
Proceedings Track
Under Review - Proceedings Track 1–15, 2024 Symmetry and Geometry in Neural Representations

CantorNet: A Sandbox for Testing Topological and
Geometrical Measures

Editors: List of editors’ names

Abstract

Many natural phenomena are characterized by self-similarity, for example the symmetry of
human faces, or a repetitive motif of a song. Studying of such symmetries will allow us to
gain deeper insights into the underlying mechanisms of complex systems. Recognizing the
importance of understanding these patterns, we propose a geometrically inspired framework
to study such phenomena in artificial neural networks. To this end, we introduce CantorNet,
inspired by the triadic construction of the Cantor set, which was introduced by Georg
Cantor in the 19th century. In mathematics, the Cantor set is a set of points lying on a
single line that is self-similar and has a counter intuitive property of being an uncountably
infinite null set. Similarly, we introduce CantorNet as a sandbox for studying self-similarity
by means of novel topological and geometrical complexity measures. CantorNet constitutes
a family of ReLU neural networks that spans the whole spectrum of possible Kolmogorov
complexities, including the two opposite descriptions (linear and exponential as measured
by the description length). CantorNet’s decision boundaries can be arbitrarily ragged,
yet are analytically known. Besides serving as a testing ground for complexity measures,
our work may serve to illustrate potential pitfalls in geometry-ignorant data augmentation
techniques and adversarial attacks.

Keywords: topological and geometrical measures, ReLU neural networks, synthetic ex-
amples

1. Introduction

Neural networks perform extremely well in various domains, for example computer vi-
sion (Krizhevsky et al., 2012) or speech recognition (Maas et al., 2013). Yet, this perfor-
mance is not sufficiently understood from the mathematical perspective, and current ad-
vancements are not backed up by a formal mathematical analysis. We start by identifying
a lack of tractable examples that allow us to study neural networks through the lens of self-
similarity of objects they describe. This difficulty arises from the inherent statistical nature
of these networks and the significant computational effort required to accurately determine
the underlying geometry of the decision manifold. We note that the use of constructed ex-
amples helps to illustrate certain characteristic effects, such as the concentration of measure
effects in high dimensions to explain the vulnerability against adversarial examples (Gilmer
et al., 2018). Such examples are typically designed to underscore either the capabilities or
limitations of neural architectures in exhibiting certain phenomena. However, there exists
a risk of oversimplification that might lead to an underappreciation of the complexities and
challenges of handling real-world, high-dimensional, and noisy data. Despite these limita-
tions, toy examples are valuable as they can be constructed to emphasise some properties
which remain elusive at a larger scale. Further examples include the XOR (Minsky and Pa-
pert, 1969) or CartPole problem (Sutton and Barto, 2018) which, despite their simplicity,

© 2024 .

Proceedings Track
have provided a controllable evaluation framework in their respective fields. Our analysis
is further motivated by the fact that many natural phenomena feature some self-similarity
as understood by symmetry, e.g., images (Wang et al., 2020), audio tracks (Foote, 1999) or
videos (Alemán-Flores and Álvarez León, 2004).

