36.238_68 74.80_0 49.462_31 55.761_91 44.04
AA-focused®rec 35.282'06 44-3716.31 63.754'39 52-944,64 5.6810,91 62.793.34 74.80[].01 51.482.72 54.084.51 49.47
AA-fOCUSCdum 36.362,61 44‘3716.31 63.364_8(5 55‘874.42 4754_9 59~376.78 74.940_2 51.123_45 51.834_12 49.11
AA-fOCUSEdSim 34‘773.18 45.7814_40 63.1 34_30 61.5810_95 17.5411_19 59.897_70 74.770_()7 52.202_93 51 .835_52 51.28

[Baselinel 24 24 24 24 24 24 24 24 24

IAAI 13217 15.03 13.692 14.640 15851 16.49.7 13.018 1128 12357
|AdapterDrop“4| 14 13 15 16 16 14 15 13 16
|AdapterDrop'®l 13 13 13 13 13 13 13 13 13
IAA-focused*re¢l 14 13 15 16 16 14 15 13 16
|IAA-focused™™| 13 13 13 13 13 13 13 13 13
IAA-focused*™ 13 13 13 13 13 13 13 13 13

Low-resource-300
Baseline 36.554,7(5 61-508.66 69.621_24 79‘8614_15 30~405.48 78.242_31 76.551_31 51.623_21 4592453 58.91

AdapterDropAA 38‘865,93 62.984‘85 66.712_91 79.2914_17 16.8912_06 78.51(99 75~740.67 51.193_35 46.764_02 57.44
AdapterDrop13 37-955.56 63.724.84 66.712'91 80.014447 16.312.05 77-522.08 76.030.92 51.333.4 46.484.27 57.34
AA 3714949 66.07038 71.33182 72.521659 26.05874 82.08; ¢ 74.03221 51.83284 47.04476 58.68
AA-focused®Pe¢ 44‘624‘11 66.831‘06 73‘721,09 85.872‘94 34‘518.3 81.162_04 76.721_06 54.584_72 46.203,92 62.69
AA-fOCUSQdum 46.694.29 69.251.33 74.162.95 87.570.72 35.653'26 81.712.64 75.971.55 56.895.56 52-397.26 64.48
AA-fOCUSGdSim 45.972_03 6836136 73.982_63 86.831_90 37.433_1() 78.813_58 76.661_30 55.962_31 48.445_53 63.61

1AAl 17.01.3 16219 14.81 8 12.83.2 16.82.2 18.61.9 16.01.1 12412 12451

|AA-focused*P*‘| 18 16 13 9 17 16 16 13 13
Low-resource-500

Baseline 44356,08 69.491.12 73.481_89 88‘261.53 37.984_42 82.07[)_99 78.331_11 59.281_76 49.866_08 64.79

AA 4733511 67.52299 75.023 84.93306 3996487 8456057 783810 59.28318 50.13516 65.23

AdapterDropAA 42.667'02 69.521.03 74.152'19 89.010.49 38.444'51 82.051.()5 78.191.04 59.282.6 49-36436 64.73
AdapterDrop13 43~056.4l 69. 120.88 72821 83 88970() 36.895_03 80771 32 77.86[}_3 58.562_44 49.016_57 64.12
AA-focused®Pe¢ 54‘962,66 69.52144 77.301,27 87.941,10 39.513,47 84.300_69 78.921_7() 59.202_53 48.736.27 66.71
AA-fOCUSQdum 56-131.88 69.322.29 76.852'37 87.891.47 41-753.83 83.481.25 78.000.35 60.421.75 50.425.07 67.14
AA-fOCUSGdSim 55.852_62 69.862_56 77.30]_93 87.57]_69 39.79]_42 83.231_61 78.751_26 60.071_()‘2 49.586_75 66.89

1AAI 12.86.0 16.81 3 16.496 14.691 10.653 19.61 4 16.62.4 14368 12.632
IAA-focused*P*| 14 17 18 15 17 18 14 16 14
Full Data

