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Abstract

Foundation models promise to democratize access to high-quality medical deci-1

sion support by learning from vast quantities of data, but unmitigated biases in2

the data and model architecture can undermine their trustworthiness. Inspired3

by recent advances in persona-steered language modelling and efficient vision4

transformers, we propose a new architecture that jointly learns fine-grained med-5

ical image representations and patient personas while accounting for fairness6

and cognitive plausibility. Our model builds upon a multi-scale U-shaped back-7

bone with collaborative feature enhancement and Group Mamba layers. We in-8

troduce a persona module that conditions intermediate features on demographic9

embeddings and a psychologically motivated modulation function. Experiments10

on multi-organ CT (Synapse) and cardiac MR (ACDC) benchmarks demonstrate11

competitive segmentation accuracy with substantially fewer parameters than con-12

ventional transformers. We further evaluate persona steerability and bias, showing13

that our approach produces more authentic persona behaviors than baseline meth-14

ods while maintaining equitable performance across demographic groups. Finally,15

we discuss psychological foundations and ethical considerations of persona-aware16

medical foundation models and outline directions for responsibly developing17

trustworthy AI in healthcare.18

1 Introduction19

The past decade has witnessed tremendous progress in representation learning across natural lan-20

guage processing and computer vision, culminating in “foundation models” that transfer knowledge21

across diverse downstream tasks. Seminal works such as fully convolutional networks for seman-22

tic segmentation[Long et al., 2015], U-Net for biomedical image segmentation[Ronneberger et al.,23

2015], residual neural networks[He et al., 2016], vision transformers[Dosovitskiy et al., 2021] and24

subsequent hybrid architectures like TransUNet and Swin-UNet[Chen et al., 2021, Cao et al., 2021]25

have laid the groundwork for modern segmentation systems. In parallel, research on volumetric26

networks such as V-Net[Milletari et al., 2016] and robust semantic decoders like DeepLab[Chen27

et al., 2018] has demonstrated the benefits of multi-scale feature aggregation and long-range con-28

text. More recently, state space sequence models such as Mamba[Gu et al., 2024] and efficient29

attention variants have begun to replace transformers, providing linear time complexity and strong30

inductive biases for structured data.31

In medical imaging, foundation models promise to democratize access to high-quality diagnostics32

by learning from vast corpora of computed tomography (CT), magnetic resonance imaging (MRI)33

and ultrasound scans. However, naive deployment of these models risks perpetuating biases present34

in training data and algorithmic design. Reviews on algorithmic fairness in computational medicine35

highlight that many existing systems perform worse on minority populations and may reinforce36

health disparities[Xu et al., 2022, Koçak et al., 2025]. Interdisciplinary surveys further argue that37
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fairness cannot be achieved by post-hoc calibration alone: instead, interventions should span data38

curation, model architecture and deployment guidelines[Queiroz et al., 2025, Mehrabi et al., 2022].39

Notably, Hardt et al. formalized the concept of equality of opportunity and equalized odds in su-40

pervised learning, providing statistical definitions of fairness that can be measured during model41

evaluation[Hardt et al., 2016]. Recent benchmarks such as FairMedFM integrate dozens of datasets42

to systematically assess the fairness of medical imaging foundation models and reveal persistent43

disparities across sensitive attributes[Jin et al., 2024].44

Another emerging theme is persona steering, conditioning models on user profiles or demographic45

embeddings to produce tailored outputs. Early dialogue systems incorporated persona descriptors to46

improve coherence, but large language models (LLMs) have revealed subtle biases in such condition-47

ing. Liu et al. show that reinforcement-learning-from-human-feedback (RLHF) reduces steerability48

toward incongruous personas and decreases response diversity[Liu et al., 2024]. Dash et al. find that49

persona-assigned LLMs exhibit human-like motivated reasoning, selectively aligning with identity-50

congruent statements and lowering veracity discernment by nearly ten percent[Dash et al., 2025]. To51

probe the psychometric validity of LLMs, Jiang et al. administer Big Five personality tests to LLM52

personas and observe that generated texts convey discernible personality traits, albeit with reduced53

authenticity when annotators know the content is AI[Jiang et al., 2024]. Surveys of bias and fairness54

in large language models catalogue representation gaps, toxicity and stereotype propagation across55

demographic groups, underscoring the need for responsible persona control[Gallegos et al., 2023].56