Our work is closely related to the concepts such as Cantor set, fractals and the Kol-
mogorov complexity. In the following, we provide a brief background about these concepts.
Cantor set. Cantor set, introduced in mathematics by Georg Cantor (Cantor, 1879), is
a set of points lying on a single line segment that has a number of counter intuitive prop-
erties such as being self-similar, and uncountably infinite, yet of Lebesgue measure 0. It
is obtained by starting with a line segment, partitioned into three equal sub-segments and
recursively deleting the middle one, repeating the process an infinite number of times. It is
used to illustrate how complex structures can arise from simple recursion rules (Mandelbrot,
1983). CantorNet is inspired by the construction procedure of the Cantor set, inhering its
fractal properties.
Fractals. In nature, some complex shapes can be described in a compact way. Fractals are
a good example as they are self-similar geometric shapes whose intricate structure can be
compactly encoded by a recursive formula (e.g., von Koch (1904)). A number of measures
have been developed to quantify the complexity of the fractals, e.g., Mandelbrot (1983,
1995); Zmeskal et al. (2013). On one hand, fractals are self-repetitive structures, what
results in a compact description. On the other hand, some fractals can be represented as
unions of polyhedral bodies, a less compact description. The construction of the CantorNet
is inspired by the triadic representation of the Cantor set, and its opposite representations
(complexity-wise) are based on recursed generating function and union of polyhedral bodies.
The Kolmogorov Complexity. The Kolmogorov complexity (Kolmogorov, 1965) quan-
tifies the information conveyed by one object about another and can be applied to models
by evaluating the shortest program that can reproduce a given output, as proposed as
early as Solomonoff (1964). In the context of neural networks, Schmidhuber argues that
prioritizing solutions with low Kolmogorov complexity enhances generalization. Although
computing the exact Kolmogorov complexity of real-world architectures is unfeasible, ap-
proximations to the minimal description length (Grünwald et al., 2005) can be made by
analyzing the number of layers and neurons, under the condition that the neural networks
represent exactly the same decision boundaries, which is also the case in our CantorNet
analysis.

In summary, in this work we propose CantorNet, an arbitrarily ragged decision surface, a
natural candidate for testing various geometrical and topological measures. Furthermore, we
study the Kolmogorov complexity of its two equivalent constructions with ReLU nets. The
rest of the paper is organized as follows. Section 2 recalls some basic facts and fixes notation
for the rest of the paper, and in Section 3, we describe different CantorNet constructions and
representations. Finally, in Section 5, we provide concluding remarks and possible future
directions for our work.

2. Preliminaries

We define a ReLU neural network N : X → Y with the total number of N neurons as
an alternating composition of the ReLU function σ(x) := max(x, 0) applied element-wise

2

Proceedings Track
CantorNet

on the input x, and affine functions with weights Wk and biases bk at layer k. An input
x ∈ X propagated through N generates non-negative activation values on each neuron. A
binarization is a mapping π : RN → {0, 1}N applied to a vector (here a concatenation of
all hidden layer) v = (v1, . . . , vN) ∈ RN resulting in a binary vector {0, 1}N by clipping
strictly positive entries of v to 1, and non-positive entries to 0, that is π(vi) = 1 if vi > 0,
and π(vi) = 0 otherwise. An activation pattern is the concatenation of all neurons after
their binarization for a given input x, and represents an element in a binary hypercube
HN := {0, 1}N where the dimensionality is equal to the number of hidden neurons in
networkN . A linear region is an element of a disjoint collection of subsets covering the input
domain where the network behaves as an affine function (Montúfar et al., 2014). There is
an one-to-one correspondence between an activation pattern and a linear region (Shepeleva
et al., 2020).

3. CantorNet

In this section, we define CantorNet as a ReLU neural network through repeating applica-
tion of weight matrices, similar to the fractal constructions. We then introduce an equivalent
description through unionizing polyhedral bodies, which is less concise. We start the con-
struction with two reshaped ReLU functions (Fig. 1, left), and modify them to obtain a
connected decision manifold with Betti numbers bi = 0 for i ∈ {0, 1, 2}, used to character-
izes the topological complexity, providing measures of connectivity, loops, and voids within
the decision boundaries (Bianchini and Scarselli, 2014). We consider the function

A : [0, 1]→ [0, 1] : x 7→ max{−3x+ 1, 0, 3x− 2}, (1)

as the generating function and recursively nest it as

A(k+1)(x) := A(A(k)(x)), A(1)(x) := A(x). (2)

Based on the generating function, we can define the decision manifold Rk as:

Rk := {(x1, x2) ∈ [0, 1]2 : x2 ≤ (A(k)(x1) + 1)/2}. (3)

For a better understanding of the decision manifolds, we have visualized R1, R2, and R3

in Fig. 1. The CantorNet is given by the nested function defined by Eq. (2), which can
be mapped to a ReLU neural network representation. We define the CantorNet family as
follows.

Definition 1 A ReLU net N belongs to the CantorNet family iff N (−1)(0) = Rk.

We further name the regions “below” and “above” Rk as the inset and the outset of
CantorNet, respectively, as formalized in the Def. 2.

Definition 2 We say that the manifold Rk given by Eq. (3) represents the inset of Can-
torNet, while its complement on the unit square represents the outset (grey and white areas
in Fig. 2, respectively).

3

Proceedings Track

Figure 1: Left: The first iteration of the 1-1 correspondence between the ReLU net ÑA,
induced by the generating function A, and the triadic number expansion shows
the intervals I1, I2, I3 correspond to the digits {0, 1, 2}, respectively. Right: Can-
torNet is inspired by the construction of the Cantor set (Cantor, 1879).

3.1. Recursion-Based Construction

The decision surface of Rk (Eq. (3)) equals to the 0-preimage of a ReLU net N (k)
A : [0, 1]2 →

R with weights and biases defined as

W1 =

−3 0
3 0
0 1

 , b1 =

 1
−2
0

 ,W2 =

(
1 1 0
0 0 1

)
(4)

and the final layer WL =
(
−1

2 1
)
, bL =

(
−1

2

)
. For recursion depth k, we define N (k)

A as

N (k)
A (x) := WL ◦ σ ◦ g(k)(x) + bL, (5)

where g(k+1)(x) := g(1)(g(k)(x)), σ is the ReLU function, and

g(1)(x) := σ ◦W2 ◦ σ ◦ (W1x
T + b1). (6)

We use ◦ to denote the standard composition of functions. Fig. 2 shows the linear regions
resulting from the construction described in the Eq. (5) for recursion level k = 1, as well as
the linear regions with the corresponding activation patterns from non-redundant neurons
(we skip neurons which do not change their state).

3.2. Triadic Expansion

In this section, we show that there exists an isomorphism between the triadic expansion,

as described in Appendix A in Alg. 1, and the activation pattern πNA
under N (k)

A . In
the Triadic Expansion, we partition the interval [0, 1] into three intervals, I1 = [0, 13], I2 =
(13 ,

2
3), I3 = [23 , 1] (see Fig. 1, left). Any x ∈ I1 ∪ I3 can be described in a triadic system

with an arbitrary precision l as x =
∑l

i=1
ai
3i
, where ai ∈ {0, 2}. Recall that the tessellation

of the recursion-based model (Fig. 2) is obtained by partitioning the rectangular domain
(I1∪I3)×[0, 1] into increasingly fine rectangles through recursive applications of x 7→ g(k)(x).
We identify created linear regions by their activation patterns πNA

. Equivalently, we can

4

Proceedings Track
CantorNet

Figure 2: Activation patterns πi induced by Eq. (5). We skip neurons with unchanged
values.

represent any x ∈ I1 ∪ I3 using Alg. 1, obtaining activation patterns as a sequence of
“0”s, and “1”s. Each of these descriptions is unique, therefore there exists an isomorphic
relationship between the encoding described in Alg. 1, and the recursion-based description.

Lemma 3 (Computational Complexity of Activation Patterns of N (k)
A) Given an

input x = (x1, x2) ∈ [0, 1]2 and the recursion level k, its corresponding activation pattern

π(x) under the recursion-based representation N (k)
A can be computed in O(k) operations.

Proof The complexity (as measured by the description length (Grünwald et al., 2005)) of
the decision manifold given by Eq. (3) is equal to the complexity of its partition into the
linear regions defined in Sec. 2. To determine the minimal complexity of the partition it is
necessary to solve the following decision problem for x1. Consider the partition into linear
regions and its projection along the y-axis onto the [0, 1] × {0}. Note that the resulting
partition of [0, 1] is the same we obtain by constructing the Cantor set of level k, which
corresponds to the triadic number expansion up to the kth digit. The minimal complexity
of solving this decision problem is therefore O(k).

