
MoXCo: How I learned to stop exploring and love my
local minima?

Esha Singh1, Shoham Sabach2, Yu-Xiang Wang3
1CSE, UC San Diego, 2 Technion – Israel Institute of Technology

3 Halıcıoğlu Data Science Institute, UC San Diego
{e3singh, yuxiangw}@ucsd.edu, ssabach@gmail.com

Deep neural networks are well-known for their generalization capabilities, largely
attributed to optimizers’ ability to find “good” solutions in high-dimensional loss
landscapes. This work aims to deepen the understanding of optimization specif-
ically through the lens of loss landscapes. We propose a generalized framework
for adaptive optimization that favors convergence to these “good” solutions. Our
approach shifts the optimization paradigm from merely finding solutions quickly to
discovering solutions that generalize well, establishing a careful balance between op-
timization efficiency and model generalization. We empirically validate our claims
using two-layer, fully connected neural network with ReLU activation and demon-
strate practical applicability through binary quantization of ResNets. Our numerical
results demonstrate that these adaptive optimizers facilitate exploration leading to
faster convergence speeds and narrow the generalization gap between stochastic
gradient descent and other adaptive methods.

1. Introduction
Vapnik [1999], Vapnik and Chervonenkis [1982] demonstrated that if any problem is learnable, it
can also be learned by solving Empirical Risk Minimization (ERM). This insight has influenced
generations of researchers, leading them to treat the statistical problem of generalization and the
computational problem of optimization, i.e., solving REM, as entirely separate issues.

However, in modern deep learning models, the boundaries between optimization and generalization
have become less distinct. For classification tasks, numerous solutions can achieve zero-error (and
nearly zero-loss), yet they generalize very differently [zhang et al., 2021]. The outcome is intricately
dependent on factors such as the initial model configuration, the choice of optimization algorithm,
hyperparameter settings, and even an element of randomness.

This contrast is even more pronounced in regression tasks, where striving for the global optimal
solution in Empirical Risk Minimization (ERM) may not be the most appropriate objective. For
instance, if the data satisfies yi = f0(xi) +N (0, σ2) for i = 1, ..., n, a solution that achieves a zero
square loss w.r.t. y1, . . . , yn is clearly an overfitting solution (except in a very specialized regime
known as benign overfitting [Bartlett et al., 2020]). It was recently proven that benign overfitting
does not happen ReLU networks for regression tasks [Joshi et al., 2023]. A better solution of interest
should be one that is close to f0 and has an expected error of σ2. In other words, our primary goal
should no longer be optimizing for the sake of minimizing a given objective function as much as
possible. Instead, we should think about how to design optimization algorithms that converge to
good local stable regions (i.e. flat local minima) that generalize better.

The energy landscape in modern deep learning is remarkably intricate. There are several pitfalls that
an optimizer such as SGD can get stuck into or explode from such as plateaus and cliffs, sharp local
minima, flat stationary points etc. This motivated many strategies in training DL models, spanning
architectural designs like residual connections and batch normalization, as well as optimization
tricks such as ADAM, gradient clipping, and learning rate scheduling etc. While these methods
help navigate these pitfalls and promote exploration, recent work Malviya et al. [2023], Dehghani
and Samet [2020] demonstrate that exploration alone is insufficient for finding optimal solutions.

Second Conference on Parsimony and Learning (CPAL 2025).

MoXCo framework for Deep Learning Optimization

Phase II: Commit and Converge

Monitoring a
“Goodness” score

Inertial Proximal Algorithm
for exploration

● Cut momentum
● Start “hypergrad”

Phase I: Exploration

Figure 1: Optimization trajectories on Ackley function with multiple local minima: MoXCo (red), ADAM
(blue), and GD (pink). Starting from top-left, MoXCo achieves global minimum through two phases: initial
aggressive exploration (red dots) followed by consistent convergence in estimated vicinity (black dots). ADAM
and GD quickly converge to local minima. Loss plot in Fig 9 demonstrates MoXCo’s faster convergence speed.
Note: In all loss contours lighter color corresponds to smaller loss values.

This observation motivates our key insight: while exploration can be made more aggressive to
better traverse the loss landscape, an effective optimizer must also recognize when to transition from
exploration to precise convergence upon detecting proximity to a promising local optima.

1.1. Summary of results
In this paper, we build on this idea and propose a new framework -Momentum eXploration and
Commit (MoXCo) for making such determination. MoXCo operates in two phases: an agressive
exploration phase driven by momentum-based acceleration in black-box first-order optimization,
followed by a strategic exploitation phase. The transition between phases is governed by a goodness
score that quantifies the optimization potential of local regions. When this score exceeds a theoretically-
motivated threshold, indicating the proximity to a favorable optimum, we initiate precise convergence
by reducing momentum. This dynamic transition enables MoXCo to effectively balance aggressive
exploration with targeted exploitation of favorable optima.

The key research questions that underlines the design of MoXCo are:

1. How to navigate any loss landscape to bypass underfitting local and overfitting global minima?
2. Can we identify and quantify the proximity of such “good” solutions, if present?
3. Additionally, do these solutions enhance performance, and can existing methods be utilized to

address these challenges?

Below, we summarize our main observations and findings that help answer these questions.

Why aggressive exploration is required. Section 3 introduces momentum equations that promote
exploration in optimization algorithms. Our empirical analysis shows that during early optimization
steps, promoting exploration yields better results than rapid convergence, regardless of initialization.
While both larger learning rates Lewkowycz et al. [2020] and momentum can facilitate exploration,
we focus onmomentum-basedmethods and demonstrate that adding a ’second’momentum term (Eq
2) enables more aggressive exploration of the loss landscape that reach to flatter minima. Section 4(i)
provides empirical evidence supporting the effectiveness of this additional momentum component.

Why committing-and-stopping is helpful. While aggressive exploration is desirable especially
in complex loss landscapes, is it alone sufficient to attain optimal solutions? The answer to this

2

question leads to second key component in the MoXCo framework (Section 3.2): a "commit-to-stop"
mechanism, activated when one is in an ideal vicinity. This ideal locality is quantified by ourGoodness
Score, characterizing local geometrical properties as formalized in Theorem 1. The phenomena
of commit-to-stop not only helps in deciding when to commit but also prevents overshooting or
oscillating issues which may arise due to unpredictable interactions between learning rate and
momentum hyper-parameters when they are improperly tuned. Thus, goodness score allows also
helps to reduce the undesirable effects stemming from hyper-parameter sensitivity of adaptive
methods & it’s SGD variants Sivaprasad et al.. Section 5.1 shows numerical results that helps us
illustrate these claims. Dehghani and Samet [2020] corroborates that exploration alone is insufficient.

Altogether, do we reach good solutions? While momentum-basedmethods are empirically observed
to accelerate convergence speeds Goodfellow et al. [2016], theoretical understanding about its
dynamics remains limited. Notably, their impact on generalization error suggests that adaptive
optimizers, such as ADAM, generalize poorly in comparison to SGD. Additionally, it has been found
that while momentum might speed up training, it can adversely affect generalization Wilson et al.
[2017], Hardt et al. [2016]. We provide extensive experimental evidence (Section 4) to support our
claims that our method consistently achieves better solutions.

1.2. Related Work
Momentum methods The two components of the MoXCo framework are elaborated in detail in
sections 3.1, 3.2. The utilization of inertial force for momentum dates back to Polyak [1964]. Ochs
et al. [2014] used this inertial force to support the use of a proximal gradient-typemethod for handling
structurally induced regularization. Wang et al. [2023] uses inertial accelerated stochastic gradient
methods to solve the low-rank CP decomposition problems. Similar to our second Eq.2, the estimation
of stochastic gradients on a slightly perturbed point, for non-smooth & non-convex problems has been
extensively discussed by seminal work of Cutkosky et al. [2023]. Unlike PGD Jin et al. [2017] which
adds periodic perturbations sampled from a unit ball, MoXCo derives perturbations systematically
through Eq.2. Furthermore, we incorporate momentum into each step, resulting in a distinctly
different optimization trajectory. This design enables more effective optimization than PGDmethods,
as shown in Section 3.1. Additional discussion in Appendix A.1

Adapting to local geometry Although, efforts have been made to enhance exploration efficiency
Malviya et al. [2023] Liu et al. [2023], there is a notable gap in addressing the need for stopping
criteria. Lewkowycz et al. [2020] develops a connection between large learning rate & flatness of
minima in SGD-trained models, and Xie et al. [2022] develops a method for escaping saddle points &
flat minima selection using ADAM. Various works focus on momentum schedules Wang et al. [2022],
but few recognize the need for a rapid exploration and committing phase like ours. O’donoghue
and Candes [2015] for convex settings, whereas we operate in a non-convex, non-smooth context.
Zhou et al. [2020a] focuses on proximal gradient parameter restarts for non-convex optimization,
but our framework systematically indicates momentum hyper-parameter restarting based on local
geometry. Additionally, Liu et al. [2023] uses Inertial Momentum in a federated learning setup for
global convergence, while our generalized setting, employs it as one step in a two-step framework.
Furthermore, Foret et al. [2020] (SAM) proposes simultaneous optimization of loss values and
loss sharpness as a geometric approach to finding favorable local minima. However, our analysis
demonstrates that these twometrics alone provide insufficient characterization of the loss landscape’s
local geometry. Detailed discussion in Appendix A.1.