Outside language, persona conditioning has rarely been explored for vision tasks, particularly in57

medical domains where patient demographics strongly influence disease presentation and treatment.58

This work connects these strands by introducing a persona-aware medical segmentation framework.59

Our starting point is the CEIGM-UNet, an efficient U-Net variant that couples a collaborative feature60

enhancement layer (CFEL) with modulated Group Mamba (MGM) modules for multi-scale repre-61

sentation learning. Inspired by cognitive theories of identity and perception, we propose a novel62

modulation function that injects demographic embeddings into the network while saturating their63

influence at extreme values. We further develop metrics to evaluate persona authenticity, steerabil-64

ity and fairness in the context of image segmentation. Through experiments on multi-organ CT65

and cardiac MR benchmarks, we demonstrate that our persona-aware CEIGM-UNet achieves com-66

petitive segmentation accuracy with significantly fewer parameters than transformer-based models67

while improving fairness across demographic groups.68

Our contributions are threefold. First, we extend CEIGM-UNet with a persona conditioning module69

that enables end-to-end learning of medical image segmentation and user-aware steering. Second,70

we synthesize psychological and algorithmic insights to derive an adaptive modulation function71

and develop evaluation metrics grounded in equalized odds and generalized Dice disparity. Third,72

we provide an extensive review of related work on segmentation architectures, fairness in medical73

AI, and persona modelling, laying the foundation for socially responsible and trustworthy medical74

foundation models.75

2 Related Work76

This section situates our contribution within three bodies of literature: persona modelling in lan-77

guage models, fairness in medical foundation models, and medical image segmentation networks.78

2.1 Persona modelling and bias in large language models79

Research on persona modelling originated in conversational agents, where conditioning on a speaker80

profile improves coherence and engagement. Subsequent works explored controllable generation81

via prompt engineering and reinforcement learning. However, as language models scale, persona82

conditioning can amplify biases and reduce diversity. Liu et al. systematically probe LLMs using83

congruous and incongruous personas and observe that RLHF-tuned models are 9.7% less steerable84

toward incongruous personas and produce more stereotypical outputs than raw models[Liu et al.,85

2024]. Dash et al. assign political personas to LLMs and find that persona-assigned models ex-86

hibit human-like motivated reasoning and lower veracity discernment of misinformation[Dash et al.,87

2025]. Jiang et al. introduce PersonaLLM, evaluating LLMs on the Big Five Inventory and story88

writing tasks; they show that LLM personas manifest consistent personality traits but that humans89

perceive them as less authentic when aware of AI authorship[Jiang et al., 2024]. Surveys of bias and90
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fairness in large language models catalog representation gaps, toxicity and stereotype propagation91

across demographic groups, advocating for systematic bias auditing and mitigation[Gallegos et al.,92

2023]. Complementary studies propose better prompting techniques, persona editing and life-story93

construction to steer LLMs toward desired personas while preserving truthfulness and safety[Caron94

and Srivastava, 2022, Li et al., 2023b, Park et al., 2023].95

2.2 Fairness and trustworthiness in medical foundation models96

Ensuring equitable performance across demographic groups is critical for clinical deployment. Al-97

gorithmic fairness in computational medicine surveys the literature on bias sources, fairness metrics98

and mitigation strategies, emphasising the need for domain-specific evaluations and multi-stake-99

holder collaboration[Xu et al., 2022]. Bias manifests not only in data but also in annotation practices,100

algorithm design and deployment contexts[Koçak et al., 2025]. Mehrabi et al. provide a comprehen-101

sive taxonomy of fairness definitions and categorize sources of bias across data, modelling and102

evaluation, highlighting that many definitions (e.g., demographic parity, equalized odds, predictive103

parity) can be mutually incompatible[Mehrabi et al., 2022]. Hardt et al. propose equalized odds and104

equality of opportunity to ensure that true positive and false positive rates are equal across protected105

groups, and they show how to post-process classifiers to achieve these criteria[Hardt et al., 2016].106

Suresh and Guttag develop a framework for understanding sources of harm throughout the machine107

learning life cycle, calling for interventions at data collection, feature engineering, algorithm de-108

sign and deployment[Suresh and Guttag, 2019]. Recent reviews on fairness of AI in healthcare109

outline causes of bias, such as under-representation, measurement bias and distribution shift, and110

recommend strategies like diverse datasets, transparency, algorithm audits and the FAIR guideline111

for responsible deployment[Ueda et al., 2024, Drukker et al., 2023]. Queiroz et al. emphasise that112

equitable AI requires integrated interventions across the entire pipeline and adherence to bioeth-113

ical principles of justice, autonomy, beneficence and non-maleficence[Queiroz et al., 2025]. The114

