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Abstract

Visual state-space models (SSMs) such as Mamba have emerged as strong back-
bones for medical image segmentation due to their ability to capture long-range
dependencies with linear computational complexity. However, existing Mamba-
based architectures provide limited support for explicit feature selection, tar-
geted feature enhancement, and dedicated multi-scale representation learning,
leaving them vulnerable to confusing anatomical structures and imaging noise.
Moreover, segmentation models deployed in real-world clinical environments
must remain robust across heterogeneous demographic profiles without ampli-
fying spurious or stereotype-like correlations. We introduce Persona-guided
Collaborative Enhancement and Inception GroupMamba UNet (Persona-Guided
CEIGM-UNet), a Mamba-based segmentation framework that addresses these
limitations. Built upon a GroupMamba encoder, our design incorporates: (i)
a Collaborative Feature Enhancement Layer (CFEL) that integrates attention-
guided refinement, dynamic up-convolution, and multi-scale enhancement gating;
(i) a Modulated Inception Group Mamba Layer (MIGML) that couples multi-
scale local pattern extraction with long-range dependency modeling; and (iii) a
lightweight Demographic-Aware Persona Modulation (DAPM) branch that maps
demographic meta-information to bounded channel-wise modulation factors, en-
abling mild, controlled feature adaptation. Experiments on the Synapse and
ACDC datasets show that the CEIGM-UNet backbone achieves state-of-the-art
performance with fewer parameters and competitive FLOPs. A preliminary fair-
ness evaluation on Synapse, assessing equalized odds differences and generalized
Dice disparities across age and sex, suggests that persona-guided modulation can
reduce group-wise performance gaps relative to strong Transformer baselines.

1 Introduction

Medical image segmentation underpins computer-aided diagnosis and image-guided therapy by de-
lineating organs and lesions in CT or MRI scans [1} 2. Convolutional neural networks (CNNs),
exemplified by U-Net, remain the dominant paradigm for this task, yet their inherently local re-
ceptive fields restrict their ability to capture long-range anatomical dependencies [3| [1, 4]. Vision
Transformers address this limitation through global self-attention, but their quadratic complexity
with respect to sequence length leads to substantial memory and computational overhead [} 16} [7, 8]].

State space models (SSMs), such as S4 and the recently proposed Mamba, offer a compelling alter-
native by modeling long-range dependencies with linear-time complexity and have shown promise
in visual and medical segmentation tasks [9} [10} [11]]. Nevertheless, current Mamba-based designs
largely focus on global sequence modeling and provide limited support for explicit feature selection
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or structured multi-scale feature learning, particularly within decoder stages. This omission ren-
ders them vulnerable to confounding background structures and to the challenges posed by small or

irregular anatomical regions.

Beyond accuracy, segmentation models
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long-range dependency strengths of state-
space models, and (iii) enables controlled
demographic-aware conditioning to sup-
port responsible deployment in heteroge-
neous clinical populations. Motivated by
these goals, we design a Mamba-based
framework that jointly improves feature
discrimination, representation granularity,
and fairness-oriented adaptability.
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Figure 1: Comparison of different methods on the
Synapse dataset in terms of model complexity and seg-
mentation performance. The proposed CEIGM-UNet
achieves the highest average DSC and the lowest HD95
with the fewest parameters.

In summary, this paper makes the following contributions.

* We propose CEIGM-UNet, a new Mamba-based U-shaped architecture, which integrates a Col-
laborative Feature Enhancement Layer (CFEL) with a Modulated Inception Group Mamba Layer
(MIGML). CFEL explicitly selects, enhances, and propagates target-relevant features, while
MIGML couples multi-scale local pattern extraction with long-range dependency modeling.

* We introduce a lightweight Demographic-Aware Persona Modulation (DAPM) branch that con-
ditions intermediate feature channels on a low-dimensional persona vector derived from demo-
graphic meta-information. A bounded modulation budget restricts the magnitude of channel
re-weighting, encouraging calibrated adaptation rather than stereotype amplification.

