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ABSTRACT

Recent advancements in 3D generation are predominantly propelled by improve-
ments in 3D-aware image diffusion models. These models are pretrained on
internet-scale image data and fine-tuned on massive 3D data, offering the capa-
bility of producing highly consistent multi-view images. However, due to the
scarcity of synchronized multi-view video data, it remains challenging to adapt
this paradigm to 4D generation directly. Despite that, the available video and 3D
data are adequate for training video and multi-view diffusion models separately
that can provide satisfactory dynamic and geometric priors respectively. To take
advantage of both, this paper presents Diffusion2, a novel framework for dynamic
3D content creation that reconciles the knowledge about geometric consistency
and temporal smoothness from these models to directly sample dense multi-view
multi-frame images which can be employed to optimize continuous 4D represen-
tation. Specifically, we design a simple yet effective denoising strategy via score
composition of pretrained video and multi-view diffusion models based on the
probability structure of the target image array. To alleviate the potential conflicts
between two heterogeneous scores, we further introduce variance-reducing sam-
pling via interpolated steps, facilitating smooth and stable generation. Owing to
the high parallelism of the proposed image generation process and the efficiency
of the modern 4D reconstruction pipeline, our framework can generate 4D content
within few minutes. Notably, our method circumvents the reliance on expensive
and hard-to-scale 4D data, thereby having the potential to benefit from the scaling
of the foundation video and multi-view diffusion models. Extensive experiments
demonstrate the efficacy of our proposed framework in generating highly seamless
and consistent 4D assets under various types of conditions.

1 INTRODUCTION

Spurred by the advances from generative image models (Ho et al., 2020; Song et al., 2021a;b; Karras
et al., 2022; Zhang et al., 2023), automatic 3D content creation (Poole et al., 2023; Wang et al., 2023;
Tang et al., 2024b; Hong et al., 2024) has witnessed remarkable progress in terms of efficiency,
fidelity, diversity, and controllability. Coupled with the breakthroughs in 4D representation (Yang
et al., 2024; Wu et al., 2024a; Duan et al., 2024; Li et al., 2024), these advances further foster
substantial development in dynamic 3D content generation (Singer et al., 2023; Bahmani et al., 2024;
Jiang et al., 2024b; Zhao et al., 2023; Ren et al., 2023; Gao et al., 2024), which holds significant
value across a wide range of applications in animation, film, game, and MetaVerse.

Recently, 3D content generation has achieved considerable breakthroughs in efficiency. Some
works (Liu et al., 2023; 2024; Shi et al., 2023; Wang & Shi, 2023; Tang et al., 2024c) inject
stereo knowledge into the image generation model, enabling these 3D-aware image generators to
produce consistent multi-view images, thereby effectively stabilizing and accelerating the optimiza-
tion. Other efforts (Hong et al., 2024; Chen et al., 2024; Voleti et al., 2024; Zuo et al., 2024; Tang
et al., 2024a) attempt to directly generate 3D representations, such as triplane (Chen et al., 2022) or
Gaussian splatting (Kerbl et al., 2023). However, the efficiency improvement from these works is
largely data-driven (Wu et al., 2023; Reizenstein et al., 2021; Yu et al., 2023; Deitke et al., 2023).
Consequently, it is infeasible to adapt them to 4D generation due to the scarcity of synchronized
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Figure 1: Diffusion2 is designed to generate dynamic 3D content by creating a dense multi-frame
multi-view image matrix in a highly parallel denoising process with the combination of the founda-
tion video diffusion model and multi-view diffusion model. Please refer to our supplementary demo
video for more results.

multi-view video data. Therefore, most existing 4D generation works (Jiang et al., 2024b; Yin et al.,
2023; Ren et al., 2023) still adopt the score distillation sampling (SDS) approach and suffer from
slow or unstable optimization.

However, despite the paucity of 4D data, there are vast available monocular video data and static
multi-view image data. Existing works have demonstrated that it is feasible to train diffusion-based
generative models learning the distribution of these two classes of data independently (Voleti et al.,
2024; Liu et al., 2024; Tang et al., 2024c; Blattmann et al., 2023b;a). Considering that video dif-
fusion model stores the prior of motion and temporal smoothness, and multi-view diffusion model
has sound knowledge of geometrical consistency, combining the two types of generative models to
generate 4D assets becomes a highly promising and appealing approach.

To leverage both of them, we propose a novel 4D generation framework, Diffusion2, which rec-
onciles the video and multi-view diffusion priors to directly sample multi-frame multi-view im-
age arrays imitating the photographing process of 4D object. Instead of unleashing the pre-trained
knowledge stored in model parameters through fine-tuning (Xie et al., 2024; Ren et al., 2024), Dif-
fusion2 achieves this goal in a training-free and architecture-agnostic manner. Our key insight is
that the score function for the joint distribution of elements in image array can be approximated
by the convex combination of scores for each view and frame due to the conditional independence
within the image matrix. Therefore, we can directly sample multi-view multi-frame images within
the framework of score-based generative models with off-the-shelf score estimators.

In practice, due to the potential divergence between the learned distributions of two foundational
models caused by imbalanced training data, conflicts could emerge during the denoising process.
Such conflicts are primarily manifested as two distinct modes in the denoising results, which may
compromise the completeness and consistency of the generated images with continuously reducing
noise levels. However, we found that this issue can be effectively resolved by leveraging the inherent
properties of the diffusion framework, without requiring any additional training. Based on this
idea, we further propose the variance-reducing sampling (VRS), which can effectively mitigate such
conflicts at the cost of negligible additional time consumption by reconciling the distinct modes at a
higher noise level. With this technique, our Diffusion2 can produce smooth multi-view videos with
high spatial-temporal consistency. Furthermore, we introduce a dynamic and texture-decoupled
reconstruction strategy that transforms the generated discrete image matrix into a continuous 4D
representation while minimizing the potential detail loss caused by aggressive variance reduction,
especially on images that are far from the reference view. Thanks to the highly parallel denoising
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in the image matrix synthesis stage and the efficiency of the reconstruction stage, our method can
generate high-fidelity and diverse 4D assets within just a few minutes.