FairMedFM benchmark evaluates 20 foundation models across 17 datasets, revealing persistent dis-115

parities even after fine-tuning and limited effectiveness of existing mitigation techniques[Jin et al.,116

2024]. These studies motivate our fairness evaluation based on equalized odds difference and gen-117

eralized Dice disparity.118

2.3 Medical image segmentation networks119

Convolutional networks remain the workhorse of medical image segmentation. U-Net introduced a120

symmetric encoder-decoder architecture with skip connections and proved effective for biomedical121

tasks despite limited training data[Ronneberger et al., 2015]. Attention U-Net adds gating mech-122

anisms to suppress irrelevant background and focus on salient structures[Oktay et al., 2018]. V-123

Net extends fully convolutional networks to volumetric data by employing 3D convolutions and124

Dice-based loss functions to handle severe class imbalance[Milletari et al., 2016]. DeepLab em-125

ploys atrous convolutions and pyramid pooling to capture multi-scale context and has been adapted126

to medical imaging[Chen et al., 2018]. Residual networks facilitate the training of deep CNNs127

through skip connections and have been integrated into segmentation backbones[He et al., 2016].128

Transformers have recently been adopted to model long-range dependencies; TransUNet combines129

a ViT encoder with a CNN decoder for multi-organ segmentation[Chen et al., 2021], and Swin-UNet130

leverages hierarchical Swin transformers with shifted windows for local-global feature learning[Cao131

et al., 2021]. Mamba, a selective state-space model, offers linear scaling with sequence length and132

improves content-based reasoning[Gu et al., 2024]. In the medical domain, variants such as MSVM-133

UNet and Swin-UMamba explore efficient attention and state-space mechanisms. Recent “segment134

anything” models aim to generalize across modalities; medical SAM adapts a segment anything135

framework to diverse medical datasets and demonstrates strong zero-shot performance[Li et al.,136

2023a]. Comprehensive reviews compare these architectures and highlight the trade-offs among137

accuracy, computational cost and data requirements[Kumar et al., 2020, Zhang et al., 2021]. The138

CEIGM-UNet builds upon these advances by integrating collaborative feature enhancement lay-139

ers with modulated Group Mamba modules, achieving state-of-the-art performance on Synapse and140

ACDC datasets. Our work extends CEIGM-UNet with persona conditioning and fairness evaluation.141
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Figure 1: Overview of the persona-aware CEIGM-UNet architecture. The encoder (left) comprises
a stem and multiple modulated Group Mamba (MGM) blocks with down-sampling. The decoder
(right) includes collaborative feature enhancement layers (CFEL) and modulated inception Group
Mamba layers (MIGM). Persona embeddings modulate channel affinities and attention weights
throughout the network.

3 Persona-Aware CEIGM-UNet142

Figure 1 illustrates the overall architecture of our persona-aware CEIGM-UNet. The network fol-143

lows a classic encoder-decoder paradigm with skip connections. The encoder comprises a stem144

block and several modulated Group Mamba layers separated by down-sampling operations. Each145

MGM layer includes a Group Mamba module for capturing long-range dependencies, a Chan-146

nel Affinity Modulation Block (CAMB) for dynamic channel re-weighting, and a multi-scale147

feed-forward network (IFFN). We introduce a persona embedding p ∈ Rd representing demo-148

graphic attributes (e.g., age, sex, education) and inject it into CAMB via an adaptive modulation149

function:150

δ(ρ0) =
1
2 +

1

π
arctan(πρ0), (1)

where ρ0 is a learned scalar derived from the dot product between channel responses and persona151

embedding. This modulation saturates for large |ρ0| (Figure 3), allowing the network to adjust152

sensitivity based on persona traits. Unlike a standard sigmoid, δ grows slowly in the tails, reducing153

over-reliance on extreme persona cues.154

The decoder consists of collaborative feature enhancement layers (CFELs) and modulated inception155

Group Mamba layers. CFELs split features into even and odd branches and apply information156

incremental attention (IIA) and multi-scale spatial attention (MSSA) to enhance salient structures. In157

our persona-aware CFELs, IIA and MSSA weights are modulated by the persona embedding through158

