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ABSTRACT

Neural ordinary differential equations (ODEs) are commonly used in reversible
generative models. However, training neural ODEs is computationally expen-
sive for estimating the log-likelihood density and backpropagating through ODE
solvers, leading to slow convergence and significant gradient estimation errors.
This paper presents ScoreFlow, a novel generative model capable of reversible
and controllable data transformations. Firstly, we formulate an ODE utilizing
a score variant as the drift term to model transformations between two certain
data distributions. Secondly, we suggest a path-constrained loss to reduce trunca-
tion errors, enhancing the model’s capabilities in generating high-quality samples.
Thirdly, ScoreFlow has the ability to employ a single model to achieve both condi-
tional image generation and cross-class image translation tasks. The closed-form
optimal solution for data transformation in ScoreFlow is theoretically proven, pro-
viding support for the model’s efficient training. Furthermore, the effectiveness of
our approach is empirically validated through image generation, translation, and
interpolation experiments.

1 INTRODUCTION

Neural ODEs have been intensively used in generative tasks for modeling the transformation be-
tween different distributions (Chen et al., 2018; Grathwohl et al., 2018; Finlay et al., 2020). By
solving the forward and backward initial value problems (IVPs) of the neural ODEs, these methods
facilitate a continuous-in-time mapping process between samples and Gaussian noise. In particular,
Instantaneous Change of Variables (Chen et al., 2018) offers a means to compute the log-likelihood
of generating samples, enabling the training of neural ODEs through maximum likelihood estima-
tion (MLE). Neural ODEs are fully reversible generative models, that offer advantages including
exact likelihood computation, latent representation manipulation, and efficient sampling.

However, ODE-based generative models also encounter certain challenges. First, the likelihood
estimation requires computing the divergence of the drift function, leading to computational expense
and resulting in slow training speed. Second, the training procedure of neural ODEs is very complex,
bringing about difficulties in converging and generating high-quality samples. Third, compared with
score-based models Ho et al. (2020); Song et al. (2020c) and GANs (Goodfellow et al., 2014; Choi
et al., 2020), current ODE-based methods cannot achieve some benchmark tasks such as conditional
sample generation and image translation tasks, restricting their applications.

Additionally, score-based models, achieved through a stochastic differential equation (SDE) frame-
work (Song et al., 2020c), use an iterative denoising procedure to achieve high quality data gen-
eration. The fundamental concept of score-based models is the score function, i.e. ∇x log p(x),
intuitively interpreted as the direction of the gradient that maximizes the log-likelihood of the sam-
ples. Based on the properties of score and Bayes rules, it is possible to achieve controllable data
generation through both classifier-guided (Dhariwal & Nichol, 2021) and classifier-free (Ho & Sal-
imans, 2021) methods.

The drift function of neural ODEs represents the transformation dynamics between data distribu-
tions. It is essential for efficient generative modeling. However, the formulation of the drift function
is not well explored in existing ODE-based methods. In this paper, we construct a novel reversible
generative framework called ScoreFlow, which incorporates a score variant into neural ODEs as
the drift function. We empower traditional neural ODEs with the training efficiency, reversibility,
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Figure 1: ScoreFlow can utilize one unified model fθ to achieve both the conditional data generation
and cross-class image translation. The drift of ODE is represented by a neural network for estimat-
ing a score variant fθ ∝ ∇x log

pdata(x(t))
N (0,I) . This method can effortlessly transform data between

different domains by subtracting the respective drift to create the transformation ODE.

and versatility for high-quality sample generation. As depicted in Figure 1, via a single conditional
model, ScoreFlow achieves both conditional sample generation and reversible image translation be-
tween selected classes. Our contributions can be summarized as follows:

• We introduce ScoreFlow, a novel framework for reversible generative modeling that bridges the
gap between score and neural ODE. We derive a theoretical solution of ScoreFlow that provides
a simple MSE method for training the neural ODE.

• To achieve high quality data generation, we propose a novel path-constrained loss to minimize
truncation error in solving ODEs. Experimental results on CIFAR10 show that our method
achieves higher metrics (FID of 2.29 & IS of 9.96) compared to other ODE-based and SDE-
based algorithms.

