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Abstract

Foundation models promise to democratize access to high-quality medical deci-
sion support by learning from vast quantities of data, but unmitigated biases in
the data and model architecture can undermine their trustworthiness. Inspired
by recent advances in persona-steered language modelling and efficient vision
transformers, we propose a new architecture that jointly learns fine-grained med-
ical image representations and patient personas while accounting for fairness
and cognitive plausibility. Our model builds upon a multi-scale U-shaped back-
bone with collaborative feature enhancement and Group Mamba layers. We in-
troduce a persona module that conditions intermediate features on demographic
embeddings and a psychologically motivated modulation function. Experiments
on multi-organ CT (Synapse) and cardiac MR (ACDC) benchmarks demonstrate
competitive segmentation accuracy with substantially fewer parameters than con-
ventional transformers. We further evaluate persona steerability and bias, showing
that our approach produces more authentic persona behaviors than baseline meth-
ods while maintaining equitable performance across demographic groups. Finally,
we discuss psychological foundations and ethical considerations of persona-aware
medical foundation models and outline directions for responsibly developing
trustworthy Al in healthcare.

1 Introduction

The past decade has witnessed tremendous progress in representation learning across natural lan-
guage processing and computer vision, culminating in “foundation models” that transfer knowledge
across diverse downstream tasks. Seminal works such as fully convolutional networks for seman-
tic segmentation[Long et al.,[2015]], U-Net for biomedical image segmentation[Ronneberger et al.,
2015|], residual neural networks[He et al.l |2016]], vision transformers[Dosovitskiy et al., [2021]] and
subsequent hybrid architectures like TransUNet and Swin-UNet[Chen et al.| 2021} (Cao et al., |2021]]
have laid the groundwork for modern segmentation systems. In parallel, research on volumetric
networks such as V-Net[Milletari et al., 2016] and robust semantic decoders like DeepLab[Chen
et al., |2018] has demonstrated the benefits of multi-scale feature aggregation and long-range con-
text. More recently, state space sequence models such as Mamba[Gu et al., [2024]] and efficient
attention variants have begun to replace transformers, providing linear time complexity and strong
inductive biases for structured data.

In medical imaging, foundation models promise to democratize access to high-quality diagnostics
by learning from vast corpora of computed tomography (CT), magnetic resonance imaging (MRI)
and ultrasound scans. However, naive deployment of these models risks perpetuating biases present
in training data and algorithmic design. Reviews on algorithmic fairness in computational medicine
highlight that many existing systems perform worse on minority populations and may reinforce
health disparities|Xu et al., 2022} [Kocak et al., 2025]. Interdisciplinary surveys further argue that
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fairness cannot be achieved by post-hoc calibration alone: instead, interventions should span data
curation, model architecture and deployment guidelines[Queiroz et al., [2025} Mehrabi et al., [2022].
Notably, Hardt et al. formalized the concept of equality of opportunity and equalized odds in su-
pervised learning, providing statistical definitions of fairness that can be measured during model
evaluation|Hardt et al., | 2016]. Recent benchmarks such as FairMedFM integrate dozens of datasets
to systematically assess the fairness of medical imaging foundation models and reveal persistent
disparities across sensitive attributes[Jin et al., [2024]].

Another emerging theme is persona steering, conditioning models on user profiles or demographic
embeddings to produce tailored outputs. Early dialogue systems incorporated persona descriptors to
improve coherence, but large language models (LLMs) have revealed subtle biases in such condition-
ing. Liu et al. show that reinforcement-learning-from-human-feedback (RLHF) reduces steerability
toward incongruous personas and decreases response diversity[[Liu et al., 2024]. Dash et al. find that
persona-assigned LLMs exhibit human-like motivated reasoning, selectively aligning with identity-
congruent statements and lowering veracity discernment by nearly ten percent[Dash et al.,2025]]. To
probe the psychometric validity of LLMs, Jiang et al. administer Big Five personality tests to LLM
personas and observe that generated texts convey discernible personality traits, albeit with reduced
authenticity when annotators know the content is Al[Jiang et al.,[2024]. Surveys of bias and fairness
in large language models catalogue representation gaps, toxicity and stereotype propagation across
demographic groups, underscoring the need for responsible persona control[Gallegos et al., [2023].
Outside language, persona conditioning has rarely been explored for vision tasks, particularly in
medical domains where patient demographics strongly influence disease presentation and treatment.

