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ABSTRACT

Hyperbolic embeddings are well-studied both in the machine learning and algo-
rithm community. However, as the research proceeds independently in those two
communities, comparisons and even awareness seem to be currently lacking. We
compare the performance (time needed to compute embeddings) and the quality of
the embeddings obtained by the popular approaches, both on real-life hierarchies
and networks and simulated networks. In particular, according to our results, the
algorithm by Bläsius et al (ESA 2016) is about 100 times faster than the Poincaré
embeddings (NIPS 2017) and Lorentz embeddings (ICML 2018) by Nickel and
Kiela, while achieving results of similar (or, in some cases, even better) quality.

1 INTRODUCTION

Hyperbolic geometry was originally created as a model of geometry where all the postulates of Euclid
hold except the parallel axiom. While in Euclidean geometry, parallel lines stay at a constant distance,
similar lines in hyperbolic geometry diverge exponentially. While hyperbolic geometry is sometimes
used as an example of a mathematical concept that has no relation to the real world (where the parallel
axiom appears to hold), the property of exponential growth has found applications in the visualization
and modelling of hierarchical structures. In the machine learning community, probably the most
influential paper Nickel & Kiela (2017) (Poincaré embeddings) shows that hyperbolic embeddings
achieve impressive results compared to Euclidean and translational ones. The results have been
improved even further in Nickel & Kiela (2018) (Lorentz embeddings) by changing the used model
of hyperbolic geometry.

In the machine learning literature, this work is recognized as one of the first studies on hyperbolic
embeddings. For example, according to Gu et al. (2019), "Initial works on hyperbolic embeddings
include Nickel & Kiela (2017) [...]". However, it is worth noting that there is a rich history of
hyperbolic embedding research that precedes this paper. Hyperbolic embeddings have been originally
devised in the social network analysis community (the Hyperbolic Random Graph model, HRG),
and the algorithmic properties of this model, including embedding techniques, have been extensively
studied in the algorithm community.

Surprisingly, there appears to be limited cross-referencing between these two research communities.
For example, machine learning papers we’ve examined rarely cite algorithmic works, and vice
versa. We believe that there is valuable insight within algorithmic papers that could benefit the
machine learning community. To keep the introduction short, we will highlight two papers we
use for our comparisons: an Õ(n) algorithm for creating hyperbolic embeddings (Bläsius et al.,
2016) that predates (Nickel & Kiela, 2017), denoted as the BFKL embedder, and an algorithm
to efficiently improve and evaluate hyperbolic embeddings using discrete methods (the Discrete
Hyperbolic Random Graph model, DHRG, Kopczyński & Celińska-Kopczyńska (2017), published
as Celińska-Kopczyńska & Kopczyński (2022)). In Nickel & Kiela (2017; 2018), the algorithm was
benchmarked on the WordNet data, and benchmarked using MeanRank and MAP measures. In our
experiments, BFKL turns out to be orders of magnitude faster, while achieving results of similar
quality, or in some cases, better.
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Figure 1: Tessellations of the hyperbolic plane. Bitruncated order-3 heptagonal tiling on the right.

2 PRELIMINARIES

2.1 HYPERBOLIC GEOMETRY

We start with the basics of hyperbolic geometry. For simplicity, we will focus on the hyperbolic
plane H2, although the same ideas work in higher dimensions. See e.g. the book Cannon et al. (1997)
for a more thorough formal exposition, or the game HyperRogue Kopczyński et al. (2017) to gain
intuitions. Recall the Euclidean space En is Rn with distance δE(x, y) =

√
g+(x− y, x− y), where

g+((x1, . . . , xn), (y1, . . . , yn)) =
∑n

i=1 xiyi.

In modern terms, the simplest non-Euclidean geometry is spherical geometry. A two-dimensional
sphere of radius 1 is S2 = {x ∈ R3 : g+(x, x) = 1}. The distance is measured in terms of great
circle arcs; a point in distance r in direction (angle) ϕ from the central point C0 = (0, 0, 1) has
coordinates (sin(ϕ) sin(r), cos(ϕ) sin(r), cos(r)). The spherical distance between x and y can be
computed as arccos(g+(x, y)); this is straightforward when y = C0, and also true in general, since
g+ is invariant under the isometries (i.e., rotations) of the sphere.

Gaussian curvature is a measure of difference of surface geometry from Euclidean geometry. A
sphere of radius R, RS2, has constant Gaussian curvature K = 1/R2. The hyperbolic plane is the
opposite of spherical geometry, that is, it has constant negative Gaussian curvature. Hyperbolic
surfaces are less ubiquituous, because they do not embed symetrically into E3 – that would essentially
require R to be imaginary. However, they appear in nature when maximizing surface area is needed
(e.g., lettuce leaves), and can be embedded symetrically in the Minkowski spacetime. The hyperbolic
plane H2 is thus {x ∈ R3 : x3 > 0, g−(x, x) = −1}, where g− is the Minkowski inner product
g−((x1, x2, x3), (y1, y2, y3)) = x1y1 +x2y2 −x3y3 (the coordinate x3 works like a time coordinate
in special relativity). This is called the Minkowski hyperboloid model; many intuitions from spherical
geometry work in this model, for example, a point in distance r in direction (angle) ϕ from the
central point C0 = (0, 0, 1) has coordinates p(r, ϕ) = (sin(ϕ) sinh(r), cos(ϕ) sinh(r), cosh(r)).
The spherical distance between x and y can be computed as arcosh(g−(x, y)).

While the formulas of the Minkowski hyperboloid model tend to be intuitively obtainable by analogy
to the sphere model, this model is not applicable to visualization, since it naturally lives in Minkowski
spacetime rather than the usual three-dimensional space (we use Lorentz transformations rather than
Euclidean rotations for isometries involving the time coordinate). The most common method of
visualization of the hyperbolic plane is the Poincaré disk model, first devised by Eugenio Beltrami,
obtained as the stereographic projection of the Minkowski hyperboloid: p(x, y, z) = ( x

z+1 ,
y

z+1 ).
This maps the (infinite) hyperbolic plane to a disk in the Euclidean plane. Figure 1 shows some
tessellations of the hyperbolic plane in the Poincaré disk model. Each shape of the same shade in
each of these tessellations is of the same size; the Poincaré disk model distorts distances so that the
same hyperbolic distance appears smaller when closer to the boundary of the disk.

The Poincaré disk model is called a model (rather than projection) because it is often used directly,
as an alternative representation of hyperbolic geometry. Many models are used; for us, the third
important model is the native polar coordinates (r, ϕ). The formulas from converting from native
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polar coordinates to the hyperboloid model are given above as p(r, ϕ). We can compute the distance
formula in the native polar coordinate as follows: (let ϕ = ϕ1 − ϕ2)

δ(p(r1, ϕ1), p(r2, ϕ2)) = δ(p(r1, 0), p(r2, ϕ)) (1)
= arcosh g−((sinh(r1), 0, cosh(r1)), (sinh(r2) cosϕ, sinh(r2) sinϕ, cosh(r2)) (2)
= arcosh (sinh(r1) sinh(r2) cosϕ+ cosh(r1) cosh(r2)) (3)
= arcosh (cosh(r1 − r2) + (1− cos(ϕ)) sinh(r1) sinh(r2)) (4)

The last formula has better numerical properties (Bläsius et al., 2016). The distance formula in the
Poincaré disk model can be computed similarly, although converting from Poincaré to hyperboloid
needs solving a quadratic equation. All models describe the same (isometric) abstract metric space,
so theoretically could be equivalently used in computations, although various models differ by how
robust they are to numerical precision issues (as we will see later, hyperbolic geometry exhibits
exponential growth, which makes such issues very significant). All can be generalized to higher
dimensions and allow interpolation between possible values of curvature K. In our experience,
people new to computational hyperbolic geometry use Poincaré model because introductory materials
often focus on it; however, they have then difficulties computing distances and isometries, while such
computations are straightforward in the hyperboloid model due to the full symmetry and spherical
analogies. We see the difference between Nickel & Kiela (2017) and Nickel & Kiela (2018) as an
example of this. The Minkowski hyperboloid is popular as the underlying model in the visualizations
of hyperbolic geometry (Phillips & Gunn, 1992; Kopczyński et al., 2017) due to simplicity and being
a generalization of the homogeneous coordinates commonly used in computer graphics. The choice
of the model may affect numerical precision (Floyd et al., 2002). As we will see later, native polar
coordinates are commonly used for hyperbolic embeddings of social networks (Friedrich et al., 2023).

