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Abstract

Recent generative models such as generative adversarial networks have achieved
remarkable success in generating realistic images, but they require large training
datasets and computational resources. The goal of few-shot image generation
is to learn the distribution of a new dataset from only a handful of examples
by transferring knowledge learned from structurally similar datasets. Towards
achieving this goal, we propose the “Implicit Support Set Autoencoder” (ISSA)
that adversarially learns the relationship across datasets using an unsupervised
dataset representation, while the distribution of each individual dataset is learned
using implicit distributions. Given a few examples from a new dataset, ISSA can
generate new samples by inferring the representation of the underlying distribution
using a single forward pass. We showcase significant gains from our method on
generating high quality and diverse images for unseen classes in the Omniglot and
CelebA datasets in few-shot image generation settings.

1 Introduction

Deep generative models such as Variational Autoencoders (VAEs) [13] and Generative Adversarial
Networks (GANs) [6] have shown significant improvement on image generation tasks. The idea of
GANs relies on a two player min-max game where the generator learns a mapping from the noise
vector to the image space and the discriminator is trained to differentiate samples from the data
distribution and the learned sample distribution. The goal is to train the generator to produce image
samples indistinguishable from samples of the real distribution. GANs are widely known for their
ability to generate high-quality images [23, 11]. This can be attributed to the fact that GANs are
capable of learning flexible implicit distributions, as opposed to prescribed density models [20, 9].

Successful learning of deep generative models typically requires a vast amount of training data. For
example, 300M images across 18K categories were used in [2] to train GANs on natural images. In
many practical settings, we are interested in learning the underlying distribution of a dataset from only
a handful of examples. Few-shot image generation methods attempt to bridge this gap by exploiting
the structural similarity between different datasets, and thereby significantly reducing the number of
examples required for learning the distribution of a new dataset.

In this work, we propose a few-shot image generation method called “Implicit Support Set Au-
toencoder” (ISSA). ISSA is an adversarial framework that learns the structural similarities across
datasets with an unsupervised context representation, while the distribution of each individual dataset
is learned using implicit distributions. We use the term “support set”, which is commonly used in
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Figure 1: ISSA can generate diverse and high quality images of an unseen identity with as few as two
support examples.

the few-shot classification literature, to refer to the few examples given from the new dataset. At
test time, to learn the distribution of a novel dataset, we pass the given support set through the learnt
encoder E to infer the context representation c for the dataset. Then the generator G conditions on
this representation to generate new images from the underlying distribution of this dataset using
the implicit generator. Figure 1 shows the inference process of our model on the CelebA faces
dataset [16], where the new dataset consists of two images of a new identity which is not observed
during training. Here, the encoder infers context c which is the representation for the unseen identity.
The generator then conditions on the context vector and uses the stochasticity of the noise ϵ to
generate new images of the same identity but with different background, head pose, lighting, etc.

2 Related Work

Existing few-shot image generation methods can be broadly classified into two approaches: (a)
fine-tuning the weights of pre-trained GANs on an unseen support set and (b) learning representations
of support sets.

Fine-tuning the weights of pre-trained GANs One of the recent approaches of few-shot image
generation is to fine-tune the weights of pre-trained GANs on novel datasets with few images [21, 28,
15, 19, 22]. These approaches work by preserving the diversity from the source or training domain
while modifying the network such that target domain images can be produced. However, in these
methods, fine-tuning the generative model often requires tedious manual designs [21, 28], and can
also incur a high computational cost even when there is one example in the support set [15].

Learning representations of support sets Another approach for few-shot image generation is
to learn a representation for the support sets. For example, [5] proposed the neural statistician,
which aims at learning representations of datasets using variational inference. Another related work
is [25], which proposed a sequential generative model that demonstrated the ability to synthesize
new samples when given an example of a novel concept. Data-augmentation GAN (DAGAN) [1]
is another few-shot generative model that utilizes the adversarial objective, designed specifically
for using the generated samples for data augmentation. [24] proposed a conditional autoregressive
generative model that can condition on the novel support set and generate new images.