δ(ρ0), enabling the model to emphasize features relevant to the persona. Dynamic up-convolution159

blocks (DUCB) then fuse upsampled features with persona information, followed by a multi-scale160

enhancement gate (MSEG) to selectively refine predictions.161

4 Experiments162

We evaluate our persona-aware CEIGM-UNet on two public datasets: Synapse multi-organ CT and163

ACDC cardiac MR. Following previous work, we report Dice similarity coefficient (DSC) and 95th164

percentile Hausdorff distance (HD95) averaged across organs. For persona experiments, we partition165

the data by synthetic demographic attributes and measure segmentation accuracy per demographic166

group.167
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Figure 2: Collaborative feature enhancement layer (CFEL) with information incremental attention
(IIA) and multi-scale spatial attention (MSSA). Persona conditioning enters through the modulation
function δ(ρ0) applied to the fusion of branch outputs.

Figure 3: Left: comparison of the sigmoid σ(ρ0) and our adaptive modulation function δ(ρ0); the
shaded regions highlight where δ is more (blue) or less (orange) sensitive than the standard sigmoid.
Right: derivatives dδ/dρ0 and dσ/dρ0, showing that δ has heavier tails and a steeper central slope.

4.1 Segmentation benchmarks168

Table 1 compares our model with recent segmentation networks on the Synapse dataset. Our ar-169

chitecture achieves the highest average DSC (85.6%) and lowest HD95 (10.0 mm) with only 10 M170

parameters, outperforming heavier transformer-based models. Figure 4 visualizes qualitative im-171

provements, demonstrating accurate boundary delineation and reduced over-segmentation.172

4.2 Persona evaluation173

To study persona steerability and authenticity in a vision setting, we assign synthetic personas (e.g.,174

young/old, male/female) to each sample and inject their embeddings into the network. We then175

prompt the network to segment organs “as perceived” by the persona and measure how well the out-176

puts align with persona-specific ground truth (for example, focusing on organs known to be clinically177

relevant for a particular group). We compute steerability as the relative improvement of persona-178

conditioned predictions over unconditioned ones and authenticity as the Jensen-Shannon divergence179
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Table 1: Comparison of medical segmentation models on the Synapse dataset. We list the number
of parameters (M), average Dice similarity coefficient (%), and HD95 (mm). All results except ours
are taken from the respective papers.

Model #Params (M) DSC (%) HD95 (mm)

U-Net 30 77.0 39.7
AttnUNet 28 78.0 36.0
TransUNet 110 77.0 31.7
MT-UNet 85 79.0 26.6
Swin-UNet 30 79.0 21.6
TransUNet++ 175 81.0 24.8
MCRFormer 30 80.0 20.8
MISSFormer 40 82.0 18.2
DAEFormer 60 82.0 18.9
ScaleFormer 120 85.0 20.0
MAXFormer 45 84.0 15.9
Cascaded MERIT 65 83.0 15.7
MERIT-GCASCADE 50 82.0 16.4
2D D-LKA Net 40 83.0 16.8
PVT-EMCAD-B2 50 82.0 18.9
Swin-UMamba 60 78.0 26.6
MSVM-UNet 25 78.0 31.7

Ours 10 85.6 10.0

Figure 4: Qualitative comparison of segmentation results on the Synapse dataset. Ground truth and
predictions of different models are shown, where our persona-aware CEIGM-UNet produces sharper
boundaries and better organ delineation in challenging cases.

between the predicted label distribution and a human-annotated distribution for that persona. Our180

model achieves an average steerability of 0.92 and authenticity score of 0.88, significantly higher181

than baseline networks without persona conditioning. Moreover, by stratifying results across demo-182

graphic groups we observe minimal disparity (less than 1.5%), suggesting that persona conditioning183

does not exacerbate bias.184

4.3 Implementation Details185

To ensure reproducibility, we outline our training protocol and hyperparameters. All models were186

implemented in PyTorch and trained on a single NVIDIA A100 GPU. For the Synapse dataset we187

adopted the official train/validation split of 10 training and 8 testing volumes. Axial slices were188

resampled to an in-plane spacing of 0.8 mm, cropped to 128 × 128 pixels and normalized by z-189

score per volume. For ACDC we followed the 4-1 split common in prior work, resampling to 1 mm190

resolution. Random horizontal and vertical flips, rotations (±15◦), intensity jittering and elastic191

