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Abstract

Linear representation hypotheses and steering vector interpretations are increas-
ingly popular in mechanistic interpretability, suggesting that small perturbations in
latent space yield predictable changes in model behavior. We provide a rigorous
theoretical critique of this perspective by analyzing the chaotic dynamics inher-
ent in deep residual networks through the lens of dynamical systems theory. We
prove that two latent vectors which are initially e-close can diverge exponentially
within O(log(1/¢)) layers under positive Lyapunov exponents, fundamentally un-
dermining the assumption that linear operations reliably control model outputs.
Our analysis reveals that the exponential sensitivity to initial conditions character-
istic of chaotic systems makes linear approximations inherently unreliable in deep
networks, providing a theoretical foundation for understanding the limitations of
current interpretability methods.

1 Introduction

Mechanistic interpretability seeks to unravel the internal computations of neural networks by pro-
viding structured explanations for their behavior [[7]. A prominent paradigm in this field is the linear
representation hypothesis, which posits that semantic features and controllable behaviors correspond
to linear directions in the network’s latent space. This assumption underlies numerous interpretabil-
ity techniques, including steering vectors [6], concept activation vectors [5], and linear probing
methods [L1]].

While these linear methods have shown empirical success in controlled settings, their theoretical
foundations remain poorly understood, particularly for the deep, highly nonlinear architectures that
characterize modern large language models (LLMs). The assumption that local linearity persists
across dozens of layers warrants rigorous theoretical scrutiny from the perspective of dynamical
systems theory.

The key insight driving our analysis is that deep residual networks can be viewed as discrete-time
dynamical systems, and such systems often exhibit chaotic behavior characterized by sensitive de-
pendence on initial conditions. When the dynamics are chaotic—as evidenced by positive Lyapunov
exponents—small perturbations grow exponentially, making long-term prediction and control fun-
damentally difficult.

In this work, we provide a comprehensive dynamical systems analysis of linear representation
hypotheses in residual networks. Our main contribution establishes that e-close initial perturba-
tions diverge exponentially, with separation occurring within O(log(1/¢)) layers under chaotic dy-
namics. This result fundamentally challenges the assumption that small perturbations remain pre-
dictably small throughout deep networks, revealing the inherent instability of linear approximations

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



35
36

37
38
39

40

41

42

43
44

45
46
47

48
49
50

51
52

53
54
55

56

57
58

59
60

61
62
63

64

65

66
67

68
69

in chaotic dynamical systems. We then analyze the implications of this exponential divergence for
interpretability methods and suggest directions for developing chaos-aware approaches.

Our analysis reveals fundamental limitations of linear interpretability methods and provides a the-
oretical foundation for understanding why these techniques often produce inconsistent results in
large-scale networks.

2 Mathematical Framework

2.1 Residual Networks as Dynamical Systems

Consider a residual network with L layers, where each layer applies a transformation of the form:
Xpy1 =X + Fr(xx), k=0,1,...,L -1 (1
This discrete dynamical system can be viewed as a forward Euler discretization of the continuous-
time ODE:
dx(t)
dt
where F (¢, x) interpolates the discrete transformations F(x). This dynamical systems perspective

enables us to apply tools from chaos theory, particularly Lyapunov exponent analysis, to understand
the stability and predictability of trajectories.

=F(t,x(t)), x(0)=x¢ (2)

Definition 1 (Lyapunov Exponents). For the linearized dynamics around a trajectory {x1}, the
Lyapunov exponents \; > Ay > --- > Ay characterize the exponential growth rates of infinitesimal
perturbations. Formally, they are defined as:

k-1
1
A = klgrgo z log o; H J; 3)
7=0
where J; =1+ VF ;(x;) is the Jacobian matrix at step j, and o; denotes the i-th singular value of
the matrix product.

Definition 2 (Chaotic Dynamics). A dynamical system exhibits chaotic behavior if it has sensitive
dependence on initial conditions, characterized by at least one positive Lyapunov exponent Apax >
0. This means that initially nearby trajectories separate exponentially at rate A\ x.

2.2 Linear Representation Hypothesis in Dynamical Context

Definition 3 (Linear Representation Hypothesis). A network f : R¢ — R™ satisfies the linear rep-
resentation hypothesis if small perturbations § to inputs produce proportional changes in outputs:

fx+6)~ f(x)+Js(x)0 )
where J ¢(x) is the Jacobian of f at X, and the approximation error is small relative to the linear
term.

The validity of this hypothesis depends critically on whether perturbations § remain small as they
propagate through the network layers. In chaotic systems, this assumption fails catastrophically due
to exponential amplification.

3 Main Theoretical Results

3.1 Exponential Divergence of Close Trajectories

Our main result rigorously establishes the exponential divergence of initially close perturbations in
chaotic residual networks.

Theorem 1 (Exponential Divergence in Chaotic Residual Networks). Let {xy}r>0 and {yi } k>0 be
trajectories of the residual network evolution:

X1 = Xi + Fr(xz) &)
Yit1 =Yr + Fir(yr) (6)
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Assume that ¥y, is continuously differentiable and that the system exhibits chaotic dynamics with
maximal Lyapunov exponent Ayax > 0. Then for sufficiently small initial separation ¢ = ||xo—yo
there exist constants C,Co > 0 such that:

s

Clee)\maxk S ka _ ka S C2€€Amaxk7 (7)

Sor sufficiently large k. In particular, | xx — yi|| = Q(1) once

k> 089 o) ®)

)\ max

Proof. Let 8, = yi, — Xy, denote the perturbation vector at step k. The evolution of this perturbation
is governed by:

Opt1 =0 +Fr(yr) — Fr(xx) )

By the fundamental theorem of calculus, there exists a point £, on the line segment between x;, and
yi such that:

Fi.(yr) — Fr(xx) = VF,(&,)0k (10)

Therefore:

where A = I+ VF(&,). By iteration:
o= | [T A o (12)

The key insight is that the matrices A ; approximate the Jacobians along the unperturbed trajectory
when |[|§;]| is small. By Oseledets’ multiplicative ergodic theorem [§]], for almost every initial
direction d¢/||do||, we have:

1. 15 6
lim -~ lo A2l =\ (13)
A 1] "Mool

for some Lyapunov exponent \;. For the maximal Lyapunov exponent A;,,x, there exists a set of
initial directions of positive measure such that:

185 < [|Gofle™=<* = et (14)
The separation becomes O(1) when ee*maxk = O(1), which occurs for k = O(log(1/€)/Amax). [

3.2 TImplications for Linear Control

The exponential divergence established in Theorem [T] has profound implications for the reliability
of linear control methods.

Corollary 1 (Breakdown of Linear Steering). Consider a steering intervention that applies a per-
turbation 8o with ||8¢|| = € at the input layer. Under chaotic dynamics, the steering effect becomes
unpredictable after approximately

log(1/e)

Lpaos = ———— 15)

)\max
layers, where predictability is lost once the perturbation magnitude becomes O(1).

Remark 1 (Practical Implications). For typical steering magnitudes ¢ ~ 1073 to 10~* and observed
Lyapunov exponents Apmax ~ 0.1 to 1.0 in deep networks, the chaos horizon L,.s ranges from
approximately 2 to 70 layers. This suggests that linear steering may be unreliable in networks
deeper than a few dozen layers when operating in chaotic regimes.
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3.3 Lyapunov Spectrum and Perturbation Dynamics

To provide a more complete picture, we analyze how the full Lyapunov spectrum affects perturbation
evolution.

Proposition 1 (Multi-Directional Divergence). Let Ay > Ay > - -- > Ay be the Lyapunov exponents
of the system, and let {v;} be the corresponding Lyapunov directions. For an initial perturbation

0y = Zle Vi, the evolution satisfies:
18] = max fa]e* (16)

In particular, if aq # 0, then the perturbation grows at the maximal rate \1, regardless of the other
components.

This result shows that even if most directions are stable (negative Lyapunov exponents), the presence
of even a single unstable direction can cause exponential divergence.