• We achieve class-conditional sample generation and cross-class image translation utilizing a sin-
gle model. The image translation can be performed between any two selected classes in the
dataset with no additional effort. The experimental results of image translation and image inter-
polation on 256× 256 datasets demonstrate the reversibility and versatility of ScoreFlow.

2 BACKGROUND

2.1 NEURAL ODES & CONTINUOUS FLOW

Continuous Normalizing Flows (CNFs) (Chen et al., 2018; Grathwohl et al., 2018) are a type of
generative models that employ neural ODEs to model the transformation between distributions. Let
z(0) ∈ Rd denote the sample from a given dataset, and z(T ) ∈ Rd denote the latent variable
sampling from some tractable distribution. CNFs aim to construct a continuous sequence {z(t)}Tt=0
mapping between the sample and the latent variable. In the forward process, CNFs represent the
continuous-in-time transformation from sample to latent variable by an ODE:

dz(t) = fθ(z(t), t)dt, (1)
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where the drift fθ(·, t) : Rd → Rd is a d-dimensional vector function parameterized by θ. Given
z(0) as the initial input, z(T ) can be computed by solving the following initial value problem (IVP):

z(T ) = z(0) +

∫ T

0

fθ(z(t), t)dt, (2)

which can be solved via a numerical ODE solver like Runge–Kutta. In the reverse process, CNFs
sample a prior variable z(T ) and generate data by solving the reverse IVP from t = T to t = 0.
Instantaneous Change of Variables (Chen et al., 2018) offers an approach for computing the log-
likelihood of generated data. Thus, CNFs can be trained utilizing maximum likelihood estimation.

Training the drift function fθ requires propagating gradients through the ODE solver, which is very
computationally expensive for large-scale generative tasks. Rectified Flow (RectFlow) (Liu et al.,
2023) presents a simple but effective scheme that learns the ODE following the most straight ve-
locity field as possible. The objective of RectFlow is to solve the following least squares regression
problem:

min
θ

E(t,z(t))[||(z(0)− z(T ))− fθ(z(t), t)||2],

s.t. z(t) = t · z(T ) + (1− t) · z(0), t ∈ [0, T ],
(3)

where we use the same denotations as in (1). This approach reduces the transportation cost and
the computational demand in training phase. Furthermore, applying RectFlow recursively helps to
straighten the flow path, which can reduce numerical errors in data generation and decrease the
number of sampling steps (Liu et al., 2023).

2.2 SCORE-BASED MODELS

Score-based models typically include a forward diffusion process and a backward sampling process.
The forward process constructs a sequence {z(t)}Tt=0 for gradually corrupting the data to Gaussian
noise, following the SDE:

dz(t) = f(z(t), t)dt+ g(t)dw, (4)

where f(·, t) : Rd → Rd is a predefined d-dimensional vector function called the drift coefficient,
g(·) : R → R is a predefined scalar function called the diffusion coefficient, w denotes the Wiener
process, and t ∈ [0, T ] is the timestep index. In the backward process, score-based models first
samples z(T ) from the latent distribution and then apply recursively denoising to generate sample
z(0), following the reverse-time SDE:

dz(t) = [f(z(t), t)− g2(t)∇z(t) log pt(z(t))]dt+ g(t)dw, (5)

where ∇z(t) log pt(z(t)) is called the score function. Score-based models train a neural network
sθ(z(t), t) to estimate the score function via minimizing the following loss:

θ∗ = argmin
θ

Et,z(t)[λ(t)||sθ(z(t), t)−∇z(t) log pt(z(t))||2], (6)

where λ(t) is a positive weighting function.