Our contributions can be summarized as follows: (i) We develop a novel 4D generation framework
that can generate highly consistent multi-view videos in a single pass of reverse diffusion process
using only existing multi-view and video diffusion models, without relying on any 4D dataset. The
core of this framework is to estimate the score function of the image matrix by a convex combination
of the scores predicted by orthogonal diffusion models. We identify the conditional independence
within elements constituting the image arrays and establish the theoretical soundness of the proposed
approaches based on this property. (ii) We propose the VRS for reconciling heterogeneous scores
during denoising, which can effectively alleviate potential conflicts and facilitate the generation of
seamless results with high consistency across multiple views and frames. In synergy with it, we
also propose a dynamic and texture decoupling reconstruction pipeline to better preserve texture
details. (iii) Systematic experiments demonstrate that our proposed method achieves impressive
results under different types of prompts. (iv) Notably, our work first proves that it is practical to
directly sample highly spatial-temporal consistent multi-view videos of dynamic 3D objects within
a single-pass of denoising diffusion procedure, while only using the existing multi-view and video
diffusion prior without any additional training on expensive and hard-to-scale 4D dataset.

2 RELATED WORK

3D generation 3D generation aims at creating static 3D content from different type of condi-
tions like text or reference image. Early efforts employed GAN-based approaches (Gao et al., 2022;
Schwarz et al., 2020). Recently, significant breakthroughs have been achieved with diffusion mod-
els (Ho et al., 2020). DreamFusion (Poole et al., 2023) introduced score distillation sampling (SDS)
to unleash the creativity in diffusion models. A series of subsequent works (Wang et al., 2023; Shi
et al., 2023; Wang & Shi, 2023; Pan et al., 2024a; Tang et al., 2024b; Yi et al., 2024) continuously
address challenges such as multi-face Janus issues and slow optimization. On the other hand, with
the development of large scale 3D datasets (Yu et al., 2023; Deitke et al., 2023), many works try
to directly generate 3D contents by using diffusion models. Some studies (Nichol et al., 2022; Jun
& Nichol, 2023; Hong et al., 2024; Tang et al., 2024a; Wang et al., 2024) have explored the di-
rect generation of 3D representations. Another line of research (Liu et al., 2023; 2024; Long et al.,
2023; Chen et al., 2024; Tang et al., 2024c) focuses on generating multi-view images with sufficient
3D consistency to be used for reconstruction. We also adopt this approach of directly generating
consistent images for reconstruction. But unlike the above 3D counterparts, there is no large-scale
multi-view synchronized video data. Therefore, we opt to combine geometrical consistency priors
and video dynamic priors to generate images.

Video generation Video generation is an active field that has gained increasing popularity. Re-
cent diffusion-based methods have exhibited unprecedented levels of realism, diversity, and con-
trollability. Video LDM (Blattmann et al., 2023b) is the pioneer work to apply the latent diffusion
framework (Rombach et al., 2022) to video generation. The subsequent work SVD (Blattmann
et al., 2023a) followed its architecture and made effective improvements to the training recipe.
W.A.L.T (Gupta et al., 2023) employed a transformer with window attention tailored for spatiotem-
poral generative modeling to generate high-resolution videos. VDT (Lu et al., 2024) introduced
the video diffusion transformer and a spatial-temporal mask mechanism to flexibly capture long-
distance spatiotemporal context. The recently introduced SORA (Brooks et al., 2024) demonstrated
a remarkable capability to generate long videos with intuitively physical fidelity. Models trained on
large-scale video data can generate videos with realistic dynamics. Besides, video diffusion models
can also provide effective prior for 3D generators (Chen et al., 2024; Han et al., 2024; Voleti et al.,
2024). Therefore, we build our method on this flourishing domain.

4D generation Animating category-agnostic objects is challenging and has drawn considerable
attention from both academia and industry. Unlike 3D generation, 4D generation requires both con-
sistent geometry and realistic dynamics. Recent works on this domain can be categorized based
on the input condition. Some of them create 4D content from text or single image. For instance,
MAV3D (Singer et al., 2023) first employs SDS in text-to-4D tasks. 4D-fy (Bahmani et al., 2024)
hybridizes different diffusion priors during SDS training. But they suffer from extremely slow gen-
eration. DreamGaussian4D (Ren et al., 2023) adopts deformable 3D Gaussian (Yang et al., 2024)
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Figure 2: The overall pipeline of Diffusion2. (i) Given a reference image, Diffusion2 first indepen-
dently generates the animation under the reference view (denoted I1:V,0) and the multi-view images
at the reference time (denoted I0,1:F ) as the condition for the subsequent generation of the full
matrix, denoted I. Depending on the type of given prompt, the condition images I1:V,0 or I0,1:F
can be specified by users. (ii) Then, Diffusion2 directly samples a dense multi-frame multi-view
image array by blending the estimated scores with a weighting scheduler from pretrained video and
multi-view diffusion models in the reverse diffusion process. (iii) The generated image arrays are
employed as supervision to optimize a continuous 4D content representation.

as the underlying 4D representation and exports mesh for texture refinement, significantly improv-
ing efficiency. Another line of work (Jiang et al., 2024b; Wu et al., 2024b; Yin et al., 2023; Pan
et al., 2024b) predicts dynamic objects from a single-view video with largely dictated motion. Con-
sistent4D (Jiang et al., 2024b) proposes to use SDS approach for geometry consistency and frame
interpolation loss for temporal continuity. 4DGen (Yin et al., 2023) further grounds the 4D con-
tent creation with pseudo labels. Meanwhile, L4GM (Ren et al., 2024) directly predicts consistent
3D Gaussians for each frame. And Jiang et al. (2024a) animates existing 3D assets given their
multi-view rendering with 4D-SDS. Efficient4D (Pan et al., 2024b) mimics a photogrammetry-based
neural volumetric video reconstruction pipeline by directly generating multi-view videos for recon-
struction. Some recent works opt for training diffusion models to generate monocular video (Liang
et al., 2024) or multi-view videos (Xie et al., 2024) with spatiotemporal consistency for subsequent
explicit reconstruction. Compared to previous works, our framework can efficiently generate di-
verse 4D contents from different input prompts, avoiding the slow and unstable optimization and
have potential to continuously benefit from the scalability of underlying diffusion models.