These two approaches have wildly different trade-offs and applications. Since the first approach
has a training phase on the new dataset, it can better adapt to datasets with different styles than the
training set. However, it requires an expert ML practitioner to fine-tune the weights of the GAN on a
new domain, has a higher computational cost and can only generalize to one new domain at a time.
The second approach, which includes ISSA, can infer the representation of the new support set with
only a feedforward pass, requires significantly less computational cost, can simultaneously generate
images from different novel datasets, and learn representations that can be used in downstream tasks.
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Figure 2: Architecture of ISSA

Implicit Autoencoders [17] proposed the “implicit autoencoder” (IAE) which utilizes implicit
distributions to learn expressive posterior and conditional likelihood distributions. The encoder in
IAE extracts a context code from each input image, and the generator conditions on the context
code and uses the noise vector to stochastically reconstruct the input. ISSA is inspired by IAE, but
considers the problem of learning a generative model for datasets rather than individual data points.
In particular, ISSA reduces to IAE when the support set size is one. However, as the size of support
sets increases, ISSA’s performance also improves. This is because learning from support sets enables
ISSA to better disentangle the shared information of the support sets, from the information across the
support sets.

3 Implicit Support Set Autoencoders

Problem statement Suppose we have a set of (not necessarily distinct) distributions pi(x) for
i ∈ {1, . . . , N}, and for each distribution we have a support set of data Si = {x1, . . . ,xk} consisting
of a number of i.i.d. samples from pi(x). In the k-shot image generation task, we are given a
collection of support sets Si = {x1, . . . ,xk} of size k, for i ∈ {1, . . . , N}, and are asked to learn
the distributions p̂i(x) that closely approximate the underlying data distribution pi(x), for each i.
At the test time, we are given a new support set STEST = {x1, . . . ,xk} whose elements are i.i.d.
samples from a novel distribution pTEST(x), and the goal is to find a distribution p̂TEST(x) that closely
approximate pTEST(x).

Implicit support set generation In this work, we assume p̂1(x), · · · , p̂N (x) are conditional implicit
distributions parametrized by a single deep neural network gθ. More specifically, each distribution
p̂i(x) is defined by a low dimensional representation ci ∈ Rl where we have:

x = gθ(ϵ, ci) ϵ ∼ N (0, I). (1)

For a given implicit distribution p̂i(x), the distribution of S = {x1, . . . ,xk} is the following factorial
distribution:

p̂i(S) = p̂i(x1, . . . ,xk) =

k∏
j=1

p̂i(xj), or xj = gθ(ϵj , ci) ϵj ∼ N (0, I). (2)

In other words, each S = {x1, . . . ,xk} is generated by conditioning the implicit distribution on
the representation ci, and passing a collection of k independent Gaussian noise E = {ϵ1, . . . , ϵk}
through gθ. For convenience, we use the notation S = Gθ(E , c) to refer to this generative process for
the support sets.

The goal of training is to learn the parameters of the neural network gθ, as well as a representation ci
for each individual p̂i(x), where i ∈ {1, . . . , N}, such that p̂i(x) closely approximate pi(x). In the
generative process of Si = {x1, . . . ,xk} (Eq. 2), ci is the shared representation, and thus it learns
the common information across xj in the support set, while each ϵj learns to generate the information
specific to each example xj .

Implicit support set autoencoders We now describe our proposed Implicit Support Set Autoen-
coders (ISSA) for k-shot image generation task. The architecture of ISSA can be seen in Fig. 2.
Suppose we have a support set Si = {x1, . . . ,xk} ∼ pi(S), whose elements come from the dis-
tribution pi(x). The first component of ISSA is a recognition path, which consists of an encoder
neural network Eϕ that takes the support set Si as the input and predicts the context representation
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vector ci = Eϕ(Si) capturing the common information in Si. The next component is the generative
path that takes the predicted context vector ci as the input and uses a collection of Gaussian noise
E = {ϵ1, . . . , ϵk} to generate a support set Ŝi = Gθ(E , ci) according to Eq. 2. The goal of training
is to learn Eϕ and Gθ, such that conditioned on ci, the distribution of Ŝi ∼ p̂i(S) is the same as the
distribution of Si ∼ pi(S): p̂i(S) = pi(S). In order to ensure this, we use a discriminator network
Dψ that takes in (Si, ci) as the positive example and (Ŝi, ci) as the negative example and tries to
discriminate them. This discriminator can then provide a gradient to train both the recognition path
and the generative path. More specifically, the parameters of the ISSA are learnt by following a
two-player minmax game with the value function:

min
ϕ,θ

max
ψ

L(ϕ, θ, ψ) = ES∼p(S)
[
logDψ(S, c)

]
+ Ep(S)p̂(Ŝ|S)

[
log

(
1−Dψ(Ŝ, c)

)]
= ES∼p(S)

[
logDψ

(
S,Eϕ(S)

)]
+ Ep(S)p(E)

[
log

(
1−Dψ

(
Gθ(Eϕ(S), E), Eϕ(S)

))]
.

