
Adaptable Adapters

Anonymous ACL submission

Abstract

State-of-the-art pretrained NLP models con-001
tain a hundred million to trillion parameters.002
Adapters provide a parameter-efficient alterna-003
tive for the full finetuning in which we can004
only finetune lightweight neural network lay-005
ers on top of pretrained weights. Adapter lay-006
ers are initialized randomly. However, exist-007
ing work uses the same adapter architecture—008
i.e., the same adapter layer on top of each layer009
of the pretrained model—for every dataset, re-010
gardless of the properties of the dataset or011
the amount of available training data. In this012
work, we introduce adaptable adapters that013
contain (1) learning different activation func-014
tions for different layers and different input015
data, and (2) a learnable switch to select and016
only use the beneficial adapter layers. We017
show that adaptable adapters achieve on-par018
performances with the standard adapter ar-019
chitecture while using a considerably smaller020
number of adapter layers. In addition, we show021
that the selected adapter architecture by adapt-022
able adapters transfers well across different023
data settings and similar tasks. We propose to024
use adaptable adapters for designing efficient025
and effective adapter architectures. The result-026
ing adapters (a) contain about 50% of the learn-027
ing parameters of the standard adapter and are028
therefore more efficient at training and infer-029
ence, and require less storage space, and (b)030
achieve considerably higher performances in031
low-resource scenarios.1032

1 Introduction033

Recent improvements in NLP are heavily skewed034

towards using larger pretrained models (Roberts035

et al., 2020) and given their considerably better036

performances, using them is becoming unavoid-037

able (Kaplan et al., 2020). Their improvements,038

however, come at the cost of significant computa-039

tional resources at training and inference times. For040

1The code will be publicly available upon publication.

