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Abstract

Multimodal machine learning, mimicking the human brain’s ability to integrate
various modalities has seen rapid growth. Most previous multimodal models are
trained on perfectly paired multimodal input to reach optimal performance. In
real-world deployments, however, the presence of modality is highly variable and
unpredictable, causing the pre-trained models in suffering significant performance
drops and fail to remain robust with dynamic missing modalities circumstances. In
this paper, we present a novel Cyclic INformative Learning framework (CyIN) to
bridge the gap between complete and incomplete multimodal learning. Specifically,
we firstly build an informative latent space by adopting token- and label-level Infor-
mation Bottleneck (IB) cyclically among various modalities. Capturing task-related
features with variational approximation, the informative bottleneck latents are puri-
fied for more efficient cross-modal interaction and multimodal fusion. Moreover,
to supplement the missing information caused by incomplete multimodal input,
we propose cross-modal cyclic translation by reconstruct the missing modalities
with the remained ones through forward and reverse propagation process. With
the help of the extracted and reconstructed informative latents, CyIN succeeds in
jointly optimizing complete and incomplete multimodal learning in one unified
model. Extensive experiments on 4 multimodal datasets demonstrate the superior
performance of our method in both complete and diverse incomplete scenarios. 1

1 Introduction

To obtain the optimal multimodal performance, previous methods implicitly assume that every
modality present at training will also be available at inference time. However, in real-world scenarios,
multimodal data may be missing due to numerous factors such as fail sensors, causing uncertainty
of the presence of input modalities [1]. The multimodal model exhibit pronounced sensitivity to
such incomplete multimodal input, resulting in severe performance degradation when deploying the
pre-trained multimodal model in downstream inference, especially for Transformer-based models [2].
This issue is summarized as missing modality issue [3–5], and the methods devoted to addressing it
are called incomplete multimodal learning methods [6–8].
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Current methods focus on enhancing the robustness of multimodal models by designing various
delicate modules in multimodal learning to deal with diverse missing circumstances, mainly divided
into alignment and generation methods. The former leverage technologies such as contrastive learning
[4, 9, 10], canonical correlation analysis [11–13], and data augmentation like mixup or noisy input
[5, 7, 14] to align the representations with complete and incomplete multimodal inputs, while the
latter introduce generative models such as autoencoders [15–17], variational autoencoders [18–21],
graph-based networks [22, 23], and diffusion models [24] to reconstruct the missing information.

Although these methods have alleviated the missing modality issue by bridging the information gap in
varying degrees, they suffer from insufficient exploitation in missing information and task-unrelated
noise interruption no matter in alignment or generation [6, 24]. Moreover, previous methods typically
require training separate models tailored to each possible combination of missing modalities [16, 22].
Consequently, their capacity in generalization and robustness maybe largely limited due to unknown
and dynamic missing circumstances in real-world scenarios. Besides, most of previous methods
inevitably sacrifice the complete multimodal performance when addressing incomplete input, failing
in jointly combining complete and incomplete multimodal learning in a single model [7].

In this paper, we propose CyIN, a novel Cyclic INformative Learning framework that unifies com-
plete and incomplete multimodal learning within a unified model. Firstly, we constructs an effective
informative latent space via token- and label-level Information Bottlenecks (IB) to encourage the infor-
mation flow in multimodal interaction. The former builds information bridge on token embeddings at
low-level perception and adopt cyclic interaction among various unimodal representations, while the
latter utilize the ground truth labels as guidance to introduce high-level semantics to the informative
space. Combining these two IB objectives, we efficiently capture task-relevant features and filter out
the redundant noise by sampling the bottleneck latents with variational approximation. Besides, to
address missing modality issue, we introduce cross-modal cyclic translation to perform forward and
reverse propagation between remained and missing modalities, thereby reconstructing the missing
information in the informative space. By jointly optimizing both cyclic IB and translation process,
CyIN seamlessly bridges complete and incomplete multimodal learning in a unified informative latent
space. The key contributions of our paper can be summarized as:

• Informative Latent Bottleneck Space. Built by token- and label-level IB, the proposed
informative latent space efficiently bridge complete and incomplete learning in one unified
framework, where multimodal fusion and missing information reconstruction can both
benefit from the purified bottleneck latents.

• Cyclic Interaction and Translation. The presented cyclic information processing progress
greatly boost the performance of cross-modal interaction in complete multimodal learning
and enhance the translation quality in incomplete multimodal learning.

• Extensive experiments on 4 datasets validate that CyIN achieves state-of-the-art performance
in multimodal learning and maintain robustness across various missing modality scenarios.

2 Preliminary

2.1 Complete and Incomplete Multimodal Representation Learning

Considering multimodal inputs with multiple unimodal data source Xu ∈ {X0, X1, ..., XU},
multimodal learning aims at integrating complementary information from paired modalities u ∈
{u0, u1, ..., uU} to learn multimodal representations that can drive inference on a variety of down-
stream tasks [25, 26], where |u| = U denotes the total number of modalities. The performance hinges
on the strategy of multimodal fusion to effectively lverages informaiotn from each modality [27, 28],
which in turn requires the completeness of modalities.

As shown in Figure 1, each modality raw input is firstly processed by modality-specific encoders
Eu : Xu 7→ Fu to produce unimodal representations Fu, and then merged by multimodal fusion
decoders DM : {Fu} 7→ FM to generate the multimodal representations FM . With multimodal input
denoted as Xu ≡ Xcomplete, the process of complete multimodal learning can be formulated as:

FM = DM (F0, F1, ..., FU ), Fu = Eu(Xu), where u ∈ {u0, u1, ..., uU} (1)

When there are missing modalities in the multimodal inputs, denoted as Xu ≡ Xincomplete =
{Xremain, Xmiss}, the learning process of multimodal models is turned into incomplete multimodal
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learning, where Xremain denotes the original unimodal data input while Xmiss denotes the zero
vector without corresponding unimodal information. Thus, the incomplete multimodal representations
FM in Equ. 1 should be denoted as:

FM = DM (F remain, Fmiss), F remain = Eu(Xu), F
miss = 0 , where u ∈ {u0, u1, ..., uU} (2)

The final prediction ŷm is obtained by MLP head on the multimodal representations ŷM =
MLP (FM ). Then, the optimization objective can be computed according to the specific regression
(Mean Absolute Error) or classification (Cross Entropy) tasks, denoted as:

Ltask =

{
E |ygt − ŷM | , for regression
− E [ygt log ŷM ] , for classification

(3)

Due to the fact that the missing information will interrupt the original multimodal fusion space
[4, 22] and semantic ambiguity issue may raised by overfitting on the remained modalities [2, 14],
the performance of incomplete multimodal learning decreases significantly compared with complete
multimodal learning. Thus, the demand of jointly improving complete multimodal fusion and
enhancing the reconstruction performance for incomplete input with missing modalities in one unified
model remains challenging for the general multimodal systems [7].

2.2 Information Bottleneck

The approach of Information Bottleneck (IB) is proposed to compress the source state S into a
compact bottleneck latent B, which contains the least necessary features from S while preserves the
most relevant information about the target state T [29–31]. Using mutual information to provide the
the relevance between states, such trade-off can be written as the following minimization problem:

min
p(B|S)

I(S;B)− β I(B;T ) (4)

where I(·|·) denotes the mutual information between two states and the hyper-parameter β controls
the trade-off degree. By introducing parameterized networks, the former mutual information term
I(B;S) can be modeled by IB encoder ES : S 7→ B to extract information from source state, while
the second term I(T ;B) can be conducted by IB decoder DT : B 7→ T referring to the target state.

For the purpose of optimizing, VIB [32] utilize variational approximation to replace the intractable
mutual information terms, yielding the following upper bound:

I(S;B)−β I(B;T ) ≤ ES∼p(S) [KL(pθ(B|S) ∥ q(B))]−β EB∼p(B|S)ES∼p(S)[log qϕ(T |B)] (5)

where pθ(B|S) ∼ N (µ, σ2) and q(B) ∼ N (0, I) satisfy the Gaussian Distribution. Denoting loss
objective Lib = I(B;S)− β I(T ;B), optimizing Lib is equivalent to minimizing the upper bound
in Equ. 5. Details derivations are presented in Appendix B.

Utilizing reparameterization trick [32, 33] to encourage gradient propagation, the bottleneck latents
B can be sampled from pθ(B|S), denoted as:

B = µ+ σ ⊙ z , where z ∼ N (0, I) (6)

Serving as a bridge carrying compactly relevant information between S and T , the bottleneck latent
B can effectively construct an informative space to control the information flow from the source state
S to the target state T . More related works and background can be found in Appendix A

3 Methodology

3.1 Multimodal Informative Latent Space

As shown in Figure 1 , both complete and incomplete multimodal learning require task-relevant
informative representations, regardless of modeling intra- or inter-modal relationships. Therefore,
constructing a unified informative latent space can not only be beneficial in bridging the modality
gap in the fusion of multimodal representations, but strengthening the reconstruction of the most
meaningful features among various modalities. To enhance the efficiency of informative space, we
introduce two complementary IB mechanisms to encourage the compactness of the bottleneck latents
at both perceptual low-level and semantics high-level, referring to token- and label-level IB.
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Figure 1: Framework overview. The proposed CyIN build a cyclic informative space to jointly train
the complete and incomplete multimodal ealrning.

Token-level Information Bottleneck. Without losing generality, for arbitrary two modalities in
multimodal inputs Xu ∈ {X0, ..., XU}, we denote one modality input XS as the source state while
another one XT as the target state in Equ. 4. Let XS/XT = {x0

u, ..., x
L
u} denote the sequence of

token-level inputs for modality u where S/T ∈ {u0, u1, .., uU}, where L denotes the sequence length.
Then, producing by the corresponding modality-specific encoder Eu : Xu 7→ Fu, the unimodal
representations can be obtained as FS/FT = {f i

u}|Li=1 ∈ RL×C , where fu denotes token embedding
and C denotes the feature dimension of specific modality.

With IB encoder ES : FS 7→ BS , the token-level bottleneck latents BS = {biS}|Li=1 can be attained
by applying information bottleneck on all token embeddings, denoted as:

LS→T
tib ≈ 1

L

L∑
i

{Efi
S∼p(fi

S)

[
KL(pθ(b

i
S |f i

S) ∥ q(biS))
]
− β EbiS∼p(biS |fi

S)Efi
S∼p(fi

S)[log qϕ(f
i
T |biS)]}

(7)

Since unimodal representations FS/FT are concatenated by token embeddings with continuous
value, we can formulate posterior probability qϕ(fT |bS) with IB decoder DT : BS 7→ FT to project
bottleneck of the source representation into the target one. Besides, given pθ(biS |f i

S) ∼ N (µi
B , (σ

i
B)

2)
and q(biS) ∼ N (0, I), then Equ. 7 can be derived as

LS→T
tib ≈ 1

L

L∑
i

{KL(N (µi
B , (σ

i
B)

2) ∥ N (0, I)) + β EbS [∥ fT −DT (bS) ∥2]} (8)

Cyclic Interaction. With unimodal representations Fu ∈ {F0, ..., FU} from various modalities, the
source and target modalities in token-level IB can be cyclically chosen in an iterative way to filter the
redundant noise contained in each unimodal representation and enhance cross-modal interaction.

Considering the source state and target state as the same modality when FS = FT , the optimization
of token-level IB focuses on learning modality-specific features and capturing intra-modal dynamics,
denoted as LS→S

tib . The two terms in Equ. 8 focuses on compressing sufficient information from each
token embedding and re-projecting to the original sequence, respectively.

On the other hand, when the source state and target state comes from diverse modalities with
FS ̸= FT , the token-level IB aims at modeling invariant information across different modalities and
seizing the inter-modal dynamics. Then Equ. 8 aims at integrating modality-shared features for the
source modality embeddings to match the target one. Besides, interchanging the role of modalities as
source and target states in Equ. 8, referring as LS→T

tib and LT→S
tib , the modality-shared features can be

further explored by such directional information flow.
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Combing the intra- and inter-modal settings, the final loss of token-level IB can be denoted as:

Ltib = ES∪T [LS→S
tib +

1

2
(LS→T

tib + LT→S
tib )] , where S/T ∈ {u0, ..., uU} (9)

Label-level Information Bottleneck. Except for token-level IB focusing on low-level perception,
we introduce label-level IB to inject the supervision of high-level semantics in the information flow.
For unimodal representation FS from each modality XS as the source state, we utilize the ground
truth label ygt (regression scores or recognition classes) as the supervised target. Given N batched
samples {Xi

S}|Ni=1 for each modality, with IB encoder ES : FS 7→ BS and predictor PS : BS 7→ ŷS ,
the label-level bottleneck latents can be constrained with the following loss:

LS
lib ≈

1

N

N∑
i

{EF i
S
∼p(F i

S
)

[
KL(pθ(B

i
S |F i

S) ∥ q(BS))
]
− β EBi

S
∼p(Bi

S
|F i

S
)EF i

S
∼p(F i

S
)[log qϕ(ygt|B

i
S)]}

(10)

Iterating computing LS
lib through all input modalities S ∈ {u0, u1, ..., uU}, we can derive the overall

label-level IB loss. In practice, for regression task, the posterior probability qϕ(ygt|BS) is formulated
as qϕ(ygt|BS) = e−∥ygt−ŷS∥ = e−∥ygt−PS(BS)∥, then we have:

Llib ≈ ES{
1

N

N∑
i

[
KL(N (µi

B , (σ
i
B)

2) ∥ N (0, I))
]
+ β EBS

[∥ ygt − PS(BS) ∥]} (11)

While for classification task with V classes, the posterior probability qϕ(ygt|BS) is computed as
qϕ(ygt|BS) =

∏V
ŷ
ygt

S =
∏V

[PS(BS)]
ygt , then we have:

Llib ≈ ES{
1

N

N∑
i

[
KL(N (µi

B , (σ
i
B)

2) ∥ N (0, I))
]
− β EBS

[

V∑
ygt logPS(BS)]} (12)

Optimized by token- and label-level IB loss, we can build an informative space which controls the
information flow inside and across modalities in the guidance of task-related semantics.

3.2 Cross-modal Cyclic Translation

Since the bottleneck latents are learned in the informative space, task-irrelevant features and unimodal
inherent noise are sufficiently filtered out. Hence, with incomplete multimodal inputs, reconstructing
missing information in the built informative latent space becomes significantly easier than attempting
reconstruction in the original space. Here we present the cross-modal cyclic translation with forward
and reverse propagation to enhance model’s robustness under incomplete multimodal scenarios.

Forward Propagation. In order to reconstruct the missing information, we leverage Cascaded
Residual Autoencoder (CRA) [34] as the translator ΓS→T : BS 7→ BT across various modalities as
the machine translation task [35]. CRA has been demonstrated sufficiently in mitigating the modality
gap and translating information from the source modality S to the target one T , denoted as:

Brec
S→T = ΓS→T (BS) = pΦ(BT |BS) (13)

where translator Γ consists of a series of stacked Residual Autoencoders RAS
i (·) denoted as:

rT =

RAS
1 (BS), i = 1

RAS
i (BS +

∑n−1

i=1
RAS

i (BS)), i > 1
(14)

where rT denotes the output of each RA block and the last output of RAi is the overall translated
information denoted as Brec

S→T . For the translation process S → T , we align the translated information
with the original one by a reconstruction loss computed as:

LS→T
rec =∥ BT −Brec

S→T ∥2 (15)

Reverse Propagation. To improve translation performance and encourage sufficient exploration of
inter-modal dynamics, we further apply cyclic consistent learning [17, 36] to reverse the translated
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direction of information flow as back-translation trick [37]. Since forward propagation denotes the
reconstruction process of information flow BS → Brec

S→T from source to target modality, we adopt
reverse propagation to translate the reconstructed information back as Brec

S→T → Bcyc
S , denoted as:

Bcyc
S = ΓT→S(B

rec
S→T ) = pΦ(BS |Brec

S→T ) (16)

where translator ΓT→S shares the model weights with the one used in forward propagation. Thus,
the reconstruction loss for the reverse propagation can be denoted as:

LT→S
cyc =∥ BS −Bcyc

S ∥2 (17)

Generalize to Multiple Remained Modalities. For multimodal learning with more than two
modalities as input, the missing circumstance of modalities is highly uncertain when encountering
incomplete multimodal input. When the number of remained modalities are more than one, how to
effectively integrating features from these modalities to reconstruct the missing one is yet to address
due to the diverse incomplete input circumstances. Thus, we present a generalizable solution to
employ the paired cross-modal translator to generate missing information regardless of the number of
remained modalities.

Considering data Xincomplete ≡ {Xremain, Xmiss} with remained {uj , ..., uk} and missing ui

modality, we aims at translating the informative bottleneck latents Bremain = {Bj , ..., Bk} of the
remained modalities Xremain into the latents Bmiss of missing modality Xmiss, denoted as:

Bmiss := Brec
i = Γu(B

remain) = pΦ(Bi|Bj , ..., Bk) (18)

Instead of training more translators to fit in various circumstances of the remained modalities input,
we leverage the additive characteristic of Gaussian Distribution to integrate the translated missing
information. Since the original bottleneck latents {Bremain, Bmiss} are all sampled from the
informative space, we directly combine the outputs of each cross-modal translator according to the
source modality and denote the translated latents of missing modalities as:

Brec
i =

|u|∑
j ̸=i

Brec
j→i =

|u|∑
j ̸=i

Γj→i(Bj) =

|u|∏
j ̸=i

pjΦ(Bi|Bj) (19)

where Brec
i can be denoted as the translation from a special form of Gaussian Mixture Model∑

Γj→i(N (µj , σ
2
j )). Regardless of the specific settings of remained modalities, we utilize Brec

i as
the final translated informative latents to supplement the information of missing modality Bmiss.

Combining forward and reverse propagation, the objective for cross-modal cyclic translation is:

Ltran = LS→T
rec + LT→S

cyc , where S/T ∈ {ui, uj , ..., uk} and S ̸= T (20)

3.3 Complete and Incomplete Multimodal Fusion

We jointly conduct complete and incomplete multimodal learning in one unified multimodal fusion
network, boosting the robustness with incomplete input and maintaining the performance with
complete ones. For simplicity, we employ Multimodal Transformer [38] to present multimodal fusion
decoder DM : {B0, B1, ..., BU} 7→ FM for bottleneck latents output by the cyclic information space.
Note that the fusion module can be replaced by any networks.

Considering bottleneck latents of arbitrary two modalities {Bj , Bk}, the multimodal fusion ecoder
DM consists of a series of multi-head cross-modal attention layers, composed of:

yhr = CMAttentionr(Bj , Bk) = Softmax
[
BjW

h
q · (Wh

k Bk)
T /
√
C
]
BkW

h
v

Y H
r = Concat(y1r , .., y

h
r )W

o

Zr = Y H
r + LayerNorm(Y H

r−1) , where r ∈ {1, ..., R}
Mr = FeedForward(LayerNorm(Zr)) + LayerNorm(Zr)

(21)

where H denotes the number of heads, C denotes the dimension of bottleneck latents,
Wq,Wk,Wv,Wo denotes the weight matrices and R denotes the number of cross-modal attention
layers. The output of last layer M j,k

R is used as the bimodal fusion latent of modalities {uj , uk}.
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Iteratively extracting M j,k
R with paired modalities from u ∈ {u0, ..., uU} for both complete and

incomplete multimodal learning, the final multimodal representation can be denoted as:

FM =

{
DM (B0, B1, ..., BU )

DM (Bremain, Bmiss)

}
= Concat([M0,1

R ,M1,2
R , ...,MU−1,U

R ]) (22)

Optimization Objective To sum up, our framework involves four learning objectives, including task
prediction loss Ltask in Equ. 3, token-level information bottleneck loss Ltib in Equ. 9, label-level
information bottleneck loss Llib in Equ. 11 or Equ. 12, and cross-modal cyclic translation loss Ltran

in Equ. 20. The total loss can be written as:

Ltotal = Ltask +
1

β
(Ltib + Llib) + γLtran (23)

where β denotes the balancing trade-off weight of mutual information among bottleneck latents and
representations and γ denotes the weight of translation training for incomplete multimodal learning.

Multi-stage Training Since both complete and incomplete multimodal learning requires an effective
informative bottleneck space, we divide the training process into two stages. The first stage set γ = 0
to make the multimodal learning focus on the construction and stabilization of informative space
under complete multimodal learning, while the second stage set γ > 0 to gradually introduce the
training of cross-modal translator to enhance the incomplete multimodal learning.

4 Experiments

In this section, we conduct comprehensive experiments for complete and incomplete multimodal
learning on 4 datasets to evaluate the performance of the proposed framework.

Tasks and Datasets. Multimodal Regression task: MOSI and MOSEI are multimodal sentiment
analysis datasets contain 2,199 and 22,856 YouTube opinion video clips, respectively, where each clip
is annotated with a continuous sentiment score ranging from –3 (strongly negative) to +3 (strongly
positive) as Likert scale. Multimodal Classification task: IEMOCAP dataset provides 7,369 video-
recoded conversation, annotated with six emotion categories: {happy, sad, neutral, angry, excited,
and frustrated}. MELD dataset includes 13,391 utterances drawn from multi-party conversations of
television series Friend, labeled with seven emotions: {neutral, surprise, fear, sadness, joy, disgust,
and anger}. These two datasets are provided for multimodal emotion recognition.

Implementation Details. All experiments are performed on H800 GPU with Pytorch 2.4.1 on CUDA
12.4. For audio and vision modality, we leverage ImageBind [39] as a feature extractor for better
alignment performance. For language modality, we use pre-trained BERT [40] on MOSI and MOSEI
while sBERT [41] on IEMOCAP and MELD for fair comparison with baselines. Detailed about
hyper-parameters in each dataset is presented in Appendix D.

Evaluation Protocols. Following [8, 17, 22, 24], we evaluate the performance of different
methods by (1) complete multimodal input (u ∈ {l, a, v}) and under (2) fixed missing proto-
col (u ∈ {l}/{v}/{a}/{l, a}/{l, v}/{a, v}) and (3) random missing protocol with missing rates
MR ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]. Here u ∈ {l, a, v} denote language, audio and vision modal-
ities. Note that diverse with previous methods, we leverage one unified model for evaluation on
various input circumstances with 10 runs. The practical details of missing protocols can be found in
Appendix E. Details about baselines and evaluation metrics can be found in Appendix F-G.

Quantitative Comparisons. The average results under both complete input or various incomplete
multimodal input circumstances are reported in Table 1. Compared with previous baselines, CyIN
reaches superior performance on most metrics in scenarios with both complete and incomplete
multimodal input. Specifically, with the purify capability of informative space, CyIN sufficiently
explore the modality-specific and -shared features and conduct efficient multimodal fusion based on
the bottleneck latents when all multimodal input are present.

Under fixed missing protocols, CyIN consistently outperforms baselines across fixed one or two
missing modality settings, demonstrating strong generalization even without specialized tuning for
any specific modalities. The ability to integrate informatio from both dominant and inferior modalities
highlights the flexibility of the informative bottleneck space. Besides under random missing protocols,
CyIN remarkably enhances the model’s robustness to various random modality missing scenarios,
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Table 1: Performance comparison between the proposed CyIN and baselines with the average results
in complete modality setting u ∈ {l, a, v} and incomplete modality settings, with fixed missing
protocols including modality settings u ∈ {l}/{v}/{a}/{l, a}/{l, v}/{a, v} and random missing
protocols including missing rates MR ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]

Setting Models MOSI MOSEI IEMOCAP MELD

Acc7↑ F1↑ MAE↓ Corr↑ Acc7↑ F1↑ MAE↓ Corr↑ Acc↑ wF1↑ Acc↑ wF1↑

Complete
u ∈ {l, a, v}

CCA 27.7 74.9 1.106 0.541 46.1 82.9 0.654 0.666 61.7 61.5 51.2 46.6
DCCA 25.1 73.6 1.220 0.422 39.3 73.3 0.787 0.425 56.8 55.5 47.7 37.0

DCCAE 19.7 69.5 1.642 0.357 38.9 73.5 0.782 0.437 57.4 56.4 48.0 36.9
CPM-Net 16.4 65.5 1.337 0.348 35.9 75.4 0.873 0.375 55.7 56.2 42.3 38.0

CRA 34.8 83.2 0.916 0.741 51.4 85.5 0.553 0.765 63.4 62.2 57.6 54.8
MCTN 43.0 84.6 0.752 0.783 47.9 84.2 0.592 0.721 58.4 57.8 56.3 52.4
MMIN 43.2 85.0 0.744 0.782 52.9 84.9 0.537 0.769 62.5 62.7 60.6 56.2
GCNet 43.6 85.8 0.732 0.792 52.6 85.9 0.531 0.778 63.0 63.0 60.4 58.5
IMDer 43.8 85.7 0.724 0.796 53.8 85.1 0.532 0.756 64.4 64.8 61.1 59.7
LNLN 44.0 84.3 0.762 0.766 52.6 85.1 0.542 0.772 62.9 62.5 58.2 57.1
CyIN 48.0 86.3 0.712 0.801 53.2 86.1 0.530 0.774 66.1 66.0 61.6 59.8

Fixed
Missing

CCA 21.8 57.7 1.264 0.339 43.1 69.7 0.744 0.446 45.9 41.0 49.1 39.4
DCCA 19.7 58.8 1.418 0.261 41.3 70.0 0.799 0.392 41.3 38.9 47.0 34.4

DCCAE 21.6 62.8 1.444 0.306 39.5 67.6 0.806 0.370 42.2 40.2 46.9 33.9
CPM-Net 17.1 60.1 1.353 0.332 38.6 73.8 1.095 0.139 41.3 39.8 33.8 32.8

CRA 27.3 67.8 1.158 0.404 45.4 78.5 0.672 0.593 47.9 45.9 50.7 45.4
MCTN 28.5 63.0 1.104 0.392 44.9 73.2 0.717 0.409 40.6 34.3 52.4 42.0
MMIN 31.3 68.4 1.093 0.433 46.2 77.7 0.661 0.588 50.8 50.2 53.9 43.4
GCNet 29.5 69.5 1.065 0.538 45.5 73.6 0.697 0.551 52.8 51.9 50.4 46.7
IMDer 31.4 70.6 1.043 0.533 47.1 76.6 0.680 0.583 54.7 54.4 53.1 49.8
LNLN 29.7 64.8 1.102 0.428 46.9 77.6 0.663 0.581 53.6 52.1 49.6 44.7
CyIN 32.8 72.2 1.037 0.599 47.6 78.6 0.656 0.594 57.4 56.6 54.4 49.4

Random
Missing

CCA 23.1 66.3 1.220 0.420 44.1 74.8 0.725 0.526 49.9 49.3 48.8 39.8
DCCA 21.9 64.8 1.279 0.323 40.9 68.6 0.797 0.380 43.3 42.2 47.3 33.8

DCCAE 19.7 62.7 1.566 0.276 39.0 65.4 0.810 0.345 43.2 41.7 47.1 34.3
CPM-Net 16.9 63.9 1.340 0.325 34.3 74.0 1.497 0.078 53.1 53.7 41.6 33.6

CRA 28.6 68.4 1.145 0.558 46.6 80.1 0.647 0.635 49.9 49.4 52.0 47.6
MCTN 30.4 67.2 1.052 0.573 45.4 73.2 0.692 0.550 35.3 37.5 52.4 44.1
MMIN 33.3 70.9 1.014 0.584 47.5 79.3 0.644 0.635 49.7 49.7 53.9 45.8
GCNet 33.8 73.8 0.989 0.623 46.6 79.2 0.680 0.630 55.3 55.3 47.8 47.7
IMDer 34.6 74.9 0.950 0.644 47.3 78.9 0.660 0.611 55.8 56.1 52.1 49.5
LNLN 34.2 72.8 0.978 0.627 47.9 79.2 0.639 0.642 55.5 55.8 51.7 49.0
CyIN 35.0 75.7 0.943 0.650 48.3 79.9 0.633 0.650 57.5 57.5 54.8 50.5

with minimal performance loss even at severe missing rate. The result illustrates broader application
of CyIN for downstream multimodal tasks as in real-world where the presence of modalities is highly
dynamic and unpredictable. More results and analysis are reported in Appendix H

Qualitative Comparisons. We project the features from test set of MOSI dataset into a 3D t-SNE
space [42]. As shown in Figure 2(a), we firstly visualize the distribution of translated Brec

u and
original unimodal latents Bu to show the reconstruction quality. The cross-modal translated latents
closely clustered to the original one, illustrating the effectiveness of CyIN in transferring information
across various modalities despite the huge modality gap.

Besides, we present multimodal latents FM with and without reconstructed bottleneck Brec with
random missing MR = 0.7. We can observe that inferring with missing modalities leads to serious
interference to the multimodal representations, while the reconstructed latents can competently
supplement the missing information during multimodal fusion, yielding better clustering result.

Case Study. As shown in Figure 2(b), we compare model predictions with and without CyIN on some
examples from test set of MOSI and IEMOCAP datasets under fixed missing modality protocol. In
samples#1 and #3, removing the semantic utterance causes the pretrained model to make incorrect,
even opposite, predictions, which implicitly showing the dominant role of language modality in
multimodal affective computing tasks [8, 16, 43, 44]. On the other hand, the presence of other
modalities also have delicate contribution in the accuracy of prediction, referring to the subjective
biased prediction when missing audio or vision modality in sample #2 and #4. In contrast, by
reconstructing the missing information with the proposed CyIN, predictions become more stable and
precise, demonstrating the superiority and robustness of the informative bottleneck space.

Ablation Study. We conduct ablation study with the proposed modules on MOSI and IEMOCAP
datasets with complete and the most severe random missing protocol MR = 0.7, as shown in
Table 2. Token- and label-level IB are both crucial for constructing the informative latent space,
as removing either results in performance degradation. The cross-modal cyclic interaction and
translation mainly effect in capturing modality-shared features in multimodal fusion and enhancing
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(a) Feature Distribution

# Multimodal Input (u ∈ {language, vision, audio}) Modal
Status

Ground
Truth

Predict
w CyIN

Predict
w/o CyIN

1

“And he, I don’t know, he maybe got mad when hah I don’t know" %

-0.250 -0.364 0.263!

Speculative and Wondering Tone !

2

“So I think it was cool to actually see Ray Park in action, great action star" !

2.400 2.609 1.110%

Satisfied and Relief Tone %

3

“You needn’t be so grand simply because you don’t happen to
want any at the moment.." %

Angry Angry Frustrated!

Accusatory and Agitated Tone !

4

“You won’t have trouble, You won’t have trouble." !

Happy Happy Neutral%

Calm and Fast Tone !

(b) Case Study on MOSI (#1-2) and IEMOCAP (#3-4)

Figure 2: (a) Feature distribution of translated unimodal latents and multimodal latents and (b) Exam-
ples on the test set of MOSI and IEMOCAP datasets when inferring with and without reconstructed
information from CyIN. The!and%in modal status denotes the remained and missing modalities.

incomplete reconstruction, respectively. Moreover, we demonstrate the efficiency of informative
bottleneck space in both complete and incomplete multimodal learning. Without the constrain of
bottleneck, the task-irrelevant redundancy and heterogeneous noise in the original feature space raises
difficulty in integrating information from various modalities and reconstructing missing modalities.
Lastly, reconstructed from the remained modalities, the translated latents can productively increase
the robustness to missing modality issue especially in severe incomplete input circumstance.

Table 2: Ablation study of the proposed CyIN on MOSI and IEMOCAP dataset with complete
multimodal settings u ∈ {l, a, v} and random missing protocols with missing rates MR = 0.7.

Setting Model Variants MOSI IEMOCAP

Acc7↑ F1↑ MAE↓ Corr↑ Acc↑ wF1↑

Complete
u ∈ {l, a, v}

CyIN 48.0 86.3 0.712 0.801 66.1 66.0
w/o Ltib 43.9 84.3 0.737 0.789 65.2 64.8
w/o Llib 47.3 85.4 0.693 0.800 63.6 63.9

w/o Cyclic Interaction 43.4 85.9 0.742 0.795 64.3 63.6
w/o Cyclic Translation 43.3 85.7 0.743 0.797 65.2 65.0
w/o Informative Space 42.0 83.1 0.747 0.782 62.3 62.1

Random
Missing

MR = 0.7

CyIN 28.0 65.9 1.117 0.530 48.6 49.0
w/o Ltib 27.3 63.5 1.223 0.509 46.3 46.2
w/o Llib 25.1 63.7 1.220 0.516 43.2 42.9

w/o Cyclic Interaction 26.5 67.8 1.134 0.473 47.8 48.6
w/o Cyclic Translation 24.5 63.9 1.171 0.473 47.1 46.6
w/o Informative Space 23.7 62.9 1.240 0.430 44.1 43.6
w/o Translated Latents 23.4 56.7 1.299 0.441 41.2 39.2

Hyper-parameter Sensitivity. We empirically evaluate the effect of various hyper-parameter settings
of β and γ in loss function of Equ. 23 under MR = 0.7. The results in Table 3 shows that setting
β = 8−32 gives better performance as a balanced trade-off for mututal information between I(S;B)
and I(B;T ), where improper bottleneck strength harms performance. Besides, setting γ = 10 yields
the best overall performance across metrics, indicating that moderate reconstruction enforces better
consistency across modalities. We observe that a small γ results in weak regularization, making it
hard to align modalities under severe missing conditions. In contrast, a large γ hurts performance by
focusing too much on consistency and ignoring the need to effectively build informative space.

Moreover, to ensure generality and stability under diverse missing modality scenarios, CyIN assumes
each modality have equal contribution in multimodal learning. However, in practice, different
modalities may contribute unequally depending on the task [45]. For instance, language plays a
dominant role in multimodal sentiment analysis, as highlighted by prior works [8, 46, 47]. To
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Table 3: Hyper-parameter sensitivity on β and
γ of CyIN on random missing protocols with
missing rate MR = 0.7.

Model Variants MOSI

Acc7↑ F1↑ MAE↓ Corr↑

γ=10

β=2 24.6 59.4 1.248 0.461
β=4 27.5 61.3 1.226 0.478
β=8 30.0 63.6 1.199 0.519
β=16 28.0 65.9 1.117 0.530
β=32 26.4 66.0 1.118 0.506
β=64 23.3 64.1 1.206 0.463

β=16

γ=1 25.8 64.1 1.197 0.437
γ=5 27.5 63.1 1.135 0.488
γ=10 28.0 65.9 1.117 0.530
γ=15 26.8 62.9 1.272 0.519
γ=20 25.5 60.4 1.311 0.490

Table 4: Hyper-parameter sensitivity on differ-
ent ratios of CRA layer for translation among
language, vision, audio modalities of CyIN
on MOSI dataset on random missing proto-
cols with missing rate MR = 0.7.

# Layer
(la:lv:av)

MOSI

Acc7↑ F1↑ MAE↓ Corr↑
1:1:1 28.0 65.9 1.117 0.530
2:2:1 28.5 67.2 1.122 0.521
4:4:1 28.7 67.5 1.114 0.532
1:1:2 27.5 66.3 1.119 0.531
1:1:4 27.4 65.6 1.116 0.534

partially address this, we conduct experiments by varying the number of CRA layers in the cross-
modal translation modules in Table 4. Specifically, we allocated more layers to reconstruct the
language modality comparing with audio and vision modalities, reflecting its higher importance and
allowing the model to learn representation with more semantics. This design show the flexibility of
CyIN architecture without hardcoding any modality-specific priors in it.

Computational Efficiency. Compared with the state-of-the-art methods, the proposed CyIN achieves
the lowest total parameter count and significantly lower FLOPs as shown in Table 5. The inference
time of CyIN is ∼ 3× faster than GCNet and ∼ 5× faster than IMDer. Due to the cyclic translation
process during training, the training time of CyIN is slightly slower than GCNet which constructs
graph neural networks for modality reconstruction, but still faster then IMDer which utilizes score-
based diffusion model for cross-modal generation.

Table 5: Comparion of training and inference computation efficiency on MOSI dataset.

Model Total Param (M) Total Training Time Inference Time (/iteration) FLOPs (T)

GCNet 144.34 M 1.47h 70.62s 3.747
IMDer 168.31 M 1.89h 103.75s 5.466

CyIN (ours) 123.49 M 1.61h 22.41s 1.594

5 Conclusion

In this paper, we present a novel framework named CyIN, which constructs an informative latent
space to jointly conduct complete and incomplete multimodal learning. Guided by token- and label-
level Information Bottlenecks, CyIN succeeds in learning a compact yet semantically rich bottleneck
latent which purifies task-related features and improves robust multimodal fusion. The proposed
cyclic interaction and translation mechanism further encourage sufficient exploration in inter-modal
dynamics and enhances the reconstruction quality in missing modalities. Comprehensive experiments
on 4 multimodal datasets demonstrate that CyIN not only surpass previous methods in complete multi-
modal learning but also retains superior performance and stability under various incomplete scenarios,
highlighting its effectiveness and generalization capacity for real-world multimodal applications.

Limitations

Our framework still has several limitations. 1) It treats all modalities equally to improve the gen-
eralization, while ignoring possible imbalance contribution from various modalities. We will try
to adaptively allocate weights according to the information abundance of each modality. 2) The
performance of current cross-modal translators can be replaced by more recent generative approaches
such as diffusion models or flow-based models to attain optimal reconstruction performance. 3) We
suppose broader training on diverse multimodal understanding datasets or integration with Large
Language Models could strengthen the generalization and scalability of the proposed framework.
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A Related Works

A.1 Multimodal Representation Learning

Multimodal representation learning aims at constructing multimodal system to conduct multimodal
understanding tasks including multimodal sentiment analysis [43, 46, 48–50] or emotion recognition
[51–54], multimodal recommendation [55] and multimodal segmentation [56] and so on. The
common framework of multimoda learning can be divided into two main modules: modality-specific
representation learning and multimodal fusion, according to the purpose of reflecting heterogeneity
and interconnections between modality elements [57].

On the one hand, effective extraction of task-relevant features within each individual modality
forms the foundation of multimodal representation learning [47, 53]. Across various modalities,
these modality-specific encoders emphasize critical features and suppress unrelated noise, thereby
shortening the path from raw data to semantically meaningful unimodal representations. On the
other hand, multimodal fusion aims to bridge modality gaps and exploit inter-modal complementarity
[27, 57]. Early fusion schemes simply concatenate unimodal representations while late-fusion
approaches combine unimodal predictions via weighted voting or gating. Hybrid fusion combine
early and late fusion to conduct hierarchical and more delicated cross-modal interaction [58].

With the emerge of attention mechanism [59], multimodal model with Transformer-based architecture
efficiently capture intra- and inter-modal dynamics by interleaving unimodal representation with self-
and cross-modal attention layers [25, 60]. However, most of previous multimodal methods assume
paired, fully observed modalities at both training and inference stages to achieve the state-of-the-art
performance of multimodal understanding.

A.2 Missing Modality Issue

The missing modality issue occurs when pre-trained multimodal models suffer from severe perfor-
mance degradation at downstream inference due to the absent input of modality data [4, 61]. In real
world, the presence of multimodal input could not be guaranteed due to numerous reasons, such
as sensor failure, hardware malfunctions, privacy limitations, environmental disruptions, and data
transmission problems [1]. Empirical analysis have shown that the efficacy of multimodal methods
critically depends on complete presence of modalities [14], and that Transformer-based encoders are
especially sensitive to missing inputs [2]. Thus, addressing missing modality issue is essential for
robust performance in real-world applications, which is named as incomplete multimodal learning.

Taking alternative perspective of incomplete multimodal learning, the missing modality issue can
be regarded as missing specific-view information issue in the multi-view learning [62]. Previous
methods mainly focus on aligning complete and incomplete multimodal representations [9, 63] or
generating the missing information with incomplete multimodal input [17, 22, 24]. While alignment-
based models avoid the complexity of explicit generation, they often yield suboptimal inference with
uncertain and heterogeneous information asymmetry. Diversely, generative-based models remain
susceptible to the task-unrelated noise and massive redundancy in the unimodal features, which can
easily destabilize the information reconstruction or generation process.

Moreover, previous methods require adjusting according to specific missing scenarios to achieve
optimal performance, restricting their applications in the uncertain circumstance of the real world.
Beside, most of them sacrifice performance of complete multimodal learning to increase the robustness
to the missing modality issue. Therefore, achieving a single unified framework that jointly optimize
both complete and incomplete multimodal learning remains an open challenge.

A.3 Deep Learning with Information Bottleneck

Original introduced by Tishby et al. [29], Information Bottleneck (IB) formulates representation
learning as an information-theoretic approach that defines task-relevant representation as trade-
off between feature compression and task prediction [31]. Due to the excellent interpretability
of representation learning and generalization estimation of the deep neural networks [30, 64, 65],
IB has gained continuous interests in deep learning, especially in multi-view problem [66–68].
VIB [32] introduce variational approximation to generate the bottleneck latents in the information
flow, sharing similar objective form with VAE [69] in generation. DeepIMV [70] utilize product-
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of-experts to integrate the marginal specific-view representation into a joint latent representation.
FactorCL [71] factorizes task-relevant information into shared and unique information with multi-
view redundancy defined by mutual information. Nevertheless, they can neither be employed to
varying missing circumstance nor succeed in achieving optimal intra- and inter-modal information
extraction performance.

In this paper, we adopt the principles of IB to construct an effective informative latent space by
designing information flow to features among modalities and guidance of semantics, paving the way
for enhanced performance in both complete and incomplete multimodal learning.

B Derivations of the Variational Information Bottleneck

In this section, we derive the formula of the original variational information bottleneck and the
proposed token- and label-level information bottleneck in detail, as shown in Equ. 5, Equ. 8 and Equ.
11-12. Besides, we provide the differentiable sampling process of the informative latents presented in
Equ. 6.

Equ. 5 represents the information bottleneck loss Lib for the information flow as (S → B → T ),
where S denotes the source state, B denotes the bottleneck latents and T denotes the target state.
Recall that the loss is firstly given by the constrained of mutual information, formulated as:

minLib(S, T ) = min
p(B|S)

I(S;B)− β I(B;T ) (24)

where β > 0 is a trade-off parameters to balance the two mutual information terms. Directly obtaining
the mutual information among S/B/T is unachievable. Therefore, we tend to obtain the upper bound
of Lib(S, T ) to transfer the objective minimization problem to an evidence upper bound optimization
problem.

Starting with the first term I(S;B), writing is out in full form as:

I(S;B) =

∫
dB dS p(S,B) log

p(S,B)

p(S)p(B)
=

∫
dB dS p(S,B) log

p(B|S)
p(B)

=

∫
dB dS p(S,B) log p(B|S)−

∫
dB dS p(B) log p(B)

(25)

Considering that the computation of marginal distribution of the bottleneck latents p(B) =∫
dSp(B|S)p(S) might be difficult, let q(B) be a variational approximation to this marginal distri-

bution. With the non-negative Kullback Leibler (KL) divergence KL(p(B) ∥ q(B)) ≥ 0, we have∫
dB p(B) log p(B) ≥

∫
dB p(B) log q(B), the following upper bound can be derived:

I(S;B) ≤
∫

dBdS p(S,B) log p(B|S)−
∫

dB p(B) log q(B)

=

∫
dBdS p(S)p(B|S) log pθ(B|S)

q(B)

(26)

where pθ(B|S) can be learned by IB encoder ES : S 7→ B.

Then for the second term I(B;T ), consider it in the same full form as:

I(B;T ) =

∫
dT dB p(T,B) log

p(T,B)

p(T )p(B)
=

∫
dT dB p(T,B) log

p(T |B)

p(T )
(27)

Since p(T |B) is intractable, introducing IB decoder DT : B 7→ T , let qϕ(T |B) be a variational
approximation to p(T |B). Similarly, with KL divergence KL(p(T |B) ∥ qϕ(T |B)) ≥ 0, we
have

∫
dT p(T |B) log p(T |B) ≥

∫
dT p(T |B) log qϕ(T |B). Hence I(B;T ) has a lower bound as

follows:

I(B;T ) ≥
∫

dT dB p(T,B) log
qϕ(T |B)

p(T )

=

∫
dT dB p(T,B) log qϕ(T |B)−

∫
dT p(T ) log p(T )

=

∫
dT dB p(T,B) log qϕ(T |B) +H(T )

(28)
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where H(T ) is the entropy of target state T , determined only by the distribution of T itself, no matter
as the unimodal token embeddings or ground truth labels. Thus, H(T ) can be dropped in the loss
function. When the source state S is diverse from the target state T , we introduce the relationship
that B is independent of T given S:

p(T,B) =

∫
dS p(S, T,B) =

∫
dS p(S)p(T |S)p(B|S) (29)

Note that when S = T , we have p(T,B) = p(S,B) =
∫
p(S)p(B|S) =

∫
p(S)p(T |S)p(B|S)

where above expression still stand. Besides, p(T |S) denotes the known distribution for the joint and
paired data samples. Utilizing data samples within each batch as the empirical data distribution, we
have p(S, T ) = p(S)p(T |S) = 1

N

∑N
n=1 δSn

(S)δTn
(T ). Hence, I(B;T ) can be generally denoted

as:

I(B;T ) ≥
∫

dS dT dB p(S)p(T |S)p(B|S) log qϕ(T |B)

≈ ES∼p(S)

[∫
dB p(B|S) log qϕ(T |B)

] (30)

Combining the bound of I(S;B) and I(B;T ), we can derive the following upper bound for Lib as
Equ. 5:

I(S;B)− β I(B;T )

≤
∫

dBdS p(S)p(B|S) log pθ(B|S)
q(B)

− β ES∼p(S)

[∫
dB p(B|S) log qϕ(T |B)

]
= ES∼p(S) [KL(pθ(B|S) ∥ q(B))]− β EB∼p(B|S)ES∼p(S)[log qϕ(T |B)]

(31)

Finally, the optimization objective of variational information bottleneck can be rewritten as:

minLib = minES∼p(S) [KL(pθ(B|S) ∥ q(B))]− βmax EB∼p(B|S)ES∼p(S)[log qϕ(T |B)] (32)

Now, we derive the practical expression of two minimization and maximization terms of the above
upper bound.

