
Representation Learning via Consistent Assignment of
Views over Random Partitions

Thalles Silva
Institute of Computing
University of Campinas

thalles.silva@students.ic.unicamp.br

Adín Ramírez Rivera
Department of Informatics

University of Oslo
adinr@uio.no

Abstract

We present Consistent Assignment of Views over Random Partitions (CARP), a
self-supervised clustering method for representation learning of visual features.
CARP learns prototypes in an end-to-end online fashion using gradient descent
without additional non-differentiable modules to solve the cluster assignment
problem. CARP optimizes a new pretext task based on random partitions of
prototypes that regularizes the model and enforces consistency between views’
assignments. Additionally, our method improves training stability and prevents
collapsed solutions in joint-embedding training. Through an extensive evaluation,
we demonstrate that CARP’s representations are suitable for learning downstream
tasks. We evaluate CARP’s representations capabilities in 17 datasets across many
standard protocols, including linear evaluation, few-shot classification, k-NN, k-
means, image retrieval, and copy detection. We compare CARP performance
to 11 existing self-supervised methods. We extensively ablate our method and
demonstrate that our proposed random partition pretext task improves the quality
of the learned representations by devising multiple random classification tasks. In
transfer learning tasks, CARP achieves the best performance on average against
many SSL methods trained for a longer time.

1 Introduction

Learning from unlabeled data has been one of the main challenges in computer vision. Recent
approaches based on self-supervised learning (SSL) have significantly reduced the gap between
supervised and unsupervised pre-trained representations. Nowadays, self-supervised pre-training on
vast quantities of unlabeled data, prior to learning a downstream supervised task of interest, can be
more effective than supervised pre-training for many tasks [7, 19, 22].

Current SSL methods can be divided into two classes: (1) self-supervised embedding prediction [9,
24, 39, 41] and (2) clustering [1, 5, 6, 29]. As the name suggests, embedding prediction methods work
directly in the representation space. They are trained with either contrastive or non-contrastive loss
functions. Instead of reconstructing the input signal, their loss function maximizes agreement between
embeddings of the same view and optionally pushes representations from different views apart. On
the other hand, clustering methods discretize the representation space by learning a finite set of
prototypes. These prototypes aggregate representations from different images that are similar enough
to be assigned together. Nevertheless, recent SSL methods build a joint-embedding architecture that
can be pure siamese [4] or use different encoders.

Code at https://sthalles.github.io/carp/.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://sthalles.github.io/carp/

The most challenging and significant difference among these methods is how they avoid trivial
solutions when training joint-embedding architectures. Contrastive methods avoid trivial solutions by
explicitly pushing representations of negative samples away from the anchor representation, while
non-contrastive methods avoid trivial solutions by regularization or architectural designs [10, 22].

Among self-supervised clustering methods, recent work proposed avoiding trivial solutions by using
non-differentiable modules such as the Sinkhorn-Knopp algorithm [1, 7, 14] and classic machine
learning methods [29, 42] such as k-Means clustering or k-Nearest Neighbor, to solve the cluster
assignment problem.

Consistent assignments [37, 38] were recently proposed as a way to learn prototypes to improve the
representations. Similarly, our learning objective imposes two constraints (1) consistent assignment
of views over learnable prototypes and (2) a uniform distribution for the average predictions within a
batch. However, we show that such a strategy does not scale well to enormous datasets containing
millions of classes. In such situations, we need to model a large number of prototypes while enforcing
consistent assignment between views and avoiding collapsed solutions. We show that a naive
implementation of this strategy makes the learning problem challenging from a training stability
perspective, where the model quickly settles for a trivial solution by assigning all views’ embeddings
to the same prototype.

To overcome these issues, we propose a novel self-supervised approach based on the consistent
assignment of views over random partition sets (CARP). We train CARP to minimize a consistency
loss, which encourages the model to assign different views of the same unlabeled example to the
same prototype. We solve the dimensionality problem by enforcing smaller pseudo-classification
problems through the introduction of random partitions that enforce consistency and regularize the
model. The energy between the views’ representations and the trainable prototypes (within random
partitions) allows us to automatically bootstrap predictions and targets to our consistency loss. Our
contributions are three-fold:

1. A novel and entirely online joint-embedding learning strategy based on self-supervised clustering,
see Figure 1. We propose a divide-and-conquer pretext task based on randomly generated partitions
of learnable prototypes. Our loss function allows stable training of joint-embedding architectures
in a self-supervised context.

2. A framework that simplifies self-supervised training and does not require normalization tech-
niques [7, 9] or the necessity of mining negatives for contrastive training [9, 31, 32].

3. A differentiable assigner module that generates soft pseudo-labels by comparing the representa-
tions of image views to prototypes within random partition subsets. To avoid trivial solutions,
we enforce the average predictions over a batch to be non-informative over the set of prototypes
within a random subset.

2 Related work

Self-supervised embedding prediction methods operate directly in the representation space by
learning a metric such that embeddings from views of the same image are closer to one another while
embeddings from views of different images are far away in the feature space. These methods can be
trained using contrastive or non-contrastive loss functions. Methods that minimize a loss function
with a contrastive term date back to 1990s [4, 13, 21]. They must explicitly find representations
from non-correlated images to use as negatives. Recent contrastive methods include InstDisc [46],
CPC [32], SimCLR [9] and MoCo [11, 24]. These methods learn unsupervised representations by
minimizing nearly the same contrastive loss function, i.e., the InfoNCE [32]. CARP does not directly
optimize the views’ embeddings, nor is it a contrastive method. Instead, we learn a set of general
prototypes using a random partition strategy that stabilizes the learning process and avoids trivial
solutions commonly found when training joint-embedding SSL models.

On the other hand, non-contrastive methods work by approximating embeddings of views from the
same image. The main advantage is not requiring explicit opposing representations in the loss formu-
lation. To avoid trivial solutions, a common approach is to implement a “stop-gradient” operation
that prevents the gradient signal from flowing to the two branches of the join-embedding architecture
simultaneously. BYOL [22] and SimSiam [10] are examples of such methods. CARP takes advan-
tage of non-contrastive training since it does not require mining negatives for optimization. Also,
different from Grill et al.’s [22] work, CARP does not require a momentum encoder, though using it

2

x̂1

x̂2

fθ

Encoder

fξ

gθ

Projector

gξ

zv

wv

qθ

Assigner

qξ

Predictions

Targets

EMA EMA EMA

Partition P

B0 B1

B0 B1

Figure 1: CARP’s training architecture. From two views, we train an encoder f(·), followed by a
projection g(·) to produce representation vectors zv and wv , respective to the parameters θ and ξ for
each branch, for each view indexed by v. The representations are fed to an assigner function q(·) that
produces normalized distributions of views w.r.t. the learnable prototypes. Note that θ are the trainable
weights, and ξ are an exponential moving average of θ. We create partitions by randomly arranging
the prototypes into a predefined number of blocks. E.g., from a total of K = 6 prototypes, we create
NP = 2 blocks, each containing NB = 3 prototypes. Then, we enforce consistent assignment of
views over prototypes within the blocks.

significantly improves the learned representations. CARP trains a joint-embedding architecture and
uses the “stop-gradient” operation in conjunction with a regularized pretext task based on random
partitions of prototypes to avoid mode collapse.

Self-supervised clustering methods do not work directly on the views’ embeddings. Instead, they
learn a set of prototypes that are used to solve subsequent pretext tasks in different ways. Caron
et al. [5], for instance, used k-Means clustering at every epoch to cluster the representations from the
entire dataset and produce pseudo-labels for the training images. Then, a classifier head is trained
to predict the pseudo-labels. Caron et al. [6] proposed a method to combine the rotation prediction
pretext task [18] with clustering. Li et al. [29] presented a method based on expectation-maximization
(EM) that merges clustering with the contrastive learning framework from He et al. [24]. Recent
work by Caron et al. [7] and Asano et al. [1] combine SSL with clustering. They utilize the non-
differentiable Sinkhorn-Knopp algorithm to solve the cluster assignment problem without falling into
collapsed solutions. Silva and Ramírez Rivera [38] proposed, CARL, an online clustering method
that does not require non-differential algorithms to avoid trivial solutions.