(3)

At the test time, we are given a new STEST = {x1, . . . ,xk} from the underlying distribution pTEST(x).
We first pass STEST through the encoder network to predict the representation cTEST. We then condition
on cTEST and sample from the implicit distribution defined by Ŝ = Gθ(E , cTEST) to generate new data.
Implementation details of ISSA can be found in Appendix A.1.

Implicit autoencoding vs. standard autoencoding We now contrast the implicit autoencoding
objective with the standard autoencoding objective. Suppose we have a standard autoencoder
of support sets, which takes the support set S as the input, encode it using Eϕ to obtain c =

Eϕ(S), and then decode c using Dθ to obtain Ŝ = Dθ(c). Further, suppose the objective of this
autoencoder is the average reconstruction cost of each element: L(S, Ŝ) = 1

k

∑k
j=1 ∥x̂j − xj∥22.

In this autoencoder, c must learn all the information in the set S, so that it can reconstruct every
xj perfectly. However, in ISSA, we perform a stochastic reconstruction (rather than deterministic
reconstruction) of the support set, which requires p̂i(S) = pi(S). This enables the encoder Eϕ to
only learn the common information about the underlying distribution, rather than example-specific
information. For example, if we have two support sets S1, S2, that come from the same distribution,
the representations c1 = Eϕ(S1) and c2 = Eϕ(S1) in the standard autoencoder will be different.
However, ISSA encourages c1 and c2 to have the same representation, identifying the underlying
distribution. Thus, intuitively, the c in ISSA learns the relationship across distributions by capturing
the inter-distribution information, while each conditional implicit distribution p̂i(x) learns the intra-
distribution relationship in an unsupervised fashion.

4 Experiments

We demonstrate ISSA’s ability to generate diverse and high quality samples for novel classes on the
CelebA [16] and the Omniglot [14] datasets. ISSA is only trained on the training domain and then
evaluated on a disjoint set of classes in the test domain. We report the mean and standard deviation
from three runs with different random seeds. Throughout this section, we use the term k-shot ISSA
model to refer to the setting where the sizes of both training and test support sets are k. If the test
support set size is different from the training support set size, we explicitly state that in parentheses.

Datasets The Omniglot dataset [14] contains 1623 different handwritten characters from 50 different
alphabets. Each of these was hand drawn by 20 different people. It is a widely adopted benchmark
for few-shot learning [5, 27, 1]. We use the same domain split as [1] with 1200 training classes and
211 test classes. CelebFaces Attributes Dataset (CelebA) is a large-scale human faces dataset with
more than 200k celebrity images from 10,177 unique identities [16]. We use cropped images resized
to 64× 64 with the default training split [16] of 8000 train identities and 1000 test identities. We use
Instance Selection [4] to retain 80% images in the most dense regions in the training domain.

Baselines For comparison, we consider two competitive few-shot image generation methods as
baselines. First, the implicit autoencoder (IAE) [17] is capable of stochastic reconstruction of the
input, thus able to generate varied outputs based on individual input samples. We use our own
implementation of IAE with the same architecture as ISSA for fair comparison. Second, Data
Augmentation GAN (DAGAN) [1] is a GAN based method to generate augmented data for few-shot
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CelebA
Metrics FID (↓) Top 1 accuracy (↑) Top 5 accuracy (↑) Top 10 accuracy (↑)

IAE [17] 31.36± 0.08 0.0282± 0.0011 0.1445± 0.0645 0.2263± 0.0835

2-shot ISSA 28.97± 0.19 0.0177± 0.0004 0.0697± 0.0017 0.1205± 0.0026
10-shot ISSA (2-shot test) 19.30± 0.10 0.0542± 0.0014 0.1706± 0.0016 0.2663± 0.0012
5-shot ISSA 20.12± 0.27 0.0519± 0.0001 0.1742± 0.0013 0.2752± 0.0016
10-shot ISSA 17.76 ± 0.19 0.0805 ± 0.0013 0.2349 ± 0.0005 0.3444 ± 0.0030

Table 1: FID and identity accuracy result on CelebA.