First for minimizing KL(pθ(B|S) ∥ q(B)), in practice, we utilize standard Gaussian Distribution
N (0, 1) as the prior distribution of q(B) and model the approximate posterior distribution pθ(B|S)
as a multivariate Gaussian distribution N (µ, ε). Here µ and ε denotes the mean and variance vectors
of the latent Gaussian Distribution. Since each dimension of q(B) and pθ(B|S) are independent, we
can derive the situation with one-dimensional Gaussian Distribution of KL(pθ(B|S) ∥ q(B)) as:

KL(pθ(B|S) ∥ q(B)) = KL(N (µB , σ
2
B) ∥ N (0, I))

=

∫
N (µB , σ

2
B) log
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=

∫
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2σ2
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)
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∫
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2σ2
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∫
N (µB , σ

2
B)

(
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∫
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σ2
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2
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2 db

]
(33)

Since any probability density function integrates to 1 over its domain, we have
∫
N (µB , σ

2
B) db = 1.

According to the definition of the variance and second raw moment of Gaussian Distribution, we have∫
N (µB , σ

2
B)(b− µB)

2 db = σ2
B and

∫
N (µB , σ

2
B)b

2 db = µ2
B + σ2

B . Thus, the analytical solution
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of KL(N (µB , σ
2
B) ∥ N (0, I)) is computed as:

KL(N (µB , σ
2
B) ∥ N (0, I)) = −1

2

[
log σ2

B · 1 +
1

σ2
B

· σ2
B − (µ2

B + σ2
B)

]
= −1

2

(
log σ2

B + 1− µ2
B − σ2

B

) (34)

When each dimension d ∈ {0, ..., C} is independent in multivariate Gaussian distribution N (µ, ε),
we have:

KL(pθ(B|S) ∥ q(B)) =

∫
pθ(b|S) log

pθ(b1|S) · · · pθ(bd|S)
q(b1) · · · q(bd)

db

=

∫
pθ(b|S)

[
C∑

d=1

log pθ(bd|S)−
C∑

d=1

log q(bd)

]
db

=

C∑
d=1

∫
pθ(b|S) [log pθ(bd|S)− log q(bd)] db

=

C∑
d=1

∫
pθ(bd|S) [log pθ(bd|S)− log q(bd)] dbd

=

C∑
d=1

KL (pθ(bd|S) ∥ q(bd))

(35)

Then we have:

minKL(N (µB , σ
2
B) ∥ N (0, I)) = min−1

2
EC

(
log σ2

B + 1− µ2
B − σ2

B

)
(36)

where C is the feature dimension of the bottleneck latents B.

While for maximizing EB∼p(B|S)ES∼p(S)[log qϕ(T |B)], we leverage diverse expression to conduct
computation based on the property of specific target state T , divided into token- and label-level IB in
this paper.

B.1 Derivation of Token-level Information Bottleneck

For unimodal representation Fu = {fu}|Li=1 ∈ RL×C as target state T , we utilize IB decoder
DT : B 7→ T to enable information flow across the source and target representations FS/FT with
a bottleneck bridge B. Since each dimension is independent for token embeddings of FS/FT , we
have:

qϕ(T |B) = N (µT , σ
2
T ) =

L∏
i=1

C∏
d=1

N (µd
T , (σ

d
T )

2) =

L∏
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1√
2πσd

T

)
exp
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−
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(fd
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T )
2

2(σd
T )

2

]
(37)

Then we have:

log qϕ(T |B) = −
L∑

i=1

[
C

2
log 2π +

1

2

C∑
d=1

log(σd
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2 +
1

2
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2

(σd
T )

2

]
(38)

For simplify, assuming that variance (σd
T )

2 of each dimension d ∈ {0, .., C} is consistent and fixed as
a constant, IB decoder only needs to output the mean µi = DT (bS) of the projected token embedding.
Then the following equation holds:

maxEB∼p(B|S)ES∼p(S)[log qϕ(T |B)] ≡ min

L∑
i=1

[
1

2

C∑
d=1

(fd
T − µd

T )
2

]

≡ min

L∑
i=1

EbS ∥ fd
T −DT (bS) ∥2

(39)
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Combining Equ. 36 and Equ. 39, we can derive Equ. 8 as the objective of S → T token-level
information bottleneck:

LS→T
tib ≈ EFS∼p(FS) [KL(pθ(BS |FS) ∥ q(BS))]− β EBS∼p(BS |FS)EFS∼p(FS)[log qϕ(FT |BS)]

=
1

L

L∑
i

{KL(N (µi
B , (σ

i
B)

2) ∥ N (0, I)) + β EbS [∥ fT −DT (bS) ∥2]}

=
1

L

L∑
i

{
[
−1

2
EC

(
log σ2

B + 1− µ2
B − σ2

B

)]
+ β EbS [∥ fT −DT (bS) ∥2]}

(40)

B.2 Derivation of Label-level Information Bottleneck

For ground truth label ygt ∈ R1/RV as target state T , we utilize two forms of the posterior distribution
qϕ(T |B) according to the continuous (1 as the regression value) or discrete (V as the one-hot
recognition classes) forms of the supervision. We leverage unimodal predictor PS : BS 7→ ŷS for
each source modality S to model the posterior distribution qϕ(T |B) and output the prediction ŷS
based on information of single modality.

With continuous labels ygt ∈ R1 in regression task, we consider qϕ(T |B) as one-dimensional
Gaussian Distribution, computed as:

qϕ(T |B) = e−∥ygt−ŷS∥ = e−∥ygt−PS(BS)∥

log qϕ(T |B) =∥ ygt − PS(BS) ∥
(41)

Then we turn the maximization of posterior distribution qϕ(T |B) into:

maxEB∼p(B|S)ES∼p(S)[log qϕ(T |B)] ≡ min

L∑
i=1

EBS
∥ ygt − PS(BS) ∥ (42)

Combining Equ. 36 and Equ. 42, we can derive Equ. 11 as the objective of label-level information
bottleneck:

Llib ≈
1

N

N∑
i

[
−1

2
EC

(
log σ2

B + 1− µ2
B − σ2

B

)]
+ β EBS

[∥ ygt − PS(BS) ∥] (43)

With one-hot discrete labels ygt ∈ RV with V classes in classification task, we consider qϕ(T |B) as
multi-dimensional Bernoulli Distribution, computed as:

qϕ(T |B) =

V∏
ŷ
ygt

S =

V∏
[PS(BS)]

ygt

log qϕ(T |B) =

V∑
ygt logPS(BS)

(44)

Then we turn the maximization of posterior distribution qϕ(T |B) into:

maxEB∼p(B|S)ES∼p(S)[log qϕ(T |B)] ≡ minEBS
[

V∑
ygt logPS(BS)] (45)

Combining Equ. 36 and Equ. 45, we can derive Equ. 12 as the objective of label-level information
bottleneck:

Llib ≈
1

N

N∑
i

[
−1

2
EC

(
log σ2

B + 1− µ2
B − σ2

B

)]
+ β EBS

[

V∑
ygt logPS(BS)] (46)
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B.3 Reparameterization Trick for Informative Bottleneck Latent

Since the informative bottleneck latents B is sampled from pθ(B|S) ∼ N (µ, σ2) where the sampling
process is not differentiable. For the purpose of optimizing the IB encoder ES : S 7→ B through
gradient decent algorithm, we need to identify the gradient of B to the weight parameters θ of the
encoder, denoted as follows according to the Chain Role:

∂B

∂θ
=

∂B

∂µ

∂µ

∂θ
+

∂B

∂σ2

∂σ2

∂θ
(47)

where µ and σ are directly output by the encoder so that ∂µ
∂θ and ∂σ2

∂θ is easily tractable.

To compute ∂B
∂µ and ∂B

∂σ2 from the sampled bottleneck latent B, we firstly sample a random vector z
from nonparametric distribution N (0, I) and utilize a transformation function g(z, µ, σ2) to attain
the bottleneck B, shown as:

B = µ+ σ ⊙ z , where z ∼ N (0, I) (48)

Since the process of sampling z ∼ N (0, I) is independent to parameters µ and σ, the derivation of
∂B
∂µ and ∂B

∂σ2 are transformed into the derivation of ∂g(·)
∂µ and ∂g(·)

∂σ2 , which is differentiable.

C Theoretical Grounding of combining IB with Cyclic Translation

We present further explanation for the theoretical analysis of CyIN in combining Information Bot-
tleneck (IB) with cross-modal cyclic translation. Except for task prediction term, the optimization
objective for IB loss and cyclic translation in Equ. 23 is deduced as follows:

L =
1

β
(Ltib + Llib) + γLtran

=
1

β
LIB + γ(Lrec + Lcyc)

(49)

Considering multimodal learning with two modalities without loss of generality, the theoretical
modeling of CyIN can be formulated as follows:

S1 →B1 ⇌ B2 ← S2

↓ ↓
T1 T2

where S denotes the source state and T denotes the target state.

• The left and right side with S1 → B1 → T1 and S2 → B2 → T2 denote the chain of information
bottleneck. Note that the source and target states have S/T ∈ {FS1 , FS2}{FT1 , FT2} in the token-
level IB or S ∈ {FS1 , FS2}, T ∈ y in the label-level IB, both of which have been theoretically
deduced above, formulated as:

Ltib = [I(S1;B1)− βI(B1;T1)]︸ ︷︷ ︸
IB for modality 1

+ [I(S2;B2)− βI(B2;T2)]︸ ︷︷ ︸
IB for modality 2

(50)

• The middle part B1 ⇌ B2 denote the cyclic translation with B1 ⇀ Brec
2→1 ⇀ Bcyc

1 ∼ B1 and
B2 ⇀ Brec

1→2 ⇀ Bcyc
2 ∼ B1, where ⇀ denotes the translation process while ∼ denotes alignment

with the original bottleneck. Considering Γ as the translator network, the translation process can
be divided into cross-modal reconstruction across diverse unimodal latents B1/B2 and cyclic
translation from the reconstructed latent Brec

1→2/B
rec
2→1 = Γ1→2(B1)/Γ2→1(B2) back to the origin

Bcyc
2 /Bcyc

1 = Γ1→2(B
rec
2→1)/Γ2→1(B

rec
1→2), formulated as:

Lrec = DKL(B1;B
rec
2→1)]︸ ︷︷ ︸

Reconstruction from modality 1⇀ 2

+ DKL(B2;B
rec
1→2)︸ ︷︷ ︸

Reconstruction from modality 2⇀ 1

Lcyc = DKL(B2;B
cyc
2 )︸ ︷︷ ︸

Translating Back from modality 2⇀ 1

+ DKL(B1;B
cyc
1 )︸ ︷︷ ︸

Translating Back from modality 1⇀ 2

(51)
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Minimizing above losses, we can obtain informative unimodal bottleneck latents Bu for each modality
u, which contains inter-modal features to conduct productive multimodal fusion. Comparing with
directly fusing unimodal representations Fu, fusion process implemented on the bottleneck latents Bu,
denoted as FM = DM (B1, B2), can benefit from the compression ability of information bottleneck
and lead to less reconstruction difficulty in cross-modal translation.

When both modalities u1 and u2 are presented, known as complete multimodal learning, we can
regard the cyclic translation B1 ⇌ B2 as sort of cross-modal interaction enhancing the extraction of
modality-shared dynamics. Such cross-modal synergies can benefit the multimodal fusion process
FM = DM (B1, B2) to attain the final discriminative representation.

When one of the modalities is missing, the framework is required to conduct incomplete multimodal
learning. Assuming u1 is missing, we can obtain bottleneck latents B2 from modality u2 to recon-
struct the bottleneck latents Brec

1 , denoted as B2 ⇀ Brec
1 , which can be further decoded as the

supplementary information for the multimodal fusion process FM = DM (Brec
1 , B2).

The aforementioned two-modality scenarios can be generalized to arbitrary modality pairs without
constraint, thereby facilitating efficient scaling of CyIN for tasks involving multiple modalities.

D Hyper-parameter Setting

Since missing modalities lead to highly performance fluctuations under different missing scenarios,
to guarantee fair and consistent comparison among various methods, we conduct evaluation of each
experiment ten times using fixed 10 random seeds. We utilize AdamW [72] as the training optimizer.

The split of datasets and hyper-parameters of CyIN are reported in Table 6.

Table 6: Splits of datasets and the corrsponding hyper-parameters settings.