Contrast to previous approaches. Instead of solving the cluster assignment problem using a non-
differentiable algorithm such as the Sinkhorn-Knopp, CARP is trained end-to-end with gradient
descent. Different from Caron et al.’s [8] work, our model does not require extra momentum
encoders or data structures to store previous predictions as a way to avoid trivial solutions. Unlike
CARL [37, 38], CARP avoids trivial solutions by posing the optimization problem at the level of
random partitions of prototypes that solve the high-dimensionality nature of the task. Unlike Caron
et al.’s [6] work, our method does not require clustering the entire dataset every epoch to generate
pseudo-labels. Instead, CARP generates soft pseudo-labels in an online fashion from examples in a
single minibatch.

Currently, the best self-supervised methods [8, 12] use vision transformers [15, 44] as their backbones.
Recent methods [20] employ a masking pretext task where some patches of the views are manually
hidden, and the network is tasked to infer the missing pieces. In this paper, we consider transformer-
based methods to be out-of-scope of our compared backbones. Thus, we do not include them in our
results to maintain a fair comparison.

3 Consistent Assignment of Views

From an image xi, we create two views, x̂1
i = T (xi) and x̂2

i = T (xi), using a stochastic function
T that applies a set of random image transformations to xi (cf. Appendix C.1). CARP is a joint-
embedding architecture with two modules: a differentiable (student) and a non-differentiable (teacher)

3

Prototypes

x̂1

x̂2
z1

w2

B0

B1

Figure 2: Instead of posing a pseudo-classification problem overall prototypes (circles and squares),
the views are assigned (colored dashed lines) to a subset of prototypes (blocks), devising multiple
pseudo-classification problems. Then, we contrast their distributions of assignments. (For this
example, K = 8, NB = 4 with NP = 2.)

branch. Each module has its own set of weights and the same architectural design. Both contain
an encoder f(·) and a projection head g(·). The differentiable student receives a pair of views and
produces embedding vectors zvi = gθ(fθ(x̂

v
i)), for v ∈ {1, 2}. Similarly, the non-differentiable

teacher produces target embeddings wv
i = gξ(fξ(x̂

v
i)).

The objective is to learn a set of prototype vectors C to discretize the embedding space. These
prototypes are not meant to represent the true classes of the data. Instead, they may be interpreted as
anchors to attract views of a given image to a commonplace in the embedding space. The function
q(·, ·) receives the views’ representations, zvi and wv

i ∈ R1×d, as input and outputs normalized
probability vectors relating the views’ embeddings with the prototypes such that svi = q(zvi , C) and
tvi = q(wv

i , C), where svi and tvi ∈ R1×K are the normalized probabilities of a view, x̂v
i , w.r.t. the

prototypes C ∈ RK×d. Note that d is the dimensionality of the embedding vector, K is the number
of prototypes, and the assigner q(h,C) = softmax

(
h · CT

)
.

To avoid trivial solutions in the joint-embedding training, we need a loss function that prevents the
assignment of all representation vectors zi to a unique prototype. Unlike previous work, we seek a
method that solves the cluster assignment problem in an online fashion using gradient descent.

We propose a loss function composed of two terms: consistency and entropy. The consistency term
learns the relations between embedding vectors and prototypes. It enforces different views of the
same image to be assigned to the same prototype with high confidence. For normalized probability
vectors a and b, we define the consistency term as

Lc(a, b) = − log ⟨a, b⟩ , (1)

where ⟨·, ·⟩ is a dot product.

The consistency loss is optimized when the two views x̂1
i and x̂2

i are assigned to the same prototype
with maximal confidence, i.e., when the probability distributions of the two views s1i and s2i resemble
equal one-hot vectors.

If we optimize the consistency loss, Lc, training collapses to a state where all views are assigned to
the same prototype. A common approach to avoid such failure is to ensure that all the prototypes get
roughly the same number of assignments. Let us define the function

avg
(
{(ai, bi)}Li=1

)
=

1

L

L∑
i=1

ai + bi (2)

as the average probability across the representations within a batch of size L. For our distributions,
we define p̄ = avg({(svi , tvi)}Ni=1). If we maximize the entropy of the mean probabilities of a
batch, H(p̄), we will encourage the average predictions to be closer to a uniform distribution.
Previous work [2, 26, 42] has used this entropy term in various scenarios, ranging from discriminative
unsupervised clustering to semi-supervised learning. In our case, this term enforces a non-informative
prior over the prototypes with a particular schedule learning. Thus, the final proposed objective to

4

minimize is

L =
1

N

N∑
i

(
Lc(s

1
i , t

2
i) + Lc(s

2
i , t

1
i)
)
− λeH(p̄), (3)

where λe > 0 trades off consistency at the view level with the average uniform assignment at the
batch level. Note that the contribution of the entropy term decays as training progresses.

3.1 Limitations of Consistent Assignments

The formulation of the consistent assignments (3) is similar to CARL [37, 38], except for the
additional teacher stream that stabilizes training and improves performance. Nevertheless, training
an unsupervised system by minimizing the loss (3) is challenging. The main limitation is how to
avoid trivial solutions in unsupervised training of joint-embedding architectures. For some cases,
tuning the contribution of the entropy term might be enough to optimize the loss (3) stably. However,
adjusting such a hyperparameter is difficult because one configuration does not hold for all training
conditions. For instance, if the value of λe is too small, the consistency term wins the arms race, and
the average distribution over the batch, H(p̄) becomes one-hot alike, i.e., all views end up assigned to
the same prototype. If the value of λe is too large, the entropy term gets the upper hand, and collapse
is avoided. However, the process of view assignment is neglected over the policy of distributing views
uniformly, which results in poor performance of the learned representations, as shown by Table B.2.

For a small number of general prototypes, training is more stable, and the model avoids collapse with
a simple tuning of the λe parameter. However, for a larger number of general prototypes, stability
becomes an issue. The main problem lies with the entropy term. When the distribution is larger, i.e.,
K ≫ N , regular batch sizes, such as N = 64 or N = 128, become too small to properly model the
distribution, i.e., the signal is too weak for most prototypes. Consequently, to avoid collapse, we
need to increase the strength of the entropy term or increase the batch size, which in turn decreases
performance.

To address such limitation, we propose to decouple the loss function (3) into smaller sub-problems.
Instead of enforcing both consistency and uniform assignments over all the general prototypes, we
propose a pretext task over subsets or blocks of a random partition of the general prototype set C.

4 Assignment based on Random Partitions

Given the set of K trainable prototypes C = {c1, c2, ..., cK}, we define a partition of C as P =

{Bi ⊂ C}NP
i=1, such that ∅ /∈ P ,

⋃
i Bi = P where Bi ∈ P , and Bi ∩ Bj = ∅ for all Bi, Bj ∈ P ,

and i ̸= j. We refer to Bi as a block or subset of the partition. We are interested in a partition set
P = {Bi}NP

i=1 of size NP , i.e., |P| = NP .

Using the concept of a partition of a set, we can define a framework of pretext tasks over partition
blocks that satisfies the learning problem defined in Section 3. If the size of a partition block, Bi,
equals the number of prototypes, NB = K then the partition P is trivial, i.e., P = {B1} = {C}. If
the size of the partition blocks equals NB = 1, then we have K blocks in P , and each block has a
unique prototype. Here, the learning task is equivalent to multiple binary classification problems,
where each output score, if normalized, expresses the likelihood of a data point xi to independently
belong to each prototype.

However, if the block size 1 < NB < K, and NB divides K, then the partition P will be composed of
NP = ⌊K/NP ⌋ blocks. We define P by randomly assigning NB prototypes cj , for j = 0, 1, . . . , NB ,
to each block Bi = {cj}j , where i = 0, 1, . . . , NP .

Instead of mapping a single representation zvi as a linear combination of all prototypes in C, we
compare the view’s representations zvi and wv

i against all the prototypes in the j-th block. That is,
svi,j = q(zvi , Bj) and tvi,j = q(wv

i , Bj), for every block in the partition P , to obtain the normalized
probability distribution relating a view from image i with the prototypes of the j-th block of the
random partition, where svi,j and tvi,j ∈ R1×1×NP .

To ensure that views are consistent among the blocks, we optimize the views’ distributions svi,j and
tvi,j over the prototypes of a block indexed by j, so that the two distributions are consistent with
one another. Thus, the consistency term of our partition loss is Lc(s

1
i,j , t

2
i,j), where for each block

5

Bj , the loss is minimized when the pair of views, x̂1
i and x̂2

i , gets assigned to the same prototypes
across blocks. In other words, we look for the agreement between student and teacher assignments’
probabilities across views of a given sample.