The proof of Lemma 3 indicates the 1-1 correspondence between the triadic number

expansions up to the kth digit and the activation pattern π(x1) of x1 ∈ [0, 1] under Ñ (k)
A ,

where Ñ (k)
A represents the 1-dim ReLU network up to the recursion level k, analogous to the

construction given by Eq. (5). Observe that the outset (as in Def. 2) intervals I1, I2, I3 (as
in Fig. 1, left) can be described with activation patterns πNA

(x) = [10111], for any x ∈ I1,
πNA

(x) = [00101], for any x ∈ I2 or πNA
(x) = [01111] for any x ∈ I3 in the recursion-based

representation (here we do not remove neurons with constant values). Indeed, to obtain
πx for x ∈ I1 take any point (x, y) ∈ I1 × {y ∈ [0, 1] : y < f1(x)} (f1 and f2 as in Fig. 1,
left). After applying x 7→ g(1)(x), binarizing every neuron’s value and concatenating them
into a vector, we obtain a 5-dim vector (because W1 ∈ R3×2, W2 ∈ R2×3, and we omit
WL, bL). In an analogous manner, we can obtain πI2 and πI3 . Next, observe that each of
the intervals Ii can be further partitioned into Ii1, Ii2, Ii3, respectively for the left, center,
and right segments. To describe these new segments, we increase the recursion level to

5

Proceedings Track
k = 2. It turns out that I11 = [10111; 10111], a repetition of the pattern πI1 , and so forth
for the remaining segments. This construction is iterated k times, providing the sequence
of subintervals

(Iit)
k
t=1. (7)

3.3. Alternative Representation of CantorNet

Observe that the pre-image of zero under a ReLU function (including shifting and scaling)
is a closed set in [0, 1]2. Since we consider a decision manifoldM as a closed subset, which
we referred to as inset in Def. 2 in Section 3, we use the closed pre-image of zero under
the ReLU network N to model decision manifolds given by Eq. (3). This means that the
statement ”x ∈ M” is true if N (x) = 0, and the statement ”x ∈ M” is false if N (x) > 0.
This way the min operation refers to the union of sets, i.e., logical disjunction “OR”, while
the max operation refers to the intersection of two sets, i.e., logical conjunction “AND”.
Note that the laws of Boolean logics also translate to this interpretation (Klir and Yuan,
1995). Further, note that any (non-convex) polytope is a geometric body that can be
represented as the union of intersections of convex polytopes. A convex polytope can also
be represented as intersection of half-spaces, like the pre-image of zero under the ReLU
function, i.e., a single-layered ReLU network. Thus, a decision manifold M given by a
(non-convex) polytope can be represented by the minimum of maxima of single layered
ReLU networks. Since the minimum operation can also be represented in terms of the max
function, we obtain a ReLU representation for which it is justified to call it a disjunctive
normal form (DNF), as outlined by Moser et al.. For the simplest case, consider the function
h1(x, y) (Fig. 3, left) that splits the unit square [0, 1]

2 into parts where it takes positive and
negative values, denoted with (1) and (0), respectively. Observe that (x, y) ∈ (π ◦h1)(−1)(0)
if and only if max{h1(x, y), 0} = 0 (where π is the binarization operator described in Sec. 2).
Similarly, (x, y) ∈ (π ◦ h1)(−1)(1) if and only if max{h1(x, y), 0} = h1(x, y). In the case of
two hyperplanes (Fig. 3, right), the polytope denoted with (0, 0) can be represented as
(x, y) ∈ (π ◦ h1)(−1)(0) ∩ (π ◦ h2)(−1)(0) if and only if max{h1(x, y), h2(x, y), 0} = 0, and
similarly for the remaining polytopes.

Fig. 4 represents the partition of the decision manifold given by Eq. (3) into convex
polytopes for k = 2 and k = 3, respectively. We utilize the minimum function to form

their union, obtaining a ReLU network N (k)
B that yields the same decision manifold as the

recursion-based N (k)
A .

Proposition 4 At the recursion level k, the decision boundary given by Eq. (3) can be
constructed as a disjunctive normal form

{x, y ∈ [0, 1]2 : min(h1(x, y), h2(x, y), hr(k)(x, y), D1, . . . , D⌊r(k)/4⌋+1, 0) = 0}, (8)

where hi : R2 → R are affine functions indexed with i = 1, . . . , r(k). The labeling function
r(k) : N→ N is given as r(k) = 2k+1 − 1 for k ∈ N (see Fig. 4), and D : R2 → N denotes a
“dent” given by

Dl := max(h4l−1, h4l, h4l+1). (9)

To provide a better overview for the reader, in Table 1 we list the constructions for the
different recursion levels. We sketch an inductive proof of the Proposition 4 in Appendix B.
Further, note that the min function can be expressed as a ReLU network (Appendix C).