Baseline 85.08 88.68 91.95 93.00 58.28 89.75 83.12 70.39 56.34 79.62
AdapterDropAA 84.96 88.75 91.38 93.35 58.63 89.85 82.84 66.06 56.34 79.12
AdapterDrop'3 84.73 87.15 90.92 92.78 57.42 88.84 83.34 64.25 56.34 78.42
AA 84.73 88.38 91.01 92.55 57.60 90.11 82.36 63.18 53.52 78.16
AA-focused®P*¢ 84.77 88.46 91.38 92.32 56.79 89.74 83.42 64.98 57.75 78.84
AA-focused™™ 85.41 88.61 91.51 92.66 54.62 89.34 84.88 67.15 56.34 78.94
AA-focused®™™ 85.32 88.41 91.85 91.4 57.96 89.38 84.42 67.86 57.75 79.37
1AAI 14 18 17 18 20 20 18 16 15
IAA-focused*P*| 14 18 17 18 20 20 18 16 15

Table 2: Comparing the results of (a) the standard adapter model that includes an adapter layer on all the 24 BERT-
large layers (Baseline), (b) AdapterDrop, (c) adaptable adapter (AA), and (d) AA-focused adapters, in which the
architecture of the adapter is selected based on the selected layers by AA. The architecture of AA-focused®?¢c is
selected based on the selected layers by AA for the corresponding task and data regime when the random seed is
42. The architecture of AA-focused"™ is selected based on the selected layers by AA for the task of QQP on the
Low-resource-100 setting and for random seed 42. AA-focused*™™ only contains an adapter layer with a rational
activation function at the last 13 layers of BERT-large, i.e., the total number of adapter layers in AA-focused®™.
The number of layers at the inference time for the AdapterDrop”# experiments are selected based on the number of
layers in the corresponding AA-focused*P*¢ experiments. The number of inference time layers for AdapterDrop'3
equals 13. Except for Full Data, the reported results are averaged over five random seeds. The subscript reports
the corresponding standard deviation. The Full Data results are reported for one random seed. The IAAl rows
report the average number of selected adapter layers by AA using different random seeds. 1AA-focused™| rows
report the number of added adapter layers in the corresponding |AA-focused*| experiments. |AA-focused"™| and
|AA-focused®™| are the same for all data settings. |AdapterDrop*| rows report the number of included adapter
layers for the corresponding AdapterDrop experiment at the inference time. |AdapterDrop4| is always the same
as the corresponding |AA-focused®P*¢|, and |AdapterDrop'?| is always the same as AA-focused*™™. The test data
is the same for all the experiments. The Avg column reports the average score across all datasets. The highest
performances for each dataset and each data setting are boldfaced.

experiments of RTE for Low-resource-100—
i.e., over the five different random seeds—.
Howeyver, it is different for the rest of the tasks
and different data regimes.

AA-focused": we design this adapter archi-
tecture of all tasks and data settings based on
a single random seed, single task, and a single
data regime, i.e.— random seed 42, the QQP
task, and low-resource-100. We choose low-
resource-100 because the architecture selec-
tion process—i.e., training AA—is very fast in
this setting. We select the selected architecture
by QQP because AA selects the smallest num-
ber of layers for QQP when the random seed
is 42. The selected layers are {2, 6, 10, 12, 14,
15, 16, 18, 19, 20, 21, 22, 23}, i.e., 3 layers
from the first half of the original 24 layers, and
10 layers from the second half. The results of
AA-focused"™ compared to AA-focused*Pe
indicate whether the selected architecture by
AA transfers between similar tasks and differ-
ent data regimes.

AA-focused*™: we design a simplified
adapter based on AA in which we only use
the number of selected layers, instead of the
layer numbers, in a single random seed, single
task, and a single data regime—i.e., the num-
ber of selected layers when the random seed is
42 for the QQP task and the low-resource-100
setting that is 13. As investigated by Houlsby
et al. (2019), the last adapter layers are in
general more effective. As a result, we add
adapter layers, with rational activation, to the
last 13 transformer layers in AA-focused*™
experiments. The results of AA-focused*™
compared to AA-focused“™ show whether
only the number of selected layers by AA mat-
ters or it is also important to specify at which
layers to add the adapters.

The number of inference layers for
AdapterDrop®* are equivalent to the num-
ber of layers in AA-focused®?*° experiments for
each task and data setting. The number of layers
for AdapterDrop™ is 13, which is the same as
AA-focused"™ and AA-focused®™. Note that the
number of layers for AA-focused experiments are
the same both at training and inference while it is
not the case for AdapterDrop.

