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Abstract

Linear representation hypotheses and steering vector interpretations are increas-1

ingly popular in mechanistic interpretability, suggesting that small perturbations in2

latent space yield predictable changes in model behavior. We provide a rigorous3

theoretical critique of this perspective by analyzing the chaotic dynamics inher-4

ent in deep residual networks through the lens of dynamical systems theory. We5

prove that two latent vectors which are initially ϵ-close can diverge exponentially6

within O(log(1/ϵ)) layers under positive Lyapunov exponents, fundamentally un-7

dermining the assumption that linear operations reliably control model outputs.8

Our analysis reveals that the exponential sensitivity to initial conditions character-9

istic of chaotic systems makes linear approximations inherently unreliable in deep10

networks, providing a theoretical foundation for understanding the limitations of11

current interpretability methods.12

1 Introduction13

Mechanistic interpretability seeks to unravel the internal computations of neural networks by pro-14

viding structured explanations for their behavior [7]. A prominent paradigm in this field is the linear15

representation hypothesis, which posits that semantic features and controllable behaviors correspond16

to linear directions in the network’s latent space. This assumption underlies numerous interpretabil-17

ity techniques, including steering vectors [6], concept activation vectors [5], and linear probing18

methods [1].19

While these linear methods have shown empirical success in controlled settings, their theoretical20

foundations remain poorly understood, particularly for the deep, highly nonlinear architectures that21

characterize modern large language models (LLMs). The assumption that local linearity persists22

across dozens of layers warrants rigorous theoretical scrutiny from the perspective of dynamical23

systems theory.24

The key insight driving our analysis is that deep residual networks can be viewed as discrete-time25

dynamical systems, and such systems often exhibit chaotic behavior characterized by sensitive de-26

pendence on initial conditions. When the dynamics are chaotic—as evidenced by positive Lyapunov27

exponents—small perturbations grow exponentially, making long-term prediction and control fun-28

damentally difficult.29

In this work, we provide a comprehensive dynamical systems analysis of linear representation30

hypotheses in residual networks. Our main contribution establishes that ϵ-close initial perturba-31

tions diverge exponentially, with separation occurring within O(log(1/ϵ)) layers under chaotic dy-32

namics. This result fundamentally challenges the assumption that small perturbations remain pre-33

dictably small throughout deep networks, revealing the inherent instability of linear approximations34
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in chaotic dynamical systems. We then analyze the implications of this exponential divergence for35

interpretability methods and suggest directions for developing chaos-aware approaches.36

Our analysis reveals fundamental limitations of linear interpretability methods and provides a the-37

oretical foundation for understanding why these techniques often produce inconsistent results in38

large-scale networks.39

2 Mathematical Framework40

2.1 Residual Networks as Dynamical Systems41

Consider a residual network with L layers, where each layer applies a transformation of the form:42

xk+1 = xk + Fk(xk), k = 0, 1, . . . , L− 1 (1)

This discrete dynamical system can be viewed as a forward Euler discretization of the continuous-43

time ODE:44
dx(t)

dt
= F(t,x(t)), x(0) = x0 (2)

where F(t,x) interpolates the discrete transformations Fk(x). This dynamical systems perspective45

enables us to apply tools from chaos theory, particularly Lyapunov exponent analysis, to understand46

the stability and predictability of trajectories.47

Definition 1 (Lyapunov Exponents). For the linearized dynamics around a trajectory {xk}, the48

Lyapunov exponents λ1 ≥ λ2 ≥ · · · ≥ λd characterize the exponential growth rates of infinitesimal49

perturbations. Formally, they are defined as:50

λi = lim
k→∞

1

k
log σi

k−1∏
j=0

Jj

 (3)

where Jj = I+∇Fj(xj) is the Jacobian matrix at step j, and σi denotes the i-th singular value of51

the matrix product.52

Definition 2 (Chaotic Dynamics). A dynamical system exhibits chaotic behavior if it has sensitive53

dependence on initial conditions, characterized by at least one positive Lyapunov exponent λmax >54