instance, the number of parameters in recent pre- 041

trained models can vary from 110M in BERT-base 042

(Devlin et al., 2019) to 11 billion in T0 (Sanh et al., 043

2021) to trillion parameters in Switch Transformers 044

(Fedus et al., 2021). Using such models for each 045

downstream application requires a vast amount of 046

storage, training, and inference computation budget 047

that is not accessible for every user. 048

Instead of fine-tuning these massive numbers of 049

parameters for each downstream task, we can use 050

adapter architectures (Houlsby et al., 2019; Pfeiffer 051

et al., 2020). Adapters are lightweight neural net- 052

work layers that are added on top of each layer of 053

the pretrained model. As opposed to the standard 054

model fine-tuning, in which all layers are fine-tuned 055

for the target task, adapter-based tuning freezes the 056

transformer layers and only trains the newly added 057

adapter layers. Since the majority of parameters— 058

i.e., the layers of the large pretrained model—are 059

shared between different downstream tasks, the use 060

of adapters results in parameter-efficient transfer 061

learning. In addition to their parameter-efficiency, 062

He et al. (2021) show that training adapter-layers 063

(a) outperforms fine-tuning the whole model on 064

low-resource and cross-lingual settings, and (b) is 065

more robust to overfitting. 066

Existing work suggests that (a) different layers 067

of the pretrained models may capture different as- 068

pects of the form, syntax, or meaning of the input 069

text (Tenney et al., 2019; Clark et al., 2019), and 070

(b) they may not be all needed for performing a 071

given task (Houlsby et al., 2019; Fan et al., 2020; 072

Rücklé et al., 2021). In addition, adapter layers are 073

initialized randomly. Therefore, it is not necessary 074

to use the same adapter architecture for different 075

downstream tasks and given different amounts of 076

annotated data. However, existing works use the 077

same adapter architecture for all the different in- 078

put data, i.e., (a) one adapter layer on top of all 079

the pretrained layers while using all the layers may 080

not be necessary, and (b) the same activation func- 081

1

tion for all the layers and different tasks while the082

best activation function may vary for different tasks083

(Delfosse et al., 2021).084

In this paper, we propose a systematic approach085

for designing more adequate and flexible adapter086

architectures by introducing the adaptable adapter087

(AA). Adaptable adapters (1) use a learnable activa-088

tion function—called Rational activation (Molina089

et al., 2019)—instead of a constant activation in090

adapter layers allowing the adapter model to learn091

different activation functions at different adapter092

layers and for different tasks, and (2) consist of a093

learnable switch at each adapter layer to determine094

the beneficial adapter layers during training and to095

only use the selected layers during inference.096

We evaluate adaptable adapters on the GLUE097

benchmark (Wang et al., 2018) that consists of var-098

ious text classification tasks and based on different099

data settings in which different amounts of anno-100

tated examples are available for training.101

Our results show that adaptable adapters achieve102

on-par performances with the full adapter architec-103

ture while using considerably fewer adapter lay-104

ers at the inference. We further propose to use105

adaptable adapters for designing efficient adapter106

architectures—i.e., to only add an adapter layer107

to the layers that are selected by the adaptable108

adapter. We show that while the selected adapter109

architecture by AA, called AA-focused, is consider-110

ably more efficient at both training and inference111

times and would require less storage, it achieves112

on-par performances with the full adapter archi-113

tecture when trained on all available training data114

and considerably outperforms it on low-resource115

scenarios. In addition, we show that the selected116

adapter architecture by AA transfers well across117

similar tasks and different data settings. Therefore,118

we can train AA using a limited amount of training119

data and for one of the tasks, and then use the re-120

sulting AA-focused architecture for different data121

settings and other similar tasks.122

Overall, the contributions of this paper are as123

follows:124

• We propose adaptable adapters that introduce125

flexibility in adapter architectures by (a) se-126

lecting the adapter layers to use, and (b) learn-127

ing the suitable activation function for each128

layer and each task.129

• We propose to use adaptable adapters to de-130

sign efficient adapters that require less training131

time, inference time, and storage space.132

• We show that using fewer adapter layers with 133

a learnable activation function considerably 134

improves the performance on low-resource 135

scenarios. 136

2 Related Work 137

2.1 Rational Activation 138

Rational activation functions, empirically intro- 139

duced as Padé Activation Units (Molina et al., 140

2019), are learnable activation functions that can 141

approximate common activation functions as well 142

as learn new ones. The rational activation function 143

R(x) of order m,n is defined as follows: 144

R(x) =

∑m
j=0 ajx

j

1 + |
∑n

k=1 bkxk|
(1) 145

where aj and bk are learnable parameters. These ra- 146

tional functions use an absolute value in the denom- 147

inator to avoid potential poles, which will make the 148

training unstable. Such rational activation func- 149

tions provide stable training, as empirically shown 150

on image classification and reinforcement learning 151

(Molina et al., 2019; Delfosse et al., 2021). R(x) 152

can be initialized to initially approximate any of the 153

known activation functions or with constant func- 154

tions. Molina et al. (2019) show that rationals out- 155

perform other commonly used activation functions 156

in common image classification tasks. Rational 157

activation functions are also integrated in Gener- 158

ative Adversarial Networks (Boullé et al., 2020). 159

Delfosse et al. (2021) show that some of the layers 160

in very deep pretrained Residual Networks tend 161

to approximate activation functions’ behavior, and 162

we can achieve on-par or better performances with 163

the full network by replacing some of the complete 164

layers with rational activation functions. Similar to 165

this observation, as we show in § 5, using rational 166

activation functions instead of a constant activation 167

(ReLU) in adapters allows them to achieve high 168

accuracy using a fewer number of adapter layers. 169

2.2 Reducing Model’s Size for Efficiency 170

Improving the efficiency of large pretrained models 171

has received particular attention for the inference 172

time. The argument is that the effect of training cost 173

is limited, i.e., the model can be trained once but it 174

will be used many times. However, the inference 175

time has a wide impact on the everyday use of NLP 176

models. 177

Existing approaches for improving the inference- 178

time efficiency belong to two different categories: 179

2

(a) the distillation and pruning techniques that cre-180

ate a smaller model for inference but require re-181

training or fine-tuning the smaller model (Tang182

et al., 2019; Sanh et al., 2019; Voita et al., 2019;183

Sun et al., 2020; Bai et al., 2021), and (b) on-184

demand network size reduction at the inference185

time.2 There are two different approaches in the186

second category, namely layer dropping and early187

exiting.188

Fan et al. (2020) uses layer dropping during the189

training that randomly drops the model’s layers to190

make the model robust to the inference time layer191

selection. They show that it is possible to select192

sub-networks of any depth from large models at in-193

ference with limited impact on the performance and194

without the need for additional finetuning. Layer195

dropping was previously investigated by Huang196

et al. (2016) who propose to drop layers during197

training for regularizing the model and reducing198

the training time of deep convolutional networks.199

Rücklé et al. (2021) investigate the impact of layer200

dropping for adapter architectures. They show that201

by randomly dropping adapter layers during train-202

ing, they can prune the adapter model on-demand203

at the inference time.204

Schwartz et al. (2020) propose to add an output205

layer to each transformer layer. At inference time,206

while the model calculates the layer-wise represen-207

tation, from the bottom layer to the top layer, it208

also makes the prediction using the associated clas-209

sification layer. They use the output labels’ scores210

of the classification layers as confidence scores to211

decide whether to exit early if the classifier is con-212

fident or to proceed to process the input with the213

next layers. This hierarchical architecture offers214

an inference time-accuracy tradeoff by setting the215

confidence threshold. The early exiting approach216

is similar to layer dropping in which the dropped217

layers are always from the last top layers.218

All these approaches select the number of lay-219

ers to drop and the dropped layers heuristically220

at the inference time with the goal of improving221

the inference time. Instead, the adaptable adapter222

is a systematic approach for selecting the useful223

adapter layers for the given task during training.224

Besides layer selection, an adaptable adapter al-225

lows for learning the desired activation function for226

2There is another category that requires changes in the
models’ architectures. However, it would require re-training
the large model. E.g., Sukhbaatar et al. (2019) propose new
attention mechanisms that can process larger context with no
additional computational or memory costs.

different inputs. As we show, we can use adaptable 227

adapters to design efficient adapter architectures 228

with a considerably smaller number of training pa- 229

rameters with on-par or considerably higher per- 230

formances, especially with larger models and in 231

low-resource scenarios. 232

3 Proposed Architecture 233

3.1 Learnable Activation 234

Empirical observations of performances have led 235

experts of several fields to use different activation 236

functions for different tasks. Functions from the 237

ReLU family are usually used for neural network- 238

based visual computing, tanh has been used in PPO 239

for reinforcement learning, while GeLU has pro- 240

gressively been adopted in transformers. With the 241

growth of the models, and the complexity of the 242

tasks they are applied on, choosing one fixed acti- 243

vation function to equip the complete architecture 244

is suboptimal. By using rational (§ 2.1), we let the 245

adapter layer learn the suitable activation function 246

at each different adapter layer, task, and dataset. 247

In adaptable adapters, we replace the constant acti- 248

vation function of each adapter layer—i.e., ReLU 249

in the default configuration used in AdapterHub 250

(Pfeiffer et al., 2020)—with rational. 251

Figure 1 shows a standard adapter layer as well 252

as an adapter layer in adaptable adapters. 253

Feedforward down-project

Activation
function

Feedforward up-project

(a)

Feedforward down-project

Rational

Feedforward up-project

(b)

Figure 1: (a) a standard adapter layer with linear feed-
forward layers and a fixed activation, (b) an adapter
layer in adaptable adapters with linear feedforward lay-
ers and a rational activation.