Omniglot
Metrics FID (↓) Top 1 accuracy (↑) Top 5 accuracy (↑) Top 10 accuracy (↑)

DAGAN [1] 215.93± 6.59 0.3853 ± 0.0165 0.6379 ± 0.0262 0.7350± 0.0216
IAE [17] 161.28± 0.45 0.2709± 0.0021 0.5455± 0.0011 0.6737± 0.0007

2-shot ISSA 118.63± 0.27 0.2274± 0.0002 0.4957± 0.0003 0.6321± 0.0004
10-shot ISSA (2-shot test) 112.96± 0.49 0.2778± 0.0006 0.5537± 0.0002 0.6778± 0.0005
5-shot ISSA 113.18± 0.25 0.3239± 0.0007 0.6186± 0.0011 0.7432± 0.0007
10-shot ISSA 109.07 ± 0.23 0.3420± 0.0010 0.6327 ± 0.0010 0.7488 ± 0.0007

Table 2: FID and character accuracy result on Omniglot.

classification. We use the publicly available official implementation which only includes Omniglot
experiments. Thus, DAGAN is not included in the CelebA comparison. Note that both IAE and
DAGAN are one-shot generative models where each sample from the support set is treated individually
rather than jointly as in ISSA. In addition, note that ISSA with one shot (i.e., k = 1) reduces to IAE.

4.1 Quantitative Evaluation

Evaluating generative models remains an open problem. A successful k-shot image generation
method should generate realistic and diverse samples that accurately describe the target distribution.
We discuss two metrics to evaluate the diversity and accuracy of the generated samples respectively.

Diversity evaluation We use the widely adopted “Fréchet Inception Distance” (FID) [7] to measure
the quality and diversity of the generated samples. As the generated samples are conditioned on
real images from the support set, we only use real images that are not in the support set for FID
evaluation. Therefore, for a given test class, we set aside half of the images to randomly sample
support sets and the other half as the real-world image for FID computation. For Omniglot, each
class has 20 images thus we use 10 of those to sample the support sets and the remaining 10 images
for FID evaluation (i.e., with 210 test classes, 2110 images are used to compute the FID). For CelebA,
since each identity has varied number of images, we select classes with more than 20 images and
again use the first 10 as support set samples and another 10 for FID. We use 10 generated images per
class based on 10 real samples to be compared against the 10 held-out real images of that class. To
ensure that the evaluation is fair for any k-shot ISSA, each real image is used exactly once to form
the support set. For example, for 10-shot ISSA, a support set of 10 real images is used to obtain one
context vector c and used to generate 10 images. In contrast, for a one shot model such as IAE, 10
support set of size one are formed and each generates one image.

Accuracy evaluation We also examine how closely the generated samples resemble the underlying
distribution of the support set (using an identity accuracy metric). To achieve this, we train a classifier
on the test classes and check if the generated samples can fool the classifier. In practice, we randomly
sample 10 support sets from each class and generate 10 images from each support set. These 100
images are then checked by the classifier to see if they belong to the same class as the support set.
This process is applied to all classes in the Omniglot test domain and the 200 most frequent classes
from the CelebA test domain.

The diversity and accuracy evaluation are complementary metrics in evaluating k-shot image genera-
tion methods. For instance, a standard autoencoder can achieve close to perfect accuracy score as it
reconstructs the support set, but obtains a poor performance on the diversity metric. More details
regarding the backbone classifier for both evaluation metrics can be found in Appendix A.2.
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(a) Test support set size of k = 2. (b) Test support set size of k = 5.

Figure 3: ISSA generates high quality and diverse images for unseen classes with as few as (a) 2
images and (b) 5 images in Omniglot. As the size of the support set increases, ISSA can infer a
better representation of the underlying distribution. The support set images are placed at the left side
of the vertical bar and the generated images are on the right.

Figure 4: 2D PCA visualization of the context vector c of the 10-shot ISSA for 10 test classes of the
Omniglot dataset. Each dot is the context vector of a support set of size 10 and is colored according
to its class.