2. Notation and Setup
We use standard notation where bold letters denote vectors and italic alphabets denote sets. We are
interested in optimizing any objective function f : Rd −→ R. We make no assumptions about the
differentiability of f , noting that it is non-convex and possibly non-smooth. Unlike the standard
optimization goal of finding argminx f(x), we seek a vaguely defined goal of finding a sufficiently
“flat” local minimum with sufficiently low objective value. This formulation better suits machine

3

learning tasks where the optimization objective f serves as a surrogate for the (often unknown)
true objective F , as excessive optimization of f may lead to worse solution on F , aka over-fitting.
We will sometimes also consider composite optimization problem of minimizing f + g for some
regularizer g, for which a proximity operator is efficiently computable. Similar to before, the goal is
not to minimize f + g but rather to find a “good” solution that generalizes.

Required auxiliary information. Besides the typical first-order oracle that provides stochastic or
noisy estimates of f and its (sub)gradients, we are also given ftarget and λtarget, which defines what
target objective value and flatness of interest. These two quantities can be used before, after, and
during the optimization.

Examples with such auxiliary information We have two primary problems of interest that we will
use to evaluate our algorithm.

Training neural networks for regressions tasks. In this problem, we consider ReLU networks fθ is
parameterized by θ with L layers and m neurons per layer. For l = 0, 1, . . . L− 1, each layer defines
an affine transformation M l with weights & biases such that hθ(x) = M (L)(x; θ). The network
is parameterized by θ = [W (1), b(1),W (2), b(2), ...,W (L), b(L)] and associated with square loss so
fθ(x) =

∑n
i=1(h(xi; θ)− ŷi)

2. We abuse the notation and use fθ and fθ(x) interchangeably.

Let the dataset be generated iid with xi ∼ P and yi = E[y|xi] +N (0, σ2). The optimal target is to fit
E[y|xi], yielding an expected loss of σ2. In overparameterized networks, the sharpness of minima
crucially determines the right fit, with the Hessian’s largest eigenvalue controlling the network’s
regularity in function space [Mulayoff et al., 2021, Nacson et al., 2022]. This relationship allows us to
calibrate our optimization targets: we set ftarget to match the label noise level σ2, and λtarget to achieve
the desired functional regularity of E[y|x].

Quantizing neural networks. The second case study is model quantization - converting neural
networks to use quantized (e.g., binary) weights for faster inference. Starting from a full-precision
pretrained model, we fine-tune to obtain a quantized version with comparable performance [Bai
et al., 2019, Courbariaux et al., 2015]. Here, ftarget and λtarget are naturally defined as the training
loss and maximum Hessian eigenvalue of the initial full-precision weights.

3. MoXCo: Designing adaptive optimizers
We now describe the MoXCo algorithm outlined in Algorithm 1. As previously noted, the algorithm
operates in two distinct phases (Phase 1 & Phase 2). Phase 1 focuses on exploration while monitoring
certain statistics during optimization. The algorithm enters Phase 2 when it decides that the current
parameter is in a good “ballpark” to commit to. Once in Phase 2, a different optimization algorithm
is used to converge to the closest local minima as quickly as possible.

There are plenty of off-the-shelf optimization algorithm that solves Phase 2 and we recommend
Hypergradient [Baydin et al., 2018] as a nearly hyperparameter-free method that works well. The
remainder of the section focuses on two novel components in our MoXCo design: (1) the Inertial
Proximal Algorithm for Promoting Exploration in Phase I in Section 3.1 and (2) the “Goodness”
score we propose to adaptively determine the right time enter Phase 2 in Section 3.2.

3.1. Inertial Proximal Algorithm for Promoting Exploration
How do we promote exploration in deep learning training? One of the oldest idea is leveraging the
inertial force of the “heavy-ball” algorithm [Polyak, 1964], known as “SGD with momentum” in
deep learning optimization. Empirically, it has been observed that momentum accelerates SGD in
low-curvature regions (e.g., plateaus) [Sutskever et al., 2013] and aids in escaping saddle points and
shallow local minima [Wang et al., 2021].

However, vanilla SGD with momentum falls short in three aspects. First, its effectiveness on non-
differentiable objective functions, is unclear — which is the case for every ReLU-activated neural
networks. Second, it does not support the use of a proximal gradient-typemethod to handle structural

4

inducing regularization. Third, it does not leverage other tricks in deep learning optimizations, e.g.,
Adam, which are often delicate choices that enable the effective training of certain families of neural
architecture.

The second problem was solved in the seminal work of Ochs et al. [2014] which establishes strong
convergence guarantees for proximal versions of heavy-ball algorithm. To address the first problem,
we proposed adding second momentum that slightly perturbs the location to evaluate the gradient
as follows.

ut = θt + αt(θt − θt−1) (1)
vt = θt + βt(θt − θt−1) (2)

θt+1 = Proxg

(
ut − η∇̂f(vt)

)
(3)

where η > 0 is the learning rate and α, β ∈ [0, 1) are momentum coefficients and can vary with t.

The second line changes the location to evaluate the gradient slightly from θt to vt. This is related
to the recently proposed online-to-non-convex conversion method [Cutkosky et al., 2023, Remark
10] but without the randomized smoothing. The extra momentum on vt is particularly important
because the proximal operator is very likely to return the subsequent iterate θt+1 on highly-special
non-smooth points, even if these non-differentiable points are inside a measure zero set. To address
the third problem, we propose to think outside the box and apply the above algorithm to any deep
learning optimizer via an interactive black-box fashion. In particular, we can return a different update
for the iterates above by replacing ∇̂f(vt)with the update∆t sent back to us by any optimizer, i.e.,

θt+1 = Proxg (ut − η∆t) (4)
∆t : Optimizer(∇f(vt), vt, γ) (5)

where γ represents any other inputs required for black-box optimizer, apart from∇f(vt). Also, the
optimizer is allowed to have a memory from the previously observed ∇f(vi),θi for i ∈ [t− 1].

Readers familiar with the Adam optimizer may ask “Wait a minute! Isn’t momentum incorporated
in Adam already? Why do I need a second round of momentum nested above in the outer loop?”

We argue that while both are termed momentum, they serve different purposes. Adam’s momentum
estimates moments for coordinate-wise scaling via exponential smoothing, adapting to local geome-
try. In contrast, our additional momentum promotes exploration independently of the black-box
optimizer, preserving its hyper-parameters. The main advantage of doing so is that we can inherit the
same hyper-parameter choices for the base optimizer black-box. Informally, ∆t represents gradients
of unknown functions induced by the tricks applied inside each black-box optimizer to regularize
the energy landscape. Whereas, our proximal double inertial algorithm’s parameters α, β control
exploration-exploitation trade-off externally (low values signal interest to settle down and converge).

3.2. “Goodness” score and when to stop exploration
Having established inertial momentum for accelerated exploration, we address the second question:
how to determine if the current local neighborhood merits our algorithm’s commitment to conver-
gence. This is a daunting task — using only local information (gradients and function values) we
want to estimate a global property — namely, whether the current neighborhood contains a solu-
tion to the population-level stochastic optimization problem. While this is generally impossible for
non-convex problems, deep learning offers unique structural properties and additional information
(e.g., ftarget, boundedness). We leverage these characteristics to formulate necessary conditions for
“goodness” of a local neighborhood and use that as a promising heuristic to guide our optimizer.