3 METHOD

As depicted in figure 2, the proposed 4D generation framework Diffusion2 adopts a two-stage
pipeline: dense observation synthesis followed by reconstruction. In this section, we will first elab-
orate on how to generate dense multi-view multi-frame images for reconstruction through a highly
parallelizable denoising process by reconciling the pre-trained video diffusion prior and multi-view
diffusion prior while pointing out why it is feasible (stage-1), and then briefly introduce how to
robustly reconstruct 4D content from the sampled images (stage-2).

3.1 ESTIMATING SCORES OF THE IMAGE MATRIX

In this stage, our goal is to generate highly consistent dense multi-frame multi-view images for
reconstruction, which can be denoted as a matrix of images:

I =
{
Ii,j ∈ RH×W×3

}V,F

i=1,j=1
=


I1,1 · · · I1,j · · · I1,F

...
. . .

...
. . .

...
Ii,1 · · · Ii,j · · · Ii,F

...
. . .

...
. . .

...
IV,1 · · · IV,j · · · IV,F

 , (1)
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where V is the number of views, F is the number of video frames, and (H,W ) is the size of images.
We aim to construct a generative model that allows us to directly sample natural I ∼ p(I).
Now, let us first divert our focus to reviewing existing diffusion-based generators for video and multi-
view images, which can be utilized for sampling realistic image sequence through the probabilistic
flow ODE as below:

dx = −σ̇(t)σ(t)∇x log p (x;σ(t)) dt. (2)

Here, x =
{
Ii ∈ RH×W×3

}N

i=1
is a series of images with N frames or N views, ∇x log p (x;σ) is

the score function, which can be estimated as∇x log p (x;σ) ≈ (Dθ(x;σ)) /σ
2 (Karras et al., 2022;

Blattmann et al., 2023a), where Dθ(x;σ) is a neural network trained via denoising score matching.
We want to extend the above formulation to the generation of the whole image matrix, i.e., sam-
pling I through equation 2 according to its score function ∇ log p (I;σ(t)). The question is, how
do we estimate the score of the joint distribution of V × F images? Due to the scarcity of available
synchronized multi-view videos and the potentially huge memory footprint of simultaneously con-
suming V ×F images, it is impractical to train a neural network to directly predict the score function
of an image matrix with densely distributed views and sufficient frames for substantial motion.

Fortunately, image matrix I in nature has a nice property, such that we can approximate the
∇ log p (I;σ(t)) by combining existing video and multi-view score estimators, as claimed in the
following theorem:

Theorem 3.1. For x = Ii,j , we have

∇x log p(I;σ(t)) = ∇x log p(I{1:V },j ;σ(t))+∇x log p(Ii,{1:F};σ(t))−∇x log p(Ii,j ;σ(t)). (3)

Here∇x log p(Ii,{1:F}) and∇x log p(I{1:V },j) can be predicted by the off-the-shelf video diffusion
model and the multi-view diffusion model. This assertion implies that we can sample the desired
image matrix by progressively denoising from pure Gaussian noise using the summation of two
estimated scores for its row and column, which can be obtained from the pre-trained multi-view
and video diffusion models respectively. The derivation of theorem 3.1 is established on our core
assumption about the structure of p(I) (refer to appendix A.3 for detailed proof):

Assumption 3.1. images captured from different viewpoints and different times are conditionally
independent given the image at the intersection of their respective rows and columns i.e.,

p (Ii′,j , Ii,j′ |Ii,j) = p (Ii′,j |Ii,j) p (Ii,j′ |Ii,j) with i′ ̸= i, j′ ̸= j. (4)

𝐼𝐼𝑖𝑖′,𝑗𝑗

𝐼𝐼𝑖𝑖,𝑗𝑗

𝐼𝐼𝑖𝑖,𝑗𝑗′

Unknown 
texture

Shape 
information

Texture 
information

Unknown 
movement

Figure 3: Schematic illustration for the condi-
tional independence. Compared to Ii,j , the ad-
ditional information (future dynamic) in Ii,j′ does
not help in inferring the unknown texture of the
back view Ii′,j , and vice versa.

We provide an example in figure 3 to illustrate
this assumption. Denote Ii,j as the front view
observed currently, it can indeed dictate some
aspects of the back view at the same frame Ii′,j ,
such as its contour. The conditional indepen-
dence means that the future front view Ii,j′ can-
not provide more information about the Ii′,j be-
yond those have been provided by the current
front view. It aligns with our intuition, as the
differences between Ii,j′ and Ii,j are mainly in-
duced by the hand waving, which is incapable
of bringing extra information gains about the
back view. Similarly, the texture of the back at
the current moment is also not helpful in infer-
ring the future dynamics.

Actually, the assumption of conditional inde-
pendence is also implicitly held by many other
4D generation pipelines. For instance, the le-
gitimacy of independently synthesizing multi-
view reference and driving video (Yin et al.,
2023; Xie et al., 2024) from a single image also
relies on this hypothesis.
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Sampling in latent space For simplicity, the previous discussion assumes that we sample images
directly in the RGB space. However, modern high-resolution diffusion models typically gener-
ate images in a latent space encoded by pre-trained Auto-Encoder (Kingma & Welling, 2014; Van
Den Oord et al., 2017). The legitimacy of the aforementioned derivation requires that the multi-
view and video generative models share the same latent space. Therefore, we employ SV3D (Voleti
et al., 2024) and SVD (Blattmann et al., 2023a) as the respective generators in this work. We believe
that the requirement will be increasingly satisfied by more models in the future. As pointed out
by Blattmann et al. (2023a); Voleti et al. (2024); Chen et al. (2024), video generative models trained
on large-scale video datasets have learned a strong geometry prior and thus capable of providing a
better pre-training for multi-view diffusion models than those trained solely on image data.

3.2 GENERATION UNDER VARIOUS CONDITIONS

Note that the formulation described above is based on unconditional generation. However, we are
more interested in controllable generation in practice. In this section, we will discuss on how to
extend the above process to the conditional generation.