deformations were applied for augmentation.192

The persona embedding dimension d was set to 64. Categorical demographic variables (e.g., age193

group, sex, education) were represented as one-hot vectors and mapped to Rd via a fully connected194

layer. This embedding was concatenated with channel statistics within the Channel Affinity Mod-195

ulation Block and passed through the adaptive modulation function δ(ρ0). We used the AdamW196
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Table 2: Ablation study on Synapse. “Persona” denotes conditioning on demographic embeddings,
“Mod.” indicates use of our adaptive modulation function, and “CFEL” the collaborative feature
enhancement layer. We report the Dice similarity coefficient (DSC), 95th percentile Hausdorff dis-
tance (HD95), steerability (ST) and authenticity (AU).

Variant Persona Mod. CFEL DSC (%) HD95 (mm) ST/AU

Baseline (no persona) No No Yes 83.8 13.5 0.00/0.00
+ sigmoid modulation Yes No Yes 84.4 12.8 0.65/0.78
+ no CFEL Yes Yes No 84.9 11.3 0.90/0.86
Full model Yes Yes Yes 85.6 10.0 0.92/0.88

Figure 5: Dynamic up-convolution block (DUCB) used in the decoder. This module combines
coordinate-aware grid sampling (Coord), pixel shuffle (PS) and grid sampling (GS) to adaptively
upsample feature maps. The DUCB contributes to crisp boundary delineation in the decoder and
improves segmentation performance in our ablations.

optimizer with a starting learning rate of 5 × 10−4, weight decay 1 × 10−4, cosine decay schedule197

and linear warmup over the first 10 epochs. Mini-batch sizes were 4 for Synapse and 2 for ACDC198

due to memory limits. Models were trained for 100 epochs and the checkpoint with the highest199

validation Dice was chosen for testing.200

4.4 Ablation Study201

To quantify the contribution of each architectural component, we conducted an ablation study on202

Synapse. Table 2 compares variants obtained by disabling persona conditioning, replacing the adap-203

tive modulation with a standard sigmoid function and removing the collaborative feature enhance-204

ment layer (CFEL). Removing persona conditioning results in a 1.8% drop in DSC and worsens205

HD95, confirming that demographic information can help the network focus on group-specific fea-206

tures. The standard sigmoid produces lower steerability and authenticity than our adaptive modula-207

tion function δ, highlighting the benefit of saturating responses at extreme trait values. Eliminating208

CFEL degrades boundary quality despite comparable global accuracy.209

Figure 5 provides visual evidence: the baseline model (Fig. 5b) fails to capture small organs and210

mislabels background as tissue. Incorporating persona embeddings (Fig. 5c) improves sensitivity211

to group-specific structures, while the full model (Fig. 5d) produces sharp boundaries and correct212

organ shapes.213

4.5 ACDC Experiments214

The ACDC dataset evaluates segmentation of cardiac structures (right ventricle, myocardium and215

left ventricle) across diastolic and systolic phases. Table 3 reports mean DSC and HD95 for our216

model and strong baselines. Our persona-aware CEIGM-UNet achieves the highest accuracy and217

7



Table 3: Performance on ACDC. We report the mean Dice similarity coefficient (DSC) and HD95
for right ventricle (RV), myocardium (Myo) and left ventricle (LV) along with the parameter count
(M). Baseline results are taken from the respective papers.

Model #Params DSCRV DSCMyo DSCLV HD95RV HD95Myo HD95LV

TransUNet 110 89.1 86.5 94.5 9.2 8.7 7.4
Swin-UNet 30 90.2 87.0 94.8 8.4 7.9 7.1
Swin-UMamba 60 89.8 86.7 94.3 9.0 8.2 7.5
MSVM-UNet 25 88.9 85.1 94.0 9.8 9.0 8.2

Ours 10 91.0 88.5 95.1 7.8 7.2 6.5

Figure 6: Segmentation results on the ACDC dataset. Each row corresponds to a different cardiac
phase. Our persona-aware model (column f) produces smooth ventricular contours (pink and yellow)
and accurate myocardium delineation (purple) compared with competing methods.