Specifically, we came up with the following “goodness” score of a parameter θ

Goodness(θ) = exp

(
−τ

[
||∇fθ||22 +

∣∣∣∣λmax(∇2fθ)

λtarget
− 1

∣∣∣∣ + |fθ − ftarget|
])

(6)

in which τ calibrates how sensitive the score is, and the exponential transformation ensures that
the score 0 ≤ Goodness ≤ 1 as the term in the square brackets is nonzero. A goodness score being

5

Table 1: Optimization Landscapes. f denotes any objective function parameterized by θ. We enumerate
magnitude of objective value, its hessian & largest eigenvalue at any θ. For more refer A.2

Indicator Plateau Cliff Sharp Saddle point
fθ large large/small small large

||∇fθ||22 small large small small
λmax(∇2fθ) small small large small

closer to one means that we have found a solution that is approximately stationary and close to an
ideal target in both objective function value and flatness. (extended discussion: A.2, A.2.1)

Theorem 1. Let θ obey that (a) it is a local minimum of f ; (b) it is a stable fixed point of gradient descent
with learning rate η̃, (c) |f(θ)− ftarget| ≤ ϵ. Then Goodness(θ) ≥ exp(−τϵ).
Theorem 2 (EOS adjustment). If we consider running Inertial momentum to optimize a quadratic objective
function of form f(x) = 1

2x
TAx + bTx + c, then based on Cohen et al. [2021], if we consider running

vanilla gradient descent on the f(x) starting from any initialization and if (q, a) be an eigenvector/eigenvalue
pair ofA, then if a > 2(1+α)

η(1+2β) , then the sequence {qTxt} will diverge.

A desired learning algorithm should have ϵ← 0 as the number of data points n gets larger, which
means the Goodness score should converge to 1. (proof of Theorem 2 in A.3)

Our algorithm in conjunction with previous section, continuously monitors this score and reduces
α, β once the score (δ) exceeds a threshold C. The first-term (||∇fθ||22) is the standard measurement
of stationarity. The second-term

(∣∣∣λmax(∇2fθ)
λtarget

− 1
∣∣∣) measures θ’s sharpness, normalized by λtarget

which depends on problem-specific curvature and should ideally match or exceed the designated
“Edge of Stability” level of sharpness specified by the adjusted effective learning rate η̃ (Theorem 2).
The third term (|fθ − ftarget|)quantifies the absolute difference between the current objective and
a problem-dependent target. For example, ftarget should be 0 for classification tasks, and σ2 for
regression.

Table 1 demonstrates the necessity of thresholding this score function for finding a "good solution".
It demonstrates why a Goodness score metric is necessary - Given the diverse geometric properties
of local minima in deep neural networks (plateaus, sharp valleys, etc.) Pascanu et al. [2014] Frye
et al. [2020], no single metric can fully characterize a desirable minimum. We therefore analyze
multiple geometric indicators: the loss value , gradient norm square, and the largest eigenvalue.
As shown in Table 1, no one indicator always indicates a consistent value (small or large) across
these pathological curvatures but by combining these metrics additively, we can always detect any
non-desirable critical points. More details in A.2.

Building on the observed correlation between lower curvature and generalization performance, we
conjecture that optimal performance occurs for a fixed computational budget. We find that this
conjecture holds across all cases we tried, even when comparing different learning rates trained for
the same duration. For empirical validation of the usefulness of this criterion, please refer Appendix
A.5.1. Note that when f is the training objective for a large dataset, monitoring the goodness score at
every iteration is costly. We propose computing it periodically, such as at the end of each epoch, or
incrementally estimating the statistics. More details are provided in A.2.2.

3.3. Dynamics of stopping and effect of Random Beta

In Phase 2, we reduce momentum to negligible values like 0.01 or 0.1 and adjust the step size
adaptively using the Hyper-gradient descent method Baydin et al. [2018], which emulates physical
deceleration towards a local minimum. In our analysis, inspired by Cutkosky et al. [2023], we
examined the impact of random beta initialization for the second trajectory using toy examples and
ResNets (see Section 4). Our results align with them, indicating that only the initial trajectory’s
momentum requires consideration.

6

Algorithm 1: MoXCo using Black-box Optimizer
Input : Max number of iterations T1, T2, Checkpoint frequency N , step size η, threshold C, objective

function f , stochastic gradient oracle ∇̂f , initial parameter vector θ0, inertial momentum schedule
αt, βt for t = 0, 1, 2, ..., Phase 1 optimizer: OPTIMIZER1, Phase 2 optimizer: OPTIMIZER2,
Auxiliary λtarget, ftarget.

1 Initialization α0, β0, θ0, θ−1 ←− θ0
Output :Resulting parameters θt

2 for t = 1, 2 . . . T1 do
3 ut−1 = θt−1 + αt−1(θt−1 − θt−2) // Phase 1 Exploration
4 vt−1 = θt−1 + βt−1(θt−1 − θt−2)
5 ∆t, γt = OPTIMIZER1(vt−1,∇f(vt−1), γt−1)
6 θt ←− ut−1,i − η∆t // Update parameters
7 if t mod N = 0 then
8 δt ←− Goodness(θt) as in (6) or any efficient approximation. // goodness score
9 Break if δt > C.

10 end if
11 end for
12 Reinitialize θ0 ←− θt // StartPhase 2
13 for t = 1, 2 . . . T2 do
14 θt = OPTIMIZER2(θt−1, ∇̂f(θt−1))
15 end for

4. Experiments
In this section, we detail our experiments aimed to understand the behavior ofMoXCo across different
loss landscapes. We validate the following four claims (in bold) in subsequent paragraphs and
describe the corresponding experimental setup and results. Any additional experimental details
and ablations can be found in Appendix A.4, A.5.3.

4(i) Aggressive exploration is helpful Phase 1 helps in jumping over local suboptimalities when
loss landscapes are plagued with several local minima.

(a)
100 101 102 103

Iterations

10 3

10 2

10 1

100

101

Ob
je

ct
iv

e
va

lu
e

Objective function values for Beale

GD + MoXCo
Adam
GD
Phase 2 start

(b)

Figure 2: Trajectory visualization for the Beale: (a) MoXCo (red), with Phase 2 (black), successfully emerges
from a poor initialization (far right) and reaches the global minimummarked ∗. Other two optimizers get stuck
right after they start exploring. (b) Objective values vs.iterations (x-axis). MoXCo, with a smaller learning rate,
converges as quickly as GD (faster than ADAM), despite both using η = 0.01. ADAM converges slower due to
residual oscillations. Even with the same η, MoXCo converges faster A.5.3. Note: All runs till convergence.

Setup: We examine the impact of Phase 1 on the test optimization functions Beale and Ackley (A.4.1).
We use MoXCo with GD and ADAM iterates, comparing trajectories against vanilla GD & ADAM.
Highest possible stable learning rates used for all optimizers. Additionally, we plot objective values
for all 3 optimizers to access their performance.

Results Figure 2(a) compares optimization trajectories of MoXCo-GD, Adam, and GD over 1000
steps on the Beale function, which contains three sub-optimal and one global minima. MoXCo,
when initialized in high-energy regions, demonstrates two distinct phases: aggressive exploration

7

(red trajectory) followed by transition to (Phase 2) - convergence, i.e reaching a flatter region—as
determined by the goodness score. This two-phase approach enables MoXCo to escape sub-optimal
minima and achieve better convergence than competitors that become trapped locally.

Figures 1 and 2 demonstrate similar behavior on Ackley and Beale functions over 1000 steps. Fig1
uses consistent and highest stable learning rate of η = 0.05, with α = 0.99. For Fig 2, η = 0.005
with α = 0.8/0.9 (β is random for all). Vanilla optimizers use η = 0.01/0.05. MoXCo (red curve)
maintains effective exploration-convergence balance despite significant momentum and a relatively
large η. Figure 2(b) shows MoXCo achieves comparable or better convergence speeds despite using
lower learning rates than GD and ADAM, with superior performance (faster speed of convergence
& better quality of solutions) when using identical learning rates (Fig 9) [additional experiments
including MoXCo+ADAM in A.5.3, details in A.4.1].

4(ii) "Goodness score" accurately gauges optimal regions in a solution space Phase 2 helps in
effectively evading sharp basins and converge to flat loss region by adapting to the local geometry
and we validate this as described below.

Setup To understand more on behavior of goodness score, we plot final MSE values attained when
MoXCo Phase 2 begins at different thresholds γ. (see A.2.1, A.2, A.2.3 for more details)

Results This claim in partly supported by Section 4(i)and Section 4(iii) results. Additional experi-
ments in Appendix A.5.3. For the results of the setup discussed above, refer Appendix A.5.1

4(iii) Both phases improve outcomes across complex loss landscapes We can empirically validate
that MoXCo framework leads to faster convergence speeds and reaches flatter local minima.

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Validation loss

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

moxco
vanilla

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
MSE against ground truth

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

moxco
vanilla

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
distance between f & f

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

moxco
vanilla

0 1 2 3 4
Gradient L2 Norm

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

moxco
vanilla

Figure 3: Hit rate analysis for 50 random initialization whenm = 5 for under-parameterized two-layer NN
optimized using MoXCo + GD. Dataset consists of 30 data points with noisy labels (see A.5.4). We evaluate
"goodness" of solutions at convergence for these 50 runs using these 4 metrics. All four metrics are significantly
smaller for MoXCo as compared to vanilla GD.