First of all, since the ∇x log p(Ii,j) is intractable in the conditional generation, we use the convex
combination of∇x log p(Ii,{1:F}) and∇x log p(I{1:V },j) to replace it, and revise the equation 3 as:

∇x log p (I;σ(t)) = s∇x log p(Ii,{1:F};σ(t)) + (1− s)∇x log p(I{1:V },j ;σ(t)). (5)

Then we formulating our conditional generation pipeline like a “inpainting” process for the aug-
mented matrix Iaug defined as

Iaug =

[
I0,0 I0,{1:V }
I{1:F},0 I

]
. (6)

Compared to the unconditional generation, the augmented matrix Iaug includes the optional inputs
I0,0, I0,{1:V } and I{1:F},0 representing reference geometry and dynamic of target object.

In the proposed generation pipeline, I0,{1:V }, I{1:F},0 should be first created as the known part
according to the given input. Then the rest part of Iaug will be sampled given these orthogonal con-
ditions. To incorporate them into the generation of I, we condition the score estimator for denoising
each row/column in equation 5 on the first element of the same row/column in Iaug. This formu-
lation enables us to handle various 4D generation tasks depending on different forms of conditions
specified by users. For example, in the image-to-4D task, given a single image I0,0 as input, both
I0,{1:V } and I{1:F},0 should be generated by multi-view and video diffusion models respectively.
In the video-to-4D task, we just need to leave the input single-view video as I{0:F},0, and use its
last frame I0,0 as the condition for multi-view diffusion model to generate I0,{1:V }. These process
can also be similarly extended to the text-to-4D tasks and end-to-end animating static 3D objects.
Once I0,{1:V }, I{1:F},0 are obtained, we can sample the full matrix I using equations (3) and (5).

Parallel denoising Assumption 3.1 ensures the safety of independently generating the geometry
I0,{1:V } and the motion I{1:F},0. Since these two generation processes have no computational
or data dependency, their total time cost could be reduced to a single reverse diffusion process.
Additionally, when we denoise the rest part of Iaug, i.e., I, the score estimation for each row and
column can also be parallelized in each denoising step. Therefore, with sufficient GPU memory, the
total time spent figure 2 (ii) remains the same as that for generating a single video.

3.3 RECONCILING JOINT DENOISING

In practice, the training data for foundational multi-view and video generation models may exhibit a
domain gap and imbalance in quantity; for instance, the multi-view diffusion model employed in this
work is fine-tuned on an object-centric dataset which is much smaller than the large-scale general
video dataset used to train the video diffusion model. Consequently, the learned distributions may
not aligned ideally, leading to potential conflicts when directly fusing their scores without taking
some measures to harmonize their denoising trajectories. A straightforward solution is to fine-
tune the utilized video diffusion model on single-view videos of dynamic objects. However, such
conflicts can also be mitigated by harnessing the capabilities inherent in the diffusion framework
without extra training. Consequently, to preserve our training-free merit and avoid reliance on multi-
view video data, we propose the following inference-time approach to reconcile them.

6
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Variance-reducing sampling via interpolated steps Due to the potential conflicts between the
heterogeneous scores mentioned above, It may not always consistently conform to the ideal distri-
bution of p(I, σ(t)). Obvious flicker and ghosting artifacts will appear with the accumulation of the
divergence step by step. Therefore, we proposed an ingenious strategy to resolve this issue, which
involves incorporating some “intermediate” steps into the reverse diffusion process. Specifically,
we observe that although It may deviate from p(I, σ(t)), it still possesses a high likelihood at a
larger noise level. This can be understood from the following perspective: deviations between It
and p(I, σ(t)) are primarily exhibited as two isolated modes driven by independent score estima-
tors. However, these can be mixed in a mollified distribution with a higher noise level, which is
actually one of the initial motivations of the diffusion model (Song & Ermon, 2019). Therefore, the
core insight of the proposed strategy is to deceive the diffusion model to denoise a noisy latent with
a smaller variance at a higher noise level. To balance efficiency and quality, we achieve this goal
using the following approach. In the t-th denoising step, we first update It to It+1 based on the
estimated score from equation 5. Then, we run a forward process to resample a noisy latent at noise
levels between t and t + 1. We then use it as It to repeat the previous denoising step. Algorithm 1
provides the pseudo-code for the sampling process. Since the divergence primarily occurs at the
early stage of denoising, we only need to perform the rollback in the first five denoising steps, which
only brings about 1/10 extra inference steps, and the experiments demonstrate that it is sufficient to
achieve very seamless and consistent results.

3.4 RECONSTRUCTION FROM SAMPLED IMAGE MATRIX

Given the multi-view videos synthesized in stage-1, it is imperative to transform them into a con-
tinuous 4D representation for facilitating real-world applications. Beyond the functional consider-
ations, i.e., enabling renderings from arbitrary viewpoints beyond the images generated in stage-1,
the reconstruction phase (stage-2) is also responsible for enhancing texture details in views that
are distant from the reference views and frames, since we have sacrificed some texture diversity
on these views with higher uncertainty with the aggressive variance-reducing strategy in stage-1
for efficiency. Therefore, we propose a geometry and texture decoupled scheme to train dynamic
Gaussians on the images generated in stage-1 to minimize the negative impact of this trade-off.

4D Gaussian optimization Specifically, we represent dynamic objects as a set of Gaussian primi-
tives in canonical space, driven by a learnable deformation field. The deformation field is responsible
for predicting the 6-DoF transformation of each Gaussian given its mean and the queried times-
tamps. We model it with an MLP (Yang et al., 2024) because of its inherent inductive bias about
low-frequency and topological invariance which can effectively regularize the learning of dynamics.