6

Proceedings Track
CantorNet

Figure 3: The greyed regions can be represented as a 0-preimage of π ◦ h1 (left), and the
union of the 0-preimages of π ◦ h1 and π ◦ h2 (right).

Figure 4: Decision surfaces (k = 2, 3) of (3) with labeled functions hi.

4. Complexity of Neural Representations

The complexity of an object can be measured in many ways, for example its description’s
length (Kolmogorov, 1965). Preference for a more concise description can be argued from
multiple angles, for example using the principle of the Occam’s razor or lower Kolmogorov
complexity. The latter is typically non-computable, necessitating reliance on its approx-
imations. However, in case of models with consistent decision boundaries (e.g., neural
networks), their size, both in terms of the number of layers and the number of neurons, can
be used as approximation for complexity (Grünwald et al., 2005).

Lemma 5 At the recursion level k, the number of neurons of the recursion-based repre-
sentation is O(k), while for the disjunctive normal form representation it is O(2k).

Proof For the recursion-based representation the result is straightforward.
The DNF construction relies on the application of A and S (see App. B). For recursion

level k, we have (recall (8)) 3 + 3(⌊r(k)/4⌋ + 1) = 3⌊r(k)/4⌋ + 6 =: z(k) rows of A, equal
to the number of neurons. By applying A and S at least ⌈log2 z(k)⌉ times (Arora et al.,
2018), we arrive at(

3

4

(
2k+1 − 1

)
+ 6

) ⌈log2 z(k)⌉∑
i=0

1

2i
≤ 3

2

(
2k+1 − 1

)
= O(2k).

It requires an algorithm of Kolmogorov complexity of order k to enumerate all numbers in
[0, 1] with triadic number expansion up to k digits. Since the recursion-based ReLU net NA

7

Proceedings Track

Table 1: Min/max shape description for k recursions. In each row x, y ∈ [0, 1]2.
recursion formula of decision manifold Rk

1 {x, y : min(h1, h2, h3) = 0}
2 {x, y : min(h1, h2, h7,︸ ︷︷ ︸max(h3, h4, h5)︸ ︷︷ ︸) = 0}

.
k {x, y : min(h1, h2, hr(k),︸ ︷︷ ︸

external half-spaces

D1, . . . , D⌊r(k)/4⌋+1︸ ︷︷ ︸
“dents” (9)

) = 0}

is constructed by a repetitive application of two layers with constant number of neurons
(namely five) and the same weights, its Kolmogorov complexity after k iterations is of order
k. As a recursion step given by Eq. (5) and Eq. (6) is equivalent to a recursion in the triadic
number expansion (Alg. 1), which is of the minimal order of Kolmogorov complexity, there
cannot exist an equivalent ReLU network of strictly lower order of Kolmogorov complexity.
This means that NA is of minimal description length in terms of order of the number of
neurons N = N(k), thus

O(N(k)) = O(k). (10)

Theorem 6 The recursion-based ReLU representation given by the Eq. (4) is of minimal
complexity order in terms of the number of neurons (in the sense of Eq. (10)).

This way, we obtain an example of a ReLU network of proven minimal description
length in terms of its number of neurons, a property hardly provable by statistical means.
Observe that the above does not hold for singular numbers from [0, 1]: if we consider
x = 1

6 = 0...0...02...20...02...2...0...0, with n = k2 digits after the ternary point arranged in
k alternating blocks of zeros and twos, then it has Kolmogorov complexity O(k) = O(

√
n).

Note that both representations have the same order of the number of layers.

Lemma 7 At the recursion level k both described representations of CantorNet have O(k)
layers.