Results We train the k-shot ISSA with varying number of shots k ∈ {2, 5, 10} on the CelebA
and Omniglot datasets, and report the accuracy and diversity of generated images in Table 1 and
Table 2 (note that ISSA with k = 1 is equivalent to IAE). The top results within the error margin are
highlighted.

We observe that as we increase k, both the diversity and accuracy of k-shot generated samples improve
consistently in both CelebA and Omniglot datasets, with the 10-shot ISSA achieving the best FID
and identity classification results. This is due to the fact that by increasing k, ISSA can better capture
the underlying distribution by learning the common information within the sets. This is in contrast
to IAE and DAGAN, which attempt to learn the underlying distributions from individual examples
rather than sets. On the CelebA dataset, ISSA achieves significant gains in both FID and accuracy,
compared to IAE. On the Omniglot dataset, the ISSA also achieves significant improvements in
terms of FID, outperforming IAE and DAGAN. The 10-shot ISSA outperforms IAE by 52.21 and
DAGAN by 106.86 in term of the FID score. For identity accuracy, 10-shot ISSA outperforms IAE
and remains competitive with DAGAN.

We also examine our 10-shot ISSA, in the setting where the model is tested on sets of size k = 2:
10-shot ISSA (2-shot test) in Table 1 and Table 2. In order to do so, during the test time, we simply
repeat examples from the support set to form a set of size 10. As expected, we observe that this model
performs better than ISSA trained in the 2-shot setting. This is because training on larger support
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Figure 5: ISSA generates high quality and diverse images for unseen classes with as few as 2 images
in CelebA. The support set images are placed at the left side of the vertical bar and the generated
images are on the right.

set has enabled ISSA to learn better representations for the underlying distributions. However, it
performs worse than the 10-shot ISSA, as at the test time it has not seen as many diverse images to
accurately infer the underlying distribution. Therefore, our overall recommendation is to train ISSA
with large support set sizes (i.e. size 10) and use it for support set of equal or smaller sizes at test
time.

4.2 Qualitative Evaluation

We now visualize the generated samples from ISSA on both the CelebA and Omniglot datasets. The
vertical bars separate the support set images from the samples generated by ISSA. Figure 3 shows the
samples generated by 10-shot ISSA from test support sets with only 2 examples (a) or 5 examples (b)
from the Omniglot dataset. We see that ISSA successfully learns the global structure of the characters
and generate new diverse images from the same class. As the support set size increase, ISSA can
better capture the underlying distribution of the support set, thus generating samples that are more
representative of the dataset. The generated samples are of high visual quality with diverse variations.

Figure 5 shows CelebA generations from ISSA with only 2 support examples. The context vector
c obtained from the encoder attempts to infer the underlying distribution of the support set and the
noise vector controls the variations in the output image. Our best CelebA model can generate images
for new identities with the accuracy of 8% top-1 and 34% top-10 across 1000 test identities, as
measured by a strong identity classifier (Table 1). Compared to IAE and DAGAN, this is a significant
improvement, however, this task still remains a challenging problem. We can see from Figure 5 that
the context vector of ISSA mostly captures high-level features relevant to the identity of the face
(e.g., gender, ethnicity, shape of eye brows), and that the noise vector ϵ captures low-level variations
independent of the identity (e.g., head pose, lighting condition).
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4.3 Context Space

In order to assess how effectively the ISSA encoder infers the underlying distribution of a given
support set, we visualize the context vectors of 80 support sets of size 10 randomly drawn from 10
test classes of the Omniglot dataset in Figure 4. Each dot is colored based on its class label. We
observe that support sets from the same underlying distribution (i.e., same character in Omniglot)
are mapped to the same region in the PCA projection space, forming distinct clusters. Interestingly,
characters with similar structures also lie in closer proximity in the context space. This suggests that
ISSA successfully learns to capture the inter-class information from the training domain in a way that
can be transferred to new classes.