In the optimization, during the initial 3,000 warm-up iterations, we only optimize the underlying
static Gaussians using synthetic multi-view images at the reference frame, i.e., It{:,F}, with photo-
metric losses. Compared to warm-up with monocular views (Ren et al., 2023), consistent multi-view
static images allow for rapidly achieving very high-quality geometry in this stage and bind the refer-
ence frame to the canonical space to some extent, thus making it easier for the subsequent potential
extraction of deformed mesh. After warm-up, we use the full image matrix as ground truth to op-
timize the deformation field while fine-tuning the canonical Gaussians at a reduced learning rate
and loss scale away from the reference view and frame. Unlike Ren et al. (2023) optimizing the
deformation field with a single-view driving video, our consistent multi-view videos can lead to
more stable optimization. Benefiting from the strong fitting capabilities of the Gaussian approach,
the trained Gaussian model can achieve high-fidelity details while supporting real-time viewing.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

In the first stage, we employ Stable Video Diffusion (Blattmann et al., 2023a) as our founda-
tion video diffusion model, predicting 25 frames each time conditioning on the reference image.
SV3Dp (Voleti et al., 2024) is chosen as our foundation multi-view diffusion model. For simplicity,
we only generate orbital videos with 21 uniformly spaced azimuths and fixed elevation. By default,
we set the number of sampling steps to 50 for both models. In the reconstruction stage, we assume
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Figure 4: Qualitative comparisons. The left 3 cases are generated from input videos, whilst the
right 2 cases are generated given single input images. The results of our both stages exhibit better
coherence, appear more natural, and have fewer artifacts. More results in supplementary video.

that the virtual camera whose FOV is set to 33.8° orbiting around the object center with a fixed
radius of 2m. Finally, We optimized Gaussian Splatting in totally 5,000 iterations in our reconstruc-
tion stage. The image size is set to (576 × 576) in both stages. All the experiments are conducted
on 8 NVIDIA A6000 GPUs. Please refer to section A.5 for more details.

4.2 QUALITATIVE COMPARISONS

To demonstrate the effectiveness of the proposed method, we qualitatively compared our method
with three representative baselines, ranging across optimization-based, photogrammetry-based, dif-
ferent types of diffusion prior and 4D representation. The results on the two commonly used 4D
generation task, i.e., video-to-4D and image-to-4D task are shown in figure 4. For fair comparison,
we use the same reference video for all methods in the image-to-4d task. In terms of generation
quality, our simple and elegant pipeline is capable of generating assets with remarkably superior
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Table 1: User study on image-to-4D generation. The proportions of different methods that best
match user preferences under four criteria are reported.

Consistent4D STAG4D DG4D Efficient4D Ours
Ref. consistency 3.1% 5.5% 2.0% 1.1% 88.3%
Multi-view consistency 6.7% 22.9% 3.1% 8.4% 58.9%
Temporal smoothness 8.0% 36.2% 2.0% 10.7% 43.1%
Overall model quality 8.2% 18.2% 2.0% 12.0% 59.6%

Table 2: Quantitative comparisons on video-to-4D generation. All metrics are averaged on four
ground truth novel views and one input view within the first 25 frames.

Consistent4D STAG4D DG4D Efficient4D Ours
CLIP score ↑ 0.905 0.920 0.885 0.917 0.922
LPIPS ↓ 12.81 12.78 16.17 14.66 12.35
FVD ↓ 893.67 855.84 1143.59 873.25 831.32
Gen. time ↓ 120 mins 90 mins 11 mins 12 mins 12 mins

smoothness and temporal consistency, while exhibiting fewer floaters and more complete geometry.
The fewer artifacts arise from the ability to directly sample the natural image matrix by harnessing
the orthogonal diffusion priors. Additionally, the closeness between both stages indicates that our
method achieves commendable spatiotemporal consistency, which is also manifested by the cleaner
geometry demonstrated in the additional results from supplementary videos and the appendix. Fur-
thermore, the denoising process of the proposed method is highly parallelizable, which provides a
significant efficiency advantage over those that need recurrent evaluation of diffusion UNet.

4.3 QUANTITATIVE COMPARISONS

We also present quantitative results on two widely explored 4D generation tasks, video-to-4D and
image-to-4D. For video-to-4D task, we report the LPIPS and CLIP similarity on the test split fol-
lowing the previous work (Jiang et al., 2024b), which mainly focus on semantic and perceptual
consistency. These metrics are measured on the the views at azimuths of 0◦, -75◦, 15◦, 105◦, and
195◦ within the first 25 frames. The results in table 2 indicate that our method is able to more accu-
rately infer geometry from the reference video with a good trade-off between generation quality and
time. And the lower FVD suggests that our method achieves better temporal coherence. We also
conduct a user study for both video-to-4D and image-to-4D tasks. The survey primarily focused on
three aspects of 4D consistency, i.e., the consistency with the reference view (Ref. consistency) and
between the different views (Multi-view consistency) or frames (temporal smoothness); addition-
ally, we also requested participants to report on their subjective preference of overall model quality.
The results are shown in table 1. It suggests that our method garnered the highest preference in both
the consistency dimension and overall model quality. Under the setting described in section 4.1,
our method can complete the generation process within 20 minutes, where the first takes 8m31s.
It is significantly faster than the state-of-the-art SDS-based methods with sophisticated multi-stage
optimization. It is noteworthy that the parallel denoising characteristic could offer an extra trade-
off between memory footprint and inference time. The reported times are measured on 8 NVIDIA
RTX A6000 GPUs, which have not fully exploited their parallel capabilities. When the number
of GPUs is increased to 16, the generation time is expected to be halved. On the other hand, we
can also sacrifice some parallelism to achieve a more friendly memory footprint. Further substan-
tial efficiency improvements can be achieved by optimizing the multi-GPU communication, which
contributes mostly to the gap between the theoretically optimal inference time.

4.4 ABLATION STUDIES

We perform the following ablations to verify the effectiveness of our core designs, and present the
results in figure 6. Please refer to the videos in supplementary materials for a more comprehensive
and intuitive comparison.

The impact of variance-reducing sampling We first analyze the effect of the proposed variance-
reducing sampling (VRS). In figure 6, we show the images synthesized in the first stage with and
without applying this technique. It can be obviously observed that without the variance-reducing
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w/o VRS w/ VRS Multi-view diffusion
only

Attention feature 
blend

Score composition
(Ours)

w/ decoupledw/o decoupled

time 1

time 2

Figure 6: Ablation studies for variance-reducing sampling (left), score composition (middle), and
texture-dynamic decoupled reconstruction (right).

sampling, the generated images may exhibit severe ghosting artifacts. This arises from the discrep-
ancy between the learned distribution of the two models, which may lead to substantial deviation
in the denoising directions, especially in the first few steps. To support this claim, we visualize the
predicted x0 of the two models in the 4-th step in figure 5, where two distinct modes can be seen.
These discrepancies can be harmonized at higher noise levels via variance-reducing sampling, which
is ascribed for the effectiveness of VRS.