Note that both constructions are equivalent as understood by the equality of their preim-
ages. Though simple by construction, the family of CantorNet ReLU networks is rich in
terms of representation variants, ranging from a minimal (linear in k) complex solution to
an exponentially complex one. An intermediate example would be starting with the re-
cursion based representation for a number of layers, and then concatenating corresponding
disjunctive normal form representation. In App. D we discuss the ratio of active neurons
for the two representations, contrasting them further.

5. Conclusions and Discussion

In this paper we have proposed CantorNet, a family of ReLU neural networks inspired by
fractal geometry that can be tuned arbitrarily close to a fractal. The resulting geometry

8

Proceedings Track
CantorNet

of CantorNet’s decision manifold, the induced tessellation and activation patterns can be
derived in two ways. This makes it a natural candidate for studying concepts related to
the activation space. Note that although CantorNet is a hand designed example, is not an
abstract invention - real world data, such as images, music, videos also display fractal nature,
as understood by self-similarity. We believe that our work, although seemingly remote from
the current mainstream of the machine learning research, will provide the community with
a set of examples to study ReLU neural networks as mappings between the Euclidean input
space and the space of activation patterns, currently under investigation.

9

Proceedings Track
References

Miguel Alemán-Flores and Luis Álvarez León. Video segmentation through multiscale
texture analysis. In Aurélio Campilho and Mohamed Kamel, editors, Image Analysis
and Recognition, ICIAR 2004, Lecture Notes in Computer Science, volume 3212, pages
339–346. Springer, Berlin, Heidelberg, 2004. doi: 10.1007/978-3-540-30126-4 42. URL
https://doi.org/10.1007/978-3-540-30126-4_42.

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding Deep
Neural Networks with Rectified Linear Units. ICLR, 2018.

Monica Bianchini and Franco Scarselli. On the complexity of neural network classifiers: A
comparison between shallow and deep architectures. IEEE Trans. NN Learn. Syst., 25
(8):1553–1565, 2014.

Georg Cantor. Ueber unendliche, lineare punktmannichfaltigkeiten. Mathematische An-
nalen, 15(1):1–7, 1879.

Jonathan Foote. Visualizing music and audio using self-similarity. In Proceedings of the
Seventh ACM International Conference on Multimedia (Part 1), pages 77–80, 1999. doi:
10.1145/319463.319472.

Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra Raghu, Martin
Wattenberg, and Ian Goodfellow. Adversarial spheres. arXiv preprint arXiv:1801.02774,
2018.

Peter D. Grünwald, Jay Injae Myung, and Mark A. Pitt, editors. Advances in Minimum
Description Length: Theory and Applications. Neural Information Processing. MIT Press,
Cambridge, MA, 2005. ISBN 9780262072625.

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A
data-driven neuron pruning approach towards efficient deep architectures. ArXiv,
abs/1607.03250, 2016.

George J. Klir and Bo Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice
Hall, Upper Saddle River, NJ, USA, 1995. ISBN 9780131011717.

Andrey N Kolmogorov. Three approaches to the quantitative definition of information.
Problems of Information Transmission, 1(1):1–7, 1965.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In NeurIPS, 2012.

Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept
of interpretability is both important and slippery. Queue, 16(3):31–57, 2018.

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve
neural network acoustic models. In ICML Workshop on Deep Learning for Audio, Speech
and Language Processing, 2013.

10

https://doi.org/10.1007/978-3-540-30126-4_42

Proceedings Track
CantorNet

Benoit B. Mandelbrot. The Fractal Geometry of Nature. Macmillan, 1983. ISBN 978-0-
7167-1186-5.

Benoit B. Mandelbrot. Measures of fractal lacunarity: Minkowski content and alternatives.
In Fractal Geometry and Stochastics, Progress in Probability, pages 15–42, Basel, 1995.
Birkhäuser Basel.

Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computational Ge-
ometry. MIT Press, 1969.

Guido F Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number
of linear regions of deep neural networks. In NeurIPS, volume 27, 2014.

Bernhard A. Moser, Michal Lewandowski, Somayeh Kargaran, Werner Zellinger, Battista
Biggio, and Christoph Koutschan. Tessellation-filtering relu neural networks. IJCAI,
2022.