Following similar reasoning, the block-wise entropy term is defined as H(p̄j), where p̄j =
avg({(svi,j , tvi,j)}Ni=1) is the average prediction over each block Bj for a batch of size N . Thus,
the final objective for consistent assignment of random partition is,

L =
1

NNP

N∑
i

NP∑
j

(
Lc(s

1
i,j , t

2
i,j) + Lc(s

2
i,j , t

1
i,j)

)
−H(p̄j). (4)

Note that to fully use the pair of views at each iteration, we symmetrically use the Lc consistency
function. The probability vectors tvi,j come from the momentum teacher and are used as target
distributions.

We can view the random partition pretext task as posing multiple pseudo-classification problems over
subsets of prototypes. At each iteration, the pseudo-classification tasks change because the partitions
are recreated with different prototypes, cf. Figure 2. One of the benefits of such a strategy is that we
no longer require tuning the hyperparameter λe to avoid trivial solutions. The stochastic nature of the
random partition pretext task, blended with the multiple prediction tasks over subsets of prototypes,
provides a regularization effect that improves the learned representations and training stability.

Other clustering-based methods [7, 8] rely on sharpening the distributions to improve their self-
supervised signals used as targets in a cross-entropy loss. On the contrary, our formulation does not
require the temperature parameter for sharpening the predictions and guiding the learning of the
student. We can think of the consistency loss as implicitly learning the temperature parameter to
make the predictions sharper at each iteration. This is an important advantage of our consistency loss
in contrast to previous methods.

5 Main results

5.1 Transfer learning evaluation

Table 1 shows that CARP’s pre-trained representations are suitable for learning new downstream
tasks over multiple datasets with distinct difficulty levels. We compare CARP’s k-NN performance
against nine SSL methods across eight datasets and report average results for k= {10, 20, 100,
200}, over all datasets. We advocate for k-NN instead of linear evaluation, where a linear classifier is
trained on top of the frozen features, for the following reasons: (1) k-NN is faster, (2) k-NN demands
fewer resources, and (3) k-NN requires less hyperparameter tuning. For individual references,
Table 1 shows top-1 accuracy for k = 20 on each dataset. For fixed k = 20, CARP outperforms
competitors in 5 out of 8 datasets, and in the Flowers and Country datasets, it is a close second.
Moreover, the average performances at k show that CARP performs comparably well on all datasets
without significant performance differences when varying the number of labeled examples k. We
show the detailed results in Appendix A.1.

5.2 Clustering evaluation

Table 2 reports clustering performance metrics of various clustering-based SSL methods on the
ImageNet-1M [36], CIFAR-10/100 [27], and the GTSRB [40] datasets. For the ImageNet-1M, only
1% of the labeled data is used following the subset provided by Chen et al. [9]. See Appendix D.4 for
the detailed k-means evaluation protocol.

5.3 Image retrieval and copy detection

Motivated by the strong k-NN performance of CARP and following the previous evaluation protocol
by Caron et al. [8], we assess the performance of ImageNet pre-trained CARP encoders on image
retrieval and copy detection downstream tasks. We took the officially released weights from the
competing methods, used the frozen encoders as feature extractors, and performed retrieval using
k-NN. For both tasks, the nearest neighbor computation is done on the 2048-dim representation from
the ResNet-50 encoder. We report the top-3 best-performing methods. For an extended evaluation,
see Appendix A.2.

6

Table 1: Transfer learning evaluation. We report top-1 accuracy (k = 20) for individual datasets
and averages over all datasets for k ∈ {10, 20, 100, 200}. Top performing in bold, top-2 underlined.

Pets Flowers Aircraft Cars Country Food STL GTSRB Avg @k

Methods Ep results for k = 20 10 20 100 200

oBoW (mc) [19] 200 57.3 61.9 18.1 11.5 12.0 47.4 96.6 50.6 44.3 44.4 43.5 43.0
SeLa-v2 (mc) [1] 400 66.8 58.6 20.7 13.3 10.5 46.8 94.0 59.0 46.1 46.2 45.5 45.1
InfoMin [41] 800 77.8 61.9 18.2 14.4 11.6 52.4 96.4 54.8 48.6 48.4 47.3 46.6
DeepC-v2 (mc) [5] 800 78.3 76.3 32.0 25.0 13.6 62.3 95.6 63.4 56.0 55.8 54.4 53.3
SwAV (mc) [7] 800 77.0 75.2 29.0 22.7 13.8 59.1 95.2 63.2 54.5 54.4 53.1 52.2
DINO (mc) [8] 800 80.9 81.6 35.3 30.1 14.4 62.0 95.6 62.9 57.9 57.8 56.9 56.0
Triplet [45] 980 83.5 77.7 33.4 25.2 14.1 61.5 95.6 63.5 56.5 56.8 56.2 55.6
BarlowT [48] 1000 82.9 78.8 32.7 26.3 13.3 61.4 94.8 65.6 56.8 57.0 56.4 55.7
MoCo-v3 [12] 1000 86.4 79.0 36.9 29.3 12.4 60.0 96.7 72.8 59.2 59.2 58.4 57.8

CARP 400 86.8 80.0 42.1 33.5 12.3 58.4 95.9 75.3 60.4 60.5 59.7 59.2
CARP (mc) 400 83.9 80.3 34.8 27.1 14.2 62.9 95.5 62.8 57.6 57.7 56.8 56.0

Table 2: Clustering evaluation. We report (NMI) normalized mutual information, (AMI) adjusted
mutual information, and (ARI) adjusted rand index. Top performing in bold, top-2 underlined.

ImageNet-1M CIFAR-10 CIFAR-100 GTSRB

Method NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI

PCL v2 [29] 69.7 47.5 22.2 46.7 46.6 34.8 49.1 42.2 17.1 44.1 44.1 13.0
SeLa-v2 [1] 68.7 45.5 21.3 42.0 41.9 30.6 49.7 42.9 18.2 45.7 43.2 12.0
DeepC-v2 [5] 69.7 47.1 22.4 47.0 46.9 35.5 53.2 46.7 21.8 48.1 45.7 13.5
SwAV [7] 68.5 45.1 20.5 46.8 46.8 37.0 52.1 45.5 20.0 51.0 48.8 15.0
DINO [8] 69.2 46.2 21.7 39.6 39.5 28.0 47.6 40.4 16.2 52.0 49.8 15.4
MIRA [28] 68.9 45.7 21.2 39.5 39.4 28.8 49.0 42.1 17.6 51.6 49.4 15.8
CoKe [33] 68.9 45.6 21.3 45.9 45.8 34.2 51.9 45.2 19.5 49.4 47.1 13.7

CARP 70.3 48.0 23.9 49.0 48.9 38.7 54.5 48.2 23.1 54.8 52.7 19.6

Image retrieval. We consider the revisited Oxford and Paris landmark image retrieval datasets [34].
Given a query image of a landmark, the objective is to retrieve all database images depicting the
same landmark. Each dataset contains three different difficulty levels. In Table 3, we report the mean
Average Precision (mAP) on the Medium and Hard subsets for various SSL algorithms. CARP’s
representations perform well on Oxford 5k and take second place for Paris 6k. See Appendix D.5 for
the evaluation protocol.

Copy detection. We benchmark self-supervised ResNet-50 encoders on the INRIA Copydays
dataset [16]. In Table 4, we report the mean Average Precision (mAP) on the “strong” subset and
compare CARP’s performance against other state-of-the-art methods.

Table 3: Image retrieval evaluation. We report mAP on
the revisited Oxford and Paris for the (M) Medium and (H)
Hard subsets.

ROx Rpar

Method ep M H M H

Supervised [35] 100 49.8 8.5 74.0 52.1
Random – 1.6 0.7 4.1 2.5

DINO (mc) [8] 800 35.4 11.1 55.9 27.5
Triplet [45] 980 35.3 12.0 58.2 28.7
MoCo-v3 [12] 1000 33.1 10.9 59.1 31.3

CARP 200 38.8 15.5 58.8 30.4

Table 4: Copy-detection evaluation.
We report mAP for the Copydays
dataset on the “strong” subset.

Method Ep mAP

Random – 25.7

DINO (mc) [8] 800 78.8
Triplet [45] 980 81.7
VICReg [3] 1000 83.7
MoCo-v3 [12] 1000 80.6

CARP (mc) 400 84.0

7

Table 5: Few-shot classification on VOC07 and INat2018. We report mAP for VOC07 and top-1
accuracy for INat2018, at n, across 5 independent runs, where n denotes the number of training
examples. Top performing in bold, top-2 underlined.