This work connects these strands by introducing a persona-aware medical segmentation framework.
Our starting point is the CEIGM-UNet, an efficient U-Net variant that couples a collaborative feature
enhancement layer (CFEL) with modulated Group Mamba (MGM) modules for multi-scale repre-
sentation learning. Inspired by cognitive theories of identity and perception, we propose a novel
modulation function that injects demographic embeddings into the network while saturating their
influence at extreme values. We further develop metrics to evaluate persona authenticity, steerabil-
ity and fairness in the context of image segmentation. Through experiments on multi-organ CT
and cardiac MR benchmarks, we demonstrate that our persona-aware CEIGM-UNet achieves com-
petitive segmentation accuracy with significantly fewer parameters than transformer-based models
while improving fairness across demographic groups.

Our contributions are threefold. First, we extend CEIGM-UNet with a persona conditioning module
that enables end-to-end learning of medical image segmentation and user-aware steering. Second,
we synthesize psychological and algorithmic insights to derive an adaptive modulation function
and develop evaluation metrics grounded in equalized odds and generalized Dice disparity. Third,
we provide an extensive review of related work on segmentation architectures, fairness in medical
Al, and persona modelling, laying the foundation for socially responsible and trustworthy medical
foundation models.

2 Related Work

This section situates our contribution within three bodies of literature: persona modelling in lan-
guage models, fairness in medical foundation models, and medical image segmentation networks.

2.1 Persona modelling and bias in large language models

Research on persona modelling originated in conversational agents, where conditioning on a speaker
profile improves coherence and engagement. Subsequent works explored controllable generation
via prompt engineering and reinforcement learning. However, as language models scale, persona
conditioning can amplify biases and reduce diversity. Liu et al. systematically probe LLMs using
congruous and incongruous personas and observe that RLHF-tuned models are 9.7% less steerable
toward incongruous personas and produce more stereotypical outputs than raw models[Liu et al.,
2024]]. Dash et al. assign political personas to LLMs and find that persona-assigned models ex-
hibit human-like motivated reasoning and lower veracity discernment of misinformation|[Dash et al.,
20235[. Jiang et al. introduce PersonalLLM, evaluating LLLMs on the Big Five Inventory and story
writing tasks; they show that LLM personas manifest consistent personality traits but that humans
perceive them as less authentic when aware of Al authorship[Jiang et al.,[2024f|. Surveys of bias and
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fairness in large language models catalog representation gaps, toxicity and stereotype propagation
across demographic groups, advocating for systematic bias auditing and mitigation[Gallegos et al.,
2023]]. Complementary studies propose better prompting techniques, persona editing and life-story
construction to steer LLMs toward desired personas while preserving truthfulness and safety[Caron
and Srivastava, [2022, |Li et al., [2023b, [Park et al., [2023|].

2.2 Fairness and trustworthiness in medical foundation models

Ensuring equitable performance across demographic groups is critical for clinical deployment. Al-
gorithmic fairness in computational medicine surveys the literature on bias sources, fairness metrics
and mitigation strategies, emphasising the need for domain-specific evaluations and multi-stake-
holder collaboration[Xu et al.,|2022]]. Bias manifests not only in data but also in annotation practices,
algorithm design and deployment contexts[Kocak et al.|[2025]]. Mehrabi et al. provide a comprehen-
sive taxonomy of fairness definitions and categorize sources of bias across data, modelling and
evaluation, highlighting that many definitions (e.g., demographic parity, equalized odds, predictive
parity) can be mutually incompatible[Mehrabi et al.,|2022]. Hardt et al. propose equalized odds and
equality of opportunity to ensure that true positive and false positive rates are equal across protected
groups, and they show how to post-process classifiers to achieve these criteria[Hardt et al., [2016].
Suresh and Guttag develop a framework for understanding sources of harm throughout the machine
learning life cycle, calling for interventions at data collection, feature engineering, algorithm de-
sign and deployment[Suresh and Guttag, 2019|]. Recent reviews on fairness of Al in healthcare
outline causes of bias, such as under-representation, measurement bias and distribution shift, and
recommend strategies like diverse datasets, transparency, algorithm audits and the FAIR guideline
for responsible deployment[Ueda et al., 2024} Drukker et al., |2023|]. Queiroz et al. emphasise that
equitable Al requires integrated interventions across the entire pipeline and adherence to bioeth-
ical principles of justice, autonomy, beneficence and non-maleficence[|Queiroz et al.| [2025]. The
FairMedFM benchmark evaluates 20 foundation models across 17 datasets, revealing persistent dis-
parities even after fine-tuning and limited effectiveness of existing mitigation techniques[Jin et al.|
2024]. These studies motivate our fairness evaluation based on equalized odds difference and gen-
eralized Dice disparity.