2.2 FROM VISUALIZING HIERARCHICAL DATA TO MODELLING SCALE-FREE NETWORKS

While popular expositions of hyperbolic geometry usually focus on the sum of angles of a triangle
being less than 180 degrees, what is actually important to us is exponential growth. As can be easily
seen from the formula for p(r, ϕ), a hyperbolic circle of radius r has circumference 2π sinh(r);
sinh(r) grows exponentially with r. This exponential growth, as well as the tree-like nature of
the hyperbolic space, can be seen in Figure 1, and has found application in the visualization of
hierarchical data, such as trees in the hyperbolic plane (Lamping et al., 1995) and three-dimensional
hyperbolic space (Munzner, 1998). Drawing a full binary tree of large depth h in the Euclidean plane
(say, a piece of paper), while keeping all the edges to be the same distance, is difficult, because we
eventually run out of space to fit all 2h leaves. The hyperbolic plane, with its exponential growth, is a
perfect solution to this issue.

This leads us to another application of hyperbolic geometry, that is, the modelling of scale-free
networks. Scale-free networks are commonly found in nature, technology, and as social structures.
They are characterized by the power law distribution of degrees (the probability that a random
vertex has degree ≥ d is proportional to d−β), as well as the high clustering coefficient (if node a is
connected to b and c, the nodes b and c are also likely to be connected). Despite this ubiquiteness,
it is not straightforward to find a mathematical model which exhibits both these properties. One
such model is the Hyperbolic Random Graph model (HRG) (Krioukov et al., 2010), characterized
by parameters N,R, α, T . In this model, N nodes are distributed randomly in a hyperbolic disk of
radius R. Their angular coordinates ϕ are distributed uniformly, while their radial coordinates r are
distributed according to the density function f(r) = α sinh(αr)/(cosh(αR−1). Every pair of nodes
a and b is then connected with probability p(a, b) = (1 + exp((δ(a, b)−R))/2T ))−1, where δ(a, b)
is the hyperbolic distance between the points in H2 representing the two nodes. The radial coordinates
corresponds to popularity (smaller r = more popular) while the angular coordinates correspond to
similarity (closer ϕ = more similar); the connections in a network are based on popularity and
similarity. It can be shown that a random graph thus obtained has high clustering coefficient, and
power law distribution of degrees with β = 2α + 1. Hyperbolic random graphs can be generated
naively in O(n2) (Aldecoa et al., 2015), in subquadratic time (von Looz et al., 2015) and in linear
time (Bringmann et al., 2019). Earlier work include (Kleinberg, 2007) and (Shavitt & Tankel, 2008).

The next development is the embedding of real scalefree networks into the hyperbolic plane. In
Boguñá et al. (2010) such an embedding of Internet was obtained, and found to be highly appropriate
for greedy routing. In greedy routing, a node a wants to find a connection to another node b by
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finding one of its neighbors c which is the closest to b, then the neighbor of c which is closed to b,
and so on. Greedy routing is successful when we eventually reach b; the stretch is the ratio of the
number of steps to the minimal distance between a and b in the network. Using greedy routing with
the distances from the hyperbolic embedding achieves success rate 90%, which is significantly higher
than, e.g., greedy routing based on actual geographical distances between the network nodes.

However, the embedded method used in Boguñá et al. (2010) required substantial manual intervention
and did not scale to large networks (Krioukov et al., 2010). Further research focused on finding
unsupervised and efficient algorithms. Usually, these algorithms are based on the maximum likelihood
(MLE) method: an embedding maximizing L, the probability that all edges are chosen to exist or not
as in the real-world network, is sought. Note that this is a difficult computational problem – even
computing L according to the formula requires time O(n2), which is significant for large networks.
The first algorithm for embedding large networks works in time O(n3) (Papadopoulos et al., 2015b),
later improved to O(n2) (Papadopoulos et al., 2015a; Wang et al., 2016).

In Bläsius et al. (2016), an quasilinear algorithm for finding hyperbolic embeddings is found. This
algorithm computes the HRG parameters based on the statistics of the network. Then, it embeds
the network in layers, starting from the nodes with the greatest degree, which form the center of the
network. The algorithm, which we call the BFKL embedder, is evaluated on a number of scale-free
network from the SNAP database (Leskovec & Krevl, 2014) as well as randomly generated networks
generated according to the HRG model. It is shown that the greedy routing based on the BFKL
embeddings again achieves good success ratio.

One embedding method is spring embedders (Kobourov, 2013). A spring embedder simulates
forces acting on the graph: attractive forces pulling connected nodes together, and repulsive forces
pushing unconnected nodes away. Spring embedders have been adapted to non-Euclidean embeddings
(Kobourov, 2013), however, the straightforward adaptation to hyperbolic geometry does not produce
good embeddings of large radius (Bläsius et al., 2016). The official implementation of Bläsius et al.
(2016) includes a spring embedder as a method of improving the result of the quasilinear algorithm;
however, the running time of this step is Ω(n2), which is too slow for large graphs. In Celińska-
Kopczyńska & Kopczyński (2022), an alternative approach is given to this problem. This approach is
based on hyperbolic tilings, as shown in Figure 1 and previously used in HyperRogue Kopczyński
et al. (2017). The nodes of our graph are mapped not to points of the hyperbolic plane, but rather to
the tiles of such a tiling. Also, the distances are computed in a discrete way, as the number of tiles.
This is called DHRG, the discrete HRG model. This works, because such tilings distances are a good
approximation of hyperbolic distances (to a greater extent than similar approximations in Euclidean
space Celińska-Kopczyńska & Kopczyński (2022)), and because the radii of HRG embeddings are
large – the typical radii are on the order of R = 30 tiles of the bitruncated order-3 heptagonal tiling
(1). One benefit of such a discrete representation is avoiding numerical precision issues. The other
benefit is algorithmic: given a tile t1 and a set of tiles T , we can compute an array a such that a[i]
is the number of tiles in T in distance i from t1 in time just O(R2). The time of preprocessing
(add or remove a tile from T ) is O(R2) per tile. This gives us an efficient algorithm to compute
the loglikelihood of a DHRG embedding, and also to improve a DHRG embedding by local search
(moving nodes to obtain a better loglikelihood).

There is extensive literature on the HRG model, for example, on its algorithmic properties. In (Bläsius
et al., 2018) the impact of numerical errors on hyperbolic embeddings and greedy routing is evaluated.
In Muscoloni et al. (2017); García-Pérez et al. (2019) ML algorithms are used to obtain or improve
embeddings. Most research concentrates on two-dimensional embeddings. Higher-dimensional
embeddings have been studied recently (Bringmann et al., 2019; Budel et al., 2023; Kovács et al.,
2022; Jankowski et al., 2023).

2.3 HYPERBOLIC GEOMETRY IN MACHINE LEARNING

In Nickel & Kiela (2017), Riemannian stochastic gradient descent (RSGD) method is applied
to find hyperbolic embeddings. The algorithm is benchmarked on data that exhibits clear latent
hierarchical structure (WordNet noun hierarchy) as well as on social networks (scientific collaboration
communities). The quality is evaluated using MeanRank and Mean Average Precision (mAP).
MeanRank is the average, over all edges u → v, of ru,v , which is the number of vertices w such that
there is no edges from u to w and w is closer to u than v (including u, not including v, thus MeanRank
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≥ 1). MAP is the mean of average precision scores (AP) for all vertices. The average precision score
of vertex u is defined as

∑k
i=1 i/ru,vi , where k is the number of vertices v such that u → v, and vi

is the i-th closest of these vertices. In case of WordNet, u → v iff v is a hypernym of u; this is a
transitive relation. In Nickel & Kiela (2018), the results are improved by using the hyperboloid model
(referred to as Lorentz model) instead of Poincaré model. The results are evaluated using MeanRank,
MAP, and Spearmank rank order, on multiple real-world taxonomies including the WordNet noun
and verb hierarchies, the Enron email corpus, and the historical linguistics data.