0. This means that initially nearby trajectories separate exponentially at rate λmax.55

2.2 Linear Representation Hypothesis in Dynamical Context56

Definition 3 (Linear Representation Hypothesis). A network f : Rd → Rm satisfies the linear rep-57

resentation hypothesis if small perturbations δ to inputs produce proportional changes in outputs:58

f(x+ δ) ≈ f(x) + Jf (x)δ (4)
where Jf (x) is the Jacobian of f at x, and the approximation error is small relative to the linear59

term.60

The validity of this hypothesis depends critically on whether perturbations δ remain small as they61

propagate through the network layers. In chaotic systems, this assumption fails catastrophically due62

to exponential amplification.63

3 Main Theoretical Results64

3.1 Exponential Divergence of Close Trajectories65

Our main result rigorously establishes the exponential divergence of initially close perturbations in66

chaotic residual networks.67

Theorem 1 (Exponential Divergence in Chaotic Residual Networks). Let {xk}k≥0 and {yk}k≥0 be68

trajectories of the residual network evolution:69

xk+1 = xk + Fk(xk) (5)
yk+1 = yk + Fk(yk) (6)
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Assume that Fk is continuously differentiable and that the system exhibits chaotic dynamics with70

maximal Lyapunov exponent λmax > 0. Then for sufficiently small initial separation ϵ = ∥x0−y0∥,71

there exist constants C1, C2 > 0 such that:72

C1ϵe
λmaxk ≤ ∥xk − yk∥ ≤ C2ϵe

λmaxk (7)

for sufficiently large k. In particular, ∥xk − yk∥ = Ω(1) once73

k ≥ log(1/ϵ)

λmax
+O(1) (8)

Proof. Let δk = yk−xk denote the perturbation vector at step k. The evolution of this perturbation74

is governed by:75

δk+1 = δk + Fk(yk)− Fk(xk) (9)

By the fundamental theorem of calculus, there exists a point ξk on the line segment between xk and76

yk such that:77

Fk(yk)− Fk(xk) = ∇Fk(ξk)δk (10)

Therefore:78

δk+1 = (I+∇Fk(ξk))δk = Akδk (11)

where Ak = I+∇Fk(ξk). By iteration:79

δk =

k−1∏
j=0

Aj

 δ0 (12)

The key insight is that the matrices Aj approximate the Jacobians along the unperturbed trajectory80

when ∥δj∥ is small. By Oseledets’ multiplicative ergodic theorem [8], for almost every initial81

direction δ0/∥δ0∥, we have:82

lim
k→∞

1

k
log

∥∥∥∥∥∥
k−1∏
j=0

Aj
δ0
∥δ0∥

∥∥∥∥∥∥ = λi (13)

for some Lyapunov exponent λi. For the maximal Lyapunov exponent λmax, there exists a set of83

initial directions of positive measure such that:84

∥δk∥ ≍ ∥δ0∥eλmaxk = ϵeλmaxk (14)

The separation becomes O(1) when ϵeλmaxk = O(1), which occurs for k = O(log(1/ϵ)/λmax).85

3.2 Implications for Linear Control86

The exponential divergence established in Theorem 1 has profound implications for the reliability87

of linear control methods.88

Corollary 1 (Breakdown of Linear Steering). Consider a steering intervention that applies a per-89

turbation δ0 with ∥δ0∥ = ϵ at the input layer. Under chaotic dynamics, the steering effect becomes90

unpredictable after approximately91

Lchaos =
log(1/ϵ)

λmax
(15)

layers, where predictability is lost once the perturbation magnitude becomes O(1).92

Remark 1 (Practical Implications). For typical steering magnitudes ϵ ∼ 10−3 to 10−1 and observed93

Lyapunov exponents λmax ∼ 0.1 to 1.0 in deep networks, the chaos horizon Lchaos ranges from94

approximately 2 to 70 layers. This suggests that linear steering may be unreliable in networks95

deeper than a few dozen layers when operating in chaotic regimes.96
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3.3 Lyapunov Spectrum and Perturbation Dynamics97

To provide a more complete picture, we analyze how the full Lyapunov spectrum affects perturbation98

evolution.99

Proposition 1 (Multi-Directional Divergence). Let λ1 > λ2 > · · · > λd be the Lyapunov exponents100

of the system, and let {vi} be the corresponding Lyapunov directions. For an initial perturbation101

δ0 =
∑d

i=1 αivi, the evolution satisfies:102

∥δk∥ ≍ max
i

|αi|eλik (16)