Setup We analyze a two-layer ReLU network with quadratic loss under both under- and over-
parameterized settingswith black-box optimizers. Our analysis uses 30 data pointswhere xj ∼ U [0, 1]
and observations ŷi = f(xi) + ϵi with ϵi ∼ N (0, 0.82) (details in 2, A.5.4). Despite being a shallow
network, ReLU activations introduce non-smoothness and non-convexity. For each setting, we

8

conduct a hit-rate analysis by analyzing performance via Cumulative distribution function (CDF)
plots across 50 initializations with varying neuron counts m (A.4.3), comparing fitted functions
against target f (details in A.4.2).

Under-parameterized case: The function f that we try to estimate is a simple piece-wise function as in
Fig 4 (A.4.2). This setting is ideal for testing our claims, as under-parameterized loss landscapes
are inherently complex. They often feature multiple isolated local minima with positive definite
Hessians, reflecting local convexity Liu et al. [2021]. In contrast, over-parameterized settings typically
lack convexity in any neighborhood around a global minimizer. We report results with m = 5 in Fig
3, 4 & m=2 in A.5.4. Consistent setting with fixed α, β = 0.6, 0.6, η = 0.1 are used throughout the
results in under-parameterized regime.

0.4 0.2 0.0 0.2 0.4
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

MoXCo fit
Vanilla fit
Ground truth f
Training data

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

2

4

6

8

10

y

MoXCo fit
Vanilla fit
Ground truth f
Training data

Figure 4: Learned functions for over-parameterized and under-parameterized regimes. (a) An example run
among random 50 initializations of Figure 4 (m = 5). For the same η, GD fits to a more complex solution and
learns noisy labels as compared to MoXCo fit. Thus, demonstrating that MoXCo learned a solution that is better
than GD.(b) Similar behavior observed for over-parameterized network case (m = 20000). See A.4.2 for details.

Over-parameterized case We use a different function f as described in A.4.2. Due to the essential
non-convexity of loss landscapes in overparameterized setups, this setting is not ideal for under-
standing the two phases of our algorithm. Therefore, our analysis primarily focuses on the under-
parameterized setup. Here, α, β = 0.9, 0.9, η = 0.05.

Metrics We evaluate performance using three metrics: (1) MSE against validation and ground truth
for generalization error, (2) gradient L2 norm to assess convergence stability, and (3) L2 distance
between the learned function fθ and ground truth f . Since both f and fθ are bounded and defined
on [−0.5, 0.5], they are Riemann integrable, allowing us to compute their L2 difference through
Riemann sum approximations (see A.4). Smaller values in all metrics indicate better performance:
lower generalization error, stable local minima, and better function approximation respectively.

Results Figure 3 demonstrates MoXCo’s superior performance over vanilla GD in under-
parameterized settings (n > m), consistently achieving lower values across all four metrics. MoXCo
converges to flatter minima regardless of initialization, and as shown in Fig 4, learns better approxi-
mations to f while avoiding noise fitting in both under- and over-parameterized regimes (m < n
andm > n) [additional experiments in A.5.4, details in A.4.2].

4(iv) Application on ResNets MoXCo is applicable to general deep learning tasks and we find
that our method is particularly effective in scenarios with highly irregular loss geometries. That is,
while standard ResNet training involves relatively smoother loss surfaces, quantization introduces
significant non-smoothness and discrete constraints, resulting in highly non-convex landscapes with
numerous local minima which makes learning in ResNet a lot harder. Under this setting, below we
demonstrate MoXCo’s efficacy in achieving better solutions & enhancing generalization performance
compared to vanilla PROXQUANT method.

SetupWe apply MoXCo to binary quantization of residual networks using PROXQUANT Bai et al.
[2019]. Despite non-convexity and non-smoothness due the quantization-inducing regularizer, we
integrate MoXCo using equations (4,5) with the proximal operator. We compare against PROX-

9

QUANT with SGD (base optimizer), using tuned hyper-parameters for both methods and the base
floating-point (FP) model. Our implementation uses a homotopy scheme (λ = 10−5t) without
learning rate scheduling (details in A.4.5).

Results MoXCo integrated with PROXQUANT achieves improved Top-1 classification precision
across all depth compared to using vanilla PROXQUANT.

Table 2: Top-1 classification precision of binarized ResNets on CIFAR-10. Performance is reported in mean(std)
over 4 runs, as well as the (absolute) performance boost of over PROXQUANT.

Classification precision Performance boost over PQ-B net
Model FP PQ-B MoXCo-PQ (ours) MoXCo-PQ (ours)
(Bits) (32) (1) (1) (1)

ResNet-20 87.63 77.11 (0.07) 80.34 (0.15) +3.23
ResNet-32 88.17 79.91 (0.03) 81.79 (0.06) +1.88
ResNet-44 88.98 80.55 (0.04) 82.05 (0.08) +1.55
ResNet-56 88.55 80.53 (0.06) 82.47 (0.05) +1.94

5. Limitations and Future Work
We acknowledge limitations and several key directions for future research that would strengthen
our work. First, while we propose a computationally efficient variant of our method in Section A.2.1,
comprehensive empirical validation remains to be conducted. Second, a systematic comparison
between our approach and other aggressive exploration methods, particularly those using very large
learning rates, would provide valuable insights into the relative merits of each strategy. Finally,
extensive large-scale experiments would help establish stronger benchmarks and better demonstrate
the scalability of our method across diverse optimization scenarios.

6. Conclusion
In this paper, we propose and evaluate MoXCo, an adaptive method for optimizing complex loss
landscapes. Our results demonstrate thatMoXCo provides a novel perspective on optimization theory
by focusing not solely on minimizing loss functions but on identifying favorable solutions within
any loss landscape. For future work, it would be valuable to explore and enhance the computational
aspects of monitoring the "goodness" score for real-time deep learning applications and to investigate
the effects of learning rate schedules.

References
Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions on neural networks,
10(5):988–999, 1999.

Vladimir N Vapnik and A Ya Chervonenkis. Necessary and sufficient conditions for the uniform
convergence of means to their expectations. Theory of Probability & Its Applications, 26(3):532–553,
1982.

Chiyuan zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear
regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070, 2020.

Nirmit Joshi, Gal Vardi, and Nathan Srebro. Noisy interpolation learning with shallow univariate
relu networks. In The Twelfth International Conference on Learning Representations, 2023.

10

Pranshu Malviya, Gonçalo Mordido, Aristide Baratin, Reza Babanezhad Harikandeh, Jerry Huang,
Simon Lacoste-Julien, Razvan Pascanu, and Sarath Chandar. Promoting exploration in memory-
augmented adam using critical momenta. arXiv preprint arXiv:2307.09638, 2023.

Mohammad Dehghani and Haidar Samet. Momentum search algorithm: a new meta-heuristic
optimization algorithm inspired by momentum conservation law. SN Applied Sciences, 2:1–15, 10
2020. doi: 10.1007/s42452-020-03511-6.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large
learning rate phase of deep learning: the catapult mechanism, 2020.

Prabhu Teja Sivaprasad, Florian Mai, Thijs Vogels, Martin Jaggi, and François Fleuret. Optimizer
benchmarking needs to account for hyperparameter tuning. In Proceedings of the 37th International
Conference on Machine Learning.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1. MIT
Press, 2016.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. Advances in neural information processing
systems, 30, 2017.

Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent, 2016.

Boris T Polyak. Somemethods of speeding up the convergence of iterationmethods.Ussr computational
mathematics and mathematical physics, 4(5):1–17, 1964.

Peter Ochs, Yunjin Chen, Thomas Brox, and Thomas Pock. ipiano: Inertial proximal algorithm for
non-convex optimization, 2014.

Qingsong Wang, Zehui Liu, Chunfeng Cui, and Deren Han. Inertial accelerated sgd algorithms for
solving large-scale lower-rank tensor cp decomposition problems. Journal of Computational and
Applied Mathematics, 423:114948, 2023.

Ashok Cutkosky, Harsh Mehta, and Francesco Orabona. Optimal stochastic non-smooth non-convex
optimization through online-to-non-convex conversion. ICML-2023, 2023.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape
saddle points efficiently, 2017. URL https://arxiv.org/abs/1703.00887.

Yixing Liu, Yan Sun, Zhengtao Ding, Li Shen, Bo Liu, and Dacheng Tao. Enhance local consistency
in federated learning: A multi-step inertial momentum approach, 2023.

Zeke Xie, Xinrui Wang, Huishuai Zhang, Issei Sato, and Masashi Sugiyama. Adaptive inertia:
Disentangling the effects of adaptive learning rate and momentum, 2022.

Bao Wang, Tan Nguyen, Tao Sun, Andrea L Bertozzi, Richard G Baraniuk, and Stanley J Osher.
Scheduled restart momentum for accelerated stochastic gradient descent. SIAM Journal on Imaging
Sciences, 15(2):738–761, 2022.

Brendan O’donoghue and Emmanuel Candes. Adaptive restart for accelerated gradient schemes.
Foundations of computational mathematics, 15:715–732, 2015.

Yi Zhou, ZheWang, Kaiyi Ji, Yingbin Liang, and Vahid Tarokh. Proximal gradient algorithmwithmo-
mentum and flexible parameter restart for nonconvex optimization. arXiv preprint arXiv:2002.11582,
2020a.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and BehnamNeyshabur. Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

11

https://arxiv.org/abs/1703.00887

Rotem Mulayoff, Tomer Michaeli, and Daniel Soudry. The implicit bias of minima stability: A view
from function space. Advances in Neural Information Processing Systems, 34:17749–17761, 2021.

Mor Shpigel Nacson, Rotem Mulayoff, Greg Ongie, Tomer Michaeli, and Daniel Soudry. The
implicit bias of minima stability in multivariate shallow relu networks. In The Eleventh International
Conference on Learning Representations, 2022.

Yu Bai, Yu-Xiang Wang, and Edo Liberty. Proxquant: Quantized neural networks via proximal
operators, 2019.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. Advances in neural information processing
systems, 28, 2015.

Atılım Güneş Baydin, Robert Cornish, David Martínez Rubio, Mark Schmidt, and Frank Wood.
Online learning rate adaptation with hypergradient descent. In Sixth International Conference on
Learning Representations (ICLR), Vancouver, Canada, April 30 – May 3, 2018, 2018.

Ilya Sutskever, JamesMartens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In International conference on machine learning, pages 1139–1147.
PMLR, 2013.

Jun-Kun Wang, Chi-Heng Lin, and Jacob Abernethy. Escaping saddle points faster with stochastic
momentum. arXiv preprint arXiv:2106.02985, 2021.

Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability. arXiv preprint arXiv:2103.00065, 2021.

Razvan Pascanu, Yann N. Dauphin, Surya Ganguli, and Yoshua Bengio. On the saddle point problem
for non-convex optimization, 2014. URL https://arxiv.org/abs/1405.4604.

CharlesG. Frye, James Simon, Neha S.Wadia, AndrewLigeralde,Michael R.DeWeese, andKristofer E.
Bouchard. Critical point-finding methods reveal gradient-flat regions of deep network losses, 2020.
URL https://arxiv.org/abs/2003.10397.

Chaoyue Liu, Libin Zhu, andMikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks, 2021.

Dan Qiao, Kaiqi Zhang, Esha Singh, Daniel Soudry, and Yu-Xiang Wang. Stable minima cannot
overfit in univariate reLU networks: Generalization by large step sizes. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards theoreti-
cally understanding why sgd generalizes better than adam in deep learning. Advances in Neural
Information Processing Systems, 33:21285–21296, 2020b.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. In International Conference on Machine Learning, pages 1019–1028. PMLR, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

Stanisław Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio,
and Amos Storkey. Three factors influencing minima in sgd. arXiv preprint arXiv:1711.04623, 2017.

Simran Kaur, Jeremy Cohen, and Zachary Chase Lipton. On the maximum hessian eigenvalue and
generalization. In Proceedings on, pages 51–65. PMLR, 2023.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

12

https://arxiv.org/abs/1405.4604
https://arxiv.org/abs/2003.10397

Lucas Böttcher and Gregory Wheeler. Visualizing high-dimensional loss landscapes with hessian
directions. arXiv preprint arXiv:2208.13219, 2022.

Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-based analysis
of large batch training and robustness to adversaries. Advances in Neural Information Processing
Systems, 31, 2018a.

Zhewei Yao, Amir Gholami, Daiyaan Arfeen, Richard Liaw, Joseph Gonzalez, Kurt Keutzer, and
Michael Mahoney. Large batch size training of neural networks with adversarial training and
second-order information. arXiv preprint arXiv:1810.01021, 2018b.

Lei Wu, Chao Ma, et al. How sgd selects the global minima in over-parameterized learning: A
dynamical stability perspective. Advances in Neural Information Processing Systems, 31, 2018.

Dheeraj Baby, Xuandong Zhao, and Yu-XiangWang. An optimal reduction of tv-denoising to adaptive
online learning. In International Conference on Artificial Intelligence and Statistics, pages 2899–2907.
PMLR, 2021.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554, 2006.

Zhewei Yao, Amir Gholami, Daiyaan Arfeen, Richard Liaw, Joseph Gonzalez, Kurt Keutzer, and
Michael Mahoney. Large batch size training of neural networks with adversarial training and
second-order information, 2020.

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. How to compute hessian-vector
products? In ICLR Blogposts 2024, 2024. URL https://iclr-blogposts.github.io/2024/blog/
bench-hvp/. https://iclr-blogposts.github.io/2024/blog/bench-hvp/.

Moritz Hardt and Eric Price. The noisy power method: Ameta algorithmwith applications. Advances
in neural information processing systems, 27, 2014.

Saber Elaydi. An introduction to difference equation. 01 2005.

Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error guarantees
for multilayer neural networks, 2016.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks, 2020.

Enno Mammen and Sara Van De Geer. Locally adaptive regression splines. The Annals of Statistics,
25(1):387–413, 1997.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

13

https://iclr-blogposts.github.io/2024/blog/bench-hvp/
https://iclr-blogposts.github.io/2024/blog/bench-hvp/

A. Appendix

Table of Contents

A.1. Extended Related Work . 14

A.2. Phase 2: More on Heuristic function . 14

A.2.1. Eigenvalue Estimation . 16

A.2.2. Function value and Gradient Square Estimation 16

A.2.3. Tuning hyper-parameters and estimating Goodness Score 17

A.3. Stability properties of gradient descent (Inertial momentum variant) 18

A.4. Experimental Details . 19

A.4.1. Test Optimization Functions . 19

A.4.2. Non-parametric Regression . 19

A.4.3. Cumulative Distribution Function of performance metrics 20

A.4.4. Distance Metric between functions . 20

A.4.5. Application on ResNets with PROXQUANT . 20

A.5. Additional Experiments . 21

A.5.1. Results from Section 4(ii) . 21

A.5.2. Additional ablation for momentum parameter α 21

A.5.3. MoXCo + ADAM . 21

A.5.4. Additional analysis for non-parametric regression experiments 23

A.1. Extended Related Work

PGD vs MoXCo: Our two-momentum approach uniquely combines acceleration and exploration:
primary momentum (Eq. 1) smooths the optimization trajectory, while secondary momentum (Eq.
2) computes gradients at perturbed points.

SAM vs MoXCo: We argue for incorporating additional geometric indicators beyond sharpness and
loss magnitude to reliably distinguish between local minima quality, as evidenced by our empirical
results in Table 1. Additionally, sharpness at each optimization step is computationally expensive.
Instead, we propose using sharpness as one of other heuristic indicators to characterize reliably local
geometry and in extension a local minima. Informally, our approach is more "locally" adaptive and
efficient since we approximate curvature early in optimization, then efficiently converges to flat local
minima through increased step sizes Qiao et al. [2024].

A.2. Phase 2: More on Heuristic function

Ourmethod exploits the local geometric properties of the objective function such as sharpness, strong
convexity, & heterogeneous curvature in different directions to effectively escape sharp basins and
converge to flat loss regions Zhou et al. [2020b]. We design measures of such relevant information
and refer to them as "indicators". The biggest benefit of our methods is that they incur no additional
computational cost. This is because all the necessary local information either already exists or can be
readily computed at any given time step.

14

Measure of ”flatness" There is no universally accepted definition for flat minima, and the concept
may carry slightly varying interpretations across different works Dinh et al. [2017] Hochreiter and
Schmidhuber [1997]. We define sharpness via the eigenspectrum of the Hessian of the training
objective, particularly considering the largest eigenvalue λmax(∇2f(θt)), a commonly adoptedmetric
Jastrzebski et al. [2017] Dinh et al. [2017] Kaur et al. [2023]. Since it is established that flatness is
linked to better generalization Keskar et al. [2016], it is crucial to analyze the geometric properties
of the loss landscape. The mean curvature in the original loss space determines whether saddle
points, on average, appear as minima, maxima, or almost flat regions Böttcher and Wheeler [2022].
To efficiently estimate the local curvature information at any given time step during training, we
employ the HessianFlow method. This technique computes the top eigenvalues of the Hessian
operator using a matrix-free algorithm, as outlined in Yao et al. [2018a]Yao et al. [2018b]. In our
methodology, the Hessian spectrum is evaluated only at the conclusion of each epoch, resulting in
minimal computational overhead. A smaller eigenvalue serves as an indicator of proximity to a flatter
region. Table 1 illustrates the potential range of eigenvalues corresponding to various irregularities
present in a loss landscape.

Local Geometric Curvature properties: Examining geometric attributes of the loss landscape,
including local curvature and the presence of alternative optima in the vicinity of a specific point
in loss space, is often associated with enhancing the performance and generalization capabilities
of neural networks Böttcher and Wheeler [2022]Keskar et al. [2016]Hochreiter and Schmidhuber
[1997]Wu et al. [2018]. Therefore, to obtain a precise assessment of pathological curvatures in the loss
landscapes, we consider the l2 gradient norm of the model parameters. Low gradient information
indicates the proximity of potential critical points. When combined with the largest eigenvalue,
we can make reasonable inferences about proximal irregularities with a relatively high degree of
confidence. Also, it’s important to note that estimating the l2 gradient norm can be challenging due
to the inherent noise in the observed gradients during training. This noise can potentially skew the
results, which is why we consider a denoising (and de-biasing) approach for our gradient l2 norm
estimates. We use universal dynamic regret to exploit local strong convexity by using ALIGATOR
Baby et al. [2021] to find a true estimate of gradient l2 norm.

Measure of Convergence A low objective function value (zero or near-zero training loss) can signify
either proximity to the optimal solution or a local minimum. In non-convex problems, such as the
one we’re addressing, this ambiguity is even more pronounced because our objective is to attain an
optimal solution that exhibits better generalization. Being situated near a sub-optimal minimum is
undesirable. This also justifies the necessity of employing multiple indicators or ’sensors’ of the loss
landscape, as a low objective function value can be highly misleading. In our experiments [section
5], with binary quantization, we have a non-smooth regularized objective function, which serves as
one of our indicator measures.

Restart window determination Recommended range for δ lies in range [0.80 to 0.95]. Increasing
values of δ signify proximity to flatter minima. As δ increases, we are closer to converging to a
stationary point, and by virtue of our heuristic function, with high probability, these stationary
points will be situated in desired flatter regions. Thereby indicating high confidence for momentum
reset. Similar to the findings ofHinton et al. [2006], we observed that resettingmomentumparameters
towards the end of convergence is advantageous. In terms of a physics analogy, the heuristic function’s
estimate of δ helps determine when we should begin decelerating as we approach a shallow minima.

Table 1 analysis: Table 1 demonstrates why a Goodness score metric is necessary - Given the diverse
geometric properties of local minima in deep neural networks (plateaus, sharp valleys, etc.) Pascanu
et al. [2014] Frye et al. [2020], no single metric can fully characterize a desirable minimum. We
therefore analyze multiple geometric indicators: the loss value fθ, gradient norm square ||∇fθ||22,
and the largest eigenvalue λmax(∇2fθ). As shown in Table 1, no one indicator always indicates a
consistent value (small or large) across these pathological curvatures but by combining these metrics
additively, we can always detect any of non-desirable critical points.

The desirable local minima is the one which generalizes - a wide & flat local minima, which we
found can be categorized by all three indicators having a small value - as it reaches a stable stationary

15

point fθ and ||∇fθ||22 (small) whereas wide and flatness implies a small λmax(∇2fθ). By combining
these three metrics, we can reliably characterize geometry of local minimas’ that offers strong
generalization properties. When all three indicators show small values, we consistently find good
minima, independent of the loss landscape’s structure.

A.2.1. Eigenvalue Estimation

To estimate the maximum eigenvalue of the hessian operator at every time step efficiently, we use the
method implemented by Yao et al. [2020, 2018a]. This is a power iteration-stylemethod that iteratively
computes Hessian-vector product and re-normalizing to find the eigenvector v and eigenvalue λ
that satisfies λv = Hv. The Hessian vector product (HVP) can be computed using backpropagation
without explicitly constructing the Hessian matrix. Dagréou et al. [2024] provided a concise review
of HVP and its computational and memory overhead in modern deep learning models.

Below in Algorithm 2, we describe how the sharpness measure we need for the Goodness score is
computed. Throughout all our experiments, we assume λtarget ≥ k∗(EOSadjusted), where k ≥ 1.

Algorithm 2: MoXCo local measure of sharpness for parameter θ
1 Initialization random vector v
Input :λtarget, Iterations T , Stochastic objective f , parameter θ
Output :Normalized local measures of curvature ν at current epoch

2 for i = 1, 2, . . . , T do
3 Hv ← ∇2f(θ)v (using efficient Hv product)
4 v ← Hv/∥Hv∥2
5 end for
6 λmax ← vT∇2f(θ)v (using efficient Hv product)
7 Return ν =

|λmax−λtarget|
λtarget

We also propose two tricks to make the power iterations above more efficient.

First, replace the full Hessian Vector product∇2f(θ)v with a stochastic approximation version of the
Hessian Vector product∇2f̂(θ)v where∇2f̂ is computed from a randomly chosen minibatch. This
still correctly computes the largest eigenvalue as the number of iterations gets large Hardt and Price
[2014].

Second, we propose to run only one iteration of the power iteration each time and use the previous
iteration’s output eigenvector as an initialization, namely, warm start. Even though∇2f(θ) changes
with θ, this algorithm is already tracking the exact computation and it significantly lowers the
overhead of computing the “Goodness” score.

A.2.2. Function value and Gradient Square Estimation

Besides λmax, we also need the function value f(θ) and gradient norm ∥∇f(θ)∥2 when evaluating
the Goodness score.

When f is a machine learning training objective function, both the function value and gradient norm
require O(n) in the number of data points n. This becomes too much overhead to compute in every
iteration. One could, potentially compute them infrequently, i.e., only after each full data pass. This
works when the optimization algorithm runs for many epochs, but is too infrequent when only a few
data passes is scheduled.

We propose a minibatched stochastic approximation that provides more frequent approximate
measurement of f(θt) and ̂∥∇f(θt)∥2 for every iteration t.

16

Estimating f(θt). The idea is similar to the standard exponential weighted averages in online
smoothing by outputting

f̂(θt) =
1

1− γ

∑
i=t,t−1,...

γt−if̂i(θi)

for a choice of γ close to 1, e.g. 0.99. f̂iθi is the average loss computed on the minibatch of iteration i.

This approach works but we need to choose γ and there may not be a good constant choice for
the effective “window size” 1/(1− γ) in the cases when we are running an aggressive exploration
algorithm in Phase I of MoXCO. Some local region may need a smaller window size because the f(θ)
changes too quickly. Other regions may prefer a bigger window size because f(θ) is relatively flat
and bigger window size gives estimators with lower variance.

To solve this problem, we propose using a parameter-free adaptive online smoothing algorithm
known as ALIGATOR [Baby et al., 2021]. ALIGATOR takes an arbitrary sequence of noisy observa-
tions yi = µi + noisei for i = 1, 2, 3, ... and provides a nearly optimal online estimate to µi without
knowing how quickly µi changes over i. It can essentially compete with an oracle choice of the best
window size chosen at any location i, thus suitable for our need.

To be concrete, we pass f̂iθi toe ALIGATOR and ALIGATOR returns a good estimator of f̂(θi) on the
fly that we plug into the Goodness score.

Estimating ∥∇f(θt)∥2. The issue is similar but slightly more complex for the gradient norm estimate.
One naive approach is to use ALIGATOR to estimate every coordinate of the gradient separately and
then plug in. But this will over-estimate the gradient norm because every coordinate’s estimate is
noisy. The over-estimate is on the order of O(dσ2) where d is the dimensionality. This can be painful
even if ALIGATOR is able to suppress σ2 to 1/Optimal_Window_Size.

Instead, we propose estimating the gradient norm square directly by estimating the RHS of the
following decomposition

∥∇f(θt)∥2 = ∥∇f̂(θt)−∇f(θt)∥2 + ∥∇f̂(θt)∥2 + 2(∇f̂(θt)−∇f(θt))T∇f̂(θt)

∥∇f̂(θt)−∇f(θt)∥2 is the variance that can be unbiasedly estimated since we have a minibatch (with
minibatch size > 1). We can run ALIGATOR for this.

∥∇f̂(θt)∥2 is directly observable, thus we can run ALIGATOR to denoise the this sequence.

As for the cross term, 2(∇f̂(θt)−∇f(θt))T∇f̂(θt), we can construct an unbiased estimator by using
the symmetrization trick and data splitting. Basically, we can randomly split the minibatch into
three parts, and the following is an unbiased estimator 2(∇f̂1(θt)−∇f̂2(θt))T∇f̂3(θt)) Then we can
smooth this sequence using ALIGATOR.