Figure 5: Visualization of two isolated
modes in the early denoising process.

The impact of score composition The score compo-
sition is essential in our framework. To demonstrate its
efficacy, we compared the images synthesized in three al-
ternative settings in stage-1: (1) Generating multi-view
images independently for each frame using SV3D; (2)
Blending the key and value of the spatial attention within
SV3D in the time dimension using 1D conv; (3) Using
our score composition as equation 5. We enable variance-
reducing sampling for all three settings for fair compari-
son. A couple of observations can be drawn from figure 6:
(1) While variance-reducing sampling can control variance to some extent, significant inconsistency
still can be observed at the most under-constraint back views with only multi-view generative model;
(2) Due to the limited receptive field and hand-crafted fixed conv weights, blending the attention
feature between adjacent frames in each step of denoising is challenging to maintain long-range
consistency. Another similar scheme is blending the feature of each frame with the reference frame.
However, such a pixel-wise mixing approach also struggles to handle the long-range spatial context,
resulting in ghosting effects on large movements. In contrast, the score composition can support
arbitrary length of temporal and spatial context, thus can generate seamless videos.

The impact of decoupled reconstruction Additionally, we investigate the effect of decoupled re-
construction of texture and geometry in the second stage. In the first stage, we adopted an aggressive
setting for variance-reducing sampling to minimize its impact on efficiency, but this led to a gradual
blurring of details in images as they moved farther from the reference view. Nevertheless, these
details were still relatively well-preserved in the reference frame. Therefore, as depicted in figure 6,
our stage-2 was capable of effectively restoring them through decoupled reconstruction even for the
view farthest from the references.

5 CONCLUSION

In this work, we introduce Diffusion2, a novel framework for creating dynamic 3D content. This
framework first generates a dense array of multi-view and multi-frame images with high paralleliza-
tion, which are then used to build a full 4D representation through a reconstruction pipeline. The
core assumption behind this framework is that the motion of an object viewed from one angle and
its appearance from another are conditionally independent. Based on this assumption, we prove that
we can directly sample synchronized multi-view videos in a denoising process by combining pre-
trained video and multi-view diffusion models. Our experimental results demonstrate the flexibility
and effectiveness of our framework, showing that it can adapt to various prompts to produce high-
quality 4D content efficiently and effectively. We hope that our work can inspire future research on
unleashing the geometrical and dynamic priors from foundation 3D and video diffusion models.
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A APPENDIX

A.1 LIMITATIONS

Beyond demonstrating the efficacy of the proposed approach, as a preliminary exploration of
photogrammetry-based 4D generation via zero-shot sampling of multi-view synchronized videos
within a single pass of denoising diffusion procedure, this paper acknowledges that it still has some
limitations.

First, assumption 3.1 may not strictly hold for some cases. However, minor violations do not sub-
stantially affect the quality of generated results. As shown in the experimental results, our score
composition framework is capable of generating smooth and consistent multi-view videos even for
cases not adhering to this assumption. We provide a detailed discussion about its necessity on the
correctness of thereom 3.1 in section A.4.

Second, our framework’s superiority in efficiency originates from its parallelism. It actually in-
troduces a trade-off between memory and efficiency, which leads to a higher maximum inference
efficiency crucial for some online tasks, while not resulting in similar advantages on throughput
which is important for some offline tasks. We illustrate this trade-off in figure 7. It can be ob-
served that even using a single GPU, our method still surpasses representative SDS-based alternates
in efficiency by a considerable margin.

Figure 7: Inference time of the first stage with different number of GPUs. For comparison,
we also present the inference time of two representative SDS-based solutions. They are shown as
horizontal lines, because their efficiency cannot benefit from more computes.

Last, since we adopt a radical VRS setting for efficiency, texture diversity for some views in image
matrix far from the references may be sacrificed for some cases. For example, as can be seen
from the second example in figure 4 (a), the model has generated a weird texture-less back for the
cat. (Actually, for some input images out of training distribution of multi-view prior, the generated
multi-view references I0,{1:V } already pose textureless backside view. To more clearly distinguish
the extent to which this can be attributed to the proposed sampling strategy, in figure 8, we show the
multi-view references of the samples conditioned on generated images in figure 4.)
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Figure 8: Multi-view references I:,{1:V } of samples from out-of-distribution images in figure 4.

Algorithm 1 Joint denoising for multi-view multi-frame image matrix via score composition.

Require: Initial noise I0, multi-view denoiser Dθ(x;σ), video denoiser Dϕ(x;σ), discrete noise
levels {σj}j∈[1···N ], scale schedule s, rollback steps Nr

1: for all i ∈ {0, · · · , N − 1} do
2: R← 2 if i ∈ {0, · · · , Nr − 1} else 1
3: for all j ∈ {0, · · · , R− 1} do
4: di ← zero like(Ii)
5: for all v ∈ {0, · · · , V − 1} do
6: di

{v,:} ← di
{v,:} + (1− s(i))(Ii{v,:} −Dϕ(Ii{v,:};σi))/σi

7: end for
8: for all f ∈ {0, · · · , F − 1} do
9: di

{:,f} ← di
{:,f} + s(i)(Ii{:,f} −Dθ(Ii{:,f};σi))/σi

10: end for
11: Ii+1 ← Ii + (σi+1 − σi)di

12: if j < R− 1 then
13: sample ϵ ∼ N (0, I)
14: Ii ← Ii+1 + (σi − σi+1)ϵ
15: end if
16: end for
17: end for
18: return IN

Fortunately, due to details are still preserved in the reference frame, some techniques can be em-
ployed to transfer them from the reference frame into those texture-less views during the recon-
struction process. We adopt a Gaussian-based dynamic-texture decoupling reconstruction pipeline
to address this issue. Besides, since this phenomenon does not impact the training of geometry and
deformation fields due to its low-frequency nature, further decoupling can be achieved by extracting
deformable meshes after their optimization, and independently refining textures using the reference
frame. Beyond that, the issue also holds potential for avoidance in the first stage, which we leave
for future work.