In Sala et al. (2018) the effects of numerical precision is studied, more precisely, the tradeoff
between the number of dimensions and the number of bits used for representating the angles. Also a
combinatorial method of embedding tree-like graphs is given. In Yu & De Sa (2019), a tiling-based
model (LTiling) is suggested to combat the numerical precision issues. The main idea is somewhat
similar to DHRG, although while in DHRG only tiles are used, in LTiling both tiles and coordinates
within the tile are used. In Gu et al. (2019) the networks are embedded not in Hn, but in products of
lower-dimensional spaces with hyperbolic, Euclidean or spherical geometry. In Chamberlain et al.
(2017) hyperbolic embeddings are applied to neural networks. In Guo et al. (2022) a method for
visualizing higher-dimensional hyperbolic embeddings in H2 is proposed.

In Nickel & Kiela (2017), the early papers on hyperbolic visualizations (Lamping et al. (1995), but
not Munzner (1998)) and the HRG model are cited, although the authors and reviewers seem to
not be aware of the extensive literature on hyperbolic embeddings. The Poincaré embeddings are
thus compared only to Euclidean and translational embeddings. This continues in the other papers
mentioned in this section. We have found citation to SNA research in Ganea et al. (2018); in Sonthalia
& Gilbert (2020), Bläsius et al. (2016) is in the bibliography, but surprisingly, not referred to in text,
despite the focus on speed; this paper also cites early work on hyperbolic embedding (Chepoi &
Dragan, 2000), hyperbolic multi-dimensional scaling Cvetkovski & Crovella (2011), and embedding
of δ-hyperbolic graphs into trees (Chepoi & Dragan, 2000; Chepoi et al., 2008; Abraham et al., 2007).
Comparisons between the achievements of ML and algorithm community seem to be lacking.

3 COMPARISON ON REAL-WORLD TAXONOMIES AND SCALE-FREE NETWORKS

Our experiment uses the following setup.

• Take a graph. Apply the Lorentz embedding LE (since it is better than Poincaré em-
bedding PE). Since the BFKL embedder uses two-dimensional representations, we use
two-dimensional embedding.

• Run the BFKL embedder on the same data.
• Compare the results of Lorentz and BFKL embedding, according to the MeanRank and

MAP measures.
• Apply the DHRG embedding improvement (using the bitruncated order-3 heptagonal tiling,

Figure 1) to both, and again evaluate according to our measures. (We use the discrete
versions; contrary to Celińska-Kopczyńska & Kopczyński (2022) we do no dediscretization.)

We use the official implementations and hyperparameters (see Appendix A). The hyperparameters
for SGD Euclidean embeddings are not given in the current official repository; we use the same
parameters as for Poincaré (learning rate 1). The details are given in the supplementary material.

An implementation of MeanRank and MAP is available with Nickel & Kiela (2018). However, on
most graphs, this implementation fails to evaluate the BFKL embedding due to a numerical precision
error. Lorentz embeddings use a disk of radius of up to 30 bitruncated tiles (based on the constant
used in the official implementation), while the BFKL embedding computes the appropriate radius
for this network as 34.43 absolute units, which is 44 tiles. This larger radius leads to numerical
precision errors. Therefore, we use our own implementation of these evaluations, based on the more
precise distance function (4). Still, the computation is somewhat slow: for each of O(n) nodes,
O(n) distances from the other nodes need to be computed and sorted. Therefore, we also apply the
discretization from DHRG. As already mentioned, discretization allows us to compute, for every
node t, an array a such that a[i] is the number of tiles in T in distance i from t, in time O(R2). If t
has et edges, we can compute a similar array b[i] restricted to connected tiles in time O(etR). Note
that the formulas for MeanRank and mAP given in 2.3 are for the case of continuous distances, and
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Figure 2: Quality assessment of embedders on real-world networks.

need to be adjusted for discrete values obtained from the DHRG model. In the case of MeanRank, a
non-edge with distance tie contributes 0.5 to ru,v , and in the case of mAP, if there are b[d] edges and
a[d] total nodes in distance d, we assume k-th of these edges to be ranked after a[d](k − 0.5)/b[d]
nodes. We can compute such MeanRank and MAP knowing a[i] and b[i] for every node in total time
O(nR2 +mR), where m is the number of edges. We can expect the scores thus obtained to be less
extreme than their continuous equivalents due to lower precision. Because of this, we will refer to the
discrete counterparts of mAP and MeanRank as dmAP and dMR.

We start with the WordNet hypernymy structure that PE/LE have been benchmarked on. We get
mAP of 0.284 using BFKL which is significantly better than the result of Poincaré 2D of 0.118, but
not the result of Lorentz 2D of 0.305, according to Nickel & Kiela (2018). However, the results
obtained by us are different: 0.107 for Poincaré 2D and 0.168 for Lorentz 2D. Furthermore, while the
PE/LE papers mention the good performance of their embedding methods, on our machine, BFKL is
almost 100 times faster than Lorentz embedding, which is especially impressive given that BFKL
runs on a single CPU. Furthermore, the DHRG improvement improves the BFKL embedding from
dMAP 0.050 to dMAP 0.411, while the Lorentz embedding is improved from dMAP 0.192 to dMAP
0.320. This suggests that the layered approach of BFKL produces a better structure of the embedding.
Furthermore, the combination of BFKL+DHRG is still more than 10 times faster than Lorentz 2D.
(The dMAP result of 0.050 is very low compared to the continuous result of 0.284; this seems to be
an outlier, in our other experiments the results of MAP and dMAP are very similar.)

Figure 2 shows our results for various benchmark datasets used in PE/LE, BFKL, and other sources.
These include hierarchies: the WordNet verb hierarchy (VERBF), ACM and MeSH taxonomies,
Stanford CS PhD network (De Nooy et al., 2018), the tetrapoda subtree from the tree of life project
(Maddison et al., 2007). For all hierarchies, u → v iff v is a superset (ancestor) of u; this is a
transitive relation. In case of VERBF, we had to add an extra root node, ince BFKL requires the
network to be connected. We also include real-world networks: the social circles from Facebook,
scientific collaboration networks AstroPH, HepPH, CondMat and GrQC (Leskovec & Krevl, 2014),
disease relationships (Goh et al., 2007), protein interactions in yeast bacteria (Jeong et al., 2001),
and the brain connectome data (Allard & Serrano, 2020). We have not included other networks
used in BFKL benchmarks because they are too large for slower algorithms such as Poincaré and
Lorentz embeddings. In LE, the Enron email corpus and the historical linguistics data are analyzed
using weighted edges, so we cannot compare them to BFKL or DHRG. Detailed results, including
MeanRank and greedy routing stretch scores, are included in Appendix B.

Surprisingly, while BFKL has been designed specifically for scale-free networks and greedy routing
and Lorentz embeddings have been benchmarked on hierarchies and mAP and MeanRank, our
results show that BFKL or DHRG achieves significantly better results on many hierarchies (BFKL:
NOUN,VERBF,MESH; DHRG: mesh,tetrapoda), while Lorentz embeddings tend to achieve better
results on networks, especially for greedy routing (higher success rate and lower stretch). Still,
the quality of BFKL, BFKL+DHRG, and Lorentz 2D embeddings turns out to be similar for the
scale-free networks in our experiments, according to MeanRank and mAP. One counterexample in
the YEAST network, where BFKL achieves significantly better results than Lorentz on mAP (0.756
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vs 0.532). In all cases, BFKL (and even BFKL+DHRG) is orders of magnitude faster, making the
Lorentz embeddings not practical on larger graphs. We also include the results of our experiments on
three-dimensional Poincaré embeddings; these are still useful for visualization purposes (Munzner,
1998), especially in VR (Hart et al., 2017; Pisani et al., 2019; Weeks, 2021).