* We perform extensive experiments and fairness analysis. On the Synapse abdominal CT and
ACDC cardiac MRI datasets, CEIGM-UNet achieves state-of-the-art segmentation performance
with fewer parameters and competitive FLOPs. A preliminary fairness evaluation across age and
sex on Synapse shows that enabling DAPM reduces group-wise disparities without degrading
overall performance.

2 Related Work

2.1 CNN-Based and Transformer-Based Segmentation

U-Net and its numerous variants form the foundation of modern medical image segmentation, lever-
aging hierarchical convolutional encoders and decoders to capture spatial structure [1} [15]. While
effective, their inherently local receptive fields limit their ability to model long-range anatomical
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Figure 2: Overall architecture of the proposed Persona-Guided CEIGM-UNet. The network consists
of a GroupMamba-T encoder, a CFEL-augmented decoder, a prediction head, and a demographic-
aware persona modulation (DAPM) branch.

dependencies. Transformer-based architectures address this limitation by incorporating global self-
attention, and are often combined with CNNs to balance local detail with global context. However,
the quadratic complexity of self-attention with respect to sequence length renders such models com-
putationally expensive for high-resolution medical imaging [} 6} 7, 8, [16].

2.2 Mamba-Based Segmentation

State space models (SSMs), including S4 and the recently introduced Mamba, provide a linear-time
alternative for modeling long-range dependencies [9)]. Their strong expressiveness and efficiency
have motivated the development of visual Mamba variants in hybrid CNN-SSM frameworks and in
pure SSM-based encoders [10,[17,[11]. Despite their promise, existing Mamba-based designs largely
emphasize global sequence modeling and offer limited mechanisms for explicit feature selection,
multi-scale feature fusion, or structured decoder design, which restricts their ability to handle fine-
grained targets and small, irregular anatomical structures.

2.3 Demographic-Aware and Persona-Guided Modeling

Fairness-aware medical imaging research has increasingly focused on assessing and mitigating per-
formance disparities across demographic groups through subgroup evaluation, bias analysis, and
regularization strategies [[12, 18} [19}20]. In parallel, persona-guided conditioning has been explored
in vision-language and foundation models, where low-dimensional vectors modulate internal repre-
sentations to influence downstream behavior [21}, 22]]. Inspired by these developments, we extend
Mamba-based segmentation by incorporating a lightweight, explicitly bounded persona modulation
branch and investigate its effect on subgroup fairness without compromising overall segmentation
performance.

3 Method

3.1 Overview of Persona-Guided CEIGM-UNet

As illustrated in Figure [2] Persona-Guided CEIGM-UNet adopts a U-shaped segmentation archi-
tecture composed of a GroupMamba-based encoder, a CFEL-enhanced decoder, and standard skip
connections. The network begins with a stem block for initial feature extraction, after which the
encoder processes the input through four hierarchical stages built upon GroupMamba-T. Each stage
contains several Modulated Group Mamba (MGM) Layers, with downsampling applied at the be-
ginning of all but the first stage.
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Figure 3: Structure of the Dual-branch Attention-guided Feature Enhancement Module (DAFEM),
which contains an information-incremental attention branch and a multi-scale spatial attention
branch that collaboratively enhance target-related features.

The decoder mirrors this hierarchical structure and is organized into three levels. Each level first
applies a Collaborative Feature Enhancement Layer (CFEL) to selectively amplify target-related
information and propagate it to higher spatial resolutions, followed by multiple Modulated Incep-
tion Group Mamba Layers (MIGML) that jointly refine and fuse multi-scale representations. A
lightweight attention module coupled with a final convolutional layer forms the prediction head
responsible for generating voxel-wise segmentation logits.

To enable demographic-aware conditioning, a separate Demographic-Aware Persona Modulation
(DAPM) branch maps a low-dimensional persona vector, constructed from demographic meta-
information, to stage-wise, channel-wise modulation factors. These factors mildly adjust interme-
diate feature maps in a bounded manner, allowing controlled adaptation. When the modulation
strength is set to zero, the model reduces to the plain CEIGM-UNet backbone, enabling evaluation
in settings without demographic annotations.