Multimodal Task Regression Classification

Dataset MOSI MOSEI IEMOCAP MELD

Train 1,284 16,326 5,228 9,765
Valid 229 1,871 519 1,102
Test 686 4,659 1,622 2,524

Training Epochs 50 30 50 50
Batch Size 128 128 256 128

Learning Rate of Language Model 4e-5 1e-5 5e-6 3e-5
Learning Rate of Other Parameters 1e-3 5e-4 1e-4 5e-4

Weight Decay 1e-2 1e-5 1e-3 1e-4
Dimension CU for Unimodal Representation 256 64 64 32

Dimension Cib in IB Encoder or Decoder 256 64 256 64
Dimension CB of Bottleneck Latent B 128 256 128 32

# Layers of RA(·) in CRA 8 16 8 4
Dimension of RA(·) in CRA [64, 32, 16] [128, 64, 32] [128, 64, 32] [128, 64, 32]

# Layers of Cross-modal Attention 2 8 2 4
# Heads of Attention H 8 2 4 8

β 16 32 4 4
γ 10 5 10 5

1st:2nd Training Stage 1:9 3:7 3:7 1:4

E Details about Evaluation Protocols

The evaluation under the circumstance of (1) complete multimodal input is consistent with other
state-of-the-art baselines, referring to u ∈ {l, a, v}, where l, a, and v denote language, acoustic, and
visual modalities, respectively.

Following [8, 17, 22, 24], to evaluate model robustness under missing modality scenarios, we adopt
two missing data protocols: (2) fixed and (3) random missing protocols.
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(2) In the fixed missing protocol, a consistent subset of modalities is removed across all iterations.
Specifically, we discard either one modality (e.g., u ∈ {l, a}/{l, v}/{a, v}) or two modalities (e.g.,
u ∈ {l}/{a}/{v}).
(3) In contrast, the random missing protocol simulate the real-world scenarios by randomly selecting
missing modality combinations for each sample in every batch, where either one or two modalities
may be absent. Following [22, 24], the random missing rate (MR) is defined as:

MR = 1−
∑N

i=1 |ui|
N × U

(52)

where |ui| denotes the number of available modalities for the i-th sample, U is the total number of
modalities, and N is the total number of samples. Given a realistic application scenario, each sample
is guaranteed to have at least one available modality, ensuring |ui| ∈ {1, ..., U}, and consequently,
MR ≤ U−1

U . In our multimodal regression and classification tasks with U = 3 modalities, we
consider missing rates MR ∈ {0.0, 0.1, . . . , 0.7}, where MR = 0.7 approximates the maximum
tolerable missingness. Notably, MR = 0.0 represents the complete multimodal scenario where all
modalities (u ∈ l, a, v) are present.

F Baselines

Baselines are reproduced by the open-source codes. Following [27], we conduct fifty-times of random
grid search for the best hyper-parameters of each model. The descriptions of baselines are presented
as follows.

CCA [11] projects paired modalities into a shared low-dimensional space by maximizing their
canonical correlations, providing a classical linear imputation for incomplete data.

DCCA [12] replaces the linear projections with deep neural encoders, enabling nonlinear correspon-
dences between modalities.

DCCAE [13] augments DCCA with autoencoder-based reconstruction objectives [15], jointly pre-
serving each modality’s internal structure while learning maximally canonical correlations.

CRA [34] employs a cascade of residual autoencoders that iteratively refine the reconstruction of
representations with complete inputs from the ones with partial inputs.

MCTN [16] leverages encoder–decoder recurrent neural networks to translate between source and
target modalities in cyclic translation way.

MMIN [17] extends cycle consistency learning with a cascaded residual architecture by imagining
missing information from the observed views.

CPM-Net [63] utilize partial multi-view clustering to tackle incomplete multimodal learning issue,
embedding all views into a structured latent space where missing features can be inferred via data
transmission and cluster-aware classification.

GCNet [22] introduces two complementary graph neural networks to model temporal and speaker
relationships in conversational data, and then reconstructs missing features from the learned graph
representations.

IMDer [24] adopts score-based diffusion models to learn distribution of missing modalities in iterative
diffusion and denoising process, regularized by the remained modalities.

LNLN [8] employs a dominant modality correction module to ensure the quality of dominant modality
representations and conduct dominant modality based multimodal learning to resist input noise.

G Evaluation Metrics

The formulas and computation for evaluation metrics on multimodal regression and classification
tasks are presented as follows.

For multimodal regression tasks on MOSI and MOSEI, we adopt well-representative metrics including
Acc7, F1, MAE, and Corr, to evaluate models’ performance [73]:
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Acc7 (Seven-class Accuracy) measures the proportion of correct predictions across the seven integer
labels in [−3,+3], formulated as:

Acc7 =
1

N

N∑
n=1

I (⌊ŷn⌉ = ⌊yn⌉)) =
1

7

3∑
k=−3

∣∣{n : yn = k ∧ ŷn = k}
∣∣∣∣{n : yn = k}

∣∣ (53)

where N is the total number of samples, ŷn is the predicted label, yn is the ground-truth label, ⌊·⌉ de-
notes the round to nearest integer and I(·) is the indicator function. With k ∈ {−3,−2,−1, 0, 1, 2, 3},
{n : yn = k} denotes the set of samples with true label k, and {n : yn = k ∧ ŷn = k} is the subset
correctly predicted as k.

F1 (Binary F1-score) assesses positive–negative discrimination by collapsing regression labels into
two classes (negative/positive), formulated as:

F1 =
1

N

N∑
n=1

wc · 2 ·
(Precisionc ∗Recallc)

(Precisionc +Recallc)
(54)

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(55)

where C is the number of classes, wc is the weight of class c (typically wc = Nc/N ), and TPc,
FPc, and FNc denote the numbers of true positives, false positives, and false negatives for class c,
respectively.

MAE (Mean Absolute Error) quantifies the average absolute deviation between predicted and
ground-truth scores, formulated as:

MAE(ŷ, y) =

∑N
n=1 |ŷn − yn|

N
(56)

Corr (Pearson Correlation) captures the linear agreement between predictions and labels, indicating
any systematic bias or skew in model outputs, formulated as:

Corr(ŷ, y) =
∑N

n=1

(
ŷn − ¯̂y

)
(yn − ȳ)√∑N

n=1

(
ŷn − ¯̂y

)2∑N
n=1 (yn − ȳ)

2
(57)

where ¯̂y and ȳ are the means of the predicted scores and ground truth labels.

For multimodal classification tasks on IEMOCAP and MELD, we report Acc and wF1 to balance the
weight of scores from each class [74].

Acc (Binary Accuracy) describes the unweighted proportion of correctly predicted samples out of
the total number of samples, formulated as:

Acc =
TP + TN

TP + TN + FP + FN
(58)

wF1 (Weighted F1-score) balances weighted precision and recall based on the true instances for
each class, and the formulation of wF1 in classification is the same as Equ. 54.

H More Experiment Results

H.1 Detailed Results Under Various Missing Scenarios

The detail experiment results under various missing modality scenarios with fixed and random missing
protocols are presented in Table 7 and Table 8, respectively. Note that the reported results are the
average values under 10 fixed random seeds.

With fixed missing protocol including incomplete settings u ∈ {l}/{v}/{a}/{l, a}/{l, v}/{a, v},
CyIN demonstrates superior or competitive performance across nearly all settings, , significantly
outperforming other models in both unimodal and bimodal missing scenarios. From Table 7, we
can observe that language modality plays the most essential role in these multimodal datasets due
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Table 7: Performance comparison between the proposed CyIN and baselines with fixed missing
protocols including incomplete settings u ∈ {l}/{v}/{a}/{l, a}/{l, v}/{a, v}.

Fix u Models MOSI MOSEI IEMOCAP MELD

Acc7↑ F1↑ MAE↓ Corr↑ Acc7↑ F1↑ MAE↓ Corr↑ Acc↑ wF1↑ Acc↑ wF1↑

{l}

CCA 26.4 74.7 1.098 0.567 44.6 80.2 0.677 0.621 56.1 53.9 49.7 43.1
DCCA 23.3 73.5 1.196 0.520 41.5 68.0 0.810 0.377 51.7 50.7 48.9 35.3

DCCAE 25.8 66.4 1.278 0.508 41.6 67.9 0.806 0.336 50.1 49.2 47.7 32.0
CPM-Net 17.2 63.9 1.335 0.345 40.3 74.7 0.832 0.230 50.4 50.5 42.0 34.8

CRA 36.3 82.8 0.900 0.749 49.3 84.9 0.576 0.741 53.8 51.3 55.3 51.6
MCTN 41.5 83.7 0.777 0.765 49.6 81.8 0.594 0.715 58.4 57.8 56.1 52.3
MMIN 42.3 85.0 0.743 0.791 52.8 84.6 0.543 0.761 57.0 57.5 59.2 54.9
GCNet 42.6 85.0 0.740 0.795 51.0 84.8 0.562 0.750 58.7 58.3 59.9 57.9
IMDer 43.0 85.1 0.717 0.794 51.8 85.0 0.552 0.756 60.4 60.1 59.9 58.2
LNLN 43.9 83.5 0.761 0.760 52.5 84.3 0.547 0.765 62.8 62.4 58.3 57.1
CyIN 44.0 85.2 0.742 0.795 52.6 85.4 0.541 0.751 63.4 63.0 60.0 58.6

{a}

CCA 17.5 46.8 1.422 0.112 41.5 63.3 0.808 0.272 39.1 34.8 47.7 35.7
DCCA 14.1 43.3 1.821 0.052 41.3 59.4 0.810 0.356 30.0 24.8 46.1 33.4

DCCAE 19.7 56.5 1.406 0.123 37.4 50.8 0.841 0.301 35.6 34.0 47.3 34.4
CPM-Net 17.3 56.6 1.371 0.313 39.4 74.2 0.916 0.139 38.1 37.2 26.3 29.7

CRA 19.7 52.0 1.438 0.102 41.8 71.1 0.781 0.420 40.7 40.1 46.6 37.5
MCTN 15.5 42.2 1.431 0.018 41.4 62.9 0.842 0.096 22.3 11.3 48.2 31.6
MMIN 20.1 52.6 1.429 0.080 39.3 70.9 0.790 0.404 42.6 40.0 48.2 31.5
GCNet 19.8 57.5 1.383 0.387 40.8 56.6 0.817 0.389 44.6 42.2 40.9 34.0
IMDer 19.6 58.3 1.363 0.392 42.1 69.9 0.795 0.372 47.0 46.8 45.6 42.5
LNLN 15.6 47.7 1.442 0.075 41.0 68.9 0.795 0.338 39.2 33.4 39.3 33.7
CyIN 20.7 60.2 1.355 0.412 42.3 70.8 0.782 0.363 50.3 48.9 48.5 37.7

{v}

CCA 15.5 26.1 1.445 0.125 41.4 48.6 0.837 0.239 23.6 9.1 48.4 31.6
DCCA 17.4 51.7 1.437 0.081 41.3 72.9 0.800 0.387 26.6 22.4 45.8 32.9

DCCAE 20.9 61.8 1.659 0.407 41.4 73.1 0.798 0.389 25.2 21.8 45.5 32.9
CPM-Net 16.5 56.8 1.368 0.323 38.8 74.2 0.862 0.205 28.0 20.9 31.8 32.1

CRA 16.6 52.1 1.396 0.013 39.0 72.0 0.781 0.426 29.9 26.3 44.2 36.8
MCTN 15.5 42.2 1.431 0.018 41.4 62.9 0.842 0.096 23.5 8.9 48.4 31.6
MMIN 19.7 50.5 1.471 0.075 39.5 69.8 0.789 0.395 35.3 34.1 48.4 31.6
GCNet 16.0 47.9 1.390 0.066 41.4 58.5 0.833 0.268 44.8 43.4 39.1 33.5
IMDer 17.0 52.0 1.426 0.032 41.4 62.7 0.826 0.386 46.8 45.8 46.3 38.6
LNLN 15.5 42.2 1.447 0.125 41.8 70.9 0.771 0.405 47.9 47.3 48.1 31.3
CyIN 19.8 57.7 1.362 0.408 42.1 71.7 0.767 0.430 49.0 47.7 48.2 39.3

{l, a}

CCA 27.8 74.9 1.106 0.542 44.5 81.8 0.663 0.639 60.1 58.5 51.1 46.5
DCCA 21.9 59.7 1.377 0.422 41.3 72.8 0.795 0.401 53.9 52.5 47.9 35.9