3.2 Learnable Layer Selection 254

Houlsby et al. (2019) examined various choices 255

of adapter architectures. They report that using 256

3

two feedforward linear layers—one down-project257

and one up-project layer—results in good perfor-258

mances while only introducing a few parameters.259

Assuming d is the dimensionality of the input—i.e.,260

the embedding size of the transformer layer—the261

down-project layer maps the input dimension to262

n where n < d, and the up-project layer maps263

the input dimension back to d. n is called the hid-264

den size of the adapter. Each adapter contains a265

skip-connection that lets an adapter layer approx-266

imate an identity function, i.e., to pass the input267

of a transformer layer unchanged to the next layer.268

The learnable switches in adaptable adapter explic-269

itly model the selection between the feedforward270

adapter layer and the identity function. By exam-271

ining the switch probabilities we can determine272

the adapter layers that are beneficial for the overall273

performance of the model.274

As mentioned in § 1, existing work show that275

different layers of the pretrained models capture276

different aspects of the input data, and not all of277

them are necessary for performing various tasks.278

Therefore, for different input data, different layers279

may be of different importance. Adding a learnable280

switch at each adapter layer provides a more sys-281

tematic approach to determine the beneficial layers282

for each input task during training. We use the283

Gumbel Softmax (GS) estimator as an end-to-end284

differentiable switch (hard attention) to make the285

network to attend to an element of a set (S). As-286

suming πi are the probabilities of selecting each287

element of S—i.e., ∀iπi ≥ 0,
∑

i πi = 1—GS288

estimates the hard attention yi as follows:289

yi =
exp((log(πi) + gi)/τ)∑
j exp((log(πj) + gj)/τ)

(2)290

where gi are i.i.d. samples from a Gumbel distribu-291

tion, and τ is a temperature parameter. Setting τ to292

small values results in distributions that are similar293

to categorical ones.294

3.3 Adaptable Adapters295

The adaptable adapter (AA) is the combination of296

the learnable layer selection and the learnable ac-297

tivation function. The learnable layer selection—298

i.e., a Gumbel Softmax estimator—selects between299

an adapter layer, with no skip connection, and an300

identity function with zero parameters that passes301

the input without any changes to the next layer.302

The adapter layers in adaptable adapters consist303

of two linear layers—i.e., down-project and up-304

Feedforward down-project

Rational

Feedforward up-project

Gumbel Softmax
π0

π1

Figure 2: The adaptable adapter layer that consist of a
Gumbel Softmax to choose between an adapter layer
with a rational activation and an identity function.

project layers—, and the non-linearity function be- 305

tween these two linear layers consists of a rational 306

activation function. The adaptable adapter allows 307

to learn different adapter architectures for different 308

input data by (a) learning to use a subset of adapter 309

layers, and (b) learning a potentially different ac- 310

tivation function at each layer. Figure 3 shows the 311

structure of an adapter layer in adaptable adapters. 312

4 Experimental Setup 313

4.1 Datasets 314

We use the English text classification datasets from 315

the GLUE benchmark (Wang et al., 2019) including 316

MNLI (Williams et al., 2018), QQP3, QNLI (Ra- 317

jpurkar et al., 2016), SST-2 (Socher et al., 2013), 318

CoLA (Warstadt et al., 2019), STS-B (Cer et al., 319

2017), MRPC (Dolan and Brockett, 2005), RTE 320

(Dagan et al., 2006), and WNLI (Levesque et al., 321

2011). Table 1 shows the number of training exam- 322

ples and the evaluation metric for each dataset. 323

Dataset |Train| Metric Dataset |Train| Metric
MNLI 393k acc. STS-B 7k Pearson/Spearman
QQP 364k acc./F1 MRPC 3.7k acc./F1
QNLI 105k acc. RTE 2.5k acc.
SST-2 67k acc. WNLI 634 acc.
CoLA 8.5k Matthews

Table 1: GLUE datasets with their number of training
examples and the corresponding evaluation metric.

3https://www.quora.com/
profile/Ricky-Riche-2/
First-Quora-Dataset-Release-Question-Pairs

4

https://www.quora.com/profile/Ricky-Riche-2/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/profile/Ricky-Riche-2/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/profile/Ricky-Riche-2/First-Quora-Dataset-Release-Question-Pairs

4.2 Transformer Model324

As the base model, we use the BERT-large models325

(Devlin et al., 2019). BERT-large contains 24 lay-326

ers, an embedding size of 1024, and a total number327

of 340M parameters.4328

4.3 Adapter Models329

Baseline As a baseline adapter, we use the330

adapter layers with the pfeiffer configuration from331

AdapterHub (Pfeiffer et al., 2020). The adapter332

layers with the pfeiffer configuration are similar to333

the one in Figure 1, in which learnable parameters334

include two feedforward layers. For BERT-base,335

each pfeiffer layer consists of 73.7k parameters5336

resulting in the total number of 884.7K. For BERT-337

large, the number of parameters for each adapter338

layer is 131K, and the total number of parameters339

is 3.1M. We see that as the underlying model gets340

larger, the number of parameters in adapters also341

increases notably. Therefore, adapter architecture342

selection using AA is a potential solution to control343

this exponential increase to some extent.344

Adaptable Adapter (AA) For the rational acti-345

vation, similar to Molina et al. (2019), we use order346

m = 5 and n = 4 for rational. Therefore, the347

rational activation function only consists of ten348

learnable parameters. The rational activation can349

be initialized to initially estimate an existing func-350

tion. Based on our preliminary experiments, using351

f(x) = 1 for initializing R(x) results in better352

performances on the GLUE benchmark.353

For the Gumble-Softmax switch, we set the tem-354

perature parameter τ to 0.1, and we initialize πi to355

0.5 for both inputs—i.e., the same initial probabil-356

ity for the rational adapter and the identity function.357

AA-focused We can use the selected architecture358

by AA for designing a new adapter architecture, i.e.,359

to only include an adapter layer—with a rational360

function—at layers in which the switch has selected361

the adapter layer over the identity function. We call362

this architecture AA-focused. Note that compared363

to AA, AA-focused is more efficient both at training364

and inference time, as it includes a fewer number of365

layers and no switch functions. It also requires less366

storage space for saving the new adapter weights.367

Also, training AA includes both the architecture368

4The results for BERT-base are reported in the supplemen-
tary materials. BERT-base contains 12 layers, an embedding
size of 768, and 110M parameters.