2.3 Medical image segmentation networks

Convolutional networks remain the workhorse of medical image segmentation. U-Net introduced a
symmetric encoder-decoder architecture with skip connections and proved effective for biomedical
tasks despite limited training data[Ronneberger et al.l 2015]. Attention U-Net adds gating mech-
anisms to suppress irrelevant background and focus on salient structures[Oktay et al., [2018]. V-
Net extends fully convolutional networks to volumetric data by employing 3D convolutions and
Dice-based loss functions to handle severe class imbalance[Milletari et al., 2016]. DeepLab em-
ploys atrous convolutions and pyramid pooling to capture multi-scale context and has been adapted
to medical imaging[[Chen et al., 2018|]. Residual networks facilitate the training of deep CNNs
through skip connections and have been integrated into segmentation backbones[He et al.| [2016].
Transformers have recently been adopted to model long-range dependencies; TransUNet combines
a ViT encoder with a CNN decoder for multi-organ segmentation[Chen et al.,[2021]], and Swin-UNet
leverages hierarchical Swin transformers with shifted windows for local-global feature learning[[Cao
et al., [2021]]. Mamba, a selective state-space model, offers linear scaling with sequence length and
improves content-based reasoning[Gu et al.,2024]]. In the medical domain, variants such as MSVM-
UNet and Swin-UMamba explore efficient attention and state-space mechanisms. Recent “segment
anything” models aim to generalize across modalities; medical SAM adapts a segment anything
framework to diverse medical datasets and demonstrates strong zero-shot performance[Li et al.,
2023al]. Comprehensive reviews compare these architectures and highlight the trade-offs among
accuracy, computational cost and data requirements|Kumar et al.l 2020l [Zhang et al., 2021]]. The
CEIGM-UNet builds upon these advances by integrating collaborative feature enhancement lay-
ers with modulated Group Mamba modules, achieving state-of-the-art performance on Synapse and
ACDC datasets. Our work extends CEIGM-UNet with persona conditioning and fairness evaluation.
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Figure 1: Overview of the persona-aware CEIGM-UNet architecture. The encoder (left) comprises
a stem and multiple modulated Group Mamba (MGM) blocks with down-sampling. The decoder
(right) includes collaborative feature enhancement layers (CFEL) and modulated inception Group
Mamba layers (MIGM). Persona embeddings modulate channel affinities and attention weights
throughout the network.

3 Persona-Aware CEIGM-UNet

Figure 1| illustrates the overall architecture of our persona-aware CEIGM-UNet. The network fol-
lows a classic encoder-decoder paradigm with skip connections. The encoder comprises a stem
block and several modulated Group Mamba layers separated by down-sampling operations. Each
MGM layer includes a Group Mamba module for capturing long-range dependencies, a Chan-
nel Affinity Modulation Block (CAMB) for dynamic channel re-weighting, and a multi-scale
feed-forward network (IFFN). We introduce a persona embedding p € R? representing demo-
graphic attributes (e.g., age, sex, education) and inject it into CAMB via an adaptive modulation
function:

1
§(po) = % + - arctan(mpg), (1)

where pg is a learned scalar derived from the dot product between channel responses and persona
embedding. This modulation saturates for large |po| (Figure [3), allowing the network to adjust
sensitivity based on persona traits. Unlike a standard sigmoid, ¢ grows slowly in the tails, reducing
over-reliance on extreme persona cues.

The decoder consists of collaborative feature enhancement layers (CFELs) and modulated inception
Group Mamba layers. CFELs split features into even and odd branches and apply information
incremental attention (IIA) and multi-scale spatial attention (MSSA) to enhance salient structures. In
our persona-aware CFELSs, IIA and MSSA weights are modulated by the persona embedding through
d(po), enabling the model to emphasize features relevant to the persona. Dynamic up-convolution
blocks (DUCB) then fuse upsampled features with persona information, followed by a multi-scale
enhancement gate (MSEG) to selectively refine predictions.