5 Conclusion

In this work, we proposed the “Implicit Support Set Autoencoder” (ISSA) for few-shot image genera-
tion tasks. We showed that ISSA can learn useful representations for the underlying distributions of
support sets with an adversarial objective. This context representation can then be leveraged at the
test time to infer the underlying distribution of a novel dataset, and generate new samples from it.
We evaluate the performance of ISSA on CelebA and Omniglot datasets using both accuracy and
diversity metrics. On the Omniglot dataset, we showed that ISSA can learn the global structure of the
characters and generate new characters with diverse variations while preserving the global structure.
On the CelebA dataset, we showed that ISSA can perform better than recent methods of IAE and
DAGAN in inferring novel identities from few examples, and generating diverse images from them.
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A Hyperparameters

A.1 ISSA Architecture

In this section, we provide information regarding the architectural implementation of ISSA. In the
implementation of ISSA, we use DCGAN [23] inspired architectures for the encoder, the generator
and the discriminator. We use spectral normalization [18] to stabilize training for the generator and
the discriminator. The exact architectures for the encoder E, the generator G and the discriminator
D can be found in Table 3, 4 (for Omniglot) and Table 5, 6 (for CelebA). In these tables, “Conv”
stands for 2D convolution layer, “Pad” stands for amount of padding in the convolution layer, “BN”
stands for a batch normalization layer [10], “SNConv” stands for 2D convolution layer with spectral
normalization, “SNConvTr” stands for 2D transposed convolution with spectral normalization.

The encoder is implemented as a CNN and outputs the context vector c. To pass the entire support set
Si to the encoder, the images within the set are stacked as additional channels to the first convolutional
layer. For example, in 5-shot ISSA on the CelebA dataset, the input to the encoder is a set of five
64× 64 color images. They are then stacked to form a tensor of size R15×64×64 before being fed to
the first convolutional layer. The output representation from the last convolutional layer of the CNN
is fed into two fully connected layers which outputs the context vector c. The discriminator D is also
a CNN which takes a set of images as input. Similar to the encoder, the images from a set are stacked
as additional input channels. To condition on the context c, we embed c with a fully connected
hidden layer and then concatenate the embedding as an additional channel to the stacked images.
Thus, using the above example, the input to the first convolutional layer in the discriminator D would
be of size R16×64×64. Lastly, the generator G takes both the context c and the noise vector z as input.
As both z and c are vectors, we simply concatenate them to form the input to the generator.

Encoder Generator

S ∈ R32×32×k c ∈ R1000 and n ∈ R1000

4× 4 Conv.100 LeakyReLU. Stride 2. Pad 1. BN 4× 4 SNConvTr. 400 ReLU. Stride 1. BN
4× 4 Conv.200 LeakyReLU. Stride 2. Pad 1. BN 4× 4 SNConvTr. 200 ReLU. Stride 2. Pad 1. BN
4× 4 Conv.400 LeakyReLU. Stride 2. Pad 1. BN 4× 4 SNConvTr. 100 ReLU. Stride 2. Pad 1. BN

FC. 2000 Linear ReLU BN 4× 4 SNConvTr.1 Tanh. Stride 2. Pad 1.
FC. 1000 Linear ReLU BN

Table 3: Omniglot ISSA encoder and generator architectures

Discriminator

(S, c) or (Ŝ, c) where S ∈ R32×32×k and c ∈ R1000

4× 4 SNConv.100 LeakyReLU. Stride 2. Pad 1. BN
4× 4 SNConv.200 LeakyReLU. Stride 2. Pad 1. BN
4× 4 SNConv.400 LeakyReLU. Stride 2. Pad 1. BN

Sum Pooling Sigmoid.

Table 4: Omniglot ISSA discriminator architecture

Here, We describe the training hyperparameters. We use “c scale” to refer to the scaling factor for the
context vector c and “n scale” to refer to the scaling factor for the noise vector ϵ (is set to be 1 if not
specified). For ISSA training, we use Adam optimizer. First, we describe the hyperparameters for
the Omniglot dataset. For 2-shot ISSA, the learning rate for E, G and D is set to 2 × 10−4 and c
scale is 2× 10−1. For 5-shot ISSA, the learning rate for E, G is 2× 10−4 and for D is 10−4 while c
scale is 2× 10−1. For 10-shot ISSA, the learning rate for E, G and D is set to 2× 10−4 and c scale
is 10−1. For IAE, the learning rate for E, G and D is set to be 2 × 10−4 and c scale is 10−1. On
the CelebA dataset, for 2-shot ISSA, the learning rate for E, G is 3× 10−4 and for D is 2× 10−4

and c scale is 2× 10−4. And 5-shot ISSA has the same parameter as 2-shot ISSA. For 10-shot ISSA
the learning rate for E, G is 3× 10−4 and for D is 2× 10−4 and c scale is 10−1. Now we describe
the parameters for the baselines in 4. For IAE, the learning rate for E, G is 3× 10−4 and for D is
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Encoder Generator