Pascal VOC07 INat2018

Method Ep n=1 n=2 n=4 n=8 n=16 full n=1 n=2 n=4 n=8 n=16 full

PCL v2 [29] 200 47.9 59.6 66.2 74.5 78.3 85.4 1.4 1.6 2.3 2.9 4.8 2.1
DINO (mc) [8] 800 45.6 58.4 66.6 74.8 79.6 88.2 6.5 12.0 20.4 29.6 35.9 30.4
Triplet [45] 980 43.6 56.2 64.6 73.8 79.6 88.3 11.4 19.1 28.9 37.6 44.0 41.4
MoCo-v3 [12] 1000 46.6 59.6 67.0 75.4 80.2 87.4 8.1 12.2 18.5 27.2 33.5 28.0

CARP (mc) 200 46.0 58.3 66.5 75.5 79.5 88.0 8.6 14.4 23.6 32.7 38.2 33.9
400 47.1 59.8 67.3 75.8 80.0 88.2 11.5 19.6 29.6 39.1 45.1 42.6

5.4 Few-shot classification

Table 5 compares the few-shot classification performance of SSL methods on the VOC07 [17] and
INat2018 [43] datasets. We train linear SVMs following Li et al. [29] and linear classifiers on top of
the frozen representations from the self-supervised ResNet-50 encoders for VOC07 and INat2018,
respectively.

The INat2018 dataset is especially challenging for low-shot classification. It contains 8142 classes
with a long tail distribution, where the number of images per class varies between 1000 maximum
and 2 minimum. CARP remains a strong feature extractor for both tasks while competitors
oscillate between datasets. CARP pre-trained for 400 epochs demonstrates an efficient learning
performance and wins most configurations. We report a complete evaluation with standard deviations
in Appendix A.3.

5.5 Linear evaluation

Following the linear evaluation protocol proposed by Zhou et al. [49], we trained linear classifiers on
top of CARP’s frozen 2048-dim representations for 100 epochs.

We assess the linear evaluation performance of CARP’s pre-trained representations on ImageNet-1M
for three pre-training configurations, 100, 200, and 400 epochs, varying the utilization of multi-crop
(mc) augmentation, Table 6. CARP surpasses SwAV on all pre-trained configurations, +0.4% on 100
epochs, +0.4% on 200 epochs, +0.4% on 400 epochs w/o multi-crop, and +0.4% on 400 epochs with
multi-crop. Indeed, CARP’s 400 epochs pre-trained representations perform on par with DINO and
SwAV, both pre-trained for 800 epochs.

In addition, we evaluated CARP’s representations using a weighted k-Nearest Neighbor (k-NN)
classifier. CARP achieves better k-NN performance than SwAV (+1.4%), DINO (+0.2%), and
BYOL (+1.1%), all trained for 800 epochs or more. These results emphasize the efficiency of the
proposed random partition pretext task.

6 Ablations

In this section, we assess whether a consistent assignment of views over random partitions benefits
the learned representations and improves training stability. We ablate CARP’s main hyperparameters
to establish a good baseline for pre-training on ImageNet-1M. For ablations, we trained CARP using
the full ImageNet-1M dataset for 50 epochs. The batch size was set to 256, the number of prototypes
K = 65 536, and the number of random partition blocks NP = 128. Hence, each block contains
NB = 512 prototypes. We report results for single runs. See Appendix B for more results and
Appendix C for implementation details.

6.1 Training CARP with different batch sizes

Most SSL methods [7, 8, 22, 48] report their best results when using substantially large batch sizes.
In Table 7, we observe a similar pattern when training CARP. Our default configuration of 1024

8

Table 6: Linear evaluation. We report top-1 linear and k-NN (k = 20) accuracy for the ImageNet-
1M dataset. † Results computed by us using the officially released pre-trained models. Top performing
in bold, top-2 underlined.

Method Ep Linear k-NN

Supervised 100 76.5 –

SwAV (mc) [7] 100 72.1 61.8†

200 73.9 63.7†

400 74.6 65.0†

800 75.3 66.3†

DINO (mc) [8] 800 75.3 67.5
BYOL [22] 1000 74.3 66.6
MoCo-v3 [24] 1000 74.6 68.9†

CARP 400 73.0 67.6
CARP (mc) 100 72.5 63.5

200 74.2 66.5
400 75.3 67.7

Table 7: CARP learns better representations when
larger batch sizes (bs) are employed.
bs 128 256 512 1024 2048 4096

k-NN 46.56 51.32 54.23 56.63 57.0 58.5

Table 8: Exploring different strategies to
create the partitions.
Epochs 25 50 75 100

Constant 45.15 49.89 52.81 53.32
Random 48.68 53.98 55.93 56.38

observations yields a k-NN top-1 performance 10% higher than a batch size of 128. Table 7 confirms
that training with large batch sizes benefits the learned representations. However, training with
smaller batch sizes requires further tuning of other hyperparameters, such as the block size NB .
Specifically, we observed that reducing the block size NB improves the learned representations when
training with small batch sizes, which makes CARP robust to low-resource training.

6.2 Exploring different strategies to build partitions

Table 8 explores different ways of creating random partition blocks from the learnable prototypes.
CARP’s default strategy recreates the random partitions at every training step. In other words, for each
iteration, we assign NB randomly chosen prototypes to the NP partition blocks. Table 8 contrasts
CARP’s default strategy with one in which the partition blocks are created only once, in a sequential
manner, and kept fixed throughout training. We observe that training CARP with fixed partition
blocks still produce useful representations. However, as measured by k-NN performance, randomly
recreating the partition blocks at each iteration further benefits the learned representations. Since
the partition blocks are randomly recreated at every iteration of gradient descent, the classification
subproblems are always different. In practice, this variance allows for many unique pretext tasks at
each iteration, which provides a positive regularization effect on CARP.

7 Limitations

Even though CARP’s representations transfer well to many downstream tasks, our experiments
showed that CARP’s representations do not transfer well to dense prediction tasks such as detection
and segmentation. We hypothesize this limitation is due to the architectural characteristics of
ConvNets that collapse local feature maps to an average global representation in the last layer,
combined with our classification-like loss function. Refer to Appendix A.4 for quantitative results.

9

8 Conclusion

We presented consistent assignment of views over random partitions (CARP), a self-supervised
clustering-based method for visual feature learning. CARP learns prototypes in an online fashion
end-to-end using gradient descent by minimizing a cost function that optimizes consistency between
views’ assignments and uniform distribution across prototypes within a random partition. Our
experiments demonstrate that posing the optimization problem at the level of random partitions of
learnable prototypes stabilizes training by avoiding trivial solutions in joint-embedding architectures
and increases the performance of the learned representation. We compared the performance of CARP
against the state-of-the-art ResNet-based SSL methods across multiple pretext tasks and datasets.
The results demonstrated that the representations learned by CARP performed well on many visual
downstream tasks.

Acknowledgements

The computations were performed in part on resources provided by Sigma2—the National Infras-
tructure for High Performance Computing and Data Storage in Norway—through Project NN8104K.
This work was funded in part by the Research Council of Norway, through its Centre for Research-
based Innovation funding scheme (grant no. 309439), and Consortium Partners. This study was
financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil
(CAPES)—Finance Code 001

References
[1] Y.M. Asano, C. Rupprecht, and A. Vedaldi. Self-labelling via simultaneous clustering and

representation learning. In Inter. Conf. Learn. Represent. (ICLR), 2020.

[2] Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Armand Joulin, Nicolas
Ballas, and Michael Rabbat. Semi-supervised learning of visual features by non-parametrically
predicting view assignments with support samples. In IEEE Inter. Conf. Comput. Vis. (ICCV),
pages 8443–8452, 2021.

[3] Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-invariance-covariance regular-
ization for self-supervised learning. In Inter. Conf. Learn. Represent. (ICLR), 2022.

[4] Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun, Cliff Moore, Eduard
Säckinger, and Roopak Shah. Signature verification using a “siamese” time delay neural
network. In Adv. Neural Inf. Process. Sys. (NeurIPS), pages 669–688. World Scientific, 1993.

[5] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for
unsupervised learning of visual features. In European Conf. Comput. Vis. (ECCV), pages
132–149, 2018.

[6] Mathilde Caron, Piotr Bojanowski, Julien Mairal, and Armand Joulin. Unsupervised pre-
training of image features on non-curated data. In IEEE Inter. Conf. Comput. Vis. (ICCV), pages
2959–2968, 2019.

[7] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. In Adv. Neural Inf.
Process. Sys. (NeurIPS), 2020.