Our main focus is on bridging the gap between the two communities working on hyperbolic em-
beddings, so we concentrated on comparing the works from the time when the gap has appeared
(BFKL, DHRG, Poincaré and Lorentz embeddings). We have also evaluated the classic HypViewer
(Munzner, 1998) on hierarchies (if the hierarchy is not a strict tree, the parent is picked randomly); in
most cases, MeanRank and mAP are quite low, although HypViewer aims to put similar nodes close,
while due to how the transitive graphs are constructed for hypernymy hierarchies, high MeanRank
and mAP measures are achieved when similar categories (e.g., ”lion” and ”tiger”) are closer to their
hypernyms (feline, mammal, animal, entity) than to each other, which promotes longer edges on
the outer levels of the hierarchy, and shorter in the center. We have also evaluated the Mercator
algorithm (García-Pérez et al., 2019), which is the standard tool used in the network community.
The fast mode of Mercator usually produces worse embeddings than BFKL, while full Mercator
usually achieves results between BFKL and Lorentz 2D. Unfortunately, the full Mercator is slower
than Lorentz 2D for larger graphs. Unfortunately, the implementation of the higher-dimensional
variant of Mercator (Jankowski et al., 2023) is not currently available, so we could not compare it
to Poincaré 3D. In TreeRep (Sonthalia & Gilbert, 2020), it is proposed that, instead of learning a
hyperbolic embedding, we should instead learn a tree. We agree with this proposition for tree-like
hierarchies, but for networks such as FACEBOOK and the connectomes, hyperbolic embeddings
achieve significantly better results. (Hyperbolic plane is tree-like in large scale and Euclidean-like
in small scale, and thus may potentially combine the advantages of both approaches). LTiling (Yu
& De Sa, 2019) did not generally achieve better results than Lorentz 2D in our experiments, while
being significantly slower (contrary to DHRG, tiles are used only to improve numerical precision,
not to make the process faster); however, this might be due to incorrectly set hyperparameters or
testing on smaller, more shallow hierarchies, so the numerical precision issues did not yet become
relevant. The hMDA method from (Sala et al., 2018) looks interesting, but it depends on the scaling
factor, and it is not clear how to learn this parameter. Product space embeddings (Gu et al., 2019)
are an interesting approach, but they use higher-dimensional spaces, so they cannot be compared to
2D methods (achieving better results can be explained with higher dimensionality). We would like
to mention the recent work (Anonymous, 2023) on embedding into (three-dimensional) Thurston
geometries using tiles and simulated annealing; on connectomes, this method yields better H2 and
H3 embeddings than all methods studied in this paper. Most embedders are randomized, so we have
repeated a portion of experiments using different seeds; this does not usually change the rankings
(Appendix E).
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Figure 3: Top row: NOUN (Lorentz 2D). VERB (left to right: Lorentz 2D, Lorentz 2D+DHRG, BFKL).
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Figure 4: Density plots of the differences between the values of quality measures (mAP and greedy
success) obtained by Lorentz 2D and BFKL embedders. Negative values indicate that BFKL embedder
performed better.

4 VISUALIZATION

One application of 2D embeddings is visualization. We rendered the embeddings using the tools from
DHRG; see Figure 3. All pictures are in Poincaré model, centered on the center of the hyperbolic
disk used for embedding. One observation is that Lorentz embeddings tend to put nodes close to the
center, while the center is generally avoided in BFKL, and DHRG improves the balance.

5 COMPARISON ON ARTIFICIAL SCALE-FREE NETWORKS

For a more statistical analysis, we have also compared BFKL and Lorentz 2D embeddings on
artificially generated scale-free networks. We use the generator from BFKL based on the HRG model,
with default α = 0.75, network sizes n ∈ {500, 1000, 2000} and temperature T ∈ {0.1, 0.4, 0.7}.

Fig 10 depicts the densities of the differences between the values of quality measures obtained
by Lorentz 2D and BFKL embedders, and Table 1 contains results of the logit regressions on
the determinants of the probability that BFKL embedder would perform better than Lorentz 2D
embedder in terms of a given quality measure. No matter the quality measure, according to our
results, the greater the graph, the higher probability that BFKL will perform better, however with
rising temperature, that probability decreases. Real world network are considered to have fairly large
values of T , such as T = 0.7 used for Internet mapping (Bläsius et al., 2016; Boguñá et al., 2010),
which is consistent with our results on real-world scale-free networks. Although our models were
aimed at intepretation instead of prediction, we included information of the prediction quality, both
from cross-validation and benchmark. Both models are of a satisfactory quality.

Even if our results suggest that in many cases Lorentz 2D embedder outperforms BFKL embedders, it
still comes at a high time cost. In Fig 5 we present trade-off between the markup in time expenditure
(how many times longer it takes to compute) in comparison to BFKL and the percentage gain in
the quality of the embedding (measured with MAP) resulting from using Lorentz 2D embedder.
We conclude that there is no significant monotonic relationship between the time spent and the
percentage gain in quality (p-values in Kendall-tau significance tests, as we encounter ties in our data
that may make Spearman’s rho inappropriate to use, are: 0.5282, 0.3141, and 0.0103 if we control for
temperature 0.1, 0.4, and 0.7, respectively. The last result is insignificant at 1% level of significance).
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MAP greedy
Coefficient Pr(> |z|) Coefficient Pr(> |z|)

Intercept -1.9583 9.11e-08 0.7312 0.00468
Temp=0.4 -0.8864 0.004922 -2.0924 4.27e-12
Temp=0.7 -4.6115 1.59e-14 -3.8869 <2e-16
Size = 1000 1.5956 0.000119 0.8173 0.00796
Size = 2000 4.0095 <2e-16 2.4526 6.34e-13
N 450 450
ACCcv 0.8598 0.8008
ACCbench 0.7178 0.5289
κ 0.6288 0.5992

Table 1: Results of logit regressions for the determinants of BFKL embedder outperforming Lorentz
2D embedder in terms of quality measures. ACCcv and κ are average accuracy and Kappa from
10-fold cross-validation; ACCbench is the accuracy of the naive model (always predict mode).
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Figure 5: Comparisons of percentage gains in quality of the embedding against the markup in time
expenditure in comparison to BFKL embedder.

6 CONCLUSION

We have compared the BFKL embedder against 2D Lorentz embeddings. Our main motivation
for this comparison is the apparent lack of awareness of the algorithmic results on hyperbolic
embeddings in the ML community. In all experiments, the BFKL embedder runs significantly (about
100 times) faster, while achieving results generally of similar quality, although in some cases one or
the other embedder may get noticeably better results, depending on the input graph and the quality
measure. Higher-dimensional Lorentz embedding generally gets better results than both kinds of 2D
embeddings, even in three dimensions.

We have also found discrepancies between our results and the results in Nickel & Kiela (2017; 2018)
that we are not unable to explain. In particular: in Nickel & Kiela (2017) 200-dimensional SGD
Euclidean embeddings are performing worse than even low-dimensional Poincaré embeddings, but
in our experiments, they consistently achieve significantly higher results; in Nickel & Kiela (2018)
Lorentz embeddings achieve significantly better results than Poincaré, while in our experiments,
where their performance is similar, and Poincaré is sometimes better. We could not reproduce the
ACM and MESH taxonomies used in Nickel & Kiela (2018) (the number of edges and even nodes is
not consistent with the numbers given – we are using our own data in this paper). See Appendix for
details.
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A IMPLEMENTATION USED

We have downloaded the embedders from the following repositories:

• Poincaré and Lorentz: https://github.com/facebookresearch/
poincare-embeddings (last commit on Sep 16, 2021)

• BFKL: https://bitbucket.org/HaiZhung/hyperbolic-embedder/
overview (last commit on Sep 8, 2016)

• DHRG: https://github.com/zenorogue/hyperrogue/tree/master/
rogueviz/dhrg (last commit on April 1, 2023)

• TreeRep: https://github.com/rsonthal/TreeRep (last commit on Jun 23,
2023)

• LTiling: https://github.com/ydtydr/HyperbolicTiling_Learning (last
commit Mar 19, 2020)

• HypViewer: https://graphics.stanford.edu/~munzner/h3/download.
html (last modified in 2003)

• Mercator: https://github.com/networkgeometry/mercator (last commit
Jun 21, 2022)

We have downloaded the connectome datasets from https://github.com/
networkgeometry/navigable_brain_maps_data. The tree-of-life dataset has
been included with DHRG.