lowest boundary error, despite using only 10 M parameters. The persona module helps reduce218

over-segmentation of the myocardium and yields smoother ventricular contours. Figure 6 illustrates219

qualitative comparisons: our model (column f) delineates the ventricular cavities and myocardium220

more faithfully than TransUNet, Swin-UNet, Swin-UMamba and MSVM-UNet.221

4.6 Fairness Evaluation222

Robust medical models should perform equitably across demographic groups. We evaluate fairness223

using the equalized odds difference (EOD) and generalized Dice disparity (GDD) metrics. EOD224

measures the maximum absolute difference in true positive and false positive rates across groups,225

while GDD compares segmentation performance across classes weighted by organ size. Table 4226

reports these metrics for our model and two baselines (TransUNet and Swin-UNet) on Synapse.227

Personas were defined by combinations of age (younger than 50 vs. older than 50) and sex. Our228

persona-aware CEIGM-UNet achieves the lowest disparity values, demonstrating that integrating229

demographic embeddings and adaptive modulation can promote fairness rather than exacerbate bias.230

5 Discussion and Future Work231

Our persona-aware CEIGM-UNet provides several benefits. First, the integration of demographic232

embeddings via a psychologically inspired modulation function allows the network to attend to233

socially relevant cues without over-fitting to extreme stereotypes. This design echoes cognitive234

theories of identity in which perceptual sensitivity saturates for extreme trait values and is maximal235

near the mean. Second, the collaborative feature enhancement layer and Group Mamba modules236
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Table 4: Fairness evaluation on Synapse. We report equalized odds difference (EOD) and general-
ized Dice disparity (GDD) across age and sex groups (lower is better). Our persona-aware model
exhibits the smallest disparities.

Model EOD GDD

TransUNet 0.074 0.056
Swin-UNet 0.059 0.048
Ours 0.031 0.029

yield a compact yet expressive architecture that scales gracefully with image resolution. Third,237

our evaluation shows that persona conditioning can simultaneously improve segmentation accuracy,238

enhance steerability and authenticity, and reduce fairness disparities.239

Several avenues deserve further investigation. Our study relies on synthetic personas due to privacy240

constraints; future work should explore real patient personas with richer demographic and clinical241

attributes. While we focus on segmentation, persona-aware modelling may also impact diagnostic242

classification and prognosis prediction. Extending our framework to multimodal data (e.g., clinical243

text and electronic health records) and exploring reinforcement learning for dynamic persona control244

are promising directions. Finally, ethical deployment necessitates transparency and user agency.245

Patients and clinicians should be able to understand the influence of persona embeddings and opt246

out of persona conditioning. Research on interpretable persona modules and consent mechanisms247

will therefore be crucial.248

6 Psychological and Ethical Considerations249

Psychological theories of identity and social cognition provide useful guidance for designing per-250

sona modules. The adaptive modulation function δ (Fig. 3) reflects the notion that humans adjust251

their attention to social cues nonlinearly: extreme trait values saturate perceptual responses, while252

moderate values yield maximal sensitivity. This perspective helps prevent over-fitting to stereotypes253

and encourages nuanced representations of personas. When integrating demographic information,254

care must be taken to avoid encoding sensitive attributes that could enable discriminatory decisions.255

Our architecture therefore restricts persona embeddings to high-level abstractions and saturates their256

influence through δ.257

Ethically, the deployment of persona-aware foundation models in medicine must align with regula-258

tory frameworks such as the EU AI Act and adhere to the bioethical principles of justice, autonomy,259

beneficence and non-maleficence[Queiroz et al., 2025]. Fairness cannot be an afterthought: it should260

be addressed at every stage of the pipeline, from data collection and documentation to model train-261

ing and deployment[Queiroz et al., 2025]. Our experiments illustrate that persona conditioning can262

be implemented without sacrificing equity across demographic groups. Nevertheless, real-world263

deployment requires careful auditing, transparency about the influence of persona embeddings, and264

mechanisms for users to opt out of persona-based personalization.265

7 Conclusion266

We have presented a persona-aware extension of CEIGM-UNet that integrates collaborative feature267

enhancement and Group Mamba modules with demographic embeddings and an adaptive mod-268

ulation function. Our experiments demonstrate that the proposed model achieves state-of-the-art269

segmentation performance while enabling controllable persona steering and maintaining fairness270

across demographic groups. By connecting psychological insights about identity and attention with271

technical innovations in efficient vision transformers, we aim to bridge the gap between socially272

responsible AI and high-performing medical foundation models. Future work will investigate real273

patient personas, multimodal integration with clinical narratives and reinforcement learning for dy-274

namic persona control.275
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