Jürgen Schmidhuber. Discovering neural nets with low kolmogorov complexity and high
generalization capability. Neural Networks, 10(5):857–873, 1997.

Natalia Shepeleva, Werner Zellinger, Michal Lewandowski, and Bernhard Moser. Relu code
space: A basis for rating network quality besides accuracy. ICLR, NAS workshop, 2020.

Ray J Solomonoff. A formal theory of inductive inference. part i. Information and Control,
7(1):1–22, 1964.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Helge von Koch. Sur une courbe continue sans tangente, obtenue par une construction
géométrique élémentaire. Arkiv för matematik, astronomi och fysik, 1:681–704, 1904.

Xiang Wang, Kai Wang, and Shiguo Lian. A survey on face data augmentation for the
training of deep neural networks. Neural Computing and Applications, 32(19):15503–
15531, Oct 2020. ISSN 1433-3058. doi: 10.1007/s00521-020-04748-3.

Oldrich Zmeskal, Petr Dzik, and Michal Vesely. Entropy of fractal systems. Computers &
Mathematics with Applications, 66(2):135–146, 2013. ISSN 0898-1221.

11

Proceedings Track
Appendix A. Activation Code by Triadic Expansion

Algorithm 1: Activation Code of Ñ (k)
A by Triadic Expansion

Input: x1 ∈ [0, 1], recursion level k
Output: The activation code π := πÑA

(x1)

Define f1(x) := 1− 3x, f2(x) := 3x− 2;
Define intervals: I1 := [0, 13], I2 := (13 ,

2
3), I3 := [23 , 1];

Termination ← False;
π = [] // A pattern holder;
j ← 0 // Iteration counter;
while not Termination do

j ← j + 1;
if j = k then

Termination ← True;
end
Update interval Jij := Ii1...ij , ij ∈ {1, 2, 3} // see (7);
if x1 ∈ J1 then

x1 ← f1(x1);
π.append(0);

else
if x1 ∈ J2 then

Termination ← True // Exit the loop if x1 is in I2;
else

x1 ← f2(x1);
π.append(1);

end

end

end

Appendix B. Min/max Shape Description of CantorNet

Proof We sketch the inductive proof of Proposition 4. For the base case k = 1, the
decision manifold R1 is composed of the union of three half-spaces, expressed as {x, y ∈
[0, 1]2 : min(h1, h2, h3) = 0}. For k = 2 (shown on the left in Fig. 4), we see a dent in
the middle of the figure. Points lying above this dent satisfy the condition {x, y ∈ [0, 1]2 :
max(h3, h4, h5) > 0}. To reconstruct the complete decision manifold R2, we unionize the
outer half-spaces h1, h2, h7 with the aforementioned dent. This results in the following set:

{x, y ∈ [0, 1]2 : min(h1, h2, h7,max(h3, h4, h5)) = 0}.

For the inductive step, let’s consider an arbitrary recursion depth k. Suppose that the
decision boundaries Rk consist of points x, y ∈ [0, 1] such that

min
(
h1, h2, hr(k), D1, . . . , D⌊r(k)/4⌋+1

)
= 0, (11)

12

Proceedings Track
CantorNet

where Dl is as follows
Dl := max(h4l−1, h4l, h4l+1) (12)

describes dents. Observing the pattern established by Eq. 1, it becomes clear that in-
crementing the recursion depth from k to k + 1 doubles the number of nested maximum
functions. In other words, twice the previous number of “dents” emerge in our structure.
This observation aligns with Eq. 11. This and the construction of half-spaces hi assure that
all the half-spaces agree with the decision manifold Rk+1.

Appendix C. Min as a ReLU Net

Theorem 8 The minimum function min : Rd → R can be expressed as a ReLU neural
network with weights {0,±1}.