The IAA| rows in Table 2 show the average num-
ber of selected layers for each task over the five dif-

ferent random seeds. |AA-focused*| rows report the
number of added adapter layers in the correspond-
ing AA-focused” experiments. |AdapterDrop™*|
rows report the number of included adapter layers
for the corresponding AdapterDrop experiments at
the inference time.

We make the following observations from the
results of Table 2:

* AA achieves on-par performances with the
Baseline, and on average it uses about 13-15
layers out of 24 layers. We can use this insight
for designing efficient adapter architectures.

All AA-focused architectures considerably out-
perform Baseline in all the the tasks in low-
resource scenarios while using considerably
smaller number of parameters, and therefore,
being considerably more efficient. For in-
stance, while AA-focused"™ only uses 13 lay-
ers out of 24 layers—i.e., reducing the number
of training parameters from 3M to 1.7M—,
it outperforms the Avg score by 4.24, 5.57,
and 2.35 points in Low-resource-100, Low-
resource-300, and Low-resource-500, respec-
tively.

The high performances of AA-focused™™
show that the selected architecture by AA for
one task and one data regime transfers well to
other data regimes and similar tasks.® There-
fore, it is not necessary to design the adapter
architecture separately for a different amount
of available data and similar tasks.

The higher performances of AA-focused"™
compared to AA-focused®*™ indicate that the
higher performances of AA-focused models
are not only due to using fewer adapter lay-
ers, but it is also important that which adapter
layers are selected.

» AA-focused*™™ and AdapterDrop™ both use
the last 13 adapter layers during the inference
while the results of AA-focused*™ are con-
siderably higher for all data regimes. This
indicates the importance of the rational acti-
vation in adaptable adapters. We will further
investigate the impact on rational activation in
the next section.

°It even outperforms AA-focused*”*° showing that AA-
Sfocused®P°° may have overfitted to the development sets. We
have not performed hyperparameter selection for our experi-
ments. Using better hyperparameters may improve the results
of different settings.

MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Avg
Low-resource-300

Baseline 36.554.76 61~508.66 69.621‘24 79.8614.15 30-405,48 78.242481 76.551,31 51.623'21 45.924.33 58.91
AA 37.14249 66.07038 7133182 72.521659 26.05374 82.08;¢ 74.03221 51.83284 47.04476 58.68
Switch-Only 35.052,3] 43.816,02 65.592_51 61 .866,26 9-77]2.86 75.413_29 75.370,7 50.183,44 45.923_03 51.44
Rational-Only 37~723.88 64.752_51 69.691_()4 79.8614_15 23.208_33 78.581_94 75.841_07 52.273,11 46.483_88 58.70
Baseline!® 3798580 63.37472 6876155 85.16363 12.111969 77.96223 7525071 54.44206 4535372 57.80
AA-focusedsm 45972,08 68.361.36 73-98268 86.83190 37.43&10 78.8 1358 76.66130 55.962‘81 48.445.53 63.61
1AAl 17.01.3 16.21 9 14.8;: 5 12.83.2 16.82.2 18.619 16.01 1 12.41 2 12.494

|SWitCh-Onlyl 14.01.1 15.825 17.0Lg 16.22‘3 16.419 16.415 17.81‘7 15.02.1 14.017

Table 3: Evaluating the impact of rational in adaptable adapters. Experiments are run for five different random
seeds. Switch-only shows the results when learnable switches are used with standard adapter layers, i.e., linear
layers with the ReLLU activation. Rational-only shows the result when all the activation functions in the standard
adapter are replaced with rational. Baseline'® contains a standard adapter layer on the last 13 transformer layer.
AA-focused®™™ contains adapter layers with rational activation on the last 13 layers.

¢ In average, AdapterDropAA contains more in-
ference layers compared to AdapterDrop™>.
However, there is not a significant difference
between their performances. They achieve
on-par or lower results compared to Baseline.

Rational activation functions

among layers among tasks
15

lay0
lay2 10
lay4

lay7 5
lay1l0

cola
5.0 .
mnli
qnli
stsb

wnli

2.5

0.0

-2.5
-5.0

=7.5

Figure 3: Learned rational activation functions differ
according to their place within the network and to the
task they are trained for. Right: activation functions
at different layers within adapters trained on the QNLI
task. Left: activation functions trained at layer 2 of
adapters trained on different tasks.