3.2 Collaborative Feature Enhancement Layer

The Collaborative Feature Enhancement Layer (CFEL) is designed to strengthen the selection, re-
finement, and propagation of target-relevant information by jointly enhancing deep semantic features
and recalibrating shallow spatial features. Given a deep feature map Feep and a shallow feature map
Fshaiow, CFEL first enhances the deep representation, then performs content-adaptive upsampling,
and finally integrates the resulting features with recalibrated shallow features.

The process begins with the Dual-branch Attention-guided Feature Enhancement Module
(DAFEM), which aggregates multi-branch pooling statistics to estimate the amount of target-related
information present in each channel and fuses these statistics with multi-scale spatial attention. This
produces an enhanced deep representation F,, with irrelevant responses effectively suppressed;
its internal structure is illustrated in Figure 3] The enhanced features are then passed to the Dy-
namic Up-convolution Block (DUCB), which performs content-adaptive upsampling by generating
sampling offsets and applying lightweight convolutions (Figure ). This dynamic resampling mech-
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Figure 4: Dynamic up-convolution block (DUCB). It integrates the content-adaptive resampling idea
of DySample with a lightweight convolutional design to perform efficient dynamic upsampling.

anism enables F,, to be faithfully propagated to higher spatial resolutions, improving semantic
consistency across scales.

To incorporate detailed spatial cues, CFEL further
employs a Multi-scale Enhancement Gate (MSEG). X ey
Conditioned on the upsampled features F,, MSEG
recalibrates the shallow feature map by producing
fine-grained, multi-scale attention weights that em-
phasize boundaries and delicate anatomical struc-
tures while suppressing noise and background clut-
ter, as depicted in Figure[3} The final output of CFEL
is obtained by fusing the two refined streams:

Fenh == DAFEM(Fdeep)7 (1) —

DWConv 5x5

BatchNorm
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tively amplifying semantic information, propagating
it across resolutions, and harmonizing it with spa-
tially rich yet noisier shallow features, ultimately im- Figure 5: Multi-scale enhancement gate.
proving the segmentation of small, irregular, or low-

contrast anatomical regions.

3.3 Modulated Inception Group Mamba Layer

While Mamba-based architectures excel at modeling long-range dependencies with linear complex-
ity, they typically lack explicit mechanisms for structured multi-scale feature learning. To address
this gap, we draw inspiration from Inception-style designs and redesign the feed-forward network
(FFN) within the Modulated Group Mamba Layer (MGML), yielding the Modulated Inception
Group Mamba Layer (MIGML).

Let X € RE*H*W denote the input feature map. MIGML first applies a GroupMamba block to
capture global and sequential dependencies

U = GroupMamba(X), 4)
and refines representation via Inception Feed-Forward Network (IFFN) with a residual connection
V =1FFN(U) + U, (5)
followed by a second residual connection to preserve the original input
Y=V+X. (6)
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Figure 6: Architecture of the modulated inception group Mamba layer, where the Inception Feed-
Forward Network replaces the original feed-forward network with a channel allocation strategy.

The IFFN begins by expanding the channel dimension and applying a depthwise convolution fol-
lowed by GELU activation. The expanded channels are then partitioned into multiple groups, each
processed by depthwise convolutions with kernel sizes 3x3, 5x5, and 7x7, along with an iden-
tity pathway. The multi-branch outputs are concatenated and projected back to the original channel
dimension. This design allows MIGML to simultaneously capture fine, intermediate, and coarse
spatial patterns while maintaining the efficiency and long-range modeling capability of the underly-
ing Mamba block. The full architecture of MIGML is illustrated in Figure 6]

By embedding an Inception-style multi-scale operator within the MGML structure, MIGML pro-
vides a mechanism for enriching local details and enhancing feature granularity capabilities that are
crucial for segmenting anatomically diverse organs and structures with varying spatial scales.