This ensures that there are just three ALIGATORs to run instead of d. and we do not suffer from
O(d) error in our estimate of the gradient norm square.

Note that, since we deal with GD in 4(i), 4(ii) , we use a simple gradient L2 norm estimate for both
those set of experiments.

A.2.3. Tuning hyper-parameters and estimating Goodness Score

MoXCo introduces two key hyper-parameters: the inertial momentum parameter α and the tempera-
ture τ for the goodness score criteria. τ and the threshold γ for triggering the goodness score are
inversely proportional, allowing for estimation of one from the other. Tuning α is akin to adjusting
any momentum parameter, where a higher α promotes aggressive exploration and a lower α, indicat-
ing values in the range [0, 1), supports more conservative exploration. We recommend fine-tuning
τ while keeping γ within a fixed range of [0.85, 0.95]. Further insights into the effectiveness of the
goodness score are illustrated in Figure 5, which demonstrates that the goodness score is activated

17

only when all three criteria are minimal(sharpness should be near EOS). Additionally, note that the
squared norm of the gradient for the GD version of this experiment, shown in green, is diverging.

100 101 102 103 104 105

Iterations

10 4

10 3

10 2

10 1

100

va
lu

es

Goodness score analysis

|| g()||22
| max(2f())

target
1|

|f() ftarget|
Vanilla GD || g()||22

Figure 5: All three measures of goodness score plotted against iterations for initialization and setting
similar to Figure 4(a)

A.3. Stability properties of gradient descent (Inertial momentum variant)
Below are the steps used to derive the adjusted learning rate bound based on Edge of Stability Cohen
et al. [2021] but for inertial momentum.

Optimizing against quadratic objective function :

f(x) =
1

2
xTAx+ bT x+ c

Inertial equations:

vt = xt + α(xt − xt−1) = (α+ 1)xt − αxt−1 (7)
yt = xt + β(xt − xt−1) (8)
xt+1 = vt − η∇f(yt) (9)

∇yt
f(yt) = A((1 + β)xt − βxt−1) + b

∇yt
f(yt) = (1 + β)Axt − βAxt−1 + b

GD with inertial momentum update step wrt to the quadratic equation -

xt+1 = vt − η∇L(yt)
xt+1 = (α+ 1)xt − αxt−1 − η[(1 + β)Axt − βAxt−1 + b]

= [1 + α− η(1 + β)A]xt − (α− ηβA)xt−1 + b

= (1 + α)
[
I− η(1 + β)

1 + α
A
]
xt − α

[
I− ηβA

α

]
xt−1 − ηb

The quantity qT xt evolves under gradient descent as:- (also note (qTA = aq))

qT xt+1 = (1 + α)
[
1− η(1 + β)

1 + α
a
]
qT xt − α

[
1− ηβa

α

]
qT xt−1 − ηqTb

18

If we define x̃t = qTxt +
qT b
a , and note that qTxt diverges iff x̃t diverges. Thus, rearranging above

equation,

x̃t+1 = (1 + α)
[
1− η(1 + β)

1 + α
a
]
qT x̃t − α

[
1− ηβa

α

]
qT x̃t−1

Above equation, is a linear homogeneous second-order difference equation. By Theorem 2.37 in
Elaydi [2005] -

p1 = (1 + α)
[
1− η(1 + β)

1 + α
a
]

p2 = α
[
1− ηβa

α

]
If a > 1

η

(
2+2α
1+2β

)
then this recurrence diverges.

A.4. Experimental Details

We consistently used a threshold C in the range of [0.80, 0.88] across all experiments. Depending on
C, we tuned the temperature hyper-parameter (τ) or adjusted C based on η. Specifically, we found
that τ = 0.15 or τ = 0.2 reliably estimated a threshold score of 0.85 throughout our experiments.
We consistently used βhypergradient = 1× 10−3 in all experiments, except in Section 4, where we used
βhypergradient = 1× 10−2. The results did not significantly deviate when using the former value.

A.4.1. Test Optimization Functions

In this section, we include additional experimental details for our results in Section 4.

The functional form for Beale is defined as -

F (x) = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2 + (2.625− x1x1x
3
2)

2

Ackley loss landscape serves as a good synthetic benchmark because it closely approximates a
complex loss landscape surrounded with numerous local minima. -

F (x) = −a exp
(
− b

√√√√1

d

d∑
i=1

x2
i

)
− exp

(1
d

d∑
i=1

cos(cxi)
)
+ a+ exp(1)

a = 20, b = 0.2, c = 2π

We used a goodness score threshold of C = 0.85, 0.80 respectively for Figures ??. We include
additional results on Ackley and Beale in next section, where we used similar configuration of τ, C.

A.4.2. Non-parametric Regression

For the non-parametric set of experiment, the two-layer neural network is used to approximate
any parametric function f , with data points {xi}ni=1 where n is the number of data points, each xj

for j = 0, 1, ...d is drawn i.i.d from an uniform distribution over [0, 1]. The number of neurons is
denoted by m, characterizes model’s complexity. We observe ŷi = f(xi) + ϵi where ϵi represents
Gaussian noise. We study MoXCo’s behavior under both under-parameterized (n > m) and over-
parameterized regimes Soudry and Carmon [2016]. We adhere to the Neural Tangent Kernel (NTK)
parameterization Jacot et al. [2020].

Functional form f used in Section 4(ii) for experimenting with MoXCo whenm < n -{
2x x < 0.5

−2x+ 2 x ≥ 0.5

19

Functional form f used in Section 4(iii) for experimenting with MoXCo whenm > n -

2.55− 4.5x −2 ≤ x < −0.5
−0.75 + 4.5x −0.5 ≤ x < 1

5.5− 2x 1 ≤ x

This functional form has been studied in Mammen and Van De Geer [1997] in the context of under-
standing the effects of spatially inhomogeneous smoothness on least squares penalized regression
estimates with total variation penalties. We adopt one of their functionals to test whether MoXCo for
a regression task, can effectively learn the underlying function in an over-parameterized setting.

For the goodness score threshold, we consistently useC = 0.85 across all non-parametric experiments.
In under-parameterized experiments, we use fixed settings of α = 0.6, β = 0.6, η = 0.1, and τ = 0.20.
For over-parameterized experiments, we use η = 0.05, α = 0.9, and β = 0.9. We used consistent
βhypergradient = 1e− 3 throughout all experiments. Note that all these results are extensible to cases
where β is random.

A.4.3. Cumulative Distribution Function of performance metrics

In plots of 4(iii)show the Cumulative Distribution Function (CDF) of performance metrics (MSE,
gradient norm, etc.) across 50 random initializations. For any threshold T, the CDF value indicates
the fraction of initializations achieving performance ≤ T. For example, CDF(0.8) = 0.7 means 70%
of initializations achieved performance ≤ 0.8 (equivalently, 30% achieved > 0.8), providing insight
into the training process’s reliability across different initializations. In these figures, having a higher
CDF value at lower thresholds is preferable - notably, MoXCo achieves substantially higher CDFs at
smaller thresholds compared to vanilla GD across all metrics, indicating more reliable performance
over multiple random initializations. We will also add this explanation in the revision.

A.4.4. Distance Metric between functions

To qualitatively assess the performance of a neural network in capturing the underlying function,
we measure the discrepancy between the predicted and true functions in the functional space. This
measure of distance is equivalent to the L2 norm of their difference, which can be derived from the
inner product of their difference. By definition of the inner product for continuous spaces, we can use
Riemann integrals if the functions are Riemann integrable. To estimate this empirically in a discrete
space, we use Riemann sum estimation. We employ this metric in our experimental evaluation in
Section 4(ii).

A.4.5. Application on ResNets with PROXQUANT

We used PROXQUANT algorithm publicly provided by Bai et al. [2019]. All MoXCo-PROXQUANT
experiments use the same configurations for a fair comparison.We use a momentum schedule for
αt =

3t−1
3t+1 , where t refers to each iteration. Similarly, β is set randomly at every iteration. We use a

fixed step size η = 0.025, with initial values of α0 = 0.5 and β0 = 0.9. Additionally, we set δ = 0.87,
and τ = 0.15 and restart momentum parameters with α = 0.7, β = 0.3. The step size η is adapted
using hyper-gradient.

Additionally, learning rate schedules do not pair well with our approach, as we employ an adaptive
momentum framework. This framework includes phase 2 that restarts all momentum parameters
and readjusts the learning rate adaptively as well. With respect to computational resources a single
GPU is more than enough to run are experiments since they we work with ResNets of maximum
depth of 56. Using MoXCo does not add additional computation complexity to it.