B REAL-WORLD HIERARCHIES AND NETWORKS

The detailed results of our evaluation on real-world hierarchies can be found in table 2. We also
include MAMMAL (the mammal subtree of Noun). The detailed results of our evaluation on real-
world networks can be found in table 3. Figures 6, 7, 8, 9 contain visualizations of mAP, MeanRank,
greedy success rate and greedy stretch ratio on those hierarchies and networks.
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Figure 6: Quality assessment of embedders on real-world hierarchies and networks: mAP.
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Figure 7: Quality assessment of embedders on real-world hierarchies and networks: -log(MeanRank).
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Figure 8: Quality assessment of embedders on real-world networks: greedy success rate.
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Figure 9: Quality assessment of embedders on real-world networks: -log(greedy stretch ratio).
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graph name noun mammal verbf acm mesh tetrap csphd
nodes 82115 1180 13543 2114 58737 11262 1025
edges 743086 6540 48621 8121 300290 527580 3978
Lorentz 2D embed time [s] 38578 269 2057 333 19832 19706 239
Lorentz 2D eval time [s] 1913.62 0.79 51.14 1.87 872.12 40.79 0.24
BFKL embed time [s] 428 66 37 4 342 738 2
DHRG improve time [s] 1209 4 563 5 849 858 12
Poincare 2D embed time [s] 0 0 2544 443 19137 26256 232
Poincare 3D embed time [s] 0 0 2778 457 20941 26648 233
Mercator fast embed time [s] 37202 18 914 38 16617 1770 2
Mercator full embed time [s] 0 41 4729 113 104459 4802 23
ltiling embed time [s] 0 0 63074 5613 0 0 2037
Lorentz 2D radius AU 14.509 14.509 14.509 13.290 14.509 14.509 14.509
BFKL radius AU 30.992 21.120 20.733 14.945 26.835 25.632 13.639
HypViewer radius AU 27.523 10.703 14.963 7.145 17.330 72.251 4.114
RogueViz radius AU 11.908 7.665 10.105 8.248 11.573 9.921 7.525
Mercator fast radius AU 53.492 19.895 38.833 25.654 49.917 38.554 26.238
Mercator full radius AU 18.450 38.899 20.254 38.062 28.056 26.055
ltiling radius 13.285 12.508 13.885
Lorentz 2D radius grid 29 28 28 25 28 29 28
BFKL radius grid 44 40 43 29 44 42 27
mAP Lorentz2D 0.168 0.834 0.220 0.600 0.133 0.696 0.827
dmAP Lorentz2D 0.192 0.825 0.239 0.590 0.177 0.691 0.306
dmAP Lorentz2D + DHRG 0.320 0.850 0.543 0.675 0.414 0.715 0.256
mAP Lorentz2D + DHRG 0.322 0.855 0.554 0.679 0.417 0.712 0.253
mAP BFKL 0.284 0.219 0.348 0.423 0.321 0.276 0.248
dmAP BFKL 0.050 0.212 0.308 0.421 0.137 0.256 0.247
dmAP BFKL + DHRG 0.411 0.487 0.574 0.533 0.456 0.707 0.230
mAP BFKL + DHRG 0.418 0.488 0.580 0.532 0.466 0.707 0.229
mAP landscape 200D 0.302 0.437 0.465 0.480 0.346 0.586 0.215
mAP landscape 50D 0.055 0.258 0.176 0.281 0.084 0.262 0.183
mAP Poincare 2D 0.107 0.788 0.330 0.657 0.195 0.530 0.863
mAP Poincare 3D 0.488 0.950 0.526 0.852 0.376 0.917 0.903
mAP Poincare 5D 0.641 0.960 0.632 0.894 0.486 0.943 0.909
mAP Euclidean50D 0.921 0.999 0.923 0.999 0.824 0.997 1.000
mAP Euclidean200D 0.946 1.000 0.931 0.999 0.871 0.998 1.000
mAP HypViewer 0.047 0.124 0.134 0.134 0.122 0.014 0.416
mAP RogueViz 0.065 0.134 0.125 0.126 0.121 0.115
mAP Mercator fast 0.495 0.695 0.622 0.512 0.456 0.645 0.209
mAP Mercator full 0.841 0.727 0.752 0.548 0.752 0.251
mAP ltiling 0.201 0.522 0.319
MR Lorentz2D 43.0 1.8 25.8 4.0 55.6 21.5 6.5
dMR Lorentz2D 42.4 0.9 25.2 3.1 54.5 21.5 6.0
MR Lorentz2D + DHRG 30.7 1.9 4.9 2.8 14.6 31.3 20.4
dMR Lorentz2D + DHRG 28.9 1.0 4.1 1.8 13.9 29.1 17.7
MR BFKL 62.6 43.1 16.7 9.3 22.9 102.1 35.8
dMR BFKL 794.0 42.7 17.5 8.2 84.6 109.0 35.2
dMR BFKL + DHRG 38.2 8.8 7.6 5.0 9.9 15.2 42.5
MR BFKL + DHRG 38.1 10.0 8.6 6.1 11.3 15.9 45.0
MR landscape 200D 189.8 14.0 14.8 8.1 37.7 40.9 56.9
MR landscape 50D 1952.2 41.3 144.8 42.2 901.8 247.5 108.0
MR Poincare 2D 88.0 2.3 13.1 3.2 42.5 37.4 5.9
MR Poincare 3D 16.5 1.2 8.5 1.7 25.3 9.7 4.1
MR Poincare 5D 10.7 1.1 6.7 1.4 19.9 6.9 3.8
MR Euclidean50D 1.5 1.0 1.2 1.0 2.1 1.0 1.0
MR Euclidean200D 1.3 1.0 1.1 1.0 1.6 1.0 1.0
MR HypViewer 4452.4 145.7 276.1 77.0 522.2 5559.7 468.5
MR RogueViz 408.5 50.3 125.0 49.5 197.7 269.7
MR Mercator fast 177.8 8.8 16.2 20.2 106.1
MR Mercator full 2.8 7.7 4.2 19.9
MR ltiling 39.519 5.403 5.145