DCCAE 22.2 69.4 1.425 0.414 38.7 68.2 0.802 0.394 54.0 52.7 47.3 34.5
CPM-Net 17.2 64.0 1.335 0.345 39.9 74.5 0.980 0.145 43.9 44.0 35.1 35.8

CRA 36.4 83.4 0.885 0.750 50.5 84.6 0.565 0.756 60.7 60.0 56.4 53.3
MCTN 41.5 83.7 0.777 0.765 47.9 84.3 0.592 0.721 58.4 57.8 56.3 52.4
MMIN 43.0 85.0 0.744 0.782 52.8 84.6 0.538 0.768 62.2 62.5 59.4 55.4
GCNet 41.5 84.8 0.742 0.796 49.2 84.4 0.581 0.753 62.9 63.0 57.4 55.8
IMDer 44.3 84.9 0.731 0.797 52.8 85.1 0.560 0.775 63.7 63.9 60.0 58.3
LNLN 44.0 83.3 0.761 0.766 52.7 84.6 0.546 0.768 57.9 57.3 58.1 57.1
CyIN 45.0 85.1 0.728 0.792 53.1 85.5 0.541 0.786 65.2 64.7 60.5 58.3

{l, v}

CCA 26.1 75.6 1.093 0.570 44.7 80.7 0.674 0.625 56.6 54.5 49.7 43.1
DCCA 24.1 71.2 1.234 0.398 41.2 73.3 0.791 0.420 50.0 49.9 47.2 35.3

DCCAE 21.7 67.3 1.327 0.340 39.7 73.1 0.791 0.394 52.9 50.4 46.8 34.1
CPM-Net 17.5 62.9 1.339 0.333 38.1 73.4 1.582 0.072 42.8 43.5 41.7 35.2

CRA 36.3 81.5 0.917 0.741 51.3 85.1 0.555 0.761 58.3 55.7 56.4 53.3
MCTN 41.5 83.7 0.777 0.765 47.9 84.3 0.592 0.721 58.3 58.2 56.3 52.4
MMIN 42.3 85.0 0.742 0.791 52.8 85.1 0.534 0.768 59.3 59.4 60.1 55.5
GCNet 39.0 84.4 0.771 0.796 49.1 84.8 0.582 0.750 56.6 56.2 60.2 58.3
IMDer 45.8 85.1 0.701 0.799 52.9 85.2 0.556 0.761 60.2 60.0 59.8 58.0
LNLN 43.7 83.5 0.760 0.766 52.7 85.0 0.544 0.770 62.1 61.5 58.2 57.1
CyIN 46.2 85.3 0.727 0.794 53.5 85.2 0.531 0.778 63.2 62.9 60.9 58.8

{a, v}

CCA 17.4 48.1 1.420 0.117 41.6 63.6 0.806 0.278 39.6 35.1 48.0 36.1
DCCA 17.5 53.6 1.445 0.093 41.2 73.6 0.790 0.408 35.4 33.3 46.1 33.7

DCCAE 19.4 55.2 1.569 0.046 37.9 72.7 0.796 0.404 35.5 33.2 46.5 35.7
CPM-Net 16.8 56.2 1.367 0.330 35.2 72.0 1.395 0.041 44.5 42.4 25.6 28.9

CRA 18.5 55.0 1.410 0.066 40.4 73.2 0.773 0.453 44.1 42.0 45.3 40.1
MCTN 15.5 42.2 1.431 0.018 41.4 62.9 0.842 0.102 22.7 11.5 48.8 31.6
MMIN 20.3 52.3 1.427 0.081 39.8 71.0 0.774 0.431 48.2 47.4 48.3 31.5
GCNet 17.9 57.2 1.363 0.385 41.2 72.2 0.805 0.393 49.0 48.1 44.7 40.9
IMDer 18.4 58.1 1.319 0.386 41.5 71.6 0.788 0.446 50.0 49.9 46.7 43.0
LNLN 15.6 48.7 1.441 0.076 40.8 71.7 0.775 0.441 51.5 50.4 35.5 31.8
CyIN 21.0 59.4 1.305 0.391 41.7 72.9 0.773 0.458 53.0 52.1 48.4 43.5
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Table 8: Performance comparison between the proposed CyIN and baselines with random missing
protocols including missing rates MR ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7].

MR Models MOSI MOSEI IEMOCAP MELD

Acc7↑ F1↑ MAE↓ Corr↑ Acc7↑ F1↑ MAE↓ Corr↑ Acc↑ wF1↑ Acc↑ wF1↑

0.1

CCA 26.9 72.7 1.133 0.512 45.6 81.2 0.671 0.635 58.9 58.7 49.3 41.9
DCCA 24.1 70.1 1.219 0.418 40.1 73.1 0.789 0.415 52.4 51.4 47.5 35.3

DCCAE 20.2 68.4 1.620 0.336 38.7 72.5 0.787 0.418 51.0 50.0 46.4 35.5
CPM-Net 16.8 63.9 1.336 0.339 34.5 74.3 1.780 0.060 55.1 55.1 42.5 33.2

CRA 33.6 79.3 0.972 0.699 50.1 84.2 0.576 0.736 60.0 59.0 56.0 53.0
MCTN 38.9 79.9 0.846 0.720 47.1 81.4 0.620 0.680 42.0 43.3 53.6 46.8
MMIN 41.0 82.1 0.808 0.741 51.5 83.5 0.562 0.738 53.9 53.9 55.8 49.0
GCNet 41.2 84.5 0.806 0.751 50.3 83.1 0.653 0.696 60.7 60.8 56.3 54.4
IMDer 42.3 84.1 0.796 0.753 51.4 83.9 0.600 0.721 60.9 61.3 58.4 56.7
LNLN 40.8 83.3 0.790 0.756 51.4 83.7 0.566 0.745 61.2 62.0 56.2 55.0
CyIN 42.5 84.6 0.783 0.759 51.9 84.5 0.562 0.748 64.0 63.9 58.6 56.6

0.2

CCA 25.6 70.4 1.161 0.489 45.0 79.3 0.688 0.605 56.0 55.8 49.1 41.3
DCCA 22.8 68.7 1.242 0.394 40.4 72.3 0.792 0.400 49.4 48.5 47.2 34.6

DCCAE 20.9 67.6 1.584 0.325 38.9 70.8 0.795 0.389 48.6 47.7 46.7 35.2
CPM-Net 16.9 63.9 1.336 0.338 34.3 74.2 1.457 0.064 53.5 54.2 41.9 33.1

CRA 31.9 76.2 1.025 0.660 48.9 82.7 0.598 0.691 56.6 55.7 54.2 50.9
MCTN 36.0 75.5 0.918 0.676 46.8 78.7 0.642 0.645 39.6 41.7 53.3 46.0
MMIN 38.3 78.6 0.872 0.701 50.2 82.0 0.597 0.693 52.6 52.7 55.2 48.1
GCNet 39.0 81.0 0.832 0.725 48.1 81.9 0.622 0.682 59.2 59.3 53.2 51.8
IMDer 39.3 82.8 0.878 0.729 49.7 82.2 0.610 0.694 59.9 60.3 55.9 53.9
LNLN 39.9 79.6 0.837 0.717 50.1 82.3 0.591 0.713 60.5 61.1 54.2 52.9
CyIN 40.1 83.0 0.824 0.732 51.3 82.9 0.590 0.721 61.9 61.8 57.2 54.8

0.3

CCA 24.2 68.6 1.193 0.454 44.6 77.1 0.707 0.569 53.1 52.9 48.9 40.6
DCCA 23.1 67.2 1.251 0.375 40.8 71.4 0.794 0.390 46.2 45.2 47.3 34.2

DCCAE 20.4 66.2 1.545 0.310 39.1 69.2 0.801 0.371 46.3 45.3 46.9 34.8
CPM-Net 16.9 64.0 1.336 0.336 34.1 74.0 1.180 0.111 53.0 53.8 40.4 34.6

CRA 31.3 72.3 1.077 0.624 48.0 81.3 0.632 0.661 53.5 52.7 52.9 49.1
MCTN 33.5 72.3 0.977 0.634 46.1 76.1 0.668 0.599 37.7 40.0 53.0 45.4
MMIN 35.7 74.6 0.947 0.648 48.7 80.6 0.631 0.659 51.2 51.3 54.8 47.3
GCNet 36.3 75.4 0.968 0.652 48.5 80.7 0.673 0.665 57.5 57.6 50.9 49.7
IMDer 37.7 76.6 0.923 0.677 48.6 80.9 0.643 0.660 58.6 58.9 54.2 51.8
LNLN 37.5 76.5 0.890 0.683 49.3 80.8 0.613 0.683 59.3 60.2 52.6 50.9
CyIN 38.1 78.4 0.886 0.694 49.2 81.5 0.606 0.685 60.3 60.4 55.8 52.7

0.4

CCA 22.8 66.7 1.222 0.423 44.3 75.3 0.723 0.535 50.1 49.7 48.7 39.9
DCCA 21.2 64.6 1.283 0.304 41.1 69.9 0.796 0.378 42.4 41.2 47.1 33.7

DCCAE 19.2 62.9 1.574 0.273 39.3 66.6 0.808 0.347 43.4 42.2 46.9 34.1
CPM-Net 16.9 63.8 1.336 0.335 34.2 73.9 1.439 0.061 52.8 53.6 41.9 33.2

CRA 28.3 68.2 1.160 0.552 46.7 79.9 0.646 0.626 50.0 49.5 52.1 47.9
MCTN 30.8 67.9 1.050 0.583 45.3 73.2 0.695 0.551 35.4 37.8 52.6 44.5
MMIN 33.3 71.2 1.021 0.523 47.4 79.4 0.655 0.629 49.9 50.0 54.3 46.3
GCNet 33.9 74.6 0.986 0.628 47.1 79.2 0.672 0.623 56.1 56.3 47.7 47.0
IMDer 34.1 75.9 0.944 0.655 47.2 78.7 0.664 0.618 56.8 57.2 52.0 49.2
LNLN 34.5 73.3 0.952 0.644 47.2 79.2 0.640 0.646 58.7 59.3 51.5 49.3
CyIN 34.7 76.5 0.935 0.666 47.5 79.3 0.635 0.649 59.3 59.4 54.4 50.3

0.5

CCA 21.7 63.8 1.255 0.384 43.6 73.0 0.744 0.489 46.9 46.2 48.6 39.1
DCCA 21.6 63.9 1.289 0.304 41.3 67.4 0.800 0.362 39.5 37.8 47.2 33.3

DCCAE 19.5 60.9 1.558 0.246 39.3 63.4 0.818 0.317 40.1 38.7 47.4 34.0
CPM-Net 16.9 63.9 1.335 0.334 34.2 74.0 1.626 0.056 52.7 53.3 41.1 33.1

CRA 26.7 64.1 1.209 0.514 45.4 78.6 0.671 0.603 46.4 46.1 50.5 45.7
MCTN 25.7 59.7 1.161 0.503 44.6 70.7 0.717 0.510 33.3 35.7 52.0 43.3
MMIN 30.7 68.0 1.081 0.550 46.1 78.0 0.669 0.605 48.3 48.2 53.4 45.0
GCNet 30.7 71.0 1.038 0.598 45.0 78.0 0.699 0.618 54.3 54.4 45.6 45.5
IMDer 31.8 72.2 0.995 0.605 46.2 76.4 0.687 0.570 54.8 55.3 50.0 46.8
LNLN 31.9 69.3 1.024 0.593 46.7 77.8 0.668 0.606 53.6 54.1 49.9 46.7
CyIN 32.5 72.6 0.990 0.599 47.1 78.7 0.658 0.611 55.3 55.5 53.6 48.2

0.6

CCA 20.6 62.0 1.279 0.351 43.0 69.7 0.764 0.437 43.3 42.2 48.4 38.2
DCCA 20.6 60.3 1.324 0.252 41.3 64.4 0.803 0.355 37.3 36.3 47.3 32.8

DCCAE 19.0 57.4 1.545 0.231 39.1 59.2 0.827 0.293 37.5 35.2 47.7 33.4
CPM-Net 17.0 64.0 1.341 0.299 34.3 73.9 1.304 0.093 52.6 53.2 41.5 33.7

CRA 25.1 61.4 1.264 0.454 43.9 77.2 0.696 0.577 42.7 42.6 49.6 44.1
MCTN 24.1 58.8 1.190 0.464 44.1 67.4 0.745 0.452 30.6 32.9 51.4 41.8
MMIN 28.3 62.9 1.158 0.486 44.8 76.4 0.688 0.577 46.3 46.2 52.1 43.3
GCNet 29.3 65.9 1.127 0.513 43.8 77.2 0.705 0.584 51.8 51.8 41.2 43.9
IMDer 30.2 67.8 1.090 0.564 44.6 75.3 0.704 0.544 52.2 51.7 47.6 44.8
LNLN 28.9 64.9 1.150 0.522 45.6 76.1 0.689 0.565 48.1 47.7 49.3 45.0
CyIN 29.2 68.6 1.069 0.571 45.8 77.5 0.683 0.581 52.8 52.4 52.3 46.5

0.7

CCA 19.9 59.7 1.298 0.326 42.7 68.3 0.775 0.409 41.2 39.8 48.5 37.7
DCCA 19.6 58.6 1.343 0.214 41.3 61.9 0.806 0.360 36.2 35.0 47.2 32.5

DCCAE 18.6 55.5 1.539 0.209 38.8 55.9 0.833 0.277 35.7 32.7 47.8 33.2
CPM-Net 17.1 63.8 1.361 0.291 34.2 73.9 1.692 0.104 52.2 52.5 41.6 34.1

CRA 23.6 57.3 1.311 0.401 43.0 76.5 0.713 0.548 40.1 40.0 48.7 42.7
MCTN 23.5 56.1 1.223 0.432 43.7 64.9 0.760 0.413 28.8 30.8 51.2 41.2
MMIN 25.6 59.0 1.212 0.440 43.8 75.3 0.707 0.545 45.9 45.8 51.7 41.9
GCNet 26.3 63.9 1.166 0.494 43.3 74.5 0.733 0.542 47.3 47.2 39.9 41.8
IMDer 27.0 65.1 1.126 0.526 43.1 75.1 0.714 0.470 47.7 48.2 46.3 43.0
LNLN 26.1 62.7 1.200 0.472 45.0 74.8 0.705 0.536 46.9 45.9 48.5 43.1
CyIN 28.0 65.9 1.117 0.530 45.1 74.9 0.700 0.553 48.6 49.0 51.8 44.4
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to the rich semantics and high recognition-related information in utterance [16, 43, 44]. Despite
better performance in this dominant modality, CyIN pays more attention on the inferior modalities
including audio and vision modalities. This result illustrates the generalization ability of the proposed
framework, since CyIN has not spectacularly designed extra delicate modules to concentrate training
on dominant modalities as LNLN [8]. Besides, with one modality missing and two modalities as input,
CyIN sufficiently integrate the information from bimodal interaction and reach higher performance,
validating the flexibility of informative bottleneck latents in various combination of modalities.

With random missing protocol including missing rates MR ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7], CyIN
suffers from less performance degradation as the missing rate increases. The random missing case
is mostly simulating diverse missing situation in the real-world, when the presence of modalities is
not fixed or known. As shown in Table 8, compared with baselines, the robustness of CyIN under
various input data sparsity highlights the strength of informative bottlenecks extracted by token- and
label-level IB, ensuring stable performance even when the presence of multimodal input are severely
missing at MR = 0.7. Moreover, CyIN reaches state-of-the-art performance on 4 datasets regardless
of multimodal regression or classification tasks. While most baselines reach suboptimal performance
on either one of the tasks due to the limitation of generalization.

The experiment results in various missing scenarios clearly demonstrates that CyIN is highly effective
in both fixed or random missing scenarios. The general framework enables the informative space
to maintain powerful performance despite the presence of input modalities, making it a robust and
practical solution for real-world multimodal applications.

H.2 Comparison of Performance Stability

Table 9: Performance stability comparison between the proposed CyIN and baselines with the average
results on MOSI and IEMOCAP dataset with fixed missing protocols including modality settings
u ∈ {l}/{a, v} and random missing protocols including missing rates MR = 0.7.

Setting Models MOSI IEMOCAP

Acc7↑ F1↑ MAE↓ Corr↑ Acc↑ wF1↑

Fixed
u ∈ {l}

MCTN 41.5 ± 0.71 83.7 ± 0.37 0.777 ± 0.005 0.765 ± 0.003 58.4 ± 0.40 57.8 ± 0.41
MMIN 42.3 ± 0.82 85.0 ± 0.45 0.743 ± 0.009 0.791 ± 0.005 57.0 ± 0.52 57.5 ± 0.49
GCNet 42.6 ± 0.53 85.0 ± 0.31 0.740 ± 0.003 0.795 ± 0.002 58.7 ± 0.33 58.3 ± 0.42
IMDer 43.0 ± 0.59 85.1 ± 0.32 0.717 ± 0.005 0.794 ± 0.002 60.4 ± 0.47 60.1 ± 0.44
LNLN 43.9 ± 0.33 83.5 ± 0.24 0.761 ± 0.008 0.760 ± 0.006 62.8 ± 0.51 62.4 ± 0.48
CyIN 44.0 ± 0.25 85.2 ± 0.29 0.742 ± 0.004 0.795 ± 0.002 63.4 ± 0.10 63.0 ± 0.10

Fixed
u ∈ {a, v}

MCTN 15.5 ± 0.71 42.2 ± 0.37 1.431 ± 0.005 0.018 ± 0.004 22.7 ± 0.40 11.5 ± 0.24
MMIN 20.3 ± 0.95 52.3 ± 1.32 1.427 ± 0.009 0.081 ± 0.005 48.2 ± 0.51 47.4 ± 0.35
GCNet 17.9 ± 0.83 57.2 ± 1.25 1.363 ± 0.008 0.385 ± 0.002 49.0 ± 0.48 48.1 ± 0.31
IMDer 18.4 ± 0.85 58.1 ± 1.58 1.319 ± 0.016 0.386 ± 0.026 50.0 ± 0.30 49.9 ± 0.38
LNLN 15.6 ± 0.75 48.7 ± 0.45 1.441 ± 0.008 0.076 ± 0.006 51.5 ± 0.56 50.4 ± 0.48
CyIN 21.0 ± 0.35 59.4 ± 0.27 1.305 ± 0.010 0.391 ± 0.019 53.0 ± 0.40 52.1 ± 0.46

Random
Missing

MR = 0.7

MCTN 23.5 ± 1.15 56.1 ± 1.23 1.223 ± 0.018 0.432 ± 0.026 28.8 ± 0.64 30.8 ± 0.69
MMIN 25.6 ± 1.04 59.0 ± 1.60 1.212 ± 0.017 0.440 ± 0.019 45.9 ± 0.61 45.8 ± 0.65
GCNet 26.3 ± 2.25 63.9 ± 2.86 1.166 ± 0.038 0.494 ± 0.032 47.3 ± 0.79 47.2 ± 0.81
IMDer 27.0 ± 1.30 65.1 ± 1.50 1.126 ± 0.022 0.526 ± 0.023 47.7 ± 1.20 48.2 ± 1.12
LNLN 26.1 ± 1.07 62.7 ± 1.63 1.200 ± 0.019 0.472 ± 0.021 46.9 ± 1.66 45.9 ± 1.79
CyIN 28.0 ± 0.90 65.9 ± 1.71 1.117 ± 0.018 0.530 ± 0.021 48.6 ± 0.71 49.0 ± 0.70

We evaluate the performance stability of the models on MOSI dataset under three representative
circumstances, including fixed missing protocols u ∈ {l}/{a, v} and random missing protocols
MR = 0.7 . Based on the overall average performance reported in Table 7 and Table 8, we further
computed the standard deviations of the corresponding results on each missing scenarios with 10
runs, to demonstrate the performance variation degree in real-world circumstances. The final stability
measure are reported in Table 9.

Under fixed missing modality protocols such as u ∈ {l}/{a, v}, the standard deviations of all
methods show relatively small, reflecting that when the missing modalities are predetermined, models
can learn to compensate in a more determine way. In contrast, random missing protocol introduce
much higher variance, especially in severe missing scenario with MR = 0.7. We summarize this
into two reasons: First reason is imbalance contribution of modalities (with dominant modality like
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language containing more semantics compared with the inferior ones like audio or vision in specific
tasks), and the second one is random missing setting is more closed to simulate the unpredictable
inference circumstances in real-world, exposing each model’s real robustness.

Across both fixed and random missing scenarios, CyIN not only achieves the superior or compet-
itive performance on most metrics but also maintains relatively low fluctuations, highlighting the
remarkable balance between performance and stability for the constructed informative space.

H.3 Generalization Performance on Different Language Models

To further validate the generalization performance, We train and evaluate CyIN with different sizes of
Pretrained language models including BERT [40], RoBERTa [75], and DeBERTa-V3 [76] as shown in
10. The experiment results shows a clear benefit from scaling up the PLM backbone, as larger models
like DeBERTa-V3 yield better textual representations and thus higher multimodal performance when
all modalities are available. The similar trend occurs when evaluating with the most severe missing
circumstance MR = 0.7, which indicates the effective generalization ability of CyIN.

Table 10: Comparison of the proposed CyIN using different sizes of language models on MOSI
dataset, under both complete and randomly incomplete multimodal learning settings.

Setting Model Variants
(PLM)

MOSI

Acc7↑ F1↑ MAE↓ Corr↑

Complete
u ∈ {l, a, v}

BERT 48.0 86.3 0.712 0.801
RoBERTa 49.5 88.2 0.692 0.823

DeBERTa-V3 50.3 90.1 0.671 0.841

Random Missing
MR = 0.7

BERT 28.0 65.9 1.117 0.530
RoBERTa 29.3 67.2 0.992 0.556

DeBERTa-V3 32.2 69.5 0.965 0.578

I Social Impacts

Devoted in bridging complete and incomplete multimodal learning, the proposed CyIN shows
strong potential in real-world field, such as healthcare, education, social media analysis, marketing,
advertising, and human-computer interaction. By integrating data from multiple sources such as
text, audio, image and video, CyIN enables multimodal system for a more detailed understanding of
human emotions and intentions.

However, the use of rich and multi-source data introduces risks related to privacy violations, unau-
thorized surveillance, and potential misuse for manipulation. In scenarios with missing modalities,
efforts to reconstruct data may introduce biases, fabricate faking information, particularly affecting
underrepresented groups and raising fairness concerns. These concerns highlight the need of careful
and responsible deployment for the proposed method in real-world applications.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims presented in the abstract and introduction clearly reflect
the paper’s contributions and scope. They accurately state the design and capabilities of
the proposed CyIN framework in jointly handling complete and incomplete multimodal
learning.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations have been discussed in Section Limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

31



Answer: [Yes]
Justification: The paper have provided a complete and correct derivation proof for the
mentioned equation in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed information on the hyperparameter settings
necessary for reproducibility in Appendix D. Moreover, as stated in the abstract, the source
code is publicly released.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets used in this paper are publicly accessible and available upon
request. Moreover, as stated in the abstract, the source code is now publicly released,
ensuring transparency and reproducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details including dataset splits, hyper-parameters,
and type of optimizer and so on are specified in Appendix D. Besides, following previous
methods, the best hyper-parameters are chosen by fifty-times of random grid search for each
model.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: As shown in Appendix H.2, we report the performance variation to demonstrate
the superiority of the proposed method across various missing scenarios.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the required computer resources in Implementation Details of
Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research conforms all the requirements of moral and ethical norms in the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed both positive and negative social impacts in Appendix I.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper utilizes public used datasets and pre-trained models, which poses
no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The used data have been correctly cited in the paper and the license and terms
of use are properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: As shown in Abstract, the source code is publicly released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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