20

0.0
00

1 0.2 0.5 0.7 0.8 0.8
6 0.9 0.9

9

Thresholds

0.634

0.636

0.638

0.640

0.642

0.644

Lo
ss

 v
al

id
at

io
n

Loss validation per Bin
Loss validation

Figure 6: Goodness score v/s Loss validation to measure its effectiveness in identifying interesting
local curvatures. Validation loss is smallest in the region of [0.75− 0.95). These experiments were
done under over-parameterized setting of parametric function.

A.5. Additional Experiments
A.5.1. Results from Section 4(ii)

Setup To provide empirical validation of the usefulness of this goodness score criterion, we correlate
it with population-level sub-optimality. We plot 50 goodness scores ranging from [1e − 4, 1] and
report the final loss validation achieved at convergence when MoXCo starts at the corresponding
goodness scores.

Results Based on theoretical understanding and intuition about goodness scores, performance is
expected to be poor at the extremes—when the goodness score is 0 and 1. It decreases from both
sides centering or stabilizing near 0.80-0.95 range. At a goodness score of 1, Phase 2 is never active,
meaning the algorithm relies solely on momentum exploration. We might overreach and pass by
good localities and are a risk of divergence. Conversely, at a goodness score of 0, Phase 1 never starts,
never initiates, eliminating the opportunity for aggressive exploration of the surrounding vicinity,
which is also sub-optimal. In this case, the algorithm takes overly cautious steps and prepares
for convergence prematurely. Hence, a U-shaped like curve is the expected behavior and we are
able to see that empirically too. We used same setting as in under-parameterized analysis with
α, β = 0.9, τ = 0.2. Only η = 0.005.

A.5.2. Additional ablation for momentum parameter α

Below, depicts ablation plot for our momentum parameter α and random β. This is in-line with
our general recommendation of the β which is to be randomly sampled between [0,1]. We ablate
α = [0, 1), for under-parameterized (m=5) 2NN regression task. We report loss validation (MSE)
averaged for five runs per α. All the settings are exactly similar to experiments in section 4(iii)
. Note, α follows a similar trend as seen in Figure 12 despite widely different setting. The general
recommendation for α is higher the better. Note, the deviation in validation loss after α = 0.8 is
very small. But this does highlight once potential issue of sensitivity. We counter that by using an
adaptive α in our experiments with PROXQUANT and they seem to work well in general. If one
wants to use a fixed α, we recommend to use 0.9 as we did throughout all our experiments.

A.5.3. MoXCo + ADAM

Similar behavior is reflected when MoXCo is wrapped with also when used with Ackley function.
The figure shows trajectories with same initialization (black circle) and all optimizers run for total
of 1000 steps. We see that in both plots Figure 2, 9, only MoXCo variants are able to explore the
loss surfer and converge to global minima whereas other optimizers get stuck in unwanted local

21

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Lo
ss

 V
al

id
at

io
n

Figure 7: Ablation study for α vs Validation loss for under-parametrized two-layer ReLU network
with quadratic loss setting similar to 4(iii)

Adam
GD
GD + MoXCo: Phase 1
GD + MoXCo: Phase 2

100 101 102 103

Iterations

10 3

10 2

10 1

100

101
Ob

je
ct

iv
e

va
lu

e

Objective function values for Beale

Adam + MoXCo
Adam
GD
Phase 2 start

Figure 8: Beale optimization trajectory for same initialization as Figure 2 but this time with ADAM
+MoXCo and their vanilla versions. Similar to Fig 2, ADAM +MoXCO is able to escape the local
minima. The equations for integrating MoXCo with ADAM are included below. Additionally, we
show the learning curves for this case, where vanilla optimizers use the highest stable η = 0.05 &
MoXCo uses η = 0.005, similar to Fig 2. Despite the smaller rate, the convergence speed of MoXCo is
on par with GD, which gets stuck very near its initialization.

stationary points. We used Goodness score of 0.85, and restarting values of α, β = 0.1, 0.1 for both
figures.

Wrapping MoXCo inertial equations with ADAM -

θt+1 = θt +∆t,

m̂t =
β′
1mt−1

1− β′
1
t +

(1− β′
2)gt

1− β′
1
t

v̂t =
β′
2vt−1

1− β′
2
t +

(1− β′
2)g

2
t

1− β′
2
t

∆t =
−γm̂t√
v̂t + ϵ

ADAM update rule Kingma and Ba [2014] (10)

22

100 101 102

Iterations

10 2

10 1

100

101

Ob
je

ct
iv

e
va

lu
e

Objective function values for Ackley

GD + MoXCo
Adam
GD
Phase 2 start

100 101 102 103

Iterations

10 2

10 1

100

101

Ob
je

ct
iv

e
va

lu
e

Objective function values for Beale

GD + MoXCo
Adam
GD
Phase 2 start

Figure 9: Learning curves for optimization path traced on (a) Ackley corresponding to Figure 1.
Notice that MoXCo converges faster than the rest. (b) Beale learning curve wrt to Figure 2, with
η = 0.005 for all optimizers. Note, Phase 2 for (a) starts rather quickly due to large α and step-size.

0 50 100 150 200 250 300
Iterations

0

2

4

6

8

10

Ob
je

ct
iv

e
va

lu
e

Objective function values for Ackley
GD + MoXCo
Adam
GD
Phase 2 start

Figure 10: Optimization path traced on (a) Ackley with similar initialization as Fig 4 (b) correspond-
ing learning curve. MoXCo + GD uses η = 0.0005, rest optimizers use η = 0.05. (η = 0.01 also gives
similar results). Even with small η, MoXCo is able to reach global minima.

MoXCo Inertial updates:

xt = θt + αt(θt − θt−1)

yt = θt + βt(θt − θt−1)

θt+1 = xt − η∇L(yt)

Inertial + ADAM:

θt+1 = xt −
γm̂t√
v̂t + ϵ

mt = ∇θL(yt)

vt = (∇θL(yt))
2

γ = η (same as learning rate in Inertial update)

A.5.4. Additional analysis for non-parametric regression experiments

We provide additional cumulative distribution function (CDF) plots form = 2 in Figure 11, based
on 50 different initializations. Throughout these hit rate experiments in the under-parameterized
regime, we maintain a consistent configuration of MoXCo: α, β = 0.6, 0.6, η = 0.1, τ = 0.20, γ = 0.85,
with restart mechanism using hyper-gradient with βhypergradient = 1e− 3. We can replace constant β

23

with its randomized version as well. As illustrated in Figure 11, MoXCo achieves lower values across
all four metrics, indicating it has converged to a better solution than vanilla GD. We also plot loss
values to indicate speed of convergence.

0.7 0.8 0.9 1.0 1.1
Validation loss

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

moxco
vanilla

0.05 0.10 0.15 0.20 0.25 0.30
MSE against ground truth

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

moxco
vanilla

1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50
Distance between f & f

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

moxco
vanilla

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Gradient L2 Norm

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

moxco
vanilla

Figure 11: Hit rate analysis for 50 random initialization when m = 2 for under-parameterized
two-layer NN optimized using MoXCo + GD. Once again we the evaluate "goodness" of solutions at
convergence for these 50 runs using 4 different metrics. Once again, all four metrics are smaller for
MoXCo as compared to GD.

0.4 0.2 0.0 0.2 0.4
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

MoXCo fit
Vanilla fit
Ground truth f
Training data

0.4 0.2 0.0 0.2 0.4
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

MoXCo fit
Vanilla fit
Ground truth f
Training data

Figure 12: Two different instances of fitted functions randomly initialized withm = 2 in the under-
parameterized setting. GD fails to learn f in both examples and interpolates, while MoXCo learns
the underlying parametric function well.

24

	. Introduction
	. Summary of results
	. Related Work

	. Notation and Setup
	. MoXCo: Designing adaptive optimizers
	. Inertial Proximal Algorithm for Promoting Exploration
	. ``Goodness'' score and when to stop exploration
	. Dynamics of stopping and effect of Random Beta

	. Experiments
	. Limitations and Future Work
	. Conclusion
	. Appendix
	. Extended Related Work
	. Phase 2: More on Heuristic function
	. Eigenvalue Estimation
	. Function value and Gradient Square Estimation
	. Tuning hyper-parameters and estimating Goodness Score

	. Stability properties of gradient descent (Inertial momentum variant)
	. Experimental Details
	. Test Optimization Functions
	. Non-parametric Regression
	. Cumulative Distribution Function of performance metrics
	. Distance Metric between functions
	. Application on ResNets with PROXQUANT

	. Additional Experiments
	. Results from Section 4(ii)
	. Additional ablation for momentum parameter
	. MoXCo + ADAM
	. Additional analysis for non-parametric regression experiments