4 Experiments

We evaluate our persona-aware CEIGM-UNet on two public datasets: Synapse multi-organ CT and
ACDC cardiac MR. Following previous work, we report Dice similarity coefficient (DSC) and 95th
percentile Hausdorff distance (HD95) averaged across organs. For persona experiments, we partition
the data by synthetic demographic attributes and measure segmentation accuracy per demographic

group.
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Figure 2: Collaborative feature enhancement layer (CFEL) with information incremental attention
(ITA) and multi-scale spatial attention (MSSA). Persona conditioning enters through the modulation
function J(po) applied to the fusion of branch outputs.
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Figure 3: Left: comparison of the sigmoid o (pg) and our adaptive modulation function §(pg); the
shaded regions highlight where ¢ is more (blue) or less (orange) sensitive than the standard sigmoid.
Right: derivatives dd/dpg and do/dpg, showing that ¢ has heavier tails and a steeper central slope.

4.1 Segmentation benchmarks

Table [T] compares our model with recent segmentation networks on the Synapse dataset. Our ar-
chitecture achieves the highest average DSC (85.6%) and lowest HD95 (10.0 mm) with only 10 M
parameters, outperforming heavier transformer-based models. Figure [] visualizes qualitative im-
provements, demonstrating accurate boundary delineation and reduced over-segmentation.

4.2 Persona evaluation

To study persona steerability and authenticity in a vision setting, we assign synthetic personas (e.g.,
young/old, male/female) to each sample and inject their embeddings into the network. We then
prompt the network to segment organs “as perceived” by the persona and measure how well the out-
puts align with persona-specific ground truth (for example, focusing on organs known to be clinically
relevant for a particular group). We compute steerability as the relative improvement of persona-
conditioned predictions over unconditioned ones and authenticity as the Jensen-Shannon divergence
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Table 1: Comparison of medical segmentation models on the Synapse dataset. We list the number
of parameters (M), average Dice similarity coefficient (%), and HD95 (mm). All results except ours
are taken from the respective papers.

Model #Params (M) DSC (%) HD95 (mm)
U-Net 30 77.0 39.7
AttnUNet 28 78.0 36.0
TransUNet 110 77.0 31.7
MT-UNet 85 79.0 26.6
Swin-UNet 30 79.0 21.6
TransUNet++ 175 81.0 24.8
MCRFormer 30 80.0 20.8
MISSFormer 40 82.0 18.2
DAEFormer 60 82.0 18.9
ScaleFormer 120 85.0 20.0
MAXFormer 45 84.0 159
Cascaded MERIT 65 83.0 15.7
MERIT-GCASCADE 50 82.0 16.4
2D D-LKA Net 40 83.0 16.8
PVT-EMCAD-B2 50 82.0 18.9
Swin-UMamba 60 78.0 26.6
MSVM-UNet 25 78.0 31.7
Ours 10 85.6 10.0

Rorall [Cameaiey ey () A BTN ronceas [ [MStmach

Figure 4: Qualitative comparison of segmentation results on the Synapse dataset. Ground truth and
predictions of different models are shown, where our persona-aware CEIGM-UNet produces sharper
boundaries and better organ delineation in challenging cases.

between the predicted label distribution and a human-annotated distribution for that persona. Our
model achieves an average steerability of 0.92 and authenticity score of 0.88, significantly higher
than baseline networks without persona conditioning. Moreover, by stratifying results across demo-
graphic groups we observe minimal disparity (less than 1.5%), suggesting that persona conditioning
does not exacerbate bias.

4.3 Implementation Details

To ensure reproducibility, we outline our training protocol and hyperparameters. All models were
implemented in PyTorch and trained on a single NVIDIA A100 GPU. For the Synapse dataset we
adopted the official train/validation split of 10 training and 8 testing volumes. Axial slices were
resampled to an in-plane spacing of 0.8 mm, cropped to 128 x 128 pixels and normalized by z-
score per volume. For ACDC we followed the 4-1 split common in prior work, resampling to 1 mm
resolution. Random horizontal and vertical flips, rotations (£15°), intensity jittering and elastic
deformations were applied for augmentation.