In particular, if α1 ̸= 0, then the perturbation grows at the maximal rate λ1, regardless of the other103

components.104

This result shows that even if most directions are stable (negative Lyapunov exponents), the presence105

of even a single unstable direction can cause exponential divergence.106

4 Failure Analysis of Linear Methods107

4.1 Fundamental Limitations108

Our dynamical systems analysis reveals several fundamental reasons why linear interpretability109

methods fail in deep networks operating under chaotic dynamics.110

The first and most critical limitation is exponential sensitivity to initial conditions. Theorem 1111

demonstrates that steering vectors and other linear interventions become completely unpredictable112

after just O(log(1/ϵ)) layers, where ϵ represents the precision of the intervention. This means that113

even tiny implementation errors, numerical precision limitations, or uncertainty in the intervention114

magnitude can compound rapidly, causing the actual effect to diverge exponentially from the in-115

tended linear prediction. In practical terms, this makes precise control of model behavior impossible116

in deep networks operating in chaotic regimes.117

The second fundamental limitation concerns the breakdown of linear superposition. In linear sys-118

tems, the effects of multiple interventions simply add together, allowing for compositional control119

strategies. However, in chaotic systems, perturbations interact nonlinearly as they evolve, meaning120

that the effect of applying two steering vectors simultaneously is not the sum of their individual121

effects. This nonlinear interaction becomes more pronounced as perturbations grow, fundamentally122

undermining approaches that rely on decomposing complex behaviors into linear combinations of123

simpler interventions.124

The third limitation involves the temporal instability of learned linear relationships. Even if linear125

relationships appear to hold at a given layer or for a specific set of inputs, the chaotic dynamics126

ensure that these relationships will not persist as inputs change or as analysis moves to different127

layers. This makes it impossible to develop stable, generalizable linear interpretability tools that128

work consistently across different contexts within the same network.129

4.2 Empirical Predictions130

Our theoretical framework generates several concrete and testable predictions about when and how131

linear interpretability methods will fail. The first prediction concerns the depth-dependence of steer-132

ing effectiveness. Our analysis predicts that steering effectiveness should decrease exponentially133

with the depth at which interventions are applied, following the pattern effectiveness ∝ e−λmax·depth.134

This can be tested by applying identical steering vectors at different layers and measuring the mag-135

nitude and consistency of the resulting output changes.136

The second prediction relates to the relationship between network width and chaotic behavior. Wider137

networks typically have more degrees of freedom and may be more likely to exhibit chaotic dynam-138

ics with larger Lyapunov exponents. Our theory predicts that linear interpretability methods should139

become less reliable as network width increases, all else being equal. This can be tested by compar-140

ing the stability of steering interventions across networks of different widths but similar depth and141

training procedures.142
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The third prediction concerns the relationship between training dynamics and interpretability. Net-143

works trained with techniques that promote smoother loss landscapes (such as weight decay, batch144

normalization, or specific initialization schemes) may have smaller Lyapunov exponents and thus145

be more amenable to linear analysis. Conversely, networks trained with techniques that increase ex-146

pressivity (such as very deep architectures or specific activation functions) may exhibit more chaotic147

behavior and be less suitable for linear interpretability methods.148

5 Implications for Interpretability Research149

5.1 Fundamental Challenges150

Our analysis reveals that the challenges facing linear interpretability methods are not merely techni-151

cal limitations that can be overcome with better algorithms or more data. Instead, they represent fun-152

damental mathematical constraints imposed by the chaotic nature of deep network dynamics. When153

neural networks operate in chaotic regimes—as evidenced by positive Lyapunov exponents—the154

exponential sensitivity to initial conditions makes long-range prediction and control inherently im-155

possible, regardless of the sophistication of the interpretability method.156

This has profound implications for the field of mechanistic interpretability. It suggests that the goal157

of achieving precise, predictable control over neural network behavior through linear interventions158

may be mathematically unattainable in deep networks. Rather than viewing this as a failure of159

current methods, we should recognize it as a fundamental constraint that must be incorporated into160

the design of interpretability tools.161

The chaotic nature of deep networks also explains why many interpretability methods that work162

well on shallow networks or in controlled laboratory settings fail to scale to large, practical systems.163

The exponential amplification of small errors and the breakdown of linear superposition make it164

increasingly difficult to maintain reliable interpretability as system complexity grows.165