[8] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In IEEE Inter.
Conf. Comput. Vis. (ICCV), pages 9650–9660, 2021.

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In Inter. Conf. Mach. Learn. (ICML), 2020.

[10] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In IEEE/CVF
Inter. Conf. Comput. Vis. Pattern Recog. (CVPR), pages 15750–15758, 2021.

10

[11] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[12] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised
vision transformers. In IEEE Inter. Conf. Comput. Vis. (ICCV), 2021.

[13] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively,
with application to face verification. In IEEE/CVF Inter. Conf. Comput. Vis. Pattern Recog.
(CVPR), volume 1, pages 539–546. IEEE, 2005.

[14] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Adv. Neural
Inf. Process. Sys. (NeurIPS), volume 26, pages 2292–2300, 2013.

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. In Inter. Conf.
Learn. Represent. (ICLR), 2020.

[16] Matthijs Douze, Hervé Jégou, Harsimrat Sandhawalia, Laurent Amsaleg, and Cordelia Schmid.
Evaluation of gist descriptors for web-scale image search. In ACM Inter. Conf. Image Video Ret.
(CIVR), pages 1–8, 2009.

[17] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. Inter. J. Comput. Vis., 88(2):303–338, 2010.

[18] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. In Inter. Conf. Learn. Represent. (ICLR), 2018.

[19] Spyros Gidaris, Andrei Bursuc, Gilles Puy, Nikos Komodakis, Matthieu Cord, and Patrick Pérez.
Online bag-of-visual-words generation for unsupervised representation learning. In IEEE/CVF
Inter. Conf. Comput. Vis. Pattern Recog. (CVPR), 2020.

[20] Rohit Girdhar, Alaaeldin El-Nouby, Mannat Singh, Kalyan Vasudev Alwala, Armand Joulin,
and Ishan Misra. Omnimae: Single model masked pretraining on images and videos. In
IEEE/CVF Inter. Conf. Comput. Vis. Pattern Recog. (CVPR), 2022.

[21] Jacob Goldberger, Geoffrey E Hinton, Sam Roweis, and Russ R Salakhutdinov. Neighbourhood
components analysis. In Adv. Neural Inf. Process. Sys. (NeurIPS), volume 17, 2004.

[22] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. In Adv.
Neural Inf. Process. Sys. (NeurIPS), 2020.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE/CVF Inter. Conf. Comput. Vis. Pattern Recog. (CVPR), pages 770–778,
2016.

[24] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In IEEE/CVF Inter. Conf. Comput. Vis. Pattern
Recog. (CVPR), pages 9729–9738, 2020.

[25] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs.
IEEE Trans. Big Data, 7(3):535–547, 2019.

[26] Armand Joulin and Francis Bach. A convex relaxation for weakly supervised classifiers. In
Inter. Conf. Mach. Learn. (ICML), 2012.

[27] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[28] Dong Hoon Lee, Sungik Choi, Hyunwoo J Kim, and Sae-Young Chung. Unsupervised visual
representation learning via mutual information regularized assignment. In Adv. Neural Inf.
Process. Sys. (NeurIPS), volume 35, pages 29610–29623, 2022.

11

[29] Junnan Li, Pan Zhou, Caiming Xiong, and Steven C.H. Hoi. Prototypical contrastive learning
of unsupervised representations. In Inter. Conf. Learn. Represent. (ICLR), 2021.

[30] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
Inter. Conf. Learn. Represent. (ICLR), 2016.

[31] Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant repre-
sentations. In IEEE/CVF Inter. Conf. Comput. Vis. Pattern Recog. (CVPR), pages 6707–6717,
2020.

[32] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[33] Qi Qian, Yuanhong Xu, Juhua Hu, Hao Li, and Rong Jin. Unsupervised visual representation
learning by online constrained k-means. In IEEE/CVF Inter. Conf. Comput. Vis. Pattern Recog.
(CVPR), pages 16640–16649, 2022.

[34] Filip Radenović, Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondřej Chum. Revisiting
oxford and paris: Large-scale image retrieval benchmarking. In IEEE/CVF Inter. Conf. Comput.
Vis. Pattern Recog. (CVPR), pages 5706–5715, 2018.

[35] Jerome Revaud, Jon Almazán, Rafael S Rezende, and Cesar Roberto de Souza. Learning with
average precision: Training image retrieval with a listwise loss. In IEEE Inter. Conf. Comput.
Vis. (ICCV), pages 5107–5116, 2019.

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. Inter. J. Comput. Vis., 115(3):211–252,
2015. doi: 10.1007/s11263-015-0816-y.

[37] Thalles Silva and Adín Ramírez Rivera. Representation learning via consistent assignment of
views to clusters. In ACM/SIGAPP Symp. Appl. Comp. (SAC), page 987–994, 2022. ISBN
9781450387132. doi: 10.1145/3477314.3507267.

[38] Thalles Santos Silva and Adín Ramírez Rivera. Consistent assignment for representation
learning. In Energy Based Models Wksp. (ICLRW), 2021.

[39] Thalles Santos Silva, Hélio Pedrini, and Adín Ramírez Rivera. Self-supervised learning of
contextualized local visual embeddings. In Vis. Induct. Priors Data-Eff. Deep Learn. Wksps.
(ICCVW), 2023.

[40] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: a multi-class classification competition. In IEEE Inter. Joint Conf.
Neural Netw. (IJCNN), pages 1453–1460. IEEE, 2011.

[41] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning? In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, editors, Adv. Neural Inf. Process. Sys. (NeurIPS), volume 33, pages
6827–6839. Curran Associates, Inc., 2020.

[42] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, and Luc
Van Gool. Scan: Learning to classify images without labels. In European Conf. Comput. Vis.
(ECCV), pages 268–285. Springer, 2020.

[43] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig
Adam, Pietro Perona, and Serge Belongie. The inaturalist species classification and detection
dataset. In IEEE/CVF Inter. Conf. Comput. Vis. Pattern Recog. (CVPR), pages 8769–8778,
2018.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Adv. Neural Inf. Process. Sys.
(NeurIPS), volume 30, 2017.

12

[45] Guangrun Wang, Keze Wang, Guangcong Wang, Philip HS Torr, and Liang Lin. Solving
inefficiency of self-supervised representation learning. In IEEE Inter. Conf. Comput. Vis.
(ICCV), pages 9505–9515, 2021.

[46] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via
non-parametric instance discrimination. In IEEE/CVF Inter. Conf. Comput. Vis. Pattern Recog.
(CVPR), pages 3733–3742, 2018.

[47] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks.
arXiv preprint arXiv:1708.03888, 2017.

[48] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In Inter. Conf. Mach. Learn. (ICML), 2021.

[49] Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
Image bert pre-training with online tokenizer. In Inter. Conf. Learn. Represent. (ICLR), 2022.

13

A Extended results

In this section, we expand the evaluation experiments from the main text. We use the officially
released pre-trained methods across all benchmarks to represent each SSL method. We did not
retrain/reimplement any competing method. In total, we pre-trained 4 instances of CARP. To evaluate
CARP’s performance in a low training regime, we trained two 200-epoch models, one with multi-crop
(mc) and the other without it. Similarly, to evaluate longer training performance, we trained two
400-epoch models, one with multi-crop and the other without it.

A.1 Transfer learning evaluation

In Table A.1, we report detailed results for the transfer learning k-NN experiments. We evaluate SSL
methods for values of k ∈ {10, 20, 100, 200}, including all instances of CARP. Cf. Appendix D.3
for the evaluation protocol.

CARP achieved either top-1 or top-2 performance in seven out of 8 datasets. STL-10 is the only
dataset where CARP is neither the top-1 nor top-2. Moreover, in the FGVCAircraft, Stanford
Cars, and GTSRB datasets, CARP archived top-1 and top-2 performances with large margins.
The average k-NN performance per value of k across all datasets is reported in Table 1 in the main
text.

A.2 Image retrieval and copy detection

Tables A.2 and A.3 show additional results for image retrieval and copy detection evaluations. For
both tasks, we compare CARP’s performance against nine SSL methods. We report mAP on the
Medium and Hard splits of the revisited Oxford and Paris datasets for image retrieval. We report
mAP on the “strong” set of the Copydays dataset for copy detection.

A.3 Few-shot evaluation

Table A.4 shows additional few-shot evaluation results on the Pascal VOC07 and INat-2018 datasets.
We report mAP and top-1 accuracy @k, averaged over 5 independent runs, for VOC07 and INat-2018,
respectively. We include CARP’s 200 and 400 multi-crop models. Cf. Appendix D.2 for details on
the evaluation protocol.