We sincerely hope that our exploration and results could demonstrate the feasibility and potential of
zero-shot sampling of multi-view videos using existing diffusion priors, thereby opening up a brand-
new path for 4D generation that is not constrained by the bottleneck of expensive and hard-to-scale
4D data.

A.2 PSEUDOCODE FOR JOINT DENOISING OF MULTI-VIEW MULTI-FRAME IMAGE MATRIX
VIA SCORE COMPOSITION

15
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A.3 THE PROOF FOR MAIN THEOREM 3.1

Recall that the assumption 3.1 add a conditional independence property on the probability structure
of I. However, in the denoising process, the image matrix I is perturbed with Gaussian noise, so
we need a similar property on the noisy version of I, which leads to corollary A.1:

Corollary A.1. Denote Î as the noisy version of I, i.e.,

Î = {Îi,j ∈ RH×W×3}V,Fi=1,j=1 with Îi,j = αIi,j + εi,j , (7)

where α ∈ R is a constant and εi,j ∈ RH×W×3 are independent Gaussian noises. Then equation 4
also holds for Î:

p
(
Î−i,j , Îi,−j |Îi,j

)
= p

(
Î−i,j |Îi,j

)
p
(
Îi,−j |Îi,j

)
. (8)

Then we can set out proving the main theorem 3.1.

Proof. We first decompose p
(
Î
)

by

p
(
Î
)
= p

(
Îi,j , Î−i,j , Îi,−j , Î−i,−j

)
= p

(
Îi,j , Î−i,−j |Î−i,j , Îi,−j

)
p
(
Î−i,j , Îi,−j

)
. (9)

Note that ∀Îi′,j′ ∈ Î−i,−j , Ii′,j′ and Ii,j are independent conditioned on Ii′,j by corollary A.1,
hence

p
(
Îi,j , Î−i,−j |Î−i,j , Îi,−j

)
= p

(
Î−i,−j |Î−i,j , Îi,−j

)
p
(
Îi,j |Î−i,j , Îi,−j

)
. (10)

Since p
(
Î−i,−j |Î−i,j , Îi,−j

)
does not contain x (=Ii,j), its derivative with respect to x is zero thus

this term does not contribute to the score of Ii,j . Then combined with equation 9 and equation 10,

taking the derivative of log p
(
Î
)

with respect to x, we achieve

∇x log p
(
Î
)
= ∇x log p

(
Îi,j |Î−i,j , Îi,−j

)
p
(
Î−i,j , Îi,−j

)
= ∇x log p

(
Îi,j , Î−i,j , Îi,−j

)
.

(11)

Finally, by further decomposing p
(
Îi,j , Î−i,j , Îi,−j

)
and directly applying corollary A.1, we obtain

∇x log p
(
Î
)
= ∇x log p

(
Î−i,j , Îi,−j |Îi,j

)
p
(
Îi,j

)
= ∇x log p

(
Î−i,j |Îi,j

)
p
(
Îi,−j |Îi,j

)
p
(
Îi,j

)
= ∇x log

p
(
Î{1:V },j

)
p
(
Îi,{1:F}

)
p
(
Îi,j

)
= ∇x log p

(
Î{1:V },j

)
+∇x log p

(
Îi,{1:F}

)
−∇x log p

(
Îi,j

)
.

(12)

A.4 THE APPLICABILITY OF THE ASSUMPTION 3.1 AND PROOF FOR THE THEOREM 3.1 IN
GENERAL CASE

Another risk that needs to be pointed out is that our assumption about the conditional independence
is too strong to apply in some cases. For example, if the target object rotates 180° over a period of
time, the back view at the current moment and the front view after a period of time should not be
conditionally independent given the front view at the current moment. Fortunately, existing video
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diffusion models typically generate videos from a single view without rotational movements, and
our pipeline allows users to specify conditions to exclude such cases.

In addition, it is worth noting that even in such cases that violate assumption 3.1, our method can
still work well. This is because the main theorem remains valid under these case and its correctness
does not essentially rely on such a strong assumption. Although extreme rotations might exist when
considering frames with large intervals, they are unlikely to occur between adjacent frames in a
natural video. Now considering that the distribution of Îi,j is almost entirely determined by its
adjacent frames and views, we have the continuity assumption:

Assumption A.1. (Continuity assumption) Denote Îinear,j ∈ Î−i,j , Îi,jnear ∈ Îi,−j are the views and
frames close enough to Îi,j to provide sufficient information for the distribution of it while keeping
sufficiently continuous, then

p
(
Îi,j |Î−i,j

)
≈ p

(
Îi,j |Îinear,j

)
(13)

p
(
Îi,j |Îi,−j

)
≈ p

(
Îi,j |Îi,jnear

)
(14)

p
(
Îi,j |Îinear,j , Îi,jnear , Îi′,j′

)
≈ p

(
Îi,j |Îinear,j , Îi,jnear

)
, (15)

where Îi′,j′ /∈ {Îi,j , Îinear,j , Îi,jnear}.

Further note that the near index is symmetric, i.e., if Îi′,j ∈ Îinear,j , then Îi,j ∈ Îi′near,j
. Then we relax

the assumption 3.1 as follows:

Assumption A.2. (Weak version of assumption 3.1 ) Given any image Ii,j , the nearby geometry
Ii′,j ∈ Iinear,j and the nearby dynamics Ii,j′ ∈ Ii,jnear are conditionally independent, i.e.,

p (Ii′,j , Ii,j′ |Ii,j) = p (Ii′,j |Ii,j) p (Ii,j′ |Ii,j) . (16)

Similar condition also holds for Î.

Finally, we can establish our main theorem 3.1 under the additional assumptions.

Proof of theorem 3.1 under assumption A.1 and assumption A.2.

Following the same derivation of the original proof A.3, equations (9), (10) and (11) remain un-
changed but all “=” in (10) and (11) should be “≈” because equation 10 is now established on
equation 15 of assumption A.1 instead of assumption 3.1.