5The reduction factor in the down-project layer is 16 which
results in (768/16) x 768 x 2 parameters for each adapter layer.

selection and training the adapter layers, which are 369

initialized randomly, simultaneously. As a result, 370

as we see in our evaluations, AA-focused achieves 371

higher performances as its training is only focused 372

on training the adapter layers. 373

AdapterDrop (Rücklé et al., 2021) During 374

training, AdapterDrop randomly drops the first n 375

layers in which n varies for different iterations. At 376

inference, n can be set to any desired number of 377

layers. In our experiments, we select n based on 378

the number of dropped layers by AA, i.e., the num- 379

ber of layers that are not selected by the switch 380

functions. 381

4.4 Experiments 382

We evaluate the models in different settings: (a) 383

using full training data, and (b) low-resource sce- 384

narios. For all the experiments, we consider 25% 385

of the training data as the development set and use 386

the official development sets as the test data. We 387

perform the low-resource evaluations when 100, 388

300, and 500 annotated examples are available.6 389

The test data is the same for all the evaluations. We 390

run all the low-resource experiments for 20 epochs 391

and five different random seeds7. We report the 392

average and standard deviation over the five dif- 393

ferent runs. When training on full datasets, the 394

experiments are computationally very expensive 395

using BERT-large. Therefore, for this setting, we 396

only report the results using the first random seed. 397

All experiments are done on one A100 NVIDIA 398

GPU. All implementations are based on Adapter- 399

Hub (Pfeiffer et al., 2020). 400

5 Evaluation 401

Table 2 presents the results of Baseline, Adapter- 402

Drop, AA, and AA-focused. AA selects different lay- 403

ers for different tasks and different random seeds.8 404

We evaluate three configurations for AA-focused: 405

• AA-focusedspec: for each task, we design the 406

corresponding AA-focused based on the se- 407

lected architecture by AA for that task given 408

the first random seed (42). For instance, the 409

AA-focused architecture is the same for all the 410

6Selected training examples for low-resource experiments
are the same for all models given the same random seed.

742, 92, 111, 245, and 651.
8For instance, the selected layers for RTE are as follows

for different runs of Low-resource-100: {0, 2, 5, 11, 12, 13,
16, 17}, {3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 19, 21}, {2, 3, 4, 6,
9, 12, 14, 16, 17, 18, 20, 22, 23}, {0, 2, 6, 8, 9, 11, 13, 14, 17,
19, 23}, {1, 2, 5, 10, 11, 14, 16, 20, 21, 22, 23}.

5

MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Avg
Low-resource-100

Baseline 33.893.02 30.650.38 58.784.81 56.013.68 5.204.84 40.009.64 74.800.0 49.392.86 55.213.01 44.87
AA 33.642.66 30.880.39 59.616.19 51.282.52 -0.551.87 45.1814.17 74.800.0 50.113.44 55.482.46 44.49
AdapterDropAA 33.722.84 30.620.40 57.505.78 54.012.59 4.107.95 36.538.93 74.80.0 49.392.86 56.061.38 44.08
AdapterDrop13 33.712.76 30.610.4 58.394.27 53.442.56 3.917.6 36.238.68 74.80.0 49.462.81 55.761.91 44.04
AA-focusedspec 35.282.06 44.3716.31 63.754.39 52.944.64 5.6810.91 62.793.34 74.800.01 51.482.72 54.084.51 49.47
AA-focuseduni 36.362.61 44.3716.31 63.364.86 55.874.42 4.754.9 59.376.78 74.940.2 51.123.45 51.834.12 49.11
AA-focusedsim 34.773.18 45.7814.40 63.134.30 61.5810.95 17.5411.19 59.897.70 74.770.07 52.202.93 51.835.52 51.28
|Baseline| 24 24 24 24 24 24 24 24 24
|AA| 13.21.7 15.03.0 13.62.2 14.64.0 15.82.1 16.42.7 13.01.8 11.21.8 12.35.7
|AdapterDropAA| 14 13 15 16 16 14 15 13 16
|AdapterDrop13| 13 13 13 13 13 13 13 13 13
|AA-focusedspec| 14 13 15 16 16 14 15 13 16
|AA-focuseduni| 13 13 13 13 13 13 13 13 13
|AA-focusedsim| 13 13 13 13 13 13 13 13 13

Low-resource-300
Baseline 36.554.76 61.508.66 69.621.24 79.8614.15 30.405.48 78.242.81 76.551.31 51.623.21 45.924.33 58.91
AdapterDropAA 38.865.93 62.984.85 66.712.91 79.2914.17 16.8912.06 78.51.99 75.740.67 51.193.35 46.764.02 57.44
AdapterDrop13 37.955.56 63.724.84 66.712.91 80.014.47 16.312.05 77.522.08 76.030.92 51.333.4 46.484.27 57.34
AA 37.142.49 66.070.38 71.331.82 72.5216.59 26.058.74 82.081.6 74.032.21 51.832.84 47.044.76 58.68
AA-focusedspec 44.624.11 66.831.06 73.721.09 85.872.94 34.518.3 81.162.04 76.721.06 54.584.72 46.203.92 62.69
AA-focuseduni 46.694.29 69.251.33 74.162.95 87.570.72 35.653.26 81.712.64 75.971.55 56.895.56 52.397.26 64.48
AA-focusedsim 45.972.08 68.361.36 73.982.68 86.831.90 37.433.10 78.813.58 76.661.30 55.962.81 48.445.53 63.61
|AA| 17.01.3 16.21.0 14.81.8 12.83.2 16.82.2 18.61.9 16.01.1 12.41.2 12.42.1
|AA-focusedspec| 18 16 13 9 17 16 16 13 13

Low-resource-500
Baseline 44.356.08 69.491.12 73.481.89 88.261.53 37.984.42 82.070.99 78.331.11 59.281.76 49.866.08 64.79
AA 47.335.11 67.522.99 75.02.3 84.933.06 39.964.87 84.560.87 78.381.0 59.283.18 50.135.16 65.23
AdapterDropAA 42.667.02 69.521.03 74.152.19 89.010.49 38.444.51 82.051.05 78.191.04 59.282.6 49.36.36 64.73
AdapterDrop13 43.056.41 69.120.88 72.821.83 88.970.6 36.895.03 80.771.32 77.860.8 58.562.44 49.016.57 64.12
AA-focusedspec 54.962.66 69.521.14 77.301.27 87.941.10 39.513.47 84.300.69 78.921.70 59.202.58 48.736.27 66.71
AA-focuseduni 56.131.88 69.322.29 76.852.37 87.891.47 41.753.83 83.481.25 78.000.35 60.421.75 50.425.07 67.14
AA-focusedsim 55.852.62 69.862.56 77.301.93 87.571.69 39.791.42 83.231.61 78.751.26 60.071.62 49.586.75 66.89
|AA| 12.86.0 16.81.3 16.42.6 14.62.1 10.68.3 19.61.4 16.62.4 14.36.8 12.63.2
|AA-focusedspec| 14 17 18 15 17 18 14 16 14

Full Data
Baseline 85.08 88.68 91.95 93.00 58.28 89.75 83.12 70.39 56.34 79.62
AdapterDropAA 84.96 88.75 91.38 93.35 58.63 89.85 82.84 66.06 56.34 79.12
AdapterDrop13 84.73 87.15 90.92 92.78 57.42 88.84 83.34 64.25 56.34 78.42
AA 84.73 88.38 91.01 92.55 57.60 90.11 82.36 63.18 53.52 78.16
AA-focusedspec 84.77 88.46 91.38 92.32 56.79 89.74 83.42 64.98 57.75 78.84
AA-focuseduni 85.41 88.61 91.51 92.66 54.62 89.34 84.88 67.15 56.34 78.94
AA-focusedsim 85.32 88.41 91.85 91.4 57.96 89.38 84.42 67.86 57.75 79.37
|AA| 14 18 17 18 20 20 18 16 15
|AA-focusedspec| 14 18 17 18 20 20 18 16 15

Table 2: Comparing the results of (a) the standard adapter model that includes an adapter layer on all the 24 BERT-
large layers (Baseline), (b) AdapterDrop, (c) adaptable adapter (AA), and (d) AA-focused adapters, in which the
architecture of the adapter is selected based on the selected layers by AA. The architecture of AA-focusedspec is
selected based on the selected layers by AA for the corresponding task and data regime when the random seed is
42. The architecture of AA-focuseduni is selected based on the selected layers by AA for the task of QQP on the
Low-resource-100 setting and for random seed 42. AA-focusedsim only contains an adapter layer with a rational
activation function at the last 13 layers of BERT-large, i.e., the total number of adapter layers in AA-focuseduni.
The number of layers at the inference time for the AdapterDropAA experiments are selected based on the number of
layers in the corresponding AA-focusedspec experiments. The number of inference time layers for AdapterDrop13

equals 13. Except for Full Data, the reported results are averaged over five random seeds. The subscript reports
the corresponding standard deviation. The Full Data results are reported for one random seed. The |AA| rows
report the average number of selected adapter layers by AA using different random seeds. |AA-focused∗| rows
report the number of added adapter layers in the corresponding |AA-focused∗| experiments. |AA-focuseduni| and
|AA-focusedsim| are the same for all data settings. |AdapterDrop∗| rows report the number of included adapter
layers for the corresponding AdapterDrop experiment at the inference time. |AdapterDropAA| is always the same
as the corresponding |AA-focusedspec|, and |AdapterDrop13| is always the same as AA-focusedsim. The test data
is the same for all the experiments. The Avg column reports the average score across all datasets. The highest
performances for each dataset and each data setting are boldfaced.

6

experiments of RTE for Low-resource-100—411

i.e., over the five different random seeds—.412

However, it is different for the rest of the tasks413

and different data regimes.414

• AA-focuseduni: we design this adapter archi-415

tecture of all tasks and data settings based on416

a single random seed, single task, and a single417

data regime, i.e.— random seed 42, the QQP418

task, and low-resource-100. We choose low-419

resource-100 because the architecture selec-420

tion process—i.e., training AA—is very fast in421

this setting. We select the selected architecture422

by QQP because AA selects the smallest num-423

ber of layers for QQP when the random seed424

is 42. The selected layers are {2, 6, 10, 12, 14,425

15, 16, 18, 19, 20, 21, 22, 23}, i.e., 3 layers426

from the first half of the original 24 layers, and427

10 layers from the second half. The results of428

AA-focuseduni compared to AA-focusedspec429

indicate whether the selected architecture by430

AA transfers between similar tasks and differ-431

ent data regimes.432

• AA-focusedsim: we design a simplified433

adapter based on AA in which we only use434

the number of selected layers, instead of the435

layer numbers, in a single random seed, single436

task, and a single data regime—i.e., the num-437

ber of selected layers when the random seed is438

42 for the QQP task and the low-resource-100439

setting that is 13. As investigated by Houlsby440

et al. (2019), the last adapter layers are in441

general more effective. As a result, we add442

adapter layers, with rational activation, to the443

last 13 transformer layers in AA-focusedsim444

experiments. The results of AA-focusedsim445

compared to AA-focuseduni show whether446

only the number of selected layers by AA mat-447

ters or it is also important to specify at which448

layers to add the adapters.449

The number of inference layers for450

AdapterDropAA are equivalent to the num-451

ber of layers in AA-focusedspec experiments for452

each task and data setting. The number of layers453

for AdapterDrop13 is 13, which is the same as454

AA-focuseduni and AA-focusedsim. Note that the455

number of layers for AA-focused experiments are456

the same both at training and inference while it is457

not the case for AdapterDrop.458

The |AA| rows in Table 2 show the average num-459

ber of selected layers for each task over the five dif-460

ferent random seeds. |AA-focused∗| rows report the 461

number of added adapter layers in the correspond- 462

ing AA-focused∗ experiments. |AdapterDrop∗| 463

rows report the number of included adapter layers 464

for the corresponding AdapterDrop experiments at 465

the inference time. 466

We make the following observations from the 467

results of Table 2: 468

• AA achieves on-par performances with the 469

Baseline, and on average it uses about 13-15 470

layers out of 24 layers. We can use this insight 471

for designing efficient adapter architectures. 472

• All AA-focused architectures considerably out- 473

perform Baseline in all the the tasks in low- 474

resource scenarios while using considerably 475

smaller number of parameters, and therefore, 476

being considerably more efficient. For in- 477

stance, while AA-focuseduni only uses 13 lay- 478

ers out of 24 layers—i.e., reducing the number 479

of training parameters from 3M to 1.7M—, 480

it outperforms the Avg score by 4.24, 5.57, 481

and 2.35 points in Low-resource-100, Low- 482

resource-300, and Low-resource-500, respec- 483

tively. 484

• The high performances of AA-focuseduni 485

show that the selected architecture by AA for 486

one task and one data regime transfers well to 487

other data regimes and similar tasks.9 There- 488

fore, it is not necessary to design the adapter 489

architecture separately for a different amount 490

of available data and similar tasks. 491

• The higher performances of AA-focuseduni 492

compared to AA-focusedsim indicate that the 493

higher performances of AA-focused models 494

are not only due to using fewer adapter lay- 495

ers, but it is also important that which adapter 496

layers are selected. 497

• AA-focusedsim and AdapterDrop13 both use 498

the last 13 adapter layers during the inference 499

while the results of AA-focusedsim are con- 500

siderably higher for all data regimes. This 501

indicates the importance of the rational acti- 502

vation in adaptable adapters. We will further 503

investigate the impact on rational activation in 504

the next section. 505
9It even outperforms AA-focusedspec showing that AA-

focusedspec may have overfitted to the development sets. We
have not performed hyperparameter selection for our experi-
ments. Using better hyperparameters may improve the results
of different settings.

7

MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Avg
Low-resource-300

Baseline 36.554.76 61.508.66 69.621.24 79.8614.15 30.405.48 78.242.81 76.551.31 51.623.21 45.924.33 58.91
AA 37.142.49 66.070.38 71.331.82 72.5216.59 26.058.74 82.081.6 74.032.21 51.832.84 47.044.76 58.68
Switch-Only 35.052.81 43.816.02 65.592.61 61.866.26 9.7712.86 75.413.29 75.370.7 50.183.44 45.923.03 51.44
Rational-Only 37.723.88 64.752.51 69.691.04 79.8614.15 23.208.33 78.581.94 75.841.07 52.273.11 46.483.88 58.70
Baseline13 37.985.80 63.374.72 68.761.55 85.163.63 12.1112.69 77.962.23 75.250.71 54.442.06 45.353.72 57.80
AA-focusedsim 45.972.08 68.361.36 73.982.68 86.831.90 37.433.10 78.813.58 76.661.30 55.962.81 48.445.53 63.61
|AA| 17.01.3 16.21.0 14.81.8 12.83.2 16.82.2 18.61.9 16.01.1 12.41.2 12.42.1
|Switch-Only| 14.01.1 15.82.5 17.01.9 16.22.8 16.41.9 16.41.5 17.81.7 15.02.1 14.01.7

Table 3: Evaluating the impact of rational in adaptable adapters. Experiments are run for five different random
seeds. Switch-only shows the results when learnable switches are used with standard adapter layers, i.e., linear
layers with the ReLU activation. Rational-only shows the result when all the activation functions in the standard
adapter are replaced with rational. Baseline13 contains a standard adapter layer on the last 13 transformer layer.
AA-focusedsim contains adapter layers with rational activation on the last 13 layers.

• In average, AdapterDropAA contains more in-506

ference layers compared to AdapterDrop13.507

However, there is not a significant difference508

between their performances. They achieve509

on-par or lower results compared to Baseline.510

Figure 3: Learned rational activation functions differ
according to their place within the network and to the
task they are trained for. Right: activation functions
at different layers within adapters trained on the QNLI
task. Left: activation functions trained at layer 2 of
adapters trained on different tasks.

Evaluating the Impact of Rational Activation.511

The results of AA-focused experiments vs. Base-512

line in Table 2 mostly emphasize the impact of513

layer selection by the learnable switches in AA. In514

this section, we investigate the impact of learnable515

activation functions in more details in the evalua-516

tions of Table 3.517

First, we replace all rationals in AA with ReLU.518

The results are reported in the Switch-Only row. By519

comparing the results of AA and Switch-only we520

observe that the use of rational activation consid-521

erably improves the performance of AA, i.e., using522

rational is a key component to achieve higher per-523

formances with fewer layers.524

Second, we replace the activation functions in525

the standard adapter with rational. The results are526

reported in Rational-only rows. The results of Base- 527

line compared to Rational-only show that the im- 528

pact of rational is prominent when the model con- 529

tains fewer parameters and using rational with an 530

overparameterized model is not very effective, i.e., 531

both layer selection and learnable activation play 532

an important role. 533

Third, we only add a standard adapter layer 534

at the last 13 layers of BERT-large (Baseline13), 535

which is the same number of adapter layers in 536

AA-focusedsim. The difference is the activation 537

function that is used in these 13 adapter lay- 538

ers is ReLU in Baseline13 and rational in AA- 539

focusedsim. The considerably higher performances 540

of AA-focusedsim shows that higher performances 541

of AA-focused are due to both layer selection as 542

well as a learnable activation function. 543

Figure 3 shows the learned activation functions 544

across different layers of the same trained adapter 545

and different tasks. We see that the learned activa- 546

tion differs for different layers of the same task as 547

well as different tasks. 548

6 Conclusion 549

In this paper we propose adaptable adapters. They 550

consist of a learnable switch to select a subset of 551

adapter layers and a learnable activation function 552

to learn the suitable activation at each adapter layer 553

and for each input data. The results of adaptable 554

adapters show that we can achieve on-par perfor- 555

mances with the full adapter architecture by using 556

a smaller subset of layers. We show that adaptable 557

adapters are viable tools for designing efficient and 558

effective adapter architectures that require fewer 559

storage space, lower training and inference time 560

with high performances. 561

8

References562

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin,563
Xin Jiang, Qun Liu, Michael Lyu, and Irwin King.564
2021. BinaryBERT: Pushing the limit of BERT565
quantization. In Proceedings of the 59th Annual566
Meeting of the Association for Computational Lin-567
guistics and the 11th International Joint Conference568
on Natural Language Processing (Volume 1: Long569
Papers), pages 4334–4348, Online. Association for570
Computational Linguistics.571

Nicolas Boullé, Yuji Nakatsukasa, and Alex Townsend.572
2020. Rational neural networks. In Advances in573
Neural Information Processing Systems 33: Annual574
Conference on Neural Information Processing Sys-575
tems (NeurIPS).576

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-577
Gazpio, and Lucia Specia. 2017. SemEval-2017578
task 1: Semantic textual similarity multilingual and579
crosslingual focused evaluation. In Proceedings580
of the 11th International Workshop on Semantic581
Evaluation (SemEval-2017), pages 1–14, Vancouver,582
Canada. Association for Computational Linguistics.583