Proof We first show that in the base cases of even and odd number of variables, d = 2 and
d = 3 respectively, we can recover the minimum element by a hand-designed ReLU neural
architecture. Recall that σ(x) := max(x, 0), applied element-wise. For d = 2 and elements
x1, x2 ∈ R it holds that

min(x1, x2) = x2 +min(x1 − x2, 0)

= x2 −max(x2 − x1, 0)

= σ(x2)− σ(−x2)− σ(−x1 + x2), (13)

which can be represented as a ReLU net

min(x1, x2) =
(
1 −1 −1

)︸ ︷︷ ︸
S

σ

 0 1
0 −1
−1 1

︸ ︷︷ ︸

A

(
x1
x2

)
.

For d = 3, min(x1, x2, x3) = min(min(x1, x2), x3), which can be expressed by a ReLU neural
network as follows:

SσA

(
1 −1 −1 0 0
0 0 0 1 −1

)
σ

0 1 0
0 −1 0
−1 1 0
0 0 1
0 0 −1

x1
x2
x3

 ,

where we first recover the min(x1, x2) and leave x3 unchanged, resulting in (min(x1, x2), x3),
and then we recover the minimum element using the base case for d = 2.

Inductive step. We start with the inductive step for an even number of elements. Let x ∈
Rd, d = 2l for l ∈ N, and suppose that with S′σ (A′x) ,S′ ∈ {0,±1}d×3d,A′ ∈ {0,±1}3d×2d

S′ :=

S 01×3 . . . 01×3

01×3 S 01×3 . . .
.
01×3 . . . 01×3 S

 ,

13

Proceedings Track
and

A′ :=

A 03×2 . . . 03×2

03×2 A 03×2 . . .
.
03×2 . . . 03×2 A

 ,

we group elements in pairs, reducing the problem to min(min(x1, x2), . . . ,min(xd−1, xd))
(0m×n is a matrix of zeros with m rows and n columns). Then, for x ∈ Rd+2, we use
the inductive step to recover min(min(x1, x2), . . . ,min(xd−1, xd),min(xd+1, xd+2)) by using
S′′σ(A′′x) where

S′′ :=

(
S′ 0d×3

01×3d S

)
, A′′ :=

(
A′ 03d×2

03×2d A

)
. (14)

Indeed, if with S′ and A′ we group variables into pairs, then we can also group in pair two
additional elements. Now let’s consider the inductive step for an odd case x ∈ Rd+1. We
can recover min(min(x1, x2), . . . ,min(xd−1, xd), xd+1) by using S•σ(A•x), where

S• :=

(
S′ 0d×1 0d×1

02×3d 1 −1

)
, A• :=

 A′ 03d×1

01×2d 1
01×2d −1

 .

For x ∈ Rd+3, we extend S• andA• as in Eq. (14), pairing the last two elements. Recursively
applying S∗σ(A∗x) (where ∗ means that the dimensionality must be chosen appropriately)
groups the elements in pairs and eventually returns the minimum element.

Appendix D. Active Neurons

To further contrast the two presented representations of CantorNet, we compare the ratio of
active neurons along a path traversing two classes. The ratio corresponds to the compactness
of both representations (Fig. 5). Comparing the ratio of active neurons allows to evaluate
the efficiency and resource utilization of different neural network architectures. Active
neurons consume computational resources, and a network with fewer active neurons, while
maintaining performance, indicates a more efficient use of resources (also called Average
Percentage of Zeros) (Hu et al., 2016). It has also been argued that sparse models are
more interpretable than dense models (Lipton, 2018). For CantorNet, we find out that for
the recursion-based representation the ratio is consistently higher than for the disjunctive-
normal form construction. For an experimental evaluation, in Fig. 5 we compare ratios of
active neurons for initial recursion levels.

14

Proceedings Track
CantorNet

Figure 5: The ratio of the active neurons depending on the recursion depth k for the both
representations NA and NB. Note that the higher ratio of active neurons for NA

is consistent with the minimal complexity of NA due to Lemma 5.

15

	Introduction
	Preliminaries
	CantorNet
	Recursion-Based Construction
	Triadic Expansion
	Alternative Representation of CantorNet

	Complexity of Neural Representations
	Conclusions and Discussion
	Activation Code by Triadic Expansion
	Min/max Shape Description of CantorNet
	Min as a ReLU Net
	Active Neurons