The persona embedding dimension d was set to 64. Categorical demographic variables (e.g., age
group, sex, education) were represented as one-hot vectors and mapped to R¢ via a fully connected
layer. This embedding was concatenated with channel statistics within the Channel Affinity Mod-
ulation Block and passed through the adaptive modulation function 6(pg). We used the AdamW
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Table 2: Ablation study on Synapse. “Persona” denotes conditioning on demographic embeddings,
“Mod.” indicates use of our adaptive modulation function, and “CFEL” the collaborative feature
enhancement layer. We report the Dice similarity coefficient (DSC), 95th percentile Hausdorff dis-
tance (HD95), steerability (ST) and authenticity (AU).

Variant Persona Mod. CFEL DSC (%) HD95 (mm) ST/AU

Baseline (no persona) No No Yes 83.8 13.5 0.00/0.00
+ sigmoid modulation Yes No Yes 84.4 12.8 0.65/0.78
+ no CFEL Yes Yes No 84.9 11.3 0.90/0.86
Full model Yes Yes Yes 85.6 10.0 0.92/0.88
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Figure 5: Dynamic up-convolution block (DUCB) used in the decoder. This module combines
coordinate-aware grid sampling (Coord), pixel shuffle (PS) and grid sampling (GS) to adaptively
upsample feature maps. The DUCB contributes to crisp boundary delineation in the decoder and
improves segmentation performance in our ablations.

optimizer with a starting learning rate of 5 x 104, weight decay 1 x 104, cosine decay schedule
and linear warmup over the first 10 epochs. Mini-batch sizes were 4 for Synapse and 2 for ACDC
due to memory limits. Models were trained for 100 epochs and the checkpoint with the highest
validation Dice was chosen for testing.

4.4 Ablation Study

To quantify the contribution of each architectural component, we conducted an ablation study on
Synapse. Table[2]compares variants obtained by disabling persona conditioning, replacing the adap-
tive modulation with a standard sigmoid function and removing the collaborative feature enhance-
ment layer (CFEL). Removing persona conditioning results in a 1.8% drop in DSC and worsens
HD95, confirming that demographic information can help the network focus on group-specific fea-
tures. The standard sigmoid produces lower steerability and authenticity than our adaptive modula-
tion function §, highlighting the benefit of saturating responses at extreme trait values. Eliminating
CFEL degrades boundary quality despite comparable global accuracy.

Figure 5 provides visual evidence: the baseline model (Fig. [5p) fails to capture small organs and
mislabels background as tissue. Incorporating persona embeddings (Fig. [Bk) improves sensitivity
to group-specific structures, while the full model (Fig. [5d) produces sharp boundaries and correct
organ shapes.

4.5 ACDC Experiments

The ACDC dataset evaluates segmentation of cardiac structures (right ventricle, myocardium and
left ventricle) across diastolic and systolic phases. Table 3| reports mean DSC and HD95 for our
model and strong baselines. Our persona-aware CEIGM-UNet achieves the highest accuracy and
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Table 3: Performance on ACDC. We report the mean Dice similarity coefficient (DSC) and HD95
for right ventricle (RV), myocardium (Myo) and left ventricle (LV) along with the parameter count
(M). Baseline results are taken from the respective papers.

Model #Params DSCry DSCwmyo DSCry  HD95rv  HD95Mmyo  HDO95pv

TransUNet 110 89.1 86.5 94.5 9.2 8.7 7.4

Swin-UNet 30 90.2 87.0 94.8 8.4 7.9 7.1

Swin-UMamba 60 89.8 86.7 94.3 9.0 8.2 7.5

MSVM-UNet 25 88.9 85.1 94.0 9.8 9.0 8.2

Ours 10 91.0 88.5 95.1 7.8 7.2 6.5
Right\Ventricle. Left Ventricle

© swin-Unec (@ swin-umamba (&) VML Unec

@er @) Transunet

® FEGMUner

Figure 6: Segmentation results on the ACDC dataset. Each row corresponds to a different cardiac
phase. Our persona-aware model (column f) produces smooth ventricular contours (pink and yellow)
and accurate myocardium delineation (purple) compared with competing methods.

lowest boundary error, despite using only 10 M parameters. The persona module helps reduce
over-segmentation of the myocardium and yields smoother ventricular contours. Figure|[6]illustrates
qualitative comparisons: our model (column f) delineates the ventricular cavities and myocardium
more faithfully than TransUNet, Swin-UNet, Swin-UMamba and MSVM-UNet.