3 METHOD

3.1 OVERVIEW

Our motivation is to explore an effective formulation of the drift fθ in neural ODE (1), with the
objective of providing ODE-based models with high-quality sample generation capabilities and a
more simplified training method. Inspired by the drift coefficient in reverse-time SDE (5) of score-
based models, we intend to formalize the drift of ODE to guide the direction that maximizes the
log-likelihood of samples. Given two data distributions x1 ∼ p1(x1) and x2 ∼ p2(x2), to achieve
the transformation between them, we employ the following formulation of ODE with a score variant
as the drift:

dx(t)

dt
= σ̇tσt∇x log

p2(x(t))

p1(x(t))
, (7)

where σt is a deviation function satisfying certain conditions (for details see subsection 3.2). The
drift function this ODE (7) can be viewed as a scaled difference between two score functions, hence
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we name this approach ScoreFlow. However, as the marginal distribution p1 and p2 are unknown, we
cannot employ this ODE directly for generative modeling. Consequently, we instead train a neural
network fθ(x(t), t) to estimate the drift in Equation (7). Actually, we derive a simple closed-form
solution to this drift as follows:

σ̇tσt∇x log
p2(x(t))

p1(x(t))
=

σ̇t

σt
(x2 − x1), (8)

which can be used for training the network. Inspired by the training method (3) in RectFlow, we
develop a path-constrained loss to learn a “straight” vector field:

min
θ

Et,x(t)

[
λ(t)||x(t)− x̄(t)||2

]
,

s.t. dx(t)/dt = fθ(x(t), t), x(0) = x1

x̄(t) = (1− t)x1 + tx2, t ∼ Uniform[0, 1]

(9)

where λ(t) is a positive coefficient function, x(t) is the intermediate state estimated by the ODE,
and x̄(t) is the target intermediate state computed by a linear interpolation between x1 and x2.
Furthermore, for achieving class-conditional data generation, we can straightforwardly embed the
class label c to train a conditional neural network fθ(x(t), t, c) (for details see subsection 3.2).

Figure 1 illustrates a specific generation-translation task achieved by our method. After training,
ScoreFlow is capable of using a single model to achieve both the class-conditional generation and
cross-class image translation. In the conditional generation process, we initially sample a latent
variable from N (0, I) as the initial state, and then solve the following ODE from t = 0 to t = 1:

dx = fθ(x(t), t, c)dt, (10)
where c denotes the corresponding class label. In the image translation task, we can reuse this
network fθ along with the class labels to create the transformation ODE between different domains.
Specifically, translating data from c1 to c2 requires to solve the following ODE from t = 0 to t = 1,
with a c1-class sample as the initial state:

dx = [fθ(x(t), t, c2)− fθ(x(t), t, c1)]dt. (11)
The reverse process employs the same approach.

3.2 BRIDGING ODE WITH SCORE FUNCTION

In this subsection, we detail how to bridge the gap between neural ODEs and the score function to
improve the performance of generative modeling based on ODEs. The score function establishes a
connection between the generative processes and the direction of log-density. This concept forms the
cornerstone of score-based generative models (Hyvärinen & Dayan, 2005; Vincent, 2011; Song &
Ermon, 2019), that achieve high-quality sample generation. Intuitively, the score function provides a
direction that guides the intermediate state to move in a way that leads to higher log-density. Based
on this property, it is possible to achieve conditional generation through both classifier-guidance
(Dhariwal & Nichol, 2021) and classifier-free (Ho & Salimans, 2021) approaches. We first establish
the relationship between the ODE and the score function, and derive the formulation of ScoreFlow.
We then present path-constrained loss for training ScoreFlow. Building upon this, we propose a
novel method for conditional data generation that relies entirely on ODE.

Lemma 3.1. Given an ODE dx(t)
dt = g(x(t), t) with a Lipschitz continuous drift g(x(t), t), the

probability density pt(x) satisfies the continuity equation (Pedlosky, 2013):
∂pt(x(t))

∂t
+∇ · pt(x(t))g(x(t), t) = 0 (12)

To establish a connection between this ODE and the score, we assume the drift function has the for-
mulation of g(x(t), t) = −Dt∇x log p(x(t)), where Dt is a positive diffusion coefficient. Substitute
this into (12), we can obtain the following equation:

∂p(x(t))