Kevin Clark, Urvashi Khandelwal, Omer Levy, and584
Christopher D. Manning. 2019. What does BERT585
look at? an analysis of BERT’s attention. In Pro-586
ceedings of the 2019 ACL Workshop BlackboxNLP:587
Analyzing and Interpreting Neural Networks for588
NLP, pages 276–286, Florence, Italy. Association589
for Computational Linguistics.590

Ido Dagan, Oren Glickman, and Bernardo Magnini.591
2006. The PASCAL recognising textual entailment592
challenge. In Machine learning challenges. evalu-593
ating predictive uncertainty, visual object classifica-594
tion, and recognising tectual entailment, pages 177–595
190. Springer.596

Quentin Delfosse, Patrick Schramowski, Alejandro597
Molina, and Kristian Kersting. 2021. Recurrent ra-598
tional networks. arXiv preprint arXiv:2102.09407.599

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and600
Kristina Toutanova. 2019. BERT: Pre-training of601
deep bidirectional transformers for language under-602
standing. In Proceedings of the 2019 Conference603
of the North American Chapter of the Association604
for Computational Linguistics: Human Language605
Technologies, Volume 1 (Long and Short Papers),606
pages 4171–4186, Minneapolis, Minnesota. Associ-607
ation for Computational Linguistics.608

William B. Dolan and Chris Brockett. 2005. Automati-609
cally constructing a corpus of sentential paraphrases.610
In Proceedings of the Third International Workshop611
on Paraphrasing (IWP2005).612

Angela Fan, Edouard Grave, and Armand Joulin. 2020.613
Reducing transformer depth on demand with struc-614
tured dropout. In International Conference on615
Learning Representations.616

William Fedus, Barret Zoph, and Noam Shazeer. 2021. 617
Switch transformers: Scaling to trillion parameter 618
models with simple and efficient sparsity. arXiv 619
preprint arXiv:2101.03961. 620

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng 621
Ding, Liying Cheng, Jiawei Low, Lidong Bing, and 622
Luo Si. 2021. On the effectiveness of adapter- 623
based tuning for pretrained language model adap- 624
tation. In Proceedings of the 59th Annual Meet- 625
ing of the Association for Computational Linguistics 626
and the 11th International Joint Conference on Nat- 627
ural Language Processing (Volume 1: Long Papers), 628
pages 2208–2222, Online. Association for Computa- 629
tional Linguistics. 630

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 631
Bruna Morrone, Quentin De Laroussilhe, Andrea 632
Gesmundo, Mona Attariyan, and Sylvain Gelly. 633
2019. Parameter-efficient transfer learning for NLP. 634
In International Conference on Machine Learning, 635
pages 2790–2799. PMLR. 636

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and 637
Kilian Q Weinberger. 2016. Deep networks with 638
stochastic depth. In European conference on com- 639
puter vision, pages 646–661. Springer. 640

Jared Kaplan, Sam McCandlish, Tom Henighan, 641
Tom B Brown, Benjamin Chess, Rewon Child, Scott 642
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 643
2020. Scaling laws for neural language models. 644
arXiv preprint arXiv:2001.08361. 645

Hector J Levesque, Ernest Davis, and Leora Morgen- 646
stern. 2011. The Winograd schema challenge. In 647
AAAI Spring Symposium: Logical Formalizations of 648
Commonsense Reasoning, volume 46, page 47. 649

Alejandro Molina, Patrick Schramowski, and Kristian 650
Kersting. 2019. Padé activation units: End-to-end 651
learning of flexible activation functions in deep net- 652
works. arXiv preprint arXiv:1907.06732. 653

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aish- 654
warya Kamath, Ivan Vulić, Sebastian Ruder, 655
Kyunghyun Cho, and Iryna Gurevych. 2020. 656
Adapterhub: A framework for adapting transform- 657
ers. In Proceedings of the 2020 Conference on 658
Empirical Methods in Natural Language Processing 659
(EMNLP 2020): Systems Demonstrations, pages 46– 660
54, Online. Association for Computational Linguis- 661
tics. 662

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and 663
Percy Liang. 2016. SQuAD: 100,000+ questions for 664
machine comprehension of text. In Proceedings of 665
the 2016 Conference on Empirical Methods in Natu- 666
ral Language Processing, pages 2383–2392, Austin, 667
Texas. Association for Computational Linguistics. 668

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020. 669
How much knowledge can you pack into the param- 670
eters of a language model? In Proceedings of the 671
2020 Conference on Empirical Methods in Natural 672

9

https://doi.org/10.18653/v1/2021.acl-long.334
https://doi.org/10.18653/v1/2021.acl-long.334
https://doi.org/10.18653/v1/2021.acl-long.334
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437

Language Processing (EMNLP), pages 5418–5426,673
Online. Association for Computational Linguistics.674

Andreas Rücklé, Gregor Geigle, Max Glockner,675
Tilman Beck, Jonas Pfeiffer, Nils Reimers, and Iryna676
Gurevych. 2021. AdapterDrop: On the efficiency677
of adapters in transformers. In Proceedings of the678
2021 Conference on Empirical Methods in Natural679
Language Processing, pages 7930–7946, Online and680
Punta Cana, Dominican Republic. Association for681
Computational Linguistics.682

Victor Sanh, Lysandre Debut, Julien Chaumond, and683
Thomas Wolf. 2019. Distilbert, a distilled version of684
bert: smaller, faster, cheaper and lighter. In Proceed-685
ings of the 5th Workshop on Energy Efficient Ma-686
chine Learning and Cognitive Computing - NeurIPS687
2019.688

Victor Sanh, Albert Webson, Colin Raffel, Stephen H689
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine690
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun691
Raja, et al. 2021. Multitask prompted training en-692
ables zero-shot task generalization. arXiv preprint693
arXiv:2110.08207.694

Roy Schwartz, Gabriel Stanovsky, Swabha695
Swayamdipta, Jesse Dodge, and Noah A. Smith.696
2020. The right tool for the job: Matching model697
and instance complexities. In Proceedings of the698
58th Annual Meeting of the Association for Com-699
putational Linguistics, pages 6640–6651, Online.700
Association for Computational Linguistics.701