5.2 Towards Chaos-Aware Interpretability166

Given these fundamental limitations, we advocate for the development of chaos-aware interpretabil-167

ity methods that explicitly account for the nonlinear dynamics of deep networks. The first direction168

involves developing Lyapunov-aware analysis tools that compute local stability properties before169

attempting interpretability interventions. By measuring the local Lyapunov exponents, researchers170

can identify regions where linear methods might be temporarily reliable and avoid regions where171

chaotic dynamics make linear analysis futile.172

The second direction focuses on developing short-horizon interpretability methods that operate173

within the predictability limits imposed by chaotic dynamics. Rather than attempting to control174

or predict network behavior across many layers, these methods would focus on understanding and175

influencing behavior within the chaos horizon Lchaos = O(log(1/ϵ)/λmax). This might involve176

developing layer-by-layer analysis techniques or focusing on understanding how information trans-177

forms across just a few consecutive layers.178

The third direction involves developing ensemble-based interpretability approaches that account for179

the inherent uncertainty introduced by chaotic dynamics. Rather than seeking single, determinis-180

tic explanations, these methods would characterize the distribution of possible behaviors that could181

arise from small variations in inputs or interventions. This probabilistic approach would provide182

more realistic assessments of what can and cannot be reliably predicted or controlled in deep net-183

works.184

6 Related Work185

Our work builds on the growing recognition that deep neural networks exhibit complex dynamical186

behavior that can be analyzed using tools from nonlinear dynamics [9, 11]. The connection between187

residual networks and continuous-time dynamical systems has been explored extensively [2, 4], but188

the implications for interpretability have received less attention.189

Recent empirical work has documented various limitations of linear interpretability methods [10,190

3], providing evidence consistent with our theoretical predictions. However, most of this work191
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focuses on specific failure modes or methodological issues rather than the fundamental mathematical192

constraints we identify.193

The application of chaos theory to neural networks has a long history [12], but most previous work194

focused on learning dynamics or computational capabilities rather than interpretability. Our con-195

tribution lies in connecting this dynamical systems perspective directly to the limitations of inter-196

pretability methods.197

7 Limitations and Future Work198

Our analysis relies on several assumptions that merit careful consideration. The most important199

assumption is that the networks under analysis exhibit chaotic dynamics with positive Lyapunov200

exponents. While there is empirical evidence that many deep networks operate in chaotic regimes201

[9], this may not be universal. Some networks, particularly those with specific architectural con-202

straints or training procedures, may exhibit more regular dynamics that are more amenable to linear203

analysis.204

Additionally, our analysis focuses on worst-case behavior and may overestimate the practical dif-205

ficulties of linear interpretability. Real networks may have special structure—such as approximate206

low-rank dynamics or hierarchical organization—that makes them more predictable than our gen-207

eral theory suggests. Understanding when and where such special structure exists represents an208

important direction for future work.209

Finally, our analysis is primarily focused on residual architectures and may not fully capture the210

dynamics of other important architectures such as transformers with attention mechanisms. The211

attention mechanism creates complex, input-dependent connectivity patterns that may exhibit fun-212

damentally different dynamical properties than the feed-forward residual connections we analyze.213

Future work should extend this analysis to attention-based architectures, investigate the relationship214

between training procedures and dynamical properties, and develop practical tools for measuring215

and characterizing the chaotic properties of real networks.216

8 Conclusion217

We have provided a rigorous dynamical systems analysis of the fundamental limitations of lin-218

ear representation hypotheses in deep residual networks. Our main contribution demonstrates that219

ϵ-close perturbations diverge exponentially within O(log(1/ϵ)) layers under chaotic dynamics, re-220

vealing that the exponential sensitivity to initial conditions characteristic of chaotic systems makes221

linear approximations inherently unreliable in deep networks.222

This analysis provides the first rigorous theoretical explanation for the empirically observed instabil-223

ity and inconsistency of linear interpretability methods in large-scale networks. Rather than viewing224

these failures as technical limitations to be overcome, our results suggest they reflect fundamental225

mathematical constraints imposed by the chaotic nature of deep network dynamics.226

Our work points toward the need for chaos-aware interpretability methods that explicitly account for227

the nonlinear dynamics of deep networks. By recognizing and working with the inherent limitations228

imposed by chaotic dynamics, the interpretability community can develop more robust and realistic229

approaches to understanding neural network behavior.230
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