∂t
= Dt∇2p(x(t)), (13)

where ∇2 denotes Laplace operator. It is worth noting that (13) corresponds to the Fokker–Planck
equation (Risken & Risken, 1996) with a zero drift, which can be solved analytically. Therefore, we
can obtain the exact probability density of the intermediate state x(t) at arbitrary time t, bringing
our great attention to this particular form of ODE.
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Algorithm 1 Class-Conditional ScoreFlow
Input: parameterized drift function fθ(·), images x ∼ pdata, corresponding class labels c
Training

repeat
z ← sample from N (0, I)
t← sample from Uniform[0,1]
x̄(t)← (1− t)z + tx
x(t)← z + tfθ(x̄(t), t, c)
Lp(θ)← mean( 1t ||x(t)− x̄(t)||2)
apply gradient descent step on∇θL

p(θ)
until converged

Sampling for Image Generation
z ← sample from N (0, I)

generate data xc solving xc = z +
∫ 1

0
fθ(z(t), t, c)dt via some ODE solver

Sampling for Image Translation
c1 ← label of source domain, c2 ← label of target domain, xc1 ← images of class c1
generate data xc2 solving xc2 = xc1 +

∫ 1

0
[fθ(x(t), t, c2)−fθ(x(t), t, c1)]dt via some ODE solver

Theorem 3.1. Suppose the evolving of x(t) ∈ Rd satisfies an ODE dx(t)
dt = −Dt∇x log p(x(t)),

the conditional probability density of x(t) given x(0) is:

p(x(t)|x(0)) = N (x(t);x(0), σ2
t I) =

1

(2πσ2
t )

d/2
exp(−||x(t)− x(0)||2

2σ2
t

). (14)

Given two data distributions x1 ∼ p1(x1) and x2 ∼ p2(x2), based on Equation (14), the ScoreFlow
mapping data from x1 to x2 can be derived as:

dx(t)

dt
= σ̇tσt∇x log

p2(x(t))

p1(x(t))
=

σ̇t

σt
(x2 − x1), (15)

where σt ≥ 0 denotes a monotonic increasing function with σt ≫ 1 as t → ∞, d denotes the
number of dimensions.

See the supplementary material for the proof.

Discussion Theorem 3.1 presents the analytical formulation of ScoreFlow mapping the data from
p(x1) to p(x2). In practical generative process, σ̇t

σt
(x2 − x1) is not a causal item because we cannot

obtain x2 before it is generated. Therefore, we approximate the drift function in (15) using a param-
eterized neural network fθ(x(t), t). To learn the parameters θ, we construct a simple MSE loss to
reduce the L2-norm of the difference between fθ and σ̇t

σt
(x2 − x1) as follows:

min
θ

Et,x(t)

[
||fθ(x(t), t)−

σ̇t

σt
(x2 − x1)||2

]
. (16)

After training fθ, we solve the following IVP via some ODE solver to transform data from x1 to x2:

x2 = x1 +

∫ T

0

fθ(x(t), t)dt. (17)

Inspired by RectFlow, we aim to learn a drift function fθ that is as straight as possible Liu et al.
(2023). Under this objective, the coefficient factor is a constant σ̇t/σt = C. If we constrain the
integral interval as [0, 1], i.e. T = 1, then σ̇t/σt = 1 and σ̇t = σ0e

t, which satisfies the conditions
of Theorem 3.1. Then, the optimization problem becomes:

min
θ

Et,x(t)

[
||fθ(x(t), t)− (x2 − x1)||2

]
,

s.t. x(t) = (1− t)x1 + tx2, t ∼ Uniform[0, 1],
(18)

It can be noticed that the loss (18) is the same as (3), indicating that RectFlow is a specific form of
ScoreFlow.
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Path-Constrained Loss Based on the aforementioned discussion, it can be noticed that the naive
MSE loss (18) is equivalent to optimize the L2 error between a one-step Euler IVP solution and the
ground truth, i.e. ||(x1 + fθ(x(t), t)) − x2||2. This loss solely accounts for the cumulative error of
the ODE, neglecting the truncation error that arises in the intermediate paths. To tackle this concern,
we introduce a path-constrained loss that incorporates truncation errors occurring during the forward
process of the ODE. Since the intermediate state of the target ODE path can be painlessly obtained
by a linear interpolation x(t) = (1 − t)x1 + tx2, we can compute the truncation error at arbitrary
time t. Based on this, we present the following path-constrained loss function:

min
θ

Et,x(t)

[
λ(t)||x(t)− x̄(t)||2

]
,

s.t. dx(t)/dt = fθ(x(t), t), x(0) = x1

x̄(t) = (1− t)x1 + tx2, t ∼ Uniform[0, 1]

(19)

Figure 2: The path-constrained loss considers the
truncation error that arises between the solution
path and the target path while solving the ODE.