Evaluating the Impact of Rational Activation.
The results of AA-focused experiments vs. Base-
line in Table 2 mostly emphasize the impact of
layer selection by the learnable switches in AA. In
this section, we investigate the impact of learnable
activation functions in more details in the evalua-
tions of Table 3.

First, we replace all rationals in AA with ReLU.
The results are reported in the Switch-Only row. By
comparing the results of AA and Switch-only we
observe that the use of rational activation consid-
erably improves the performance of AA, i.e., using
rational is a key component to achieve higher per-
formances with fewer layers.

Second, we replace the activation functions in
the standard adapter with rational. The results are

reported in Rational-only rows. The results of Base-
line compared to Rational-only show that the im-
pact of rational is prominent when the model con-
tains fewer parameters and using rational with an
overparameterized model is not very effective, i.e.,
both layer selection and learnable activation play
an important role.

Third, we only add a standard adapter layer
at the last 13 layers of BERT-large (Baseline'?),
which is the same number of adapter layers in
AA-focused*™. The difference is the activation
function that is used in these 13 adapter lay-
ers is ReLU in Baseline'® and rational in AA-
focused*™. The considerably higher performances
of AA-focused®™™ shows that higher performances
of AA-focused are due to both layer selection as
well as a learnable activation function.

Figure 3 shows the learned activation functions
across different layers of the same trained adapter
and different tasks. We see that the learned activa-
tion differs for different layers of the same task as
well as different tasks.

6 Conclusion

In this paper we propose adaptable adapters. They
consist of a learnable switch to select a subset of
adapter layers and a learnable activation function
to learn the suitable activation at each adapter layer
and for each input data. The results of adaptable
adapters show that we can achieve on-par perfor-
mances with the full adapter architecture by using
a smaller subset of layers. We show that adaptable
adapters are viable tools for designing efficient and
effective adapter architectures that require fewer
storage space, lower training and inference time
with high performances.

References

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin,
Xin Jiang, Qun Liu, Michael Lyu, and Irwin King.
2021. BinaryBERT: Pushing the limit of BERT
quantization. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 4334-4348, Online. Association for
Computational Linguistics.

Nicolas Boullé, Yuji Nakatsukasa, and Alex Townsend.
2020. Rational neural networks. In Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Sys-
tems (NeurlIPS).

Daniel Cer, Mona Diab, Eneko Agirre, Iiligo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1-14, Vancouver,
Canada. Association for Computational Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276-286, Florence, Italy. Association
for Computational Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evalu-
ating predictive uncertainty, visual object classifica-
tion, and recognising tectual entailment, pages 177—
190. Springer.

Quentin Delfosse, Patrick Schramowski, Alejandro
Molina, and Kristian Kersting. 2021. Recurrent ra-
tional networks. arXiv preprint arXiv:2102.09407.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-

cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Angela Fan, Edouard Grave, and Armand Joulin. 2020.

Reducing transformer depth on demand with struc-
tured dropout. In International Conference on
Learning Representations.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv
preprint arXiv:2101.03961.

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng
Ding, Liying Cheng, Jiawei Low, Lidong Bing, and
Luo Si. 2021. On the effectiveness of adapter-
based tuning for pretrained language model adap-
tation. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 2208-2222, Online. Association for Computa-
tional Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In International Conference on Machine Learning,

pages 2790-2799. PMLR.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and
Kilian Q Weinberger. 2016. Deep networks with
stochastic depth. In European conference on com-
puter vision, pages 646—-661. Springer.

Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
2020. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361.

Hector J Levesque, Ernest Davis, and Leora Morgen-
stern. 2011. The Winograd schema challenge. In
AAAI Spring Symposium: Logical Formalizations of
Commonsense Reasoning, volume 46, page 47.

Alejandro Molina, Patrick Schramowski, and Kristian
Kersting. 2019. Padé activation units: End-to-end
learning of flexible activation functions in deep net-
works. arXiv preprint arXiv:1907.06732.

Jonas Pfeiffer, Andreas Riicklé, Clifton Poth, Aish-
warya Kamath, Ivan Vuli¢, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. 2020.
Adapterhub: A framework for adapting transform-
ers. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2020): Systems Demonstrations, pages 46—
54, Online. Association for Computational Linguis-
tics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural

https://doi.org/10.18653/v1/2021.acl-long.334
https://doi.org/10.18653/v1/2021.acl-long.334
https://doi.org/10.18653/v1/2021.acl-long.334
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437

Language Processing (EMNLP), pages 5418-5426,
Online. Association for Computational Linguistics.