3.4 Demographic-Aware Persona Modulation

The DAPM branch introduces demographic-aware conditioning while explicitly limiting its strength.

Persona Vector Construction. For each case, we define a meta-information vector m € Rm
that encodes demographic attributes such as age group and sex. Categorical variables are one-
hot encoded, and continuous variables (e.g., age) are normalized. The meta-information vector is
mapped to a compact persona embedding using a two-layer MLP:

Zz = fpersona(m) S Rdz~ (7

On Synapse, we assume access to age and sex; age is grouped into two cohorts (<50 vs. >50 years),
and sex is encoded as a binary one-hot vector.

Stage-Wise Channel Modulation. For the feature map at stage [, F() ¢ R *HixWi DAPM
generates a channel-wise modulation vector via a stage-specific MLP followed by normalization
and a bounded nonlinearity:

l
a(l) = fs(ta)ge(z)7 ®)
U]
A0 - &7
a = ’ 9
la®]l2 + e ®
’Y(l) =1+ po ~tanh(é(l)), (10)



Table 1: Comparison results on the Synapse dataset.

Method Params (M) FLOPs (G)] DSC (%)t HD95 (mm)]
U-Net 34.53 50.22 76.85 39.70
TransUNet 105.32 29.35 77.48 31.69
Swin-UNet 27.17 6.14 79.13 21.55
MISSFormer 42.46 9.89 81.96 18.20
PVT-EMCAD-B2 26.76 4.45 83.63 15.68
Swin-UMamba 59.89 31.48 82.48 18.89
MSVM-UNet 35.93 7.80 85.00 14.75
CEIGM-UNet (Ours) 25.86 6.31 85.61 10.00

where pg € (0, 1) is the modulation budget. Each scaling factor therefore satisfies 'yél) €1—po, 1+

po]- The feature map is modulated channel-wise:

(1l l
FO =90 FY (11)

We insert DAPM blocks at the output of selected encoder stages and decoder CFELs. When py = 0,
DAPM is disabled, and the model reduces to CEIGM-UNet.

To discourage unnecessary reliance on persona information, we optionally add a regularization term

Linoa = Y arlly™ =13, (12)
l

and optimize the total loss
L= £seg + /\Emodv (13)

where L is the segmentation loss and A controls regularization strength.

4 Experiments
In this section, we conduct extensive experiments to evaluate the effectiveness of our proposal.

4.1 Datasets

Synapse. The Synapse dataset from the MICCAI 2015 Multi-Atlas Abdominal Labeling Challenge
contains 30 abdominal CT scans with eight organ annotations [23]]. Following common practice, 18
volumes are used for training and 12 for validation. For fairness experiments, we assume access to
age and sex metadata and form four demographic subgroups by crossing age cohort (< 50 vs. > 50)
and sex (male vs. female).

ACDC. The ACDC dataset consists of 100 cardiac MRI scans with annotations for left ventricle
(LV), right ventricle (RV), and myocardium (MYO) [24]]. We follow the standard split: 70 cases for
training, 10 for validation, and 20 for testing.

4.2 Training Setup and Metrics

We implement Persona-Guided CEIGM-UNet in PyTorch and initialize the encoder with ImageNet-
1k pretrained GroupMamba-T weights. Input slices are resized to 224x224 and augmented with
flipping, rotation, Gaussian noise, and contrast adjustment. We use AdamW optimization, train for
250 epochs on Synapse and 300 epochs on ACDC, and adopt a hybrid loss consisting of cross-
entropy and Dice loss:

Cseg = »CCE + CDice~ (14)

For the main segmentation results, we disable DAPM (py = 0); For fairness experiments on
Synapse, we enable DAPM with py = 0.1.

