
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LAYOUTRL: A REINFORCEMENT LEARNING-BASED
APPROACH TO KEYBOARD LAYOUT OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Keyboards are a key interface between humans and computers, with character
arrangements offering numerous layout possibilities. Many existing designs fol-
low standardized ergonomic principles and explore Pareto-optimality in multi-
objective functions using metaheuristics or deep learning. In this work, we pro-
pose a reinforcement learning-based approach to designing optimized keyboard
layouts that integrate both technical and ergonomic considerations. Our results
demonstrate that reinforcement learning optimization can produce layouts more
efficiently than conventional designs, such as the ”QWERTY” keyboard. Specifi-
cally, our approach achieves approximately an 12.4% improvement in ergonomic
parameters over traditional keyboards, underscoring the potential for a more data-
driven, systematic approach to keyboard layout optimization.

1 INTRODUCTION

keyboard is an essential device that is used to interact with computer systems. Different types of
keyboards exist, such as physical keyboards we interface with computers and laptops (Lugay et al.,
2022) as well as soft keyboards (Han & Kim, 2015) such as touchscreen-based keyboards, virtual
keyboards, etc (Fennedy et al., 2022; Lee et al., 2022). The layout, i.e., the arrangement of characters
in these keyboards, may vary depending on different layout models and factors. Typing efficiency
also differs according to different keyboard layouts (Deshwal & Deb, 2006). A poor arrangement of
characters in the keyboard layout may put a high load on weaker fingers along with typing discomfort
resulting in fatigue for the users (Deshwal & Deb, 2006). Hence, optimized arrangement of the
characters in any type, language-based keyboard is necessary for comfortable as well as efficient
writing. In English keyboard layouts, ’QWERTY’ is the most established and familiar layout so
far (Khan & Deb, 2023), proposed by the Sholes brothers in 1873 (Eggers et al., 2003). However,
several researches have shown that ’QWERTY’ is not an optimized layout. Khan & Deb (2023)
and Oladeinde et al. have discussed its shortcomings in details. Oladeinde et al. shows that novice
typists make fewer errors in Dvorak and alphabetic keyboards compared to ’QWERTY’ as well
as the efficiency in these layouts can reach the level of ’QWERTY’ if their usage is continued in
novice typists. However, the popularity and usage of ’QWERTY’ has sustained all other optimized
layouts till now. Despite that optimization of keyboard layout is an active research field where the
fundamental objective is usually to optimize the efficiency of typing (T.G. et al., 2018; Ghosh et al.,
2011; Khan & Deb, 2023). This is necessary as the typing efficiency will decrease if the frequent
characters are not found within the accessible range.

A vast amount of research has been done on optimizing physical keyboard layout considering dif-
ferent approaches while applying various optimization algorithms such as genetic algorithms, sim-
ulated annealing, Ant colony Optimization (ACO), etc, (Glover, 1987; Light & Anderson, 1993;
Oommen et al., 1989; Liao & Choe, 2013; Khorshid et al., 2010). Moreover, the improvement on
the soft keyboard’s layout has also been investigated as suggested by the works of Lewis et al.;
MacKenzie & Zhang (1999); Zhai et al. (2000). Focus has been given to both normal and am-
biguous keyboards (Deshwal & Deb, 2006). In the case of normal keyboards, importance has been
given to mapping the respective language’s characters on the keys efficiently, resulting in ease of
use for the typists and typing efficiency. Different ergonomic designs and their optimization have
been explored in ambiguous keyboards (Deshwal & Deb, 2006; Lesher et al., 1998). In recent stud-
ies, emphasis has been given to optimizing layouts in different soft keyboards also, such as virtual
keyboards (Ghosh et al., 2011), touchscreen keyboards as well as gesture-based typing (Dunlop &

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Levine, 2012; Bi et al., 2014; Smith et al., 2015; Oulasvirta et al., 2013), single-finger keyboard
layouts on smartphones (Herthel & Subramanian, 2020; Turner et al., 2020), etc. While optimizing
the keyboard layouts in previous works, many articles focused on a single objective function for
optimization. This approach can find an efficient keyboard but usually results in very dissimilar to
the ’QWERTY’ layout as indicated by the works of Eggers et al. (2003); Liao & Choe (2013); Khor-
shid et al. (2010). Such layouts while efficient can be difficult for users to track and learn compared
to conventional ’QWERTY’ layouts. To solve this issue, Khan & Deb (2023) considered a multi-
objective optimization approach while generating efficient layouts. They focused on two objective
functions: maximizing typing efficiency by considering the cumulative distance between consecu-
tive keystrokes while typing large texts and another is maximizing similarity to ’QWERTY’. Khan
& Deb (2023) applied the NSGA-II algorithm to produce a Pareto set of layouts ranging from highly
optimized ones to more similar to ’QWERTY’ while being less optimized ones. Bi et al. (2010) used
the metropolis energy minimization algorithm to generate a quasi-qwerty and optimized version of
soft keyboards. They found that characters moving one key away from their key positions compared
to the ’QWERTY’ achieved efficient layout as well as remained similar to ’QWERTY’. Nivasch
& Azaria (2021) proposed a deep learning model with a genetic algorithm to optimize for layout
of the keyboard. Similar works such as Bi & Zhai (2016); Zhai & Kristensson (2008) conducted
optimization of ’QWERTY’ while maintaining similarity to it.

However, while designing and optimizing the keyboard layout, proper ergonomic criteria need to be
considered. These criteria should be properly mathematically modeled and validated considering the
user’s interactions with the keyboards, typing comfort, etc. Ergonomic criteria can be a collection
of heuristic rules derived from experimental studies and human-keyboard interactions such as rules
proposed by Marsan (1976). These sets of rules can work as multiple objectives that need to be
optimized to get an efficient layout. Eggers et al. (2003) was one of the first to consider such
sets of ergonomic criteria provided by Marc Oliver Wagner & Eggers (2003) and applied the Ant
colony optimization algorithm to develop an optimized and ergonomic-supported keyboard layout.
However, the ergonomics criteria are not straightforward, and achieving optimal layouts utilizing
such criteria is still an active research field. Previous optimization algorithms have utilized different
ergonomic criteria but further optimization needs to be explored (Eggers et al., 2003; Khan & Deb,
2023; Bi et al., 2010). Conversely, these ergonomic criteria are not always validated in previous
works and need to be addressed from a technical perspective. Furthermore, many works focused on
optimizing layout only considering a combinational problem. However, keeping similarities to the
’QWERTY’ layout as well as the optimized version is one of the recent trends in keyboard layout
optimization research as discussed above.

To address these aforementioned challenges, we propose a novel keyboard layout optimization
method called, ’LayoutRL’ that uses Reinforcement Learning (RL) to achieve high optimality in
the ergonomics criteria. We consