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Abstract—

A robot designed to coexist and work with humans in the
same workspace should be able to work at the same speed
as humans and have safe contact with humans and with the
environment. However, when a robot arm has been given
flexibility through mechanisms and controls for the purpose
of coexistence, it is difficult for it to perform tasks at the speed
and accuracy desired by humans if it is moved simply by using
conventional position-based controls. With such an arm, we
consider that the use of learning-based control is necessary to
achieve both safety and speed. Therefore, we prototyped a low-
inertia, high-backdrivability arm as a platform for studying
learning-based control and tested two types of learning-based
control. This paper describes our design process, in which
hardware suitable for learning-based control was developed
according to the requirements of the specific task. It also
presents the results of our evaluation experiments, in which
tasks involving quick movements and motion requiring physical
contact with an object were performed using learning-based
control.

I. INTRODUCTION

Robots are constantly being introduced into people’s lives,

contributing to their wealth and well-being. In particular,

there is increasing demand for the use of robots in profes-

sional nursing care and at home because of the declining

birthrate and an aging population, which has become a

matter of concern in many developed countries, including

Japan. Most robots currently used in such environments

are designed for cleaning, sterilizing, and serving tasks or

for communication. These types of robots are not typically

used in activities that involve physical contact with people

or the environment (other than for limited work and in

environments such as assembly plants [1]). Actuation is a

key factor in this problem. In many industrial applications,

humans and robots are separated by barriers to ensure human

safety. In a normal environment, however, where humans

will use and touch robots without having been trained in

robot safety, safety must be ensured in other ways to allow

human–robot coexistence. In addition to the matter of safety,

it is necessary for a robot to be able to move at sufficiently

high speeds (with respect to human movements) without

sustaining damage. Recently, collaborative robots have been

used to achieve collaborative work in factories. However, the

task speeds are quite slow because the environment is limited

in terms of the tasks and the people who can coexist with
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Fig. 1: Overview of the design process.

the robot, and the robot needs to be slowed when a person

is nearby.

Therefore, in this study we aimed to develop a manipulator

(arm) that achieves both safety and operating speed, repre-

sentative of a robot designed for human–robot coexistence.

We consider that flexibility of the manipulator is necessary

to provide safety; we aimed to achieve such flexibility by

having both high backdrivability and low inertia. A suitable

controller for this flexible arm would also be required.

Conventionally, means such as impedance control have been

used for controlling arms when physical contact is involved.

In recent years, however, learning-based controllers have

shown some success in tasks involving many contacts that

are difficult to model [2]. Therefore, our objective was to

develop a flexible arm, a learning-based controller, and an

overall design process that can comprehensively handle both

an arm and a controller (Figure 1).

In this study, we considered actuators, arms, and control

algorithms that can perform human-equivalent tasks, with the

goal of developing an arm that can coexist with humans. We

developed a prototype arm with three degrees of freedom

(DOFs) and having high backdrivability and low inertia, and

we evaluated it with tasks that involve physical contact at

speeds higher than those typically used by traditional rigid

robots.

The remainder of this paper is organized as follows.

Section II discusses related work. In Section III, appropriate

levels of backdrivability for flexible arm configurations are

discussed. Section IV describes the configuration of a back-

drivable, low-inertia, 3-DOF arm. Learning-based control of

the flexible arm for tasks involving mechanical contact is

described in Section V, and the paper concludes with Section

VI.

II. RELATED WORK

Various studies have been conducted to provide flexibility

to robotic arms and perform tasks involving mechanical con-

tact. Industrial robots require high rigidity and low backlash,
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and wave gears are often used, as their purpose is to perform

accurate positioning. Although this configuration has low

backdrivability, the backdrivability can be increased by at-

taching a torque sensor for each axis [3] [4]. However, torque

sensors are expensive and easily damaged, and the response

delay of the sensor feedback limits the responsiveness of the

arm as a whole. Therefore, a method for estimating the torque

from the torsional rigidity of the reducer that relies on an

arrangement of encoders on the input and output side rather

than a torque sensor is also being actively researched [5].

The series elastic actuator (SEA) is also sometimes used;

it has an elastic element attached in series to the actuator.

However, it is not suitable for high-speed operation because

the responsiveness of the arm is determined by the charac-

teristics of the elastic element [6] [7].

Because the main cause of the decrease in backdrivability

is the reducer, the direct-drive method has also been re-

searched and developed as a single actuator. However, there

are almost no practical examples with robot arms, owing to

the low torque density of such actuators. In addition, because

a direct-drive motor provides insufficient torque density and

a wave gear has high friction, there have been studies inves-

tigating quasi-direct-drive (QDD) actuators using a planetary

reducer with a reduction ratio of approximately 10:1 and a

low-speed high-torque motor [8] [9].

Research on the backdrivability of actuators has been

conducted for both manipulators and legged robots. The

backdrivability required to absorb the impact of landing

has been optimized across the actuator and leg structures.

In addition, studies have been undertaken to achieve faster

running and higher flying [10] [11]. Other studies have

been conducted to improve the backdrive performance of

reducers [12], and some previous studies used hydraulic

pressure [13].

Another common approach is to arrange an actuator at

the base of the arm and transmit power to each axis using a

power transmission mechanism to reduce the inertia of the

arm. A typical method is the wire drive method, and several

studies using this technique have been reported [14] [8].

Problems of the wire drive system include its rigidity, which

is lower than that of an industrial robot, and the reliability

and maintainability of the wire in actual operation. Therefore,

a method was proposed in which only the part near the base

of the arm is used as a belt mechanism [15].

One study investigated the realization of impedance at the

control level; a torque-controlled humanoid was used to per-

form full-body movements [16]. Using a different approach,

another study realized push recovery by absorbing shocks,

accomplished by cycling control extremely quickly [17].

Variable stiffness control using soft hardware has been

achieved by learning of the mapping of the muscle and joint

space for redundant muscle arrangements [18].

However, none of these studies were able to accomplish

a task at adequate speed in a human–robot-coexistence

environment. To develop an arm that can achieve this, it is

necessary to accomplish the following: 1) define the back-

drivability required for the task to be performed and realize

the appropriate actuators, 2) design and implement the arm

with the arm inertia required for coexistence with humans

and for task execution, and 3) develop and implement a

method of control for a flexible arm with low inertia and

high backdrivability.

In this paper, we describe the basic approaches to these

problems for two relatively simple tasks (hammering and

whiteboard erasing) and show that the hardware can be

designed and controlled in practice.

III. ACTUATOR SELECTION BASED ON REQUIRED

BACKDRIVABILITY

A. Backdrivability

In this section, we discuss the backdrivability required

for an arm suitable for machine learning from the assumed

task. First, we define backdrivability, which in the context of

robotics refers to the ease of moving the actuator from the

output side. The backdrive torque Tf [Nm] is defined as

Tf = Ts + Iaθ̈ + Caθ̇ +Kaθ, (1)

where Ts is static friction torque and cogging torque, θ is

the output axis angle, Ka is the rigidity, Ca is the viscosity,

and Ia is the inertia.

Velocity

Friction

Static Friction

Coulomb Friction

Viscous Friction

Fig. 2: Simplified model of static and viscous friction.

The model shown in Figure 2 is known as a simplified

model of static and viscous friction, which treats the dif-

ficulty of turning from the output shaft as the torque due

to friction. However, the actual torque of the backdrive is

more complex. The moment of inertia is proportional to

the acceleration, and the moment of inertia of the motor is

proportional to the square of the deceleration ratio when it is

turned from the output shaft. Therefore, this term becomes

dominant, especially in actions that involve large accelera-

tion, such as the landing in a jump action. In addition, it is

known that the magnitude of the backdrive torque depends

on the position of the moving rotor because the Ts term

contains nonlinear elements such as cogging torque, which

varies with the angle of the rotor [19]. Therefore, the term

in the backdrive torque equation that has the greatest effect

in the arm task operation of interest must accordingly be

defined.
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B. Basic Strategy for Achieving Optimal Backdrivability

Here we outline how the backdrivability required was

determined for the tasks assumed in this study.

The tasks envisioned were hammering and whiteboard

erasing. Each of these is explained in detail in Section

V. For the hammering task, the goal is not only to have

the flexibility necessary for quick movements but also not

to break the hardware during the learning process. The

whiteboard erasing task requires the arm to push the eraser

against the board with the correct amount of force. The

backdrivability requirements for the arm were considered

for the whiteboard erasing task because whiteboard erasing

requires more delicate force control than hammering. The

arm must have the flexibility to allow the whiteboard eraser

to be placed on the whiteboard and the resolution to detect

minute forces. If the arm holding the whiteboard eraser can

detect and control the force with which it can move by

touching the whiteboard, we assume that the arm can adjust

the force subtly, as a person does. Thus, the minimum force

needed to initiate motion while pressing against the white-

board eraser was determined as the required backdrivability

of the actuator. The torque was determined from the payload

required for the arm, and an appropriate actuator was selected

according to its rated torque and static friction. The friction

of the arm includes motor friction and joint friction, but

joint friction is only that from bearings and can be ignored.

Therefore, in this study, only the static friction of the motor

was considered.

C. Actuator Selection

We evaluated motors from T-motor, which offers lines

of inner rotor, outer rotor, and quasi-direct-drive actuators

for robots. The static friction torque was measured for three

motor types from each of three T-motor series: the G series

and the GL series of outer rotors, and the AK series of quasi-

direct-drive actuators, each with different outer diameters.

Table I shows the specifications and measurement results for

each motor. Figure 3 shows static friction torque (vertical

axis) plotted against rated torque (horizontal axis). The

torque and static friction torque were proportional for the G

series and GL series, which do not have reduction gears. This

can be attributed to the fact that the ratio of the maximum

cogging torque to the rated torque is constant because the

basic motor design is the same. The AK-series motors have

different reduction ratios, and the static friction increased in

proportion to the reduction ratio. Moreover, it is believed that

the ratio of the static friction torque to rated torque is not

linear because the AK70-10 has a reduction ratio of 10:1,

which is the largest of the three types.

In the whiteboard erasing task, the force required to start

the movement from the pressed state was measured and taken

as the minimum resolution. This value was approximately 2

N. The torque converted to the actuator output shaft was 1.14

Nm because the arm length was 568 mm. The minimum

static friction force was set to 0.4 Nm, considering the arm

length when it was bent in the actual working area. The

maximum payload of the arm was set to 4 kg. Therefore,

TABLE I: Motor specifications and measurements.

G60 G80 G100 GL60 GL80

Rerated torque [Nm] 0.6 1 3 0.6 1
Mass [g] 364 482 954 226 315
Static friction torque
(measured) [mNm]

18 32 93 23 33

GL100 AK60-6 AK70-10 AK10-9

Rerated torque [Nm] 3 3 8.3 18
Mass [g] 698 315 521 820
Static friction torque
(measured) [mNm]

108 163 383 474
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Fig. 3: Measured static friction torque plotted against rated torque.

the rated torque of the actuator was 18 Nm. From these

values, the optimal actuator was determined to have a static

friction torque of 0.4 Nm or less and a rated torque of 18

Nm or more, as shown in Figure 3a. As can be seen, none of

the actuators measured have values in this region. However,

the AK70-10 and AK10-9 are close to this region, and we

selected the AK70-10 because we prioritized backdrivability.

IV. LOW-INERTIA BACKDRIVABLE ARM

Figure 4 shows the appearance of the robotic arm, and

Table II lists its specifications. The robot has three DOFs:

shoulder yaw, shoulder pitch, and elbow pitch. The motors

are positioned near the shoulder axis to reduce the moment

of inertia of the links; therefore, the elbow pitch axis is

driven by timing belts. The reflected inertia of the motor

is proportional to its rotor inertia and the square of the gear

ratio. A low gear ratio of 10:1 was selected to reduce this

inertia and thereby improve backdrivability.

V. LEARNING-BASED CONTROL EXPERIMENTS ON

PROTOTYPE 3-DOF ARM

In this section, we describe the application of learning-

based control to the prototype 3-DOF arm and show using

experimental results from a real robot that it is possible for
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shoulder yaw axis

shoulder pitch axis

elbow pitch axis

forearm

upper arm

shoulder

Fig. 4: Appearance of the prototype robot.

TABLE II: Specifications of the prototype robot.

Upper arm Forearm Shoulder

Mass [g] 94 350 1,278

Inertia (link only) [kgmm2] 366 6,724 4,725

Inertia (with rotor) [kgmm2] 4,143 10,501 8,502
Length [mm] 223 290 55

our robot to acquire contact-rich motion and quick move-

ments. For learning-based control, we chose two methods:

unsupervised learning and supervised learning. For each

learning method, we wished to confirm that it is possible

to search for a controller on our real robot. Two tasks were

selected for learning: (1) a hammering motion, representing

a quick type of motion, and (2) a rapid whiteboard-erasing

motion, representing a contact-rich, rapid type of motion.

In tasks that involve large amounts of contact, it is neces-

sary to go beyond position control and enable the arm to ac-

quire force manipulation capabilities to generate trajectories

in advance in order to respond flexibly to situational changes.

Thus, with the whiteboard erasing task, it is necessary for the

arm to learn the manipulation of force in addition to simple

positioning. Therefore, we included the value of the torque

in commands generated from the learning-based controller to

show that it is possible for the arm to learn force operations

in place of simple positioning commands.

A. Unsupervised Learning: Reinforcement Learning

We conducted an experiment to enable the prototype 3-

DOF arm to acquire a hammering motion using reinforce-

ment learning and verify unsupervised learning. In this exper-

iment, we wished to accomplish and analyze the following:

• To acquire a quick movement using only the actual

device.

• To acquire a stable trajectory by torque control.

In acquisition learning that involves contact with the en-

vironment, it is common to use simulation only for learning

the behavior, using the actual robot for learning robustness.

This approach is used because too much input during the

learning process can lead to hardware failure. However,

contact between the robot and environment is unavoidable,

even during the learning of robustness using the real robot,

because it is difficult to accurately simulate the behavior of a

real robot. Our aim with this experiment was to confirm that

the hardware could learn without failure even in the early

stages of learning with more contact. Therefore, we chose to

use the hammering task, which involves more intense contact

with the environment, because the training for this task used

only real robots.

Fig. 5: Setup for experiment with hammering using reinforcement
learning.

Position control is suitable when a robot is acquiring

a stable trajectory. However, when a task involves contact

with the environment or an object, external forces can cause

deviation from the target position, resulting in the generation

of excessive force by general position control; therefore,

torque control is necessary.

Torque control has been used in a few cases when there

are concerns about stability associated with contact with the

environment or objects, whose characteristics are often un-

known. For the arm to move stably under torque control, the

load of friction and self-weight, which varies with the posture

of the arm, must be taken into account. Conventional arms

are strongly affected by friction and deadweight. Therefore,

the torque and friction must be estimated and compensated

for with high accuracy. There have been studies to improve

the accuracy of friction estimation [20] and self-weight

compensation according to arm posture [21], but the methods

they used have drawbacks, such as the need for adaptation

and their computational cost. Such measures are not needed

with the prototype 3-DOF arm, however; friction estimation

is unnecessary because the effects of motor friction and the

weight of the robot are small. Therefore, the learning process

was performed using only torque control to confirm that the

robot can acquire a stable trajectory even with torque control

and without compensating for friction and deadweight.

1) Setup and Overview of the Experiment: We defined the

coordinates as shown in Figure 5. The shoulder yaw axis was

fixed and controlled such that it did not move in the y-axis

direction. To simplify the problem, the end effector did not

actually hit a nail. Instead, the end effector was judged to

have completed the hammering operation when it reached

the target range (in which a nail is assumed to exist) from

the initial position. The z-axis velocity of the end effector at

the time of its arrival and the motor torque output during the

operation were used to evaluate the operation’s success and

to update the evaluation value.

2) Reinforcement Learning Method: Typical

reinforcement learning methods include Q-learning [22],

SARSA [23], and Monte Carlo planning [24]. In this

experiment, the operation’s success is evaluated when the
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TABLE III: Reward design.

Case Reward

Velocity is within the acceptable
range

3,000 + Total energy consumed

Velocity is outside the acceptable
range

−10 + Total energy consumed

Target range is not reached −3,000

hammer reaches the target range. For this reason, we chose

the Monte Carlo method, which updates the values in the

Q-table all at once after the reward is obtained.

3) States and Actions: The state was defined as the

position and velocity of the shoulder pitch axis (Motor 1)

and elbow pitch axis (the difference between Motors 1 and

2 multiplied by the reduction ratio of the belt). Each position

and velocity range was divided equally into 12 possible

values.

The action was defined as any of four possible combina-

tions of outputting or not outputting a constant torque value

command to Motors 1 and 2.

4) Reward: We first designed the reward such that the

hammer would strike with a constant force. As the experi-

ment focused on the z-axis velocity of the end effector when

it reached the target range, we defined the range for the

velocity required. When the end effector reached the target

range, it was judged to be striking with a certain force if the

velocity was within the range. The greater the extent to which

these requirements are satisfied, the greater the reward.

We then incorporated the energy consumption of the series

of actions into the reward such that the reward increases for

lower values of motor output. By taking energy efficiency

into account, we expect that energy is to be used only to

attain the hammering speed necessary when the end effector

reaches the target range. Moreover, we expect the controller

to use no unnecessary energy by making contact on the way

to achieving the goal.

Thus, a high reward is obtained when the hammering is

performed with a constant force and consuming as little

energy as possible.

Table III shows the design of the reward. The total

energy consumption value is calculated by adding the energy

consumption E each time the state changes:

E = −(V1Tref1 + V2Tref2), (2)

where V1 and V2 are the velocities and Tref1 and Tref2 are

the torque commands, each for Motors 1 and 2, respectively.

5) Q-table: As we were using the Monte Carlo method,

the Q-table was updated when the end effector reached the

target range.

The values in the Q-table corresponding to the state and

action from the beginning to the end of the operation were

updated using the following two formulas:

Q(s, a)← Q(s, a) + α(G−Q(s, a)), (3)

G = rt+1 + γt+2 + · · ·+ γT−1rT . (4)

Q(s, a) represents the value of action a in state s.

α denotes the reflection rate of the learning results. We set α
to 0.8 when the current reward was larger than the previous

reward in the episode, and to 0.05 when the current reward

was smaller. Therefore, the behavior is easily reflected when

a large reward is obtained.

rn (n = t+ 1, . . . , T ) represents the reward at each step.

γ is the discount rate, which was set to 0.99.

6) Selection of Action: To select an action, a value for ϵ
was first calculated using

ϵ =
0.5

nk + 1.0
, (5)

where n is the number of the episode, and the value of

the coefficient k was set to 0.25. Following the ϵ-greedy

algorithm, this value of ϵ was then compared with a random

value. If the value of epsilon was larger, an action was

selected randomly, and if the value of epsilon was smaller,

an action was selected from the Q-table.

7) Evaluation Experiment: The learning sequence begins

after the end effector is moved to the initial position shown

in Figure 5 by position control. An episode ends when the

position of the end effector reaches the target range or when

the number of steps exceeds 3,000 and the target range

has not been reached. The Q-table was updated after each

episode was completed. When the velocity remained within

the acceptable range for 100 consecutive episodes, the arm

returned to the initial position to repeat the learning process,

and the learning was judged to be successful.

We used two settings for the range of acceptable velocities

in the experiment:

• [−4.25,−3.75] rad/s
• [−3.75,−3.25] rad/s

For this evaluation phase, a weight of 500 g was attached

to the tip of the end effector.

8) Results: Learning Process: Figure 6a shows the change

in reward as the episode count increased when the range

of acceptable velocities was set to [−4.25,−3.75] rad/s.
In this condition, learning stabilized and motion acquisition

was achieved when the episode count exceeded 110. Figure

6b shows the relationship between velocity and energy

consumption for this condition. The velocities converged to

the slow end of the acceptance range ([−4.0,−3.75] rad/s)
as the learning progressed, indicating that the system can

learn actions that consume less energy.

When the range of acceptable velocities was set to

[−3.75,−3.25] rad/s, more time was needed for the learning

to converge (∼ 600 episodes),

as shown in Figure 6c. However, the controller succeeded

in learning the hammering motion with low energy consump-

tion, as shown in Figure 6d.

9) Results: Acquired Behaviors: Figure 7 shows the tra-

jectory of the motion acquired via learning. The horizontal

and vertical axes represent the x-coordinate position [m] and

z-coordinate position [m], respectively. The outer colored

points represent the position of the end effector and the

torque of Motor 2, whereas the inner colored points represent
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(a) Reward for each passing
episode
([−4.25,−3.75] rad/s)

(b) Relationship between velocity
and energy
([−4.25,−3.75] rad/s)
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Fig. 6: Results for reinforcement learning of hammering motion.

the elbow joint axis position and the torque of Motor 1.

The figure shows the trajectory from the initial position with

the end effector at (x, z) = (0.1, 0.5) until the end effector

reached the target position, (x, z) = (−0.5, 0.05).
In the acquired motion, torque was generated for acceler-

ation at the start of the movement. During the downward

motion, however, little torque was generated. Just before

reaching the target range, only Motor 2 generates torque to

adjust the velocity. The results confirmed that the controller

can acquire motion using the weight of the arm and the

weight attached to the end effector.

More than 10,000 episodes of learning were performed in

this experiment, including preliminary trials. No hardware

failures occurred that might have halted the experiment.

The arm was disassembled and examined to confirm the

absence of abnormalities in the individual components. These

findings confirmed that the arm could be used in acquiring

motions involving physical contact through hardware-based

learning alone and that it has the necessary durability to be

used in this way. To the best of our knowledge, no robot has

learned while undergoing 10,000 collisions; this comparison

indicates the superiority of the design of the prototype arm.

In addition, we obtained a stable and successful trajectory

for a quick movement using torque control alone and with-

out compensating for friction or deadweight. Our findings

confirm that our prototype, which is a low-inertia, high-

backdrivability 3-DOF arm, can effectively execute quick

movements with torque control.

B. Self-Supervised Learning

We conducted a second experiment, this one involving

erasing a whiteboard at the same speed as a human by using

self-supervised learning, which is a subcategory of super-

vised learning algorithms. In this experiment, we wished to

accomplish and analyze the following:

• To learn a task that involves a large amount of contact.

• To learn a rapid motion.

• To search for a controller in the torque space.

Fig. 7: Trajectory of acquired hammering motion.

6axis force sensor

End effectorWhite board
Sinusoidal Periodic Motion

upper arm

shoulder

forearm

Fig. 8: Setup for experiment with whiteboard erasing using self-
supervised-learning dynamics controller.

The task of erasing a whiteboard at the same speed as a

human not only involves a large amount of friction between

the whiteboard and the eraser, which is difficult to model,

but also requires the eraser to apply a constant force to the

whiteboard while moving rapidly. Therefore, force control is

required rather than simple position control. In order to learn

such force control from human demonstrations on actual

machines, hardware is needed that will not break during the

learning process or when the resulting controller is used. In

a test of learning-based control, the hardware is less likely

to break if it is able to tolerate forces. Low inertia and high

backdrivability are suitable hardware characteristics because

they enable the hardware to tolerate the forces directed by a

control algorithm. This experiment was designed to confirm

that learning in the force dimension is possible using our

prototype arm, which has high backdrivability.

1) Setup and Overview of the Experiment: The setup for

the experiment is shown in Figure 8. As the end effector,

we used a passive 1-DOF joint with an attached eraser. We

divided the forearm link into two segments and attached a

six-axis force sensor between them.

The sensor was a PFS020YA500U6 [25] by the Leptrino

Corporation, from their series of medium- and medium-

heavy-load six-axis sensors. The rated capacity of the transla-

tional force and moment are 500 N and 0.5 Nm, respectively,

and the allowable overload is ±200%. The yaw axis at the

root of the 3-DOF arm was maintained in sinusoidal periodic

motion (0.33Hz), and only the pitch axes of the shoulder and

the elbow at the root were controlled to exert the appropriate

amount of force on the whiteboard to erase the words written

there.
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Fig. 9: Overview of the self-supervised-learning dynamics con-
troller.

2) Learning Dynamics via Self-Supervised Learning:

A neural network was used to learn the dynamics of the

robot and the task, and the control input was determined

by nonlinear optimal control [26] [27]. Figure 9 presents an

overview of the method used in this study. First, the prototype

3-DOF arm was operated under symmetric bilateral control

to collect data as it performed a task. Then, for the task

of erasing the whiteboard, we used the collected data to

train a dynamics model. This dynamics model includes the

model of the prototype 3-DOF arm and is represented by the

state equation xt+1 = f(xt, ut|Wf ), where xt, ut, and Wf

represent the state, control input, and weight of the model

network, respectively.

The loss functions of the target and current states are

calculated using the learned model, and the control input

is determined through optimization using the error back-

propagation method. For the current state xt, the predicted

state is xpred and the target state is xref when the control

input ut is given. The objective function J to make the

predicted state approach the target state is expressed as

J(xref
t+1, x

pred
t+1 ) =

1

2
||xref

t − xpred
t ||2. (6)

The calculation of the control input uopt
t by optimization

using back-propagation is given by

uopt
t = argmin J(xref

t+1, x
pred
t+1 )

s.t. umin ≤ ut ≤ umax

xpred
t+1 = f(xt, ut|Wf )

. (7)

Because the gradient can be approximated by error back-

propagation using

gu =
∂J(xref

t+1, x
pred
t+1 )

∂ut

, (8)

the control input is updated using

δut = −ϵu
gu
||gu||

ut ← ut + δut

, (9)

where gu is the gradient of J for ut, and ϵ is the constant

learning rate for updating ut.

(a) Sensor force before and after
learning

(b) Sensor torque before and after
learning

(c) Joint torque before and after
learning

Fig. 10: Results of experiment with whiteboard erasing using self-
supervised-learning dynamics controller.

3) Design of Controller: By operating the prototype 3-

DOF arm with bilateral control, we found that letters written

on the whiteboard could be erased when the force sensor

received a force in the vertical direction toward the white-

board. We also confirmed that there was reaction torque on

the six-axis force sensor in the direction of the reaction force

from the whiteboard. In addition, the third axis of the motor

exerted a torque in the direction that pushed the eraser against

the whiteboard during bilateral control.

We included the joint angle s
pjoint

t , joint-exerted torque

s
τjoint
t , sensor torque sτsensort , and sensor force sFsensor

t

in xt, and the target joint angle u
pjoint

t and target joint

torque u
τjoint
t in ut to move the eraser while exerting

force against the whiteboard. The dimensionality of s
pjoint

t ,

s
τjoint
t , and sτsensort is 3, that of sFsensor

t is 1 (the re-

action direction alone), and that of u
pjoint

t and u
τjoint
t is

2 (shoulder pitch and elbow pitch joints). We set xref

to (0.0, 0.0, 0.0, 0.0,−0.2, 1.0, 0.0, 0.0, 0.5,−4.0); this value

was chosen by referring to the sensor value when the

prototype robot wiped the whiteboard by bilateral control.

For the dynamics model, we used LSTM [28], with 128 as

the number of units. The control input was sent to the motors

with a period of 3 ms. The calculation of optimal control

input using back-propagation took 30 ms, and therefore we

updated the target command with a period of 30 ms.

4) Results of Evaluation Experiment Using Learned Con-

troller: The value of the force sensor received from the

whiteboard was compared with that in the command to

maintain the posture when the first axis was moved. It was

confirmed to increase by a factor of approximately five when

the whiteboard was erased using the learned model (Figure

10).

The controller could be examined without causing break-

age by experimenting with the control input resulting from

the search for the torque as the command value in the

learning-based controller.

In this phase of the experiment, the yaw axis of the root

was controlled while continuing to move at the same speed
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as a human. It was confirmed that it is possible to acquire

control of the force when the whiteboard was wiped at the

same speed as a human.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we determined the backdrivability require-

ments for two selected tasks, selected actuators based on the

requirements, fabricated a prototype of a 3-DOF arm, and

achieved a task involving quick movements and physical con-

tact using machine-learning-based control to perform human-

equivalent tasks in a human–robot-coexistence environment.

We demonstrated an overall process for designing a pro-

totype arm that allows human–robot coexistence, in which

the hardware design requirements are derived from the task

and from the hardware used when the task is performed in

a more flexible (less limited) manner.

In future studies, it will be useful to generalize this de-

sign process to accommodate general-purpose environments

and less restricted tasks. With regard to hardware, it will

be necessary to derive hardware design requirements from

generalized tasks and to include factors in addition to the

static friction in order to develop arms having multiple

degrees of freedom, low inertia, and high backdrivability.

The development of actuators that can provide both the

backdrivability and the torque required for the payload is

another important aspect for future consideration.
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