A.4 Dense prediction evaluation

We evaluated our CARP’s multi-crop model on the object detection downstream tasks using the
Pascal VOC07 dataset. We followed the guidelines from He et al. [24]. We fine-tuned for 24k
iterations on PASCAL VOC trainval07+12 and evaluated on test2007. CARP performs at AP=44.2,
AP50=79.4, and AP75=47.6; results are averaged over 5 trials. Compared to other SSL methods,
such as MoCo-v2 [11] (AP=57.4 AP50=82.5 AP75=64.0), CARP underperforms significantly.

B Ablations

Due to a limited execution budget, the ablations and the main experiments differ slightly in some
hyperparameters. Here, we describe the configurations used for the ablations—for the main experi-
ments, see Appendix C.1. For ablations, we trained CARP using the full ImageNet-1M dataset for
50 epochs. The projection head learns a latent representation of 128-dim. The batch size is set to
256 observations, and the projection head hidden layers contain 2048 neurons. We set the number of
learnable prototypes K = 65 536, and the number of random partition blocks NP = 128. Hence,
each block contains NB = 512 prototypes. We report results for single runs.

B.1 Does the number of learnable prototypes affect the learned representations?

Table B.1 examines the effect of training CARP with different configurations of prototypes K.
Similar to other clustering-based SSL methods [7, 8, 29], CARP also benefits from over-clustering.
As the number of trainable prototypes K grows, the k-NN performance of the learned representations
increases. In addition, note that if the number of prototypes K is smaller than the number of actual

14

Table A.1: Transfer learning evaluation. We compare CARP’s performance against nine SSL
methods on eight datasets. We report results for k ∈ {10, 20, 100, 200}. Top methods in bold, top-2
underlined. Methods with (mc) use multi-crop.

Oxford-IIIT Pet Oxford Flowers-102 FGVCAircraft Stanford Cars

Method ep 10 20 100 200 10 20 100 200 10 20 100 200 10 20 100 200

oBoW (mc) [18] 200 55.8 57.3 57.2 57.5 63.5 61.9 58.9 59.4 19.1 18.1 15.8 14.9 11.9 11.5 10.9 10.5
SeLa-v2 [1] 400 66.7 66.8 65.8 66.0 59.5 58.6 56.8 57.2 21.3 20.7 18.1 16.4 13.3 13.3 13.5 13.4
InfoMin [41] 800 78.0 77.8 76.6 76.2 63.6 61.9 60.1 60.8 18.9 18.2 15.8 13.4 14.7 14.4 13.2 12.9
SWAV (mc) [7] 800 77.2 77.0 74.9 74.5 76.4 75.2 73.7 74.6 29.6 29.0 27.5 25.1 22.7 22.7 21.8 21.0
DINO (mc) [8] 800 81.5 80.9 79.0 78.9 82.3 81.6 80.8 81.2 36.1 35.3 33.5 31.1 30.0 30.1 28.9 27.5
DeepC-v2 (mc) [5] 800 79.0 78.3 76.3 75.4 78.3 76.3 75.3 76.0 32.5 32.0 28.9 26.5 25.2 25.0 23.4 22.1
Triplet [45] 980 83.3 83.5 82.4 82.4 78.5 77.7 76.9 77.3 33.3 33.4 31.7 29.6 24.4 25.2 25.5 25.0
MoCo-v3 [12] 1000 86.6 86.4 85.8 85.8 79.8 79.0 78.3 78.6 37.7 36.9 33.5 32.1 28.6 29.3 28.4 27.2
BarlowT [48] 1000 82.5 82.9 82.2 82.3 79.8 78.8 77.9 78.1 32.9 32.7 30.6 29.2 25.9 26.3 26.1 25.2

CARP 200 86.8 86.8 86.2 85.9 79.0 78.2 77.4 77.7 40.5 38.9 36.0 34.4 29.4 29.8 29.6 29.6
400 86.4 86.8 86.2 86.0 81.0 80.0 79.3 79.6 42.5 42.1 39.3 38.6 32.6 33.5 32.6 31.5

CARP (mc) 200 78.7 78.7 77.1 76.8 80.6 79.7 78.7 78.8 35.7 35.0 32.4 30.6 26.4 26.6 25.4 24.3
400 83.9 83.9 83.6 83.2 81.4 80.3 79.0 79.6 35.2 34.8 32.4 30.7 26.6 27.1 26.1 24.9

Country-211 Food-101 STL-10 GTSRB

Method ep 10 20 100 200 10 20 100 200 10 20 100 200 10 20 100 200

oBoW (mc) [18] 200 11.7 12.0 11.8 11.4 45.8 47.4 47.3 46.0 96.6 96.6 96.3 95.7 50.1 50.6 49.9 48.2
SeLa-v2 [1] 400 10.1 10.5 11.0 11.0 45.7 46.8 46.6 45.5 94.0 94.0 93.5 93.3 58.1 59.0 58.7 57.9
InfoMin [41] 800 11.2 11.6 11.9 11.9 51.5 52.4 51.4 49.5 96.5 96.4 96.2 96.0 54.9 54.8 53.5 52.3
SwAV (mc) [7] 800 13.6 13.8 13.1 12.7 57.9 59.1 58.2 57.0 95.5 95.2 94.0 93.0 62.9 63.2 61.6 60.0
DINO (mc) [8] 800 14.1 14.4 14.2 13.6 60.9 62.0 61.4 60.0 95.9 95.6 94.7 93.8 62.7 62.9 62.6 61.8
DeepC-v2 (mc) [5] 800 13.3 13.6 12.5 12.1 61.2 62.3 61.4 60.1 95.7 95.6 94.5 93.3 62.9 63.4 62.4 61.3
Triplet [45] 980 13.7 14.1 14.3 14.2 60.1 61.5 61.0 60.0 95.7 95.6 94.9 94.5 63.4 63.5 62.9 62.0
MoCo-v3 [12] 1000 12.4 12.4 13.2 13.2 59.0 60.0 59.1 57.7 96.9 96.7 96.2 95.9 72.4 72.8 72.6 71.7
BarlowT [48] 1000 12.8 13.3 13.7 13.6 60.3 61.4 60.7 59.4 94.8 94.8 94.2 93.8 65.3 65.6 65.6 64.4

CARP 200 11.9 12.2 12.7 12.8 57.4 58.4 57.7 56.3 95.5 95.5 94.6 93.9 73.1 73.7 73.5 72.6
400 11.9 12.3 12.8 12.8 57.6 58.4 57.6 56.3 96.1 95.9 95.0 94.3 74.7 75.3 75.2 74.4

CARP (mc) 200 14.2 14.5 14.3 13.9 60.5 61.8 60.7 59.3 95.8 95.5 94.1 93.4 64.6 64.7 64.2 63.0
400 14.1 14.2 14.3 13.9 61.7 62.9 62.1 60.7 95.9 95.5 94.3 93.4 62.2 62.8 62.4 61.4

classes in the dataset, the k-NN performance of the learned representations degrades. Based on these
experiments, we set the default number of prototypes K = 65536 for the ImageNet-1M dataset.

B.2 Does the number of partition blocks matter?

To better understand the effect of the hyperparameters NP and NB on the learned representations
and in the training stability, the first row of Table B.2 demonstrates the performance of CARP using
different configurations for the number of partition blocks NP and their sizes NB . For completeness,
we analyze the effect of removing the momentum encoder in Appendix B.3. We also present an
ablation on the effect of the momentum update in Table B.3.

Specifically, as the partition sizes grow and the number of partition blocks NP decreases, the quality
of the learned representations tends to decline and eventually collapse. Note that setting a partition
size NB = 65536 produces a single partition block NP containing all prototypes. Precisely, the
setup in the last row and last column of Table B.2 is equivalent to CARL [38]. It shows that a
naive implementation leads to a collapsed solution, and the divide-and-conquer approach of devising
random partitions from the learnable prototypes avoids such trivialities.

Note that as smaller the block size NB , more stable the algorithm will be. However, the quality of
the learned representation might decrease since the pseudo-classification tasks, posed by the random
partitions, becomes easier with fewer prototypes. On the other hand, a larger block size NB poses a
more challenging consistency task at the expense of contributing to mode collapse.

For most cases, however, for block sizes ranging from NB = 128 to NB = 4096, CARP learns
useful representations and shows robustness to this hyperparameter. By default we set the partition
block size NB = 512.