Andreas Riicklé, Gregor Geigle, Max Glockner,
Tilman Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. AdapterDrop: On the efficiency
of adapters in transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7930-7946, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. In Proceed-
ings of the 5th Workshop on Energy Efficient Ma-
chine Learning and Cognitive Computing - NeurIPS
2019.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Roy Schwartz, Gabriel Stanovsky, Swabha
Swayamdipta, Jesse Dodge, and Noah A. Smith.
2020. The right tool for the job: Matching model
and instance complexities. In Proceedings of the
58th Annual Meeting of the Association for Com-
putational Linguistics, pages 6640-6651, Online.
Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631-1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bo-
janowski, and Armand Joulin. 2019. Adaptive at-
tention span in transformers. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 331-335, Florence, Italy.
Association for Computational Linguistics.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2158-2170, Online. Association for Computa-
tional Linguistics.

Raphael Tang, Yao Lu, Linging Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from bert into simple neural net-
works. arXiv preprint arXiv:1903.12136.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In

10

Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593—
4601, Florence, Italy. Association for Computational
Linguistics.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5797-5808, Florence,
Italy. Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353-355, Brussels, Belgium.
Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625-641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112-1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

A BERT-base Results

https://aclanthology.org/2021.emnlp-main.626
https://aclanthology.org/2021.emnlp-main.626
https://aclanthology.org/2021.emnlp-main.626
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/2020.acl-main.593
https://doi.org/10.18653/v1/2020.acl-main.593
https://doi.org/10.18653/v1/2020.acl-main.593
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/P19-1032
https://doi.org/10.18653/v1/P19-1032
https://doi.org/10.18653/v1/P19-1032
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101

MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Avg

Baseline 83.530.19 88.120'14 90.630.25 91.740'3(5 56.510'84 88.480'14 84.81'07 63.831'4 54-086,64 77.97

AA 82.89.43 88.09.16 89.96025 91.31g51 5144182 88.25017 85.09106 6425172 5211761 77.05

AA-Layers 9.8043 1 1.20,7 10.61,0 9.81‘1 8.62.1 1 1.40,4 9.0045 9,40‘7 8.01.4
Low-resource-100

Baseline 3566538 29~700.86 60.514.5 51.542'14 '1~273.56 41.525'93 74.86().12 50.42,93 54935.84 44.21

AA 37.05235 30.59065 62.52427 52.73255 -0.08016 48.732391 74.83007 50.18321 55.21513 45.75

AA-layers 6.4148 8.62,1 8.8147 8,6146 7.42.4 10.80,7 9.41,4 9,4144 8.20.9
Low-resource-300

Baseline 37.884.09 49.2410‘32 68. 172.9 75.533'49 3-408.59 69.3915‘05 75.991.2 54.222'95 47.614.91 53.49

AA 40.27,738 66311535 7403203 76.42507 3.565 49 82.06224 7612059 5473309 47.04546 57.84

AA-Layers 10-41.6 10.80,7 11-00.8 9.41_3 7.62_0 10.80,7 9.61,0 9.81_4 8.21_1
Low-resource-500

Baseline 42.822.4 67.631.44 72.71,31 83.460'64 20.94,14 81 .970'39 76.510.95 57.112'93 52-116.96 61.69

AA 4772167 6927059 75.64919 84.52118 19.131446 83.74067 78.03233 55.96308 51.836.13 62.87

AA-Layers 9.81_1 10.41,3 10,00,8 9.20_7 9-41.8 10.61,4 9.81,6 9.6]_0 8.01_5

Table 4: Comparing the results of (a) the baseline adapter model that includes an adapter layer on all BERT-base
layers—Baseline—, and (b) the adaptable adapter—AA—. The reported results are averaged over five different
random seeds. The subscript reports the corresponding standard deviation. The AA-Layers reports the average
number of selected adapter layers by the adaptable adapter over different runs. The full data results show the
performance when the model is trained on all the available training data. The Low-resource- X settings report the
results when only X examples are used for training the model. The test data is the same for all the experiments.

11