S ∈ R64×64×3×k) c ∈ R100 and n ∈ R100

4× 4 Conv.64 LeakyReLU. Stride 2. Pad 1. BN 4× 4 SNConvTr. 512 ReLU. Stride 1. BN
4× 4 Conv.128 LeakyReLU. Stride 2. Pad 1. BN 4× 4 SNConvTr. 256 ReLU. Stride 2. Pad 1. BN
4× 4 Conv.256 LeakyReLU. Stride 2. Pad 1. BN 4× 4 SNConvTr. 128 ReLU. Stride 2. Pad 1. BN
4× 4 Conv.512 LeakyReLU. Stride 2. Pad 1. BN 4× 4 SNConvTr. 64 ReLU. Stride 2. Pad 1. BN

FC. 2000 Linear ReLU BN 4× 4 SNConvTr.3 Tanh. Stride 2. Pad 1.
FC. 100 Linear ReLU BN

Table 5: CelebA ISSA encoder and generator architectures

Discriminator

(S, c) or (Ŝ, c) where S ∈ R64×64×3×k and c ∈ R100

4× 4 SNConv.64 LeakyReLU. Stride 2. Pad 1. BN
4× 4 SNConv.128 LeakyReLU. Stride 2. Pad 1. BN
4× 4 SNConv.256 LeakyReLU. Stride 2. Pad 1. BN
4× 4 SNConv.512 LeakyReLU. Stride 2. Pad 1. BN

Sum Pooling Sigmoid.

Table 6: CelebA ISSA discriminator architecture

2× 10−4 while c scale is 1 and n scale is 2× 10−1. For DAGAN, we use the default parameter from
the official implementation.

A.2 Evaluation Details

In this section, we describe the backbone classifiers used for both FID and identity accuracy evaluation
in Section 4. During training, we use the FID for the training domain as indicator for when to stop
training ISSA.

Omniglot Both evaluation backbone classifiers take 32× 32 images as inputs and when applicable,
we resize images into 32× 32 (such as the output from DAGAN). We use a CNN trained with all
1623 Omniglot characters as backbone for FID evaluation. The detailed architecture can be found
in Table 7. The classifier is trained with 18 training examples per class, using early stopping with 2
validation examples per class. The learning rate is set to be 1× 10−3 with Adam optimizer [12] (
β1 = 0.9 and β2 = 0.999).

For identity classification, we use a DenseNet [8] classifier trained on the test domain for 211-way
classification on the test classes. The classifier is trained using 18 images per class and achieves 99%
validation accuracy on 1 held-out example and 96.17% test accuracy on 1 held-out example. The
DenseNet classifier has 4 Dense Blocks and 4 Transition Layers with a growth rate of 64. Each Dense
Block has 3 convolution layers within it. The first convolution layer has 64 filters and we apply a
dropout rate of 0.5. The classifier is trained with learning rate of 0.001 with Adam optimizer with
β1 = 0.9 and β2 = 0.99 and we use early stopping with validation examples.

Omniglot FID backbone classifier

x ∈ R32×32×1

4× 4 Conv.64 LeakyReLU. Stride 2. Pad 1. BN
4× 4 Conv.128 LeakyReLU. Stride 2. Pad 1. BN
4× 4 Conv.256 LeakyReLU. Stride 2. Pad 1. BN

FC. 2000 Linear ReLU BN
FC. 1623 Linear ReLU BN

Table 7: Omniglot FID backbone
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CelebA The FID backbone is computed with a pretrained InceptionV3 classifier [26] 1. The backbone
for identity classification is a pretained InsightFace classifier [3] 2. It achieves 96% test accuracy with
29 training examples per class from the CelebA test domain.

B Computational Resources

To run all experiments in Section 4, we use either one Nvidia T4 or P100 or RTX6000 GPU with
64G memory and 4 CPU cores. Here, we will describe the estimated compute time for ISSA. At the
test time, inferring the underlying distribution from a support set and producing novel samples is a
simple forward pass on ISSA thus being near instant (when running with GPU). Training ISSA on
Omniglot takes less than 6 hours, and on CelebA it would take less than a day.

1https://github.com/mseitzer/pytorch-fid
2https://github.com/deepinsight/insightface
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