Table 2: Our results on real-world hierarchies.
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graph name astrop condma grqc hepph facebo yeast diseas celega human1 drosop mouse3
nodes 17903 21363 4158 11204 4039 1458 516 279 493 350 1076
edges 393944 182572 26844 235238 176468 3896 2376 4574 15546 5774 181622
Lorentz 2D embed time [s] 14741 7349 986 8761 6317 183 130 204 639 255 6413
Lorentz 2D eval time [s] 88.98 120.31 4.98 37.18 5.37 1.05 0.28 0.15 0.29 0.19 0.81
BFKL embed time [s] 179 91 7 82 26 1 0 0 2 0 17
DHRG improve time [s] 323 436 64 74 15 25 5 8 1 1 27
Poincare 2D embed time [s] 0 0 0 0 0 235 155 254 0 0 0
Poincare 3D embed time [s] 0 0 0 0 0 235 156 260 0 0 0
Mercator fast embed time [s] 1565 2088 85 587 33 4 4 5 6 11 39
Mercator full embed time [s] 8906 15167 454 3797 408 47 7 7 9 13 65
ltiling embed time [s] 0 0 19721 0 0 3200 1592 2795 7307 0 7237
Lorentz 2D radius AU 11.651 10.941 10.962 12.335 11.555 9.563 11.142 6.483 11.664 7.713 10.493
BFKL radius AU 15.430 17.677 21.792 21.883 12.576 16.267 12.680 7.787 7.422 8.178 8.625
Mercator fast radius AU 70.081 64.709 42.147 53.510 31.315 22.056 26.306 16.438 20.775 23.148 28.747
Mercator full radius AU 56.490 52.331 40.502 51.965 30.507 25.973 24.869 16.261 15.998 24.585 30.338
TreeRep diameter rec 21.902 21.095 12.000 22.734 16.656 11.359 11.758 10.406 9.500
TreeRep diameter norec 21.711 21.790 13.406 26.836 17.000 9.000 12.344 12.000 8.000
ltiling radius 11.157 8.822 9.663 6.485 9.193
Lorentz 2D radius grid 22 21 20 23 22 18 21 12 21 14 20
BFKL radius grid 31 35 42 45 25 32 24 15 14 16 17
mAP Lorentz2D 0.306 0.345 0.599 0.417 0.605 0.532 0.889 0.494 0.654 0.386 0.574
dmAP Lorentz2D 0.307 0.353 0.595 0.447 0.602 0.522 0.881 0.482 0.649 0.372 0.568
dmAP Lorentz2D + DHRG 0.444 0.572 0.751 0.534 0.636 0.806 0.900 0.492 0.652 0.379 0.592
mAP Lorentz2D + DHRG 0.439 0.565 0.745 0.530 0.632 0.796 0.897 0.482 0.651 0.369 0.586
mAP BFKL 0.208 0.278 0.480 0.320 0.531 0.756 0.827 0.454 0.575 0.381 0.558
dmAP BFKL 0.207 0.276 0.466 0.318 0.525 0.750 0.824 0.447 0.569 0.377 0.553
dmAP BFKL + DHRG 0.195 0.262 0.492 0.294 0.541 0.750 0.826 0.460 0.587 0.383 0.576
mAP BFKL + DHRG 0.195 0.264 0.487 0.298 0.541 0.755 0.829 0.458 0.583 0.387 0.575
mAP landscape 200D 0.191 0.248 0.462 0.252 0.510 0.694 0.786 0.443 0.576 0.376 0.558
mAP landscape 50D 0.175 0.196 0.370 0.165 0.390 0.509 0.647 0.385 0.529 0.337 0.515
mAP Poincare 2D 0.324 0.391 0.660 0.472 0.596 0.685 0.889 0.492 0.628 0.397 0.576
mAP Poincare 3D 0.462 0.598 0.784 0.580 0.685 0.772 0.929 0.576 0.699 0.482 0.650
mAP Poincare 5D 0.512 0.662 0.815 0.628 0.713 0.845 0.932 0.600 0.728 0.519 0.670
mAP Euclidean50D 0.988 0.968 1.000 0.980 1.000 1.000 1.000 1.000 1.000 1.000 0.943
mAP Euclidean200D 0.994 0.975 1.000 0.984 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mAP Mercator fast 0.172 0.222 0.387 0.253 0.368 0.680 0.805 0.336 0.411 0.270 0.520
mAP Mercator full 0.244 0.265 0.467 0.331 0.494 0.754 0.861 0.484 0.552 0.435 0.584
mAP TreeRep rec orig 0.443 0.690 0.398 0.820 0.902 0.228 0.269 0.263 0.284
mAP TreeRep norec orig 0.347 0.499 0.676 0.407 0.820 0.864 0.223 0.278 0.277 0.290
mAP TreeRep rec 0.437 0.680 0.355 0.817 0.894 0.205 0.241 0.243 0.233
mAP TreeRep norec 0.492 0.668 0.360 0.816 0.852 0.204 0.259 0.250 0.227
mAP ltiling 0.589 0.519 0.877 0.488 0.637
MR Lorentz2D 1104.8 949.2 81.4 293.2 55.2 37.7 6.7 31.5 44.5 46.9 96.8
dMR Lorentz2D 1121.6 965.7 82.0 297.5 54.3 37.4 5.8 31.3 43.9 47.2 98.4
MR Lorentz2D + DHRG 1160.8 1069.2 89.8 320.8 57.3 33.2 7.5 32.8 44.3 47.6 96.5
dMR Lorentz2D + DHRG 1131.7 1043.9 86.1 310.8 53.7 31.2 6.4 30.8 42.6 45.5 93.5
MR BFKL 1880.0 1717.0 169.2 558.2 84.0 50.4 9.2 38.0 50.9 52.0 104.0
dMR BFKL 1919.3 1764.8 195.8 632.6 84.9 50.5 8.5 38.2 50.8 51.9 106.2
dMR BFKL + DHRG 1749.3 1715.6 155.9 558.7 80.0 44.9 7.6 36.4 46.7 48.3 98.0
MR BFKL + DHRG 1763.9 1719.2 156.5 558.6 82.1 45.9 8.7 37.6 48.6 49.7 99.7
MR landscape 200D 2020.4 2439.2 234.3 808.5 103.0 71.6 12.1 43.0 52.2 53.0 112.4
MR landscape 50D 2644.5 3748.7 396.2 1328.6 232.9 126.0 25.0 56.1 66.7 63.1 134.0
MR Poincare 2D 1127.0 889.4 68.8 302.2 46.9 32.7 6.5 31.6 46.4 47.2 96.5
MR Poincare 3D 929.5 650.0 49.4 242.1 40.1 21.2 3.8 28.1 30.4 39.1 85.0
MR Poincare 5D 725.9 492.5 36.5 206.4 32.6 13.7 3.4 25.0 24.7 35.1 80.1
MR Euclidean50D 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 15.3
MR Euclidean200D 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MR Mercator fast 2081.3 2046.1 209.5 686.9 101.4 51.0 7.7 37.7 41.5 54.4 103.5
MR Mercator full 1513.3 1539.9 153.9 476.8 77.8 45.7 6.7 34.2 41.2 47.5 99.7
MR TreeRep rec 4547.380 393.765 535.833 128.848 15.367 112.256 185.004 117.506 380.246
MR TreeRep norec 3986.390 423.601 597.688 110.969 30.934 107.666 167.198 122.196 414.914
MR ltiling 80.730 39.755 5.563 31.524 43.010
success BFKL 0.060 0.026 0.052 0.072 0.463 0.061 0.153 0.775 0.778 0.649 0.904
success BFKL + DHRG 0.075 0.027 0.044 0.068 0.454 0.054 0.158 0.753 0.752 0.629 0.917
success BFKL + DDHRG 0.077 0.029 0.053 0.070 0.451 0.064 0.186 0.776 0.818 0.652 0.920
success Lorentz2D 0.159 0.053 0.099 0.169 0.460 0.141 0.220 0.899 0.880 0.747 0.943
success Lorentz2D + DD 0.227 0.103 0.115 0.173 0.437 0.135 0.175 0.838 0.923 0.684 0.923
success Poincare2D 0.897 0.834 0.753 0.944
success Poincare3D 0.258 0.146 0.174 0.203 0.546 0.216 0.261 0.933 0.898 0.821 0.969
success Mercator fast 0.031 0.014 0.038 0.053 0.365 0.048 0.153 0.524 0.534 0.437 0.829
success Mercator full 0.140 0.043 0.068 0.122 0.442 0.068 0.195 0.868 0.784 0.783 0.960
success TreeRep rec 0.223 0.285 0.700 0.288 0.805 0.651 0.524 0.577 0.925
success TreeRep norec 0.141 0.223 0.828 0.306 0.777 0.613 0.541 0.684 0.877
success ltiling 0.102 0.126 0.205 0.897 0.855
stretch BFKL 13.98 29.09 13.18 11.96 1.70 8.66 4.00 1.43 1.46 1.65 1.20
stretch BFKL + DHRG 11.52 28.04 14.72 12.49 1.65 9.19 3.70 1.41 1.44 1.64 1.19
stretch BFKL + DDHRG 11.59 27.54 13.26 12.39 1.68 8.35 3.49 1.41 1.43 1.63 1.19
stretch Lorentz2D 6.34 16.17 7.38 5.66 1.86 4.90 3.36 1.32 1.31 1.58 1.21
stretch Lorentz2D + DD 4.39 7.94 6.21 5.31 1.72 4.58 4.12 1.36 1.30 1.65 1.21
stretch Poincare2D 1.324 1.375 1.558 1.197
stretch Poincare3D 3.82 5.66 4.32 4.53 1.42 3.22 2.56 1.23 1.26 1.34 1.08
stretch Mercator fast 27.01 51.82 17.68 15.84 1.99 11.97 4.11 1.96 2.02 2.25 1.25
stretch Mercator full 7.23 19.12 10.21 7.56 1.72 8.05 3.14 1.32 1.45 1.40 1.11
stretch TreeRep rec 3.469 2.866 1.261 2.449 1.211 1.613 1.922 1.737 1.198
stretch TreeRep norec 5.348 3.443 1.172 2.565 1.195 1.647 1.871 1.553 1.233
stretch ltiling 7.223 5.222 3.362 1.333 1.373

Table 3: Our results on real-world networks.
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Figure 10: Density plots of the differences between the values of quality measures obtained by
Lorentz 2D and BFKL embedders. Top to bottom: mAP, -log(MR), greedy success ratio, -log(greedy
stretch ratio). Left to right: T = 0.1, T = 0.4, T = 0.7. Negative values indicate that BFKL
embedder performed better.

C ARTIFICIAL NETWORKS

Table 4 and Figure 10 show the details of our evaluation of BFKL versus Lorentz 2D on artificial
networks.

D DISCREPANCIES

In Table 5, our results are compared to the results obtained in Nickel & Kiela (2017; 2018). Note that
VERB is different than VERBF used in our paper, which includes one extra node that is an ancestor of
every other node.

Furthermore, the ACM hierarchy in Nickel & Kiela (2018) is given as 2299 nodes and 6526 edges,
while ours has 2114 nodes and 8121 edges; and the MESH hierarchy is given as 28470 nodes and
191849 edges, while ours has 58737 nodes and 300290 edges.
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MAP MeanRank Greedy success Greedy stretch
Coeff. Pr(> |z|) Coeff. Pr(> |z|) Coeff. Pr(> |z|) Coeff. Pr(> |z|)

Intercept -1.9583 9.11e-08 -1.5132 2.11e-08 0.7312 0.00468 0.4256 0.09397
Temp=0.4 -0.8864 0.004922 -0.3956 0.124942 -2.0924 4.27e-12 -2.1689 2.09e-12
Temp=0.7 -4.6115 1.59e-14 -0.5732 0.028647 -3.8869 <2e-16 -4.0383 <2e-16
Size = 1000 1.5956 0.000119 1.1338 0.000113 0.8173 0.00796 1.0527 0.00103
Size = 2000 4.0095 <2e-16 1.8908 5.62e-11 2.4526 6.34e-13 2.7747 1.29e-14
N 450 450 450 450
ACCcv 0.8598 0.6707 0.8008 0.8047
ACCbench 0.7178 0.6711 0.5289 0.5556
κ 0.6288 0.1324 0.5992 0.6053

Table 4: Results of logit regressions for the determinants of BFKL embedder outperforming Lorentz
2D embedder in terms of quality measures. ACCcv and κ are average accuracy and Kappa from
20-fold cross-validation; ACCbench is the accuracy of the naive model (always predict mode).

graph name NOUN VERB ASTRO COND GRQC HEPPH
Poincaré 2D MR (ours) 88.0 15.7 1127.0 889.4 68.8 302.2
Poincaré 2D MR 90.7 10.7 — — — —
Poincaré 2D mAP (ours) 0.107 0.314 0.324 0.391 0.660 0.472
Poincaré 2D mAP 0.118 0.365 — — — —
Lorentz 2D MR (ours) 43.0 42.1 1104.8 949.2 81.4 293.2
Lorentz 2D MR 22.8 3.64 — — — —
Lorentz 2D mAP (ours) 0.168 0.184 0.306 0.345 0.599 0.417
Lorentz 2D mAP 0.305 0.579 — — — —
Euclidean 50D MR (ours) 1.5 1.2 1.0 1.0 1.0 1.0
Euclidean 50D MR 1281.7 — — — — —
Euclidean 50D mAP (ours) 0.921 0.908 0.988 0.968 1.000 0.980
Euclidean 50D mAP 0.140 — 0.376 0.356 0.522 0.434

Table 5: Our results compared with the results from Nickel & Kiela (2017; 2018).

E REPEATED EXPERIMENTS

In Tables 6, 7, 8 and 9 we list the results of repeated experiments on the NOUN hierarchy and the
GRQC, textscyeast, MOUSE3, HUMAN1, DROSOPHILA1 and CELEGANS networks. In most cases, the
differences are minor and do not affect the rankings.

graph name noun r1/nou r2/nou r3/nou r4/nou
mAP Lorentz2D 0.168 0.171 0.169 0.172 0.170
dmAP Lorentz2D 0.192 0.191 0.193 0.193 0.193
dmAP Lorentz2D + DHRG 0.320 0.324 0.326 0.321 0.327
dmAP BFKL 0.050 0.049 0.049 0.049 0.048
dmAP BFKL + DHRG 0.411 0.469 0.450 0.442 0.438
mAP Poincare 2D 0.107 0.104 0.105 0.105 0.105
mAP Poincare 3D 0.488 0.485 0.489 0.493 0.490
MR Lorentz2D 43.0 43.2 41.7 42.4 42.5
dMR Lorentz2D 42.4 42.7 41.1 41.9 42.0
dMR Lorentz2D + DHRG 28.9 28.6 27.2 29.4 28.0
dMR BFKL 794.0 772.5 809.9 839.3 821.7
dMR BFKL + DHRG 38.2 33.6 34.4 33.9 34.3
MR Poincare 2D 88.0 90.8 91.4 87.3 88.5
MR Poincare 3D 16.5 16.4 16.4 15.5 16.3

Table 6: Repeated experiments on the NOUN hierarchy.
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graph name grqc r1/grq r2/grq r3/grq r4/grq yeast r1/yea r2/yea r3/yea r4/yea
mAP Lorentz2D 0.599 0.601 0.588 0.598 0.603 0.532 0.531 0.512 0.529 0.527
dmAP Lorentz2D 0.595 0.598 0.585 0.593 0.602 0.522 0.518 0.502 0.512 0.518
dmAP Lorentz2D + DHRG 0.751 0.753 0.745 0.752 0.754 0.806 0.798 0.768 0.811 0.783
MR Lorentz2D 81.4 71.2 77.6 74.4 71.9 37.7 39.0 37.9 39.2 38.0
dMR Lorentz2D 82.0 71.6 79.0 75.0 72.7 37.4 38.7 37.4 39.3 38.4
dMR Lorentz2D + DHRG 86.1 74.5 84.9 81.4 78.9 31.2 30.8 31.3 33.2 31.8
dMR BFKL 195.8 184.7 215.9 206.0 174.7 50.5 52.4 51.8 53.6 59.6
dMR BFKL + DHRG 155.9 146.2 169.7 160.4 131.5 44.9 45.7 45.4 48.2 56.3

Table 7: Repeated experiments on the GRQC and YEAST networks.

graph name mouse3 r1/mou r2/mou r3/mou r4/mou human1 r1/hum r2/hum r3/hum r4/hum
mAP Lorentz2D 0.574 0.572 0.574 0.575 0.570 0.654 0.633 0.644 0.643 0.651
dmAP Lorentz2D 0.568 0.567 0.568 0.568 0.563 0.649 0.627 0.637 0.637 0.646
dmAP Lorentz2D + DHRG 0.592 0.587 0.591 0.592 0.588 0.652 0.630 0.641 0.640 0.651
dmAP BFKL 0.553 0.559 0.558 0.557 0.553 0.569 0.536 0.567 0.582 0.557
dmAP BFKL + DHRG 0.576 0.581 0.579 0.579 0.575 0.587 0.555 0.580 0.599 0.572
mAP Poincare 2D 0.576 0.570 0.578 0.576 0.575 0.628 0.643 0.646 0.646 0.636
mAP Poincare 3D 0.650 0.654 0.652 0.650 0.652 0.699 0.722 0.718 0.715 0.715
mAP Mercator fast 0.520 0.520 0.520 0.520 0.520 0.411 0.411 0.411 0.411 0.412
mAP Mercator full 0.584 0.585 0.585 0.585 0.583 0.552 0.547 0.547 0.551 0.549
mAP TreeRep rec orig 0.284 0.271 0.294 0.275 0.299 0.269 0.298 0.284 0.290 0.302
mAP TreeRep norec orig 0.290 0.304 0.301 0.283 0.316 0.278 0.273 0.291 0.282 0.307
mAP TreeRep rec 0.233 0.238 0.243 0.222 0.242 0.241 0.283 0.262 0.255 0.280
mAP TreeRep norec 0.227 0.257 0.241 0.233 0.259 0.259 0.249 0.266 0.257 0.286
MR Lorentz2D 96.8 96.6 96.2 96.2 97.1 44.5 40.3 39.0 38.6 39.9
dMR Lorentz2D 98.4 97.8 97.7 97.8 99.1 43.9 40.2 39.3 38.6 39.5
dMR Lorentz2D + DHRG 93.5 93.5 93.0 93.4 94.4 42.6 38.0 36.9 36.6 37.9
dMR BFKL 106.2 103.0 103.7 103.5 104.6 50.8 51.4 51.6 47.9 49.4
dMR BFKL + DHRG 98.0 96.8 96.4 97.1 97.4 46.7 48.5 47.9 43.3 47.3
MR Poincare 2D 96.5 97.1 96.2 96.8 96.3 46.4 40.0 39.8 39.9 43.1
MR Poincare 3D 85.0 84.6 84.2 84.4 84.2 30.4 25.3 25.6 26.9 25.7
MR Mercator fast 103.5 103.5 103.5 103.5 103.5 41.5 41.5 41.5 41.6 41.6
MR Mercator full 99.7 99.5 99.4 99.4 99.5 41.2 41.2 41.1 41.1 41.3
MR TreeRep rec 380.246 381.121 408.380 418.490 405.135 185.004 131.951 160.604 153.917 129.617
MR TreeRep norec 414.914 381.244 403.176 381.503 392.632 167.198 164.443 136.862 153.998 140.229
success Poincare2D 0.944 0.931 0.948 0.945 0.943 0.834 0.839 0.889 0.869 0.883
success Poincare3D 0.969 0.971 0.969 0.965 0.971 0.898 0.917 0.915 0.926 0.909
success Mercator fast 0.829 0.832 0.830 0.829 0.833 0.534 0.531 0.535 0.533 0.536
success Mercator full 0.960 0.958 0.961 0.960 0.962 0.784 0.785 0.819 0.799 0.795
success TreeRep rec 0.925 0.879 0.845 0.867 0.821 0.524 0.555 0.550 0.532 0.629
success TreeRep norec 0.877 0.840 0.820 0.882 0.861 0.541 0.568 0.589 0.584 0.494
stretch Poincare2D 1.197 1.209 1.195 1.198 1.197 1.375 1.352 1.328 1.337 1.348
stretch Poincare3D 1.08 1.08 1.08 1.08 1.08 1.26 1.23 1.24 1.24 1.24
stretch Mercator fast 1.25 1.25 1.25 1.26 1.25 2.02 2.03 2.01 2.02 2.01
stretch Mercator full 1.11 1.11 1.11 1.11 1.11 1.45 1.45 1.40 1.43 1.44
stretch TreeRep rec 1.198 1.229 1.287 1.320 1.316 1.922 1.888 1.843 1.902 1.722
stretch TreeRep norec 1.233 1.299 1.305 1.213 1.245 1.871 1.824 1.811 1.731 2.005

Table 8: Repeated experiments on the MOUSE3 and HUMAN1 connectomes.
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graph name drosop r1/dro r2/dro r3/dro r4/dro celega r1/cel r2/cel r3/cel r4/cel
mAP Lorentz2D 0.386 0.388 0.386 0.398 0.391 0.494 0.491 0.488 0.482 0.500
dmAP Lorentz2D 0.372 0.375 0.373 0.381 0.374 0.482 0.479 0.476 0.471 0.488
dmAP Lorentz2D + DHRG 0.379 0.391 0.385 0.401 0.401 0.492 0.490 0.486 0.485 0.500
mAP Lorentz2D + DHRG 0.369 0.381 0.376 0.392 0.396 0.482 0.480 0.476 0.475 0.490
mAP BFKL 0.381 0.388 0.389 0.386 0.376 0.454 0.469 0.454 0.462 0.471
dmAP BFKL 0.377 0.386 0.384 0.378 0.371 0.447 0.461 0.449 0.456 0.467
dmAP BFKL + DHRG 0.383 0.400 0.403 0.391 0.382 0.460 0.470 0.460 0.469 0.473
mAP BFKL + DHRG 0.387 0.397 0.401 0.392 0.380 0.458 0.467 0.460 0.465 0.469
mAP Poincare 2D 0.397 0.385 0.389 0.392 0.384 0.492 0.495 0.478 0.499 0.500
mAP Poincare 3D 0.482 0.483 0.488 0.488 0.473 0.576 0.575 0.571 0.575 0.583
mAP Mercator fast 0.270 0.271 0.270 0.270 0.270 0.336 0.337 0.337 0.337 0.336
mAP Mercator full 0.435 0.417 0.418 0.419 0.425 0.484 0.480 0.498 0.482 0.486
mAP TreeRep rec orig 0.263 0.241 0.245 0.260 0.274 0.228 0.218 0.206 0.241 0.236
mAP TreeRep norec orig 0.277 0.257 0.252 0.255 0.258 0.223 0.257 0.270 0.239 0.249
mAP TreeRep rec 0.243 0.222 0.219 0.236 0.245 0.205 0.190 0.188 0.213 0.198
mAP TreeRep norec 0.250 0.229 0.228 0.226 0.234 0.204 0.239 0.236 0.207 0.216
MR Lorentz2D 46.9 47.1 47.5 47.5 46.9 31.5 31.6 31.3 31.5 32.0
dMR Lorentz2D 47.2 47.2 47.3 47.5 47.0 31.3 31.6 31.2 31.5 31.8
MR Lorentz2D + DHRG 47.6 47.9 48.1 48.0 47.8 32.8 32.7 32.5 32.4 32.7
dMR Lorentz2D + DHRG 45.5 45.6 46.0 45.7 45.8 30.8 30.7 30.7 30.5 30.6
MR BFKL 52.0 54.4 53.5 52.4 52.9 38.0 36.4 39.5 36.9 36.8
dMR BFKL 51.9 53.8 53.1 52.4 52.4 38.2 36.4 39.5 36.5 36.7
dMR BFKL + DHRG 48.3 49.1 48.0 48.3 48.4 36.4 34.0 36.8 34.8 35.3
MR BFKL + DHRG 49.7 50.7 49.4 49.7 50.2 37.6 35.5 38.0 36.4 36.8
MR Poincare 2D 47.2 47.1 46.3 48.5 47.1 31.6 31.1 32.0 31.0 31.4
MR Poincare 3D 39.1 39.0 39.9 39.8 39.8 28.1 27.3 27.3 26.6 27.0
MR Mercator fast 54.4 54.3 54.3 54.3 54.3 37.7 37.8 37.8 37.8 37.8
MR Mercator full 47.5 47.8 48.0 47.9 47.7 34.2 34.4 34.0 34.1 34.3
MR TreeRep rec 117.506 123.417 134.651 129.946 122.314 112.256 117.753 104.263 113.346 111.039
MR TreeRep norec 122.196 125.698 111.734 126.610 120.817 107.666 103.975 100.043 91.454 104.623
success BFKL 0.649 0.641 0.623 0.618 0.614 0.775 0.796 0.763 0.774 0.796
success BFKL + DHRG 0.629 0.619 0.630 0.620 0.617 0.753 0.744 0.755 0.772 0.770
success BFKL + DDHRG 0.652 0.632 0.640 0.641 0.624 0.776 0.757 0.775 0.780 0.798
success Lorentz2D 0.747 0.727 0.742 0.758 0.742 0.899 0.891 0.889 0.871 0.894
success Lorentz2D + DD 0.684 0.662 0.658 0.688 0.696 0.838 0.834 0.843 0.831 0.849
success Poincare2D 0.753 0.715 0.757 0.723 0.743 0.897 0.896 0.874 0.903 0.898
success Poincare3D 0.821 0.814 0.826 0.844 0.820 0.933 0.943 0.925 0.933 0.958
success Mercator fast 0.437 0.439 0.448 0.433 0.445 0.524 0.525 0.525 0.522 0.525
success Mercator full 0.783 0.745 0.758 0.735 0.769 0.868 0.829 0.865 0.836 0.827
success TreeRep rec 0.577 0.580 0.596 0.695 0.708 0.651 0.603 0.560 0.670 0.571
success TreeRep norec 0.684 0.636 0.580 0.664 0.602 0.613 0.719 0.681 0.628 0.647
stretch BFKL 1.65 1.63 1.69 1.68 1.70 1.43 1.42 1.43 1.42 1.40
stretch BFKL + DHRG 1.64 1.63 1.62 1.65 1.67 1.41 1.42 1.41 1.40 1.40
stretch BFKL + DDHRG 1.63 1.63 1.65 1.65 1.69 1.41 1.43 1.40 1.40 1.40
stretch Lorentz2D 1.58 1.60 1.56 1.55 1.57 1.32 1.33 1.33 1.35 1.32
stretch Lorentz2D + DD 1.65 1.65 1.65 1.60 1.59 1.36 1.36 1.36 1.36 1.34
stretch Poincare2D 1.558 1.640 1.549 1.608 1.590 1.324 1.322 1.354 1.316 1.310
stretch Poincare3D 1.34 1.36 1.33 1.32 1.35 1.23 1.22 1.23 1.23 1.22
stretch Mercator fast 2.25 2.25 2.20 2.27 2.21 1.96 1.96 1.96 1.97 1.97
stretch Mercator full 1.40 1.45 1.43 1.45 1.41 1.32 1.36 1.32 1.37 1.37
stretch TreeRep rec 1.737 1.721 1.592 1.488 1.462 1.613 1.613 1.770 1.498 1.731
stretch TreeRep norec 1.553 1.580 1.753 1.547 1.652 1.647 1.433 1.483 1.668 1.538

Table 9: Repeated experiments on the DROSOPHILA1 and CELEGANS connectomes.
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