We report Dice Similarity Coefficient (DSC) and 95th percentile Hausdorff Distance (HD95) as pri-
mary metrics, along with the number of parameters and FLOPs. For fairness, we compute equalized
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Figure 7: Qualitative comparison on the Synapse dataset. From left to right: GT, U-Net, TransUNet,
Swin-UNet, MISSFormer, PVT-EMCAD-B2, Swin-UMamba, MSVM-UNet, and CEIGM-UNet.

odds difference (EOD) and generalized Dice disparity (GDD) across age-sex groups. EOD mea-
sures the maximum absolute difference in true positive rate and false positive rate between groups;
GDD quantifies discrepancies in generalized Dice scores with organ-size weighting. Lower EOD
and GDD indicate smaller disparities.

4.3 Results on Synapse

Table [I| compares CEIGM-UNet with representative CNN-, Transformer-, and Mamba-based seg-
mentation models on the Synapse dataset. CEIGM-UNet achieves the highest average DSC and the
lowest HD95 among all methods, while using fewer parameters than most baselines and maintain-
ing competitive FLOPs comparable to lightweight designs such as PVT-EMCAD-B2. These results
indicate that the combination of CFEL and MIGML substantially improves feature discrimination,
spatial consistency, and multi-scale representation quality. Figure[7]presents qualitative comparisons
across several methods. CEIGM-UNet produces sharper boundaries and more complete anatomical
structures, particularly for small or morphologically irregular organs such as the gallbladder and pan-
creas. The model also better suppresses distracting background responses and reduces leakage into
adjacent tissues, highlighting the effectiveness of the proposed feature enhancement and multi-scale
modeling mechanisms in challenging abdominal regions.

4.4 Results on ACDC

Table summarizes the perfor-
mance of CEIGM-UNet on the
ACDC cardiac MRI dataset. Our
model achieves the highest DSC

Table 2: Comparison results on the ACDC dataset.

and the lowest HD95 across the Method DSC (%) HD95 (mm)}
LV, RV, and MYO classes, sur- TransUNet 89.71 2.01
passing both Transformer-based and Swin-UNet 90.00 2.62
Mamba-based baselines. These re- Swin-UMamba 92.22 1.68
sults demonstrate that the proposed MSVM-UNet(Ours) 92.58 1.41
architecture generalizes effectively CEIGM-UNet 92.81 1.05

across different imaging modalities
(CT vs. MRI) and anatomical con-
texts (abdominal vs. cardiac), despite being trained under the same unified framework. Qualitative
comparisons in Figure [§| further illustrate these advantages. CEIGM-UNet preserves sharper my-
ocardial boundaries, reduces prediction leakage near ventricular edges, and yields more spatially
consistent delineations compared to prior methods.
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4.5 Fairness Evaluation Across Demographic Groups

We assess fairness on the Synapse dataset by measuring
equalized odds difference (EOD) and generalized Dice

L Table 3: Fai luation.
disparity (GDD) across four age-sex subgroups. Tran- avle aumess evatuation

sUNet and Swin-UNet serve as baselines that do not in- Model EOD GDD

corporate demographic information. For persona-guided TransUNet 0074 0,056
: . rans € . B

CEIGM-UNet, we activate the DAPM branch with a Swin.UNet 0.059 0048

modest modulation budget of py = 0.1. As shown in Ta-
ble[3] persona-guided CEIGM-UNet achieves the lowest
disparities on both metrics while simultaneously main-
taining the highest DSC (Table[I)). These results indicate that lightly bounded persona modulation
can reduce subgroup performance gaps without degrading accuracy, suggesting a viable pathway for
integrating demographic awareness into segmentation models without amplifying bias.

Per. CEIGM-UNet  0.031  0.029

5 Conclusion

In this paper, we introduce persona-Guided CEIGM-UNet, a Mamba-based U-shaped segmentation
network that integrates a series of tailor-made components, i.e., CFEL, MIGML, and DAPM. Across
Synapse and ACDC, CEIGM-UNet achieves state-of-the-art performance with competitive effi-
ciency. The fairness analysis on Synapse further shows that modest Persona-Guided modulation can
reduce age-sex disparities without compromising overall accuracy. Extending demographic aware-
ness to richer attributes, broader cohorts, and additional imaging modalities represents a promising
direction for advancing socially responsible medical foundation models.
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