Richard Socher, Alex Perelygin, Jean Wu, Jason702
Chuang, Christopher D. Manning, Andrew Ng, and703
Christopher Potts. 2013. Recursive deep models704
for semantic compositionality over a sentiment tree-705
bank. In Proceedings of the 2013 Conference on706
Empirical Methods in Natural Language Processing,707
pages 1631–1642, Seattle, Washington, USA. Asso-708
ciation for Computational Linguistics.709

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bo-710
janowski, and Armand Joulin. 2019. Adaptive at-711
tention span in transformers. In Proceedings of the712
57th Annual Meeting of the Association for Compu-713
tational Linguistics, pages 331–335, Florence, Italy.714
Association for Computational Linguistics.715

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,716
Yiming Yang, and Denny Zhou. 2020. MobileBERT:717
a compact task-agnostic BERT for resource-limited718
devices. In Proceedings of the 58th Annual Meet-719
ing of the Association for Computational Linguistics,720
pages 2158–2170, Online. Association for Computa-721
tional Linguistics.722

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga723
Vechtomova, and Jimmy Lin. 2019. Distilling task-724
specific knowledge from bert into simple neural net-725
works. arXiv preprint arXiv:1903.12136.726

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.727
BERT rediscovers the classical NLP pipeline. In728

Proceedings of the 57th Annual Meeting of the Asso- 729
ciation for Computational Linguistics, pages 4593– 730
4601, Florence, Italy. Association for Computational 731
Linguistics. 732

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen- 733
nrich, and Ivan Titov. 2019. Analyzing multi-head 734
self-attention: Specialized heads do the heavy lift- 735
ing, the rest can be pruned. In Proceedings of the 736
57th Annual Meeting of the Association for Com- 737
putational Linguistics, pages 5797–5808, Florence, 738
Italy. Association for Computational Linguistics. 739

Alex Wang, Amanpreet Singh, Julian Michael, Fe- 740
lix Hill, Omer Levy, and Samuel Bowman. 2018. 741
GLUE: A multi-task benchmark and analysis plat- 742
form for natural language understanding. In Pro- 743
ceedings of the 2018 EMNLP Workshop Black- 744
boxNLP: Analyzing and Interpreting Neural Net- 745
works for NLP, pages 353–355, Brussels, Belgium. 746
Association for Computational Linguistics. 747

Alex Wang, Amanpreet Singh, Julian Michael, Felix 748
Hill, Omer Levy, and Samuel R. Bowman. 2019. 749
GLUE: A multi-task benchmark and analysis plat- 750
form for natural language understanding. In Inter- 751
national Conference on Learning Representations. 752

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow- 753
man. 2019. Neural network acceptability judgments. 754
Transactions of the Association for Computational 755
Linguistics, 7:625–641. 756

Adina Williams, Nikita Nangia, and Samuel Bowman. 757
2018. A broad-coverage challenge corpus for sen- 758
tence understanding through inference. In Proceed- 759
ings of the 2018 Conference of the North American 760
Chapter of the Association for Computational Lin- 761
guistics: Human Language Technologies, Volume 762
1 (Long Papers), pages 1112–1122, New Orleans, 763
Louisiana. Association for Computational Linguis- 764
tics. 765

A BERT-base Results 766

10

https://aclanthology.org/2021.emnlp-main.626
https://aclanthology.org/2021.emnlp-main.626
https://aclanthology.org/2021.emnlp-main.626
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/2020.acl-main.593
https://doi.org/10.18653/v1/2020.acl-main.593
https://doi.org/10.18653/v1/2020.acl-main.593
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/P19-1032
https://doi.org/10.18653/v1/P19-1032
https://doi.org/10.18653/v1/P19-1032
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101

MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Avg
Baseline 83.530.19 88.120.14 90.630.26 91.740.36 56.510.84 88.480.14 84.81.07 63.831.4 54.086.64 77.97
AA 82.890.43 88.090.16 89.960.25 91.310.51 51.441.82 88.250.17 85.091.06 64.251.72 52.117.61 77.05
AA-Layers 9.80.3 11.20.7 10.61.0 9.81.1 8.62.1 11.40.4 9.00.6 9.40.7 8.01.4

Low-resource-100
Baseline 35.663.38 29.700.86 60.514.5 51.542.14 -1.273.56 41.525.93 74.860.12 50.42.98 54.935.84 44.21
AA 37.052.35 30.590.68 62.524.27 52.732.55 -0.080.16 48.7323.91 74.830.07 50.183.21 55.216.13 45.75
AA-layers 6.41.8 8.62.1 8.81.7 8.61.6 7.42.4 10.80.7 9.41.4 9.41.4 8.20.9

Low-resource-300
Baseline 37.884.09 49.2410.32 68.172.9 75.533.49 3.408.59 69.3915.05 75.991.2 54.222.96 47.614.91 53.49
AA 40.274.78 66.311.86 74.032.03 76.426.07 3.565.49 82.062.24 76.120.89 54.733.09 47.045.46 57.84
AA-Layers 10.41.6 10.80.7 11.00.8 9.41.3 7.62.0 10.80.7 9.61.0 9.81.4 8.21.1

Low-resource-500
Baseline 42.822.4 67.631.44 72.71.31 83.460.64 20.94.14 81.970.89 76.510.95 57.112.93 52.116.96 61.69
AA 47.721.67 69.270.89 75.6491.9 84.521.18 19.1314.46 83.740.67 78.032.33 55.963.08 51.836.13 62.87
AA-Layers 9.81.1 10.41.3 10.00.8 9.20.7 9.41.8 10.61.4 9.81.6 9.61.0 8.01.5

Table 4: Comparing the results of (a) the baseline adapter model that includes an adapter layer on all BERT-base
layers—Baseline—, and (b) the adaptable adapter—AA—. The reported results are averaged over five different
random seeds. The subscript reports the corresponding standard deviation. The AA-Layers reports the average
number of selected adapter layers by the adaptable adapter over different runs. The full data results show the
performance when the model is trained on all the available training data. The Low-resource-X settings report the
results when only X examples are used for training the model. The test data is the same for all the experiments.

11