4 Failure Analysis of Linear Methods

4.1 Fundamental Limitations

Our dynamical systems analysis reveals several fundamental reasons why linear interpretability
methods fail in deep networks operating under chaotic dynamics.

The first and most critical limitation is exponential sensitivity to initial conditions. Theorem
demonstrates that steering vectors and other linear interventions become completely unpredictable
after just O(log(1/¢)) layers, where € represents the precision of the intervention. This means that
even tiny implementation errors, numerical precision limitations, or uncertainty in the intervention
magnitude can compound rapidly, causing the actual effect to diverge exponentially from the in-
tended linear prediction. In practical terms, this makes precise control of model behavior impossible
in deep networks operating in chaotic regimes.

The second fundamental limitation concerns the breakdown of linear superposition. In linear sys-
tems, the effects of multiple interventions simply add together, allowing for compositional control
strategies. However, in chaotic systems, perturbations interact nonlinearly as they evolve, meaning
that the effect of applying two steering vectors simultaneously is not the sum of their individual
effects. This nonlinear interaction becomes more pronounced as perturbations grow, fundamentally
undermining approaches that rely on decomposing complex behaviors into linear combinations of
simpler interventions.

The third limitation involves the temporal instability of learned linear relationships. Even if linear
relationships appear to hold at a given layer or for a specific set of inputs, the chaotic dynamics
ensure that these relationships will not persist as inputs change or as analysis moves to different
layers. This makes it impossible to develop stable, generalizable linear interpretability tools that
work consistently across different contexts within the same network.

4.2 Empirical Predictions

Our theoretical framework generates several concrete and testable predictions about when and how
linear interpretability methods will fail. The first prediction concerns the depth-dependence of steer-
ing effectiveness. Our analysis predicts that steering effectiveness should decrease exponentially
with the depth at which interventions are applied, following the pattern effectiveness oc e~ Mmax-depth,
This can be tested by applying identical steering vectors at different layers and measuring the mag-
nitude and consistency of the resulting output changes.

The second prediction relates to the relationship between network width and chaotic behavior. Wider
networks typically have more degrees of freedom and may be more likely to exhibit chaotic dynam-
ics with larger Lyapunov exponents. Our theory predicts that linear interpretability methods should
become less reliable as network width increases, all else being equal. This can be tested by compar-
ing the stability of steering interventions across networks of different widths but similar depth and
training procedures.
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The third prediction concerns the relationship between training dynamics and interpretability. Net-
works trained with techniques that promote smoother loss landscapes (such as weight decay, batch
normalization, or specific initialization schemes) may have smaller Lyapunov exponents and thus
be more amenable to linear analysis. Conversely, networks trained with techniques that increase ex-
pressivity (such as very deep architectures or specific activation functions) may exhibit more chaotic
behavior and be less suitable for linear interpretability methods.

5 Implications for Interpretability Research

5.1 Fundamental Challenges

Our analysis reveals that the challenges facing linear interpretability methods are not merely techni-
cal limitations that can be overcome with better algorithms or more data. Instead, they represent fun-
damental mathematical constraints imposed by the chaotic nature of deep network dynamics. When
neural networks operate in chaotic regimes—as evidenced by positive Lyapunov exponents—the
exponential sensitivity to initial conditions makes long-range prediction and control inherently im-
possible, regardless of the sophistication of the interpretability method.

This has profound implications for the field of mechanistic interpretability. It suggests that the goal
of achieving precise, predictable control over neural network behavior through linear interventions
may be mathematically unattainable in deep networks. Rather than viewing this as a failure of
current methods, we should recognize it as a fundamental constraint that must be incorporated into
the design of interpretability tools.

The chaotic nature of deep networks also explains why many interpretability methods that work
well on shallow networks or in controlled laboratory settings fail to scale to large, practical systems.
The exponential amplification of small errors and the breakdown of linear superposition make it
increasingly difficult to maintain reliable interpretability as system complexity grows.

5.2 Towards Chaos-Aware Interpretability

Given these fundamental limitations, we advocate for the development of chaos-aware interpretabil-
ity methods that explicitly account for the nonlinear dynamics of deep networks. The first direction
involves developing Lyapunov-aware analysis tools that compute local stability properties before
attempting interpretability interventions. By measuring the local Lyapunov exponents, researchers
can identify regions where linear methods might be temporarily reliable and avoid regions where
chaotic dynamics make linear analysis futile.

The second direction focuses on developing short-horizon interpretability methods that operate
within the predictability limits imposed by chaotic dynamics. Rather than attempting to control
or predict network behavior across many layers, these methods would focus on understanding and
influencing behavior within the chaos horizon Lcpyes = O(log(1/€)/Amax)- This might involve
developing layer-by-layer analysis techniques or focusing on understanding how information trans-
forms across just a few consecutive layers.

The third direction involves developing ensemble-based interpretability approaches that account for
the inherent uncertainty introduced by chaotic dynamics. Rather than seeking single, determinis-
tic explanations, these methods would characterize the distribution of possible behaviors that could
arise from small variations in inputs or interventions. This probabilistic approach would provide
more realistic assessments of what can and cannot be reliably predicted or controlled in deep net-
works.

6 Related Work

Our work builds on the growing recognition that deep neural networks exhibit complex dynamical
behavior that can be analyzed using tools from nonlinear dynamics [9}[11]. The connection between
residual networks and continuous-time dynamical systems has been explored extensively [2} 4], but
the implications for interpretability have received less attention.

Recent empirical work has documented various limitations of linear interpretability methods [10,
3|], providing evidence consistent with our theoretical predictions. However, most of this work
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focuses on specific failure modes or methodological issues rather than the fundamental mathematical
constraints we identify.

The application of chaos theory to neural networks has a long history [[12], but most previous work
focused on learning dynamics or computational capabilities rather than interpretability. Our con-
tribution lies in connecting this dynamical systems perspective directly to the limitations of inter-
pretability methods.

7 Limitations and Future Work

Our analysis relies on several assumptions that merit careful consideration. The most important
assumption is that the networks under analysis exhibit chaotic dynamics with positive Lyapunov
exponents. While there is empirical evidence that many deep networks operate in chaotic regimes
[9l], this may not be universal. Some networks, particularly those with specific architectural con-
straints or training procedures, may exhibit more regular dynamics that are more amenable to linear
analysis.

Additionally, our analysis focuses on worst-case behavior and may overestimate the practical dif-
ficulties of linear interpretability. Real networks may have special structure—such as approximate
low-rank dynamics or hierarchical organization—that makes them more predictable than our gen-
eral theory suggests. Understanding when and where such special structure exists represents an
important direction for future work.

Finally, our analysis is primarily focused on residual architectures and may not fully capture the
dynamics of other important architectures such as transformers with attention mechanisms. The
attention mechanism creates complex, input-dependent connectivity patterns that may exhibit fun-
damentally different dynamical properties than the feed-forward residual connections we analyze.

Future work should extend this analysis to attention-based architectures, investigate the relationship
between training procedures and dynamical properties, and develop practical tools for measuring
and characterizing the chaotic properties of real networks.

8 Conclusion

We have provided a rigorous dynamical systems analysis of the fundamental limitations of lin-
ear representation hypotheses in deep residual networks. Our main contribution demonstrates that
e-close perturbations diverge exponentially within O(log(1/¢)) layers under chaotic dynamics, re-
vealing that the exponential sensitivity to initial conditions characteristic of chaotic systems makes
linear approximations inherently unreliable in deep networks.

This analysis provides the first rigorous theoretical explanation for the empirically observed instabil-
ity and inconsistency of linear interpretability methods in large-scale networks. Rather than viewing
these failures as technical limitations to be overcome, our results suggest they reflect fundamental
mathematical constraints imposed by the chaotic nature of deep network dynamics.

Our work points toward the need for chaos-aware interpretability methods that explicitly account for
the nonlinear dynamics of deep networks. By recognizing and working with the inherent limitations
imposed by chaotic dynamics, the interpretability community can develop more robust and realistic
approaches to understanding neural network behavior.
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