To alleviate the computational load, we uti-
lize a one-step approximation x(t) ≈ x1 +
tfθ(x̄(t), t) to obtain the estimated intermedi-
ate state. We choose λ(t) = 1/t, for eliminat-
ing the influence of scaling fθ by t when back-
propagating gradients through x(t). Note that
the path-constrained loss does not impose con-
straints on the form of the two distributions. In
other words, x1 can follow arbitrary data dis-
tribution, not just limited to Gaussian. This
enables ScoreFlow to achieve image-to-image
translation directly.

Classifier-free Conditional Data Genera-
tion As shown in Equation (15), the drift
σ̇tσt∇x log

p2(x(t))
p1(x(t))

can be interpreted as a
scaled difference between the score function of p2 and p1. We can directly introduce an additional
control vector c (which can be class label, text prompt, etc.) to the drift fθ(x(t), t, c) for achieving
conditional generation. Intuitively, the conditional drift can represent σ̇tσt∇x log

p2(x(t)|c)
p1(x(t))

, guiding
the generation process to move to the region with high conditional log-likelihood. The algorithm is
outlined by Algorithm 1.

3.3 IMAGE-TO-IMAGE TRANSLATION USING A UNIFIED CONDITIONAL MODEL

A significant advantage of the ScoreFlow is the capability of accomplishing cross-domain image
translation through a single unified model. Suppose we have pre-trained a conditional ScoreFlow
model fθ on a multi-class image dataset. By controlling the input labels to the unified model, we
can achieve the image translation between arbitrary two classes within the dataset.

Theorem 3.2. Given a class-conditional ScoreFlow model dx(t)
dt = fθ(x(t), t, c) which is pretrained

for generating xci ∼ pdata from some latent space z ∼ pz , where ci ∈ {0, 1, 2, ..., N} denotes the
i-th class label. Then, the image translation from class ci to cj can be achieved by solving the
following IVP:

xcj = xci +

∫ 1

0

[fθ(x(t), t, cj)− fθ(x(t), t, ci)]dt, (20)

where xci and xcj denote images with different labels ci and cj .

Proof. The proof is straightforward and intuitive. Due to the invertibility of ODE, we have z0 =

xc1+
∫ 0

1
fθ(x(t), t, c1)dt. Then we can obtain xc2 = xc1+

∫ 0

1
fθ(x(t), t, c1)dt+

∫ 1

0
fθ(x(t), t, c2)dt.

By exchanging the upper and lower limits of the definite integral, and utilizing the additivity prop-
erty, we can get the final formulation xc2 = xc1 +

∫ 1

0
[fθ(x(t), t, c2)− fθ(x(t), t, c1)]dt. The proof

is concluded.

Discussion Theorem 3.2 introduces a direct and effective method for achieving cross-domain
image translation. More specifically, to accomplish image translation between multiple categories,
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we can train a unified conditional model fθ(x(t), t, c) using the collected multi-category images.
Subsequently, we solve the IVP defined in (20) with the drift being the difference between the two
specific class-conditional drift functions. The algorithm is outlined in Algorithm 1.

Method FID ↓ IS ↑ NFE ↓
SDE-based model
DDPM (Ho et al., 2020) 3.21 9.46 1000
(NCSN++) VE(Song et al., 2020c) 2.38 9.83 2000
VP (Song et al., 2020c) 2.55 9.58 2000
sub-VP (Song et al., 2020c) 2.61 9.56 2000
ODE-based model
1-RectFlow (Liu et al., 2023) 2.58 9.60 127
2-RectFlow (Liu et al., 2023) 3.36 9.24 110
3-RectFlow (Liu et al., 2023) 3.96 9.01 104
VP ODE (Song et al., 2020c) 3.93 9.37 140
sub-VP ODE (Song et al., 2020c) 3.16 9.46 146
(NCSN++) VE ODE (Song et al., 2020c) 5.38 9.35 176
ScoreFlow (unconditional) 2.58 9.72 124
ScoreFlow (conditional) 2.29 9.96 127

Table 1: Results of ODE&SDE-based methods on CI-
FAR10. Fréchet inception distance (FID) and Inception
score (IS) assess the quality of images, Number of function
evaluations (NFE) assesses the number of sampling steps.

Figure 3: Generated samples by Score-
Flow on CIFAR10.

4 EXPERIMENT

4.1 IMAGE GENERATION

In order to verify the effectiveness of the proposed model, we trained ScoreFlow on four datasets:
CIFAR10(Krizhevsky & Hinton, 2009), AFHQ(Choi et al., 2020), MetFace(Karras et al., 2020), and
CelebA(Karras et al., 2017). Images of the last three datasets are resized to 256× 256.

Setup Following the algorithm 1, we set z ∼ N (0, I) to be the latent variable and xc to be the
images. We adopt DDPM++ (Song et al., 2020c) network architecture for representing the drift
function fθ, which exhibits slight differences in terms of depth and the number of modules for
different datasets. To introduce the conditional information to the model, we fuse the timestep
embeddings and condition embeddings in the activations of each residual layer by

ãL = embc ⊙ aL + embt, (21)

where ãL is the infused output of layer L, ⊙ is the element-wise product, embc and embt are
condition embedding and timestep embedding. This conditioning approach is inherited from Ho
& Salimans (2021). We trained separate models for CIFAR10 and AFHQ datasets, using their
respective category labels as conditions. For CelebA and MetFace, we combined them into a 2-class
dataset and trained a unified model using the labels 0 and 1 as conditions. We also implemented
the unconditional generation on CIFAR10 for comparison. For sampling, we utilize the RK45 ODE
solver from Scipy(Virtanen et al., 2020), and the tolerance is set to 1e-5.

Result Table 1 presents the FID and IS results of ScoreFlow in comparison to other ODE-based
and SDE-based methods. On CIFAR10, conditional ScoreFlow yields the lowest FID (2.29) and
highest IS (9.96) among all the methods, while the unconditional version also achieve the best per-
formance among the ODE-based methods. It is worth noting that, compared to SDE-based methods,
all the ODE-based methods have significant advantages in terms of sampling steps. The generated
images are shown in Figure 3, 4 and 5.

4.2 IMAGE TRANSLATION & INTERPOLATION

Setup We directly utilize the models which are pre-trained in Section 4.1 for image translation and
interpolation. For the unified model trained on CelebA and MetFace, we implement the translation

7



Under review as a conference paper at ICLR 2024

(a) CelebA (b) MetFace (c) CelebA→MetFace (d) MetFace→CelebA

Figure 4: (a) and (b) The generated 256 × 256 samples by a unified conditional ScoreFlow dx =
fθ(x(t), t, c)dt with the labels setting to c = 0 and c = 1 respectively. (c) The image translation
from CelebA to MetFace, via solving dx = [fθ(x(t), t, c = 1) − fθ(x(t), t, c = 0)]dt. (d) The
reverse translation from MetFace to CelebA.

(a) AFHQ-Cat (b) AFHQ-Dog (c) AFHQ-Wild

(d) Cat → Wild

Figure 5: (a)-(c) The generated 256×256 samples by a conditional ScoreFlow dx = fθ(x(t), t, c)dt,
where c ∈ {0, 1, 2} is the label representing cat, dog and wild. (d) The transformation process from
cat to wild, via solving dx = [fθ(x(t), t, c = 2)− fθ(x(t), t, c = 0)]dt

from CelebA to MetFace just by solving the ODE dx = [fθ(x(t), t, c = 1) − fθ(x(t), t, c = 0)]dt
from t = 0 to t = 1. The reverse translation is to solve the reverse ODE dx = [fθ(x(t), t, c =
0)− fθ(x(t), t, c = 1)]dt from t = 0 to t = 1. The translation on AFHQ is the same way.

For image interpolation, we first sample two latent variables z0 and z1 from N (0, I), then conduct
an interpolation of zα =

√
1− αz0+

√
αz1 with α ∈ [0, 1], and use these latents to generate images.

Result Figure 4c and Figure 4d show the translation between CelebA and MetFace. Figure 5d
depicts the temporal progression of the transformation from a cat to a wild animal. Importantly, all
image translations are effortless, as they can be achieved using the pre-trained generative model,
without the necessity of training individual models for each specific transformation task. Figure 6
illustrates the variation process of image interpolation in the latent space.

5 RELATED WORK

Neural ODEs & CNFs Our work is based on neural ODEs that were first introduced by Chen et al.
(2018). One significant application of neural ODE is its capability to construct CNFs. However,
training CNFs needs to maximize the log-density of the generated samples, where the divergence
computation is very expensive. FFJORD (Grathwohl et al., 2018) introduces Hutchinson’s trace
estimator to reduce the complexity of computing divergence, enabling scalable data generation for
CNFs. Finlay et al. (2020) and Onken et al. (2021) focus on incorporating regularization to reduce
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Figure 6: Image interpolation in latent space. The latent variable is set to zα =
√
1− αz0 +

√
αz1

with α ∈ [0, 1], where z0 and z1 follow N (0, I).

the transport cost of the ODE and learn more straight transport path. Several studies concentrate
on enhancing the termination time (output time) of the ODE, such as incorporating randomness
(Ghosh et al., 2020) and employing adaptive optimization methods (Pang et al., 2022). In practical,
the numerical errors in the process of solving ODE can affect the performance of the model, which
has been partially resolved by checkpoint-based methods (Zhuang et al., 2020; Gholaminejad et al.,
2019) or designing novel special integrator (Zhuang et al., 2021). Training Classical CNFs requires
huge computational resources to compute the log-density and suffers from long training time. Rect-
Flow (Liu et al., 2023) introduces a novel approach for training ODEs to learn a rectified vector field
by employing a straightforward mean MSE loss function.

Score-based & Diffusion Models Modern score-based and diffusion models exhibit a profound
association with denoising score matching (Hyvärinen & Dayan, 2005; Vincent, 2011). The vanilla
score matching approach suffers from expensive cost for computing the trace of Hessian. Sliced
Score Matching (Song et al., 2020b) employs a projecting based method to address this limitation
and achieves high dimensional density estimation. SMLD (Song & Ermon, 2019) presents multi-
scale denoising approach, and employs Noise Conditional Score Network (NCSN) to learn the score
function. When sampling, SMLD employs an annealed Langevin dynamics (Welling & Teh, 2011) to
generate samples recursively using the learned score function. DDPM Sohl-Dickstein et al. (2015);
Ho et al. (2020) implements a forward Markov noisy process and learns a reverse denoising network
at arbitrary timesteps, achieving high quality image generation via recursively denoising sampling.
Later, a comprehensive framework for score-based and diffusion models, based on SDEs, was de-
veloped by (Song et al., 2020c). The framework utilizes SDEs and score functions to describe both
the forward and backward diffusion processes. Building upon these foundational works mentioned
above, recent studies have made significant improvements, such as algorithmic efficiency enhance-
ment (Karras et al., 2022; Nichol & Dhariwal, 2021; Song & Ermon, 2020; Song et al., 2023),
maximum likelihood training (Lu et al., 2022a; Kim et al., 2022b; Song et al., 2021), sampling ac-
celeration (Song et al., 2020a; Lu et al., 2022b; 2023), controllable generation (Dhariwal & Nichol,
2021; Ho & Salimans, 2021; Rombach et al., 2022; Kim et al., 2022a), and other downstream ap-
plications (Meng et al., 2021; Zhao et al., 2022; Ho et al., 2022; Harvey et al., 2022; Popov et al.,
2021; Kong et al., 2020; Wyatt et al., 2022).

6 CONCLUSION

ScoreFlow effectively bridges denoising score-based models and neural ODEs, leading to reversible
and conditional generative modeling. This approach leverages a variant of the score function to
guide a neural ODE. By utilizing ODE’s distinctive architecture, the model can acquire a theoretical
solution that serves as an objective function for training the neural network. This objective guides the
neural network to learn a “straight” vector field, resulting in an improved sampling speed. Further-
more, the incorporation of a path-constrained loss aids in reducing truncation errors and boosting
model performance. ScoreFlow’s versatility shines through its capacity for classifier-free condi-
tional generation and seamless cross-class image translation within a unified framework. Empirical
verification also attests to its efficacy in tasks such as image generation, translation and interpolation.
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