15

Table A.2: Image retrieval evaluation. We report mAP performance of various self-supervised
methods for the image retrieval downstream task on the revisited Oxford and Paris datasets. All SLL
methods were pre-trained on ImageNet-1M. We used the officially released pre-trained models from
respective methods for evaluation. Top-1 performers in bold, top-2 underlined.

ROx Rpar

Method Ep Medium Hard Medium Hard

Supervised 100 49.8 18.5 74.0 52.1
Scratch 1.6 0.7 4.1 2.5

oBoW (mc) [18] 200 20.4 4.4 40.6 16.2
SeLa-v2 (mc) [1] 400 20.1 4.9 37.1 13.6
InfoMin [41] 800 24.4 5.7 44.6 18.8
SwAV (mc) [7] 800 31.1 10.1 48.9 20.6
DINO (mc) [8] 800 35.4 11.1 55.9 27.5
DeepC-v2 (mc) [5] 800 32.6 10.9 50.0 20.2
Triplet [45] 980 35.3 12.0 58.2 28.7
VICReg [3] 1000 32.7 8.5 57.5 29.0
MoCo-v3 [12] 1000 33.1 10.9 59.1 31.3

CARP 200 38.8 15.5 58.8 30.4
400 38.9 15.1 58.5 30.2

CARP (mc) 200 32.8 10.4 53.6 24.9
400 33.7 11.6 54.0 26.5

Table A.3: Copy detection evaluation. We report mAP on the “strong” subset of the Copydays
dataset and compare CARP’s performance against seven SSL methods. Top-1 performers in bold,
top-2 underlined.

Method Ep mAP

Scratch 25.7

oBoW (mc) [18] 200 61.5
SeLa-v2 (mc) [1] 400 76.6
InfoMin [41] 800 67.5
SwAV (mc) [7] 800 76.1
DINO (mc) [8] 800 78.8
DeepC-v2 (mc) [5] 800 76.0
Triplet [45] 980 81.7
VICReg [3] 1000 83.7
MoCo-v3 [12] 1000 80.6

CARP 200 82.3
400 82.6

CARP (mc) 200 80.8
400 84.0

B.3 The importance of the momentum encoder

Table B.2 contrasts CARP’s joint-embedding architectures with and without a momentum encoder,
which is equivalent to setting η = 0 in the momentum encoder update equation. Different from other
SSL methods [8, 22], CARP works with both setups. However, we observe that using a momentum
encoder significantly boosts the performance of the learned representations. Table B.2 shows that
regardless of block sizes, representations learned using a momentum encoder-based architecture
consistently outperform the siamese counterpart.

B.4 Who provides the best features for downstream evaluation?

One way to understand CARP’s joint-embedding architecture with a momentum encoder is through
the teacher-student framework, where the momentum encoder is the teacher that guides the learning
student. The addition of the momentum encoder raises the question of which module produces the

16

Table A.4: Few-shot classification on VOC07 and INat-2018. We report mAP at n on VOC07 and
top-1 accuracy for INat-2018 across 5 independent runs, where n denotes the number of training
examples. Standard deviations rounded to the first decimal place.

Pascal VOC07

Method Ep n=1 n=2 n=4 n=8 n=16 full

PCL v2 [29] 200 47.9 ± 4.1 59.6 ± 2.7 66.2 ± 2.2 74.5 ± 0.5 78.3 ± 0.4 85.4
SeLa-v2 (mc) [1] 400 42.0 ± 2.2 54.5 ± 3.2 62.2 ± 1.5 71.4 ± 0.5 76.9 ± 0.4 85.3
DeepC-v2 (mc) [5] 800 46.5 ± 2.4 58.4 ± 2.9 66.5 ± 1.6 74.5 ± 0.9 79.5 ± 0.4 87.6
SwAV (mc) [7] 800 42.9 ± 2.1 54.9 ± 4.4 64.0 ± 2.1 72.9 ± 1.1 78.7 ± 0.6 88.1
DINO (mc) [8] 800 45.6 ± 2.4 58.4 ± 3.2 66.6 ± 2.1 74.8 ± 0.8 79.6 ± 0.6 88.2
Triplet [45] 980 43.6 ± 3.3 56.2 ± 3.5 64.6 ± 1.8 73.8 ± 0.1 79.6 ± 0.7 88.3
MoCo-v3 [12] 1000 46.6 ± 3.7 59.6 ± 2.9 67.0 ± 2.4 75.4 ± 0.7 80.2 ± 0.6 87.4
BarlowT [48] 1000 42.6 ± 3.7 55.5 ± 3.2 63.5 ± 1.8 72.6 ± 0.1 77.6 ± 0.5 86.3

CARP (mc) 200 46.0 ± 3.2 58.3 ± 3.3 66.5 ± 2.4 75.5 ± 0.1 79.5 ± 0.6 88.0
400 47.1 ± 3.2 59.8 ± 3.2 67.3 ± 2.2 75.8 ± 1.1 80.0 ± 0.7 88.2

INat-2018

Method Ep n=1 n=2 n=4 n=8 n=16 full

PCL [29] 200 1.4 ± 0.1 1.6 ± 0.1 2.3 ± 0.2 2.9 ± 0.1 4.8 ± 0.1 2.1
SeLa-v2 (mc) [1] 400 2.9 ± 0.2 4.2 ± 0.1 6.3 ± 0.1 10.0 ± 0.1 13.5 ± 0.1 8.2
DeepC-v2 (mc) [5] 800 7.6 ± 0.2 13.0 ± 0.8 20.9 ± 0.5 29.6 ± 0.4 36.4 ± 0.2 32.8
SwAV (mc) [7] 800 5.3 ± 0.1 9.2 ± 0.5 15.6 ± 0.1 23.1 ± 0.2 29.4 ± 0.2 24.2
DINO [8] 800 6.5 ± 0.1 12.0 ± 0.5 20.4 ± 0.5 29.6 ± 0.3 35.9 ± 0.3 30.4
Triplet [45] 980 11.4 ± 0.2 19.1 ± 0.7 28.9 ± 0.8 37.6 ± 0.3 44.0 ± 0.1 41.4
MoCo-v3 [12] 1000 8.1 ± 0.1 12.2 ± 0.3 18.5 ± 0.3 27.2 ± 0.3 33.5 ± 0.1 28.0
BarlowT [48] 1000 8.8 ± 0.1 12.2 ± 0.5 17.2 ± 0.2 24.6 ± 0.1 30.8 ± 0.1 25.3

CARP (mc) 200 8.6 ± 0.2 14.4 ± 0.1 23.6 ± 0.3 32.7 ± 0.3 38.2 ± 0.2 33.9
400 11.5 ± 0.1 19.6 ± 0.1 29.6 ± 0.9 39.1 ± 0.3 45.1 ± 0.2 42.6

Table B.1: CARP benefits from over-clustering. Setting a small number of prototypes may hurt the
learned representations.

K 1024 2048 4096 16384 65536 262144

k-NN 48.81 49.98 50.69 50.81 51.2 51.31

best representations. To answer this question, Figure B.1 explores the k-NN performance when
extracting features from the momentum encoder (teacher) versus the student. We observe that
teachers’ representations constantly outperform the students’ during training. However, by the end of
the training, the student catches up with the teacher.

C Implementation Details

C.1 Experimental Setup

We train CARP on the ImageNet-1M unlabeled dataset using ResNet50 [23] encoders. We take the
output representation of the last global average pooling layer (a 2048-dim vector) and project it to a
256-dim vector. Following Caron et al.’s [8] work, our MLP projection head contains 3 dense layers
with batch normalization and the GELU activations. The hidden units of the projection head contain
2048 neurons. The 256-dim representation vector is fed to an assigner MLP that outputs unnormalized
probabilities w.r.t. the learnable prototypes. By default, the assigner function is implemented as a
linear layer and trains K = 65 536 prototypes. To generate the random partitions, we set the number
of partitions NP = 128, which creates subsets containing NB = 512 randomly chosen prototypes.
We use the same data augmentations proposed by Grill et al. [22] to generate synthetic views. The
protocol creates three data augmentation pipelines, the first two to generate global views and the last
to generate multi-crops. CARP is pre-trained with the LARS [47] optimizer, end to end, with weight
decay of 1 × 10−6. For models training up to 200 epochs, the learning rate starts from 0.6 and decays

17

Table B.2: CARP with and without a momentum encoder. Without the random partition strategy (last
column), training collapses regardless of using a momentum encoder or a pure siamese architecture.