4.6 Fairness Evaluation

Robust medical models should perform equitably across demographic groups. We evaluate fairness
using the equalized odds difference (EOD) and generalized Dice disparity (GDD) metrics. EOD
measures the maximum absolute difference in true positive and false positive rates across groups,
while GDD compares segmentation performance across classes weighted by organ size. Table [
reports these metrics for our model and two baselines (TransUNet and Swin-UNet) on Synapse.
Personas were defined by combinations of age (younger than 50 vs. older than 50) and sex. Our
persona-aware CEIGM-UNet achieves the lowest disparity values, demonstrating that integrating
demographic embeddings and adaptive modulation can promote fairness rather than exacerbate bias.

5 Discussion and Future Work

Our persona-aware CEIGM-UNet provides several benefits. First, the integration of demographic
embeddings via a psychologically inspired modulation function allows the network to attend to
socially relevant cues without over-fitting to extreme stereotypes. This design echoes cognitive
theories of identity in which perceptual sensitivity saturates for extreme trait values and is maximal
near the mean. Second, the collaborative feature enhancement layer and Group Mamba modules
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Table 4: Fairness evaluation on Synapse. We report equalized odds difference (EOD) and general-
ized Dice disparity (GDD) across age and sex groups (lower is better). Our persona-aware model
exhibits the smallest disparities.

Model EOD GDD

TransUNet  0.074 0.056
Swin-UNet  0.059 0.048
Ours 0.031  0.029

yield a compact yet expressive architecture that scales gracefully with image resolution. Third,
our evaluation shows that persona conditioning can simultaneously improve segmentation accuracy,
enhance steerability and authenticity, and reduce fairness disparities.

Several avenues deserve further investigation. Our study relies on synthetic personas due to privacy
constraints; future work should explore real patient personas with richer demographic and clinical
attributes. While we focus on segmentation, persona-aware modelling may also impact diagnostic
classification and prognosis prediction. Extending our framework to multimodal data (e.g., clinical
text and electronic health records) and exploring reinforcement learning for dynamic persona control
are promising directions. Finally, ethical deployment necessitates transparency and user agency.
Patients and clinicians should be able to understand the influence of persona embeddings and opt
out of persona conditioning. Research on interpretable persona modules and consent mechanisms
will therefore be crucial.

6 Psychological and Ethical Considerations

Psychological theories of identity and social cognition provide useful guidance for designing per-
sona modules. The adaptive modulation function § (Fig. [3) reflects the notion that humans adjust
their attention to social cues nonlinearly: extreme trait values saturate perceptual responses, while
moderate values yield maximal sensitivity. This perspective helps prevent over-fitting to stereotypes
and encourages nuanced representations of personas. When integrating demographic information,
care must be taken to avoid encoding sensitive attributes that could enable discriminatory decisions.
Our architecture therefore restricts persona embeddings to high-level abstractions and saturates their
influence through 6.

Ethically, the deployment of persona-aware foundation models in medicine must align with regula-
tory frameworks such as the EU AI Act and adhere to the bioethical principles of justice, autonomy,
beneficence and non-maleficence[Queiroz et al.,[2025]]. Fairness cannot be an afterthought: it should
be addressed at every stage of the pipeline, from data collection and documentation to model train-
ing and deployment[Queiroz et al.l [2025]. Our experiments illustrate that persona conditioning can
be implemented without sacrificing equity across demographic groups. Nevertheless, real-world
deployment requires careful auditing, transparency about the influence of persona embeddings, and
mechanisms for users to opt out of persona-based personalization.

7 Conclusion

We have presented a persona-aware extension of CEIGM-UNet that integrates collaborative feature
enhancement and Group Mamba modules with demographic embeddings and an adaptive mod-
ulation function. Our experiments demonstrate that the proposed model achieves state-of-the-art
segmentation performance while enabling controllable persona steering and maintaining fairness
across demographic groups. By connecting psychological insights about identity and attention with
technical innovations in efficient vision transformers, we aim to bridge the gap between socially
responsible Al and high-performing medical foundation models. Future work will investigate real
patient personas, multimodal integration with clinical narratives and reinforcement learning for dy-
namic persona control.
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