Then integrating new assumptions to correct equation 12, we obtain:

∇x log p
(
Î
)
≈ ∇x log p

(
Îi,j |Î−i,j , Îi,−j

)
p
(
Î−i,j , Îi,−j

)
= ∇x log p

(
Îi,j |Î−i,j , Îi,−j

)
+∇x log p

(
Î−i,j , Îi,−j

)
︸ ︷︷ ︸

=0

≈ ∇x log p
(
Îi,j |Îinear,j , Îi,jnear

)
+∇x log p

(
Îinear,j , Îi,inear

)
︸ ︷︷ ︸

=0

= ∇x log p
(
Îi,j |Îinear,j , Îi,jnear

)
p
(
Îinear,j , Îi,inear

)
= ∇x log p

(
Îi,j , Îinear,j , Îi,jnear

)
.

(17)

This suggests the score of Ii,j is only related to Îinear,j and Îi,jnear . Similar to the derivation in equa-
tion 12, we can achieve:

∇x log p
(
Î
)
= ∇x log

p
(
Îi,j , Îinear,j

)
p
(
Îi,j , Îi,jnear

)
p
(
Îi,j

) . (18)
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Input video A

Please watch the videos and rate the generation results according to the following questions.

1. Which one is most consistent with the input video?
 
2. Which one is  most multi-view consistent?

3. Which one has the highest temporal smoothness?

4. Please pick your most perferred one according to 
    the overall model quality.

              A     B     C     D     E 

B C D E

Figure 9: The layout of our user study..

Finally, by further decomposing the numerator and applying the condition of continuity, we have:

∇x log p
(
Î
)
= ∇x log

p
(
Îi,j |Îinear,j

)
p
(
Îinear,j

)
p
(
Îi,j |Îi,jnear

)
p
(
Îi,jnear

)
p
(
Îi,j

)
≈ ∇x log

p
(
Îi,j |Î−i,j

)
p
(
Î−i,j

)
p
(
Îi,j |Îi,−j

)
p
(
Îi,−j

)
p
(
Îi,j

)
= ∇x log

p
(
Î{1:V },j

)
p
(
Îi,{1:F}

)
p
(
Îi,j

)
= ∇x log p

(
Î{1:V },j

)
+∇x log p

(
Îi,{1:F}

)
−∇x log p

(
Îi,j

)
.

(19)

Now we have verified the correctness of the conclusion in equation 12. Based on the similar deriva-
tion, we can also ensure the safety of equation 10. This guarantees the correctness of our main
theorem.

A.5 ADDITIONAL EXPERIMENTAL DETAILS

Dataset and evaluate setting In the main text, we test the proposed approach on two types of
conditions: reference image and single-view video. The input images and videos used in the qual-
itative comparisons are sourced from the previous works Zhao et al. (2023); Jiang et al. (2024b);
Tang et al. (2024b). For the quantitative evaluation in the video-to-4D task, we evaluate all methods
on the Consistent4D test split and report the CLIP similarity, LPIPS, and FVD averaged on five
views with accessible ground truth within the first 25 frames. Note that in equation 5, we introduced
a coefficient s to modulate the contribution of both models within the convex combination.

Scale schedule Note that in equation 5, we introduced a coefficient s to modulate the contribution
of both models within the convex combination. Its schedule in denoising process can provide addi-
tional design space for enhancing the details at specific views. However, to ease the reproduction
and reduce the reliance on manual priors, we fix it at 0.5 in all steps which is sufficient to achieve
satisfactory results for most cases.
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User study Figure 9 shows the template we used for user study. The participants are asked to
pick one generation results from five candidates (displayed in video format) according to four di-
mensions: consistency with the reference video, multi-view consistency, temporal smoothness and
overall model quality. Total 50 participants from diverse backgrounds are asked to do the question-
naire. And there are 11 cases for user study, including anya, cat-wave, patrick-star, flying-ironman,
luigi, panda-dance, running-triceratops, sighing-frog, tiger-guitar, trump, walking-astronaut. All
of them are collected from the previous works (Jiang et al., 2024b; Zhao et al., 2023; Tang et al.,
2024b).

A.6 ADDITIONAL RESULTS

A.6.1 QUANTITATIVE ABLATIONS

In section 4.4 and the supplementary video, we have validated the effectiveness of the core com-
ponents through qualitative ablations, where the improvements over naı̈ve baselines are clearly and
intuitively presented from the provided samples. To provide a more comprehensive evaluation,
we present quantitative ablations in table 3. We also report the result of using only the multi-

Table 3: Quantitative ablations. Each method is benchmarked in the same way as table 2. Dis-
abling score composition means multi-view diffusion only.

VRS Score Attention feature LPIPS ↓ CLIP score ↑ FVD ↓composition blend
(a) mv-generation only 11.63 0.948 1248.49
(b) (a) + recon with Li et al. (2024) 14.86 0.896 1412.00
(c) ✓ 12.79 0.919 1050.68
(d) ✓ ✓ 12.65 0.922 898.66
(e) ✓ 11.86 0.943 1170.96
(f) ✓ ✓ 12.35 0.922 831.32
(g) (f) w/o decoupled recon. 12.57 0.921 833.37

view generator. While this approach leads in image-based metrics (e.g., LPIPS, CLIP), due to the
inherent stochasticity in the diffusion denoising process, its output exhibits significant temporal in-
consistencies, making it challenging to be reconstructed into meaningful 4D assets, even for the
state-of-the-art 4D reconstruction method (Li et al., 2024) with superior fitting capability.

A.6.2 MORE VISUALIZATIONS

In figure 10, we visualize how the variance of the noisy latent changes during denoising with and
without VRS. In figure 11, we provided more cases for qualitative comparison. Similar conclusion
to section 4.2 can be achieved that our results outperform the others. Figures 12 and 13 further show
additional results on custom data, with RGB and depth images from two views and three timestamps
displayed. We recommend readers to watch the videos in our supplementary materials.
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Figure 10: The variance evolution during denoising.
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Figure 11: Qualitative comparisons. For each method, we show images from two views and two
timestamps.
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Figure 12: More visualization results.
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Figure 13: More visualization results.
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