NB 32 64 128 256 512 1024 2048 4096 16384 65536

w/ mom. enc. 49.56 50.75 51.19 51.20 51.32 51.06 51.31 51.08 49.67 0.11
w/o mom. enc. 48.95 49.28 48.81 47.37 46.16 44.68 44.29 44.39 47.25 0.11

Table B.3: The effect of the hyperparameter η on the momentum encoder updates. In the last column,
η starts as η = 0.99 and it is annealed to η = 1.0 following a cosine schedule.

η 0 0.5 0.9 0.99 0.999 0.99 → 1.0

k-NN 51.0 50.2 50.3 51.1 50.1 51.3

to 0.006 with a cosine scheduling [30] without warmups. For models pre-trained for more than 400
epochs, the learning rate starts at 0.3 and decays to 0.003 using the same cosine scheduler. We train
the system with a global batch size of 4096 observations. For all experiments, we used 4 A100 40GB
GPUs and gradient accumulation to simulate large batch sizes. Cf. to Appendix E for a PyTorch style
pseudo-code.

D Evaluation Protocols

D.1 Linear evaluation

For ImageNet-1M evaluation, we trained a linear classifier on top of the frozen representations
extracted from the last average pooling layer of the ResNet50 encoder for 100 epochs, following Zhou
et al.’s [49] protocol. The evaluation script performs a grid search hyperparameter tuning on the
learning rate, weight decay regularization, and optimizer. For each input image, we take a random
crop followed by a resize to 224× 224 and an optional horizontal flipping. For testing, images are
resized to 256× 256 and center-cropped to 224× 224.

D.2 Few-shot evaluation

We measure the few-shot learning capabilities of SSL methods on the Pascal VOC07 and iNaturalist
2018 datasets. For VOC07, we are interested in the multi-label classification performance. We closely
follow Li et al.’s [29] protocol and train Linear SVNs on fixed 2048-dim representations from many
SSL ResNet-50 encoders.

For INat-2018, we expand the few-shot evaluation challenge to a complex scenario containing more
than 8k classes. We train linear classifiers for 20 epochs on fixed 2048-dim representations. We use

25 50 75 100

52

54

56

58

60

62

Training epochs

k
-N

N
to

p-
1

ac
cu

ra
cy

Student (θ)
Teacher (ξ)

Figure B.1: During training, the representations extracted from the teacher outperform the representa-
tions from the student network.

18

the SGD optimizer. The learning rate starts at 0.03 and decays by a factor of 10 in epochs 12 and 18,
respectively.

For both datasets, we vary the number n of labeled examples per class and report the average results
across 5 independent runs.

D.3 k-NN evaluation

To perform the k-NN evaluation, we use pre-trained SSL ResNet50 encoders as feature extractors to
compute and store the representations from many vision datasets. Following Caron et al.’s [8] setup,
the representation vector for a test image is compared against all representations from the training
split and a prediction is made via weighted voting. If one of the closest neighbors has the same
class as the test image, it contributes to the final voting as αi = exp

(
Miz
τ

)
where M is a memory

bank containing representations from the training data, z is the representation from the test data,
and τ is the temperature hyper-parameter. For all experiments, we run k-NN with configurations of
Knear ∈ {10, 20, 100, 200}. For most experiments, a value of k = 20 is consistently the best setup
across all methods.

D.4 k-means evaluation

Similar to k-NN evaluation, we take self-supervised pre-trained encoders and use them to extract
2048-dim feature vectors from the training set of datasets like CIFAR-10/100 and ImageNet-1M. For
ImageNet-1M, we use only 10% of the training data following the 10% subset from Chen et al. [9].
We fit k-means classifiers on the learned representations of the training set and use the validation
split to assess the quality of the learned prototypes. We report three metrics to assess clustering
performance: Normalized Mutual Information (NMI), Adjusted Mutual Information (AMI), and
Adjusted Rand Index (ARI). The number of prototypes k is set to be the number of true classes of
each dataset. We use the faiss library [25] for fast k-means. For each experiment, we run k-means
for 100 iterations, 20 redos, and spherical normalization. To measure the clustering performance of
CARP, we observed that a 400 epoch model with a learning rate of 0.3 slightly outperformed the
other instances; therefore, we use this model to report results in Table 2. This instance of CARP uses
two views and is only used for clustering evaluation.

D.5 Image retrieval evaluation

We strictly follow the evaluation script eval_image_retrieval.py provided by Caron et al. [8],
for the image retrieval evaluation task. The script uses the revisited Oxford and Paris image retrieval
datasets [34]. The dataset contains three protocols of varying difficulty levels. We take the ImageNet
pre-trained ResNet-50 encoder from CARP, freeze the weights, and apply k-NN evaluation directly
to the frozen 2048-d features for retrieval, conditioned on a query image.

D.6 Copy detection evaluation

We strictly follow the evaluation script eval_copy_detection.py provided by Caron et al. [8] for
copy detection evaluation. The evaluation is performed on the INRIA Copydays dataset [16]. The
dataset contains holiday pictures in the format query/database. Each image has suffered three kinds
of artificial attacks: JPEG, cropping, and “strong.” We report performance evaluation on the “strong”
subset. Images in the “strong” subset were intentionally distorted by blur, insertions, print, and scan.
The task is to recognize these images despite distortion. We take the frozen CARP ResNet-50 encoder
and extract 2048-dim vectors from query and database images at resolution 3202. Then, we perform
copy detection with cosine similarity between query and database features. We report mean average
precision (mAP) as a performance metric. Unlike the benchmark described by Caron et al. [8], we do
not utilize additional distractors, nor do we centralize the data using statistics learned in a different
set on images.

E Pseudocode of CARP in a PyTorch-like Style

NB: number of random prototypes within a block
K: number of prototypes

19

NP: number of blocks in the partition, i.e. K // NB
N: batch size
for x1, x2 in loader:

student and teacher branches
z1, w1 = enc(x1), mom_enc(x1) # [N, K]
z2, w2 = enc(x2), mom_enc(x2) # [N, K]

s_logits, t_logits = [z1, z2], [w1, w2]

sample cluster indices with no replacement
rand_proto_ids = multinomial(ones(K), K, False)
split_proto_ids = stack(split(rand_proto_ids, NB))
preds_list, targets_list = [], []

for s_log, t_log in zip(s_logits, t_logits):
preds = get_logits_gr(s_log, split_proto_ids)
targets = get_logits_gr(t_log, split_proto_ids)

preds_list.append(preds)
targets_list.append(targets)

loss = loss_fn(preds_list, targets_list)
perform gradient descent steps

def loss_fn(s_list, t_list):
c_loss = consistency_loss(s_list[0], t_list[1]
c_loss += consistency_loss(s_list[1], t_list[0]

s = cat(s_list, dim=1)
t = cat(t_list, dim=1)
probs = cat([s, t], dim=1).transpose(0, 1)

e_loss = kl_div(mean(probs, dim=0))
return c_loss + e_loss

def consistency_loss(s, t):
loss = einsum("knc,knc->kn", [s, t])
return -log(loss).mean()

def kl_div(p):
return mean(log(K) + sum(p * log(p), dim=-1))

def get_logits_gr(logits, proto_ids):
logits_gr = logits[:, proto_ids.flatten()]
logits_gr = logits_gr.split(NB, dim=1)
logits_gr = stack(logits_gr, dim=0)
return softmax(logits_gr, dim=-1) # [NP, N, NB]

20

	Introduction
	Related work
	Consistent Assignment of Views
	Limitations of Consistent Assignments

	Assignment based on Random Partitions
	Main results
	Transfer learning evaluation
	Clustering evaluation
	Image retrieval and copy detection
	Few-shot classification
	Linear evaluation

	Ablations
	Training CARP with different batch sizes
	Exploring different strategies to build partitions

	Limitations
	Conclusion
	Extended results
	Transfer learning evaluation
	Image retrieval and copy detection
	Few-shot evaluation
	Dense prediction evaluation

	Ablations
	Does the number of learnable prototypes affect the learned representations?
	Does the number of partition blocks matter?
	The importance of the momentum encoder
	Who provides the best features for downstream evaluation?

	Implementation Details
	Experimental Setup

	Evaluation Protocols
	Linear evaluation
	Few-shot evaluation
	k-NN evaluation
	k-means evaluation
	Image retrieval evaluation
	Copy detection evaluation

	Pseudocode of CARP in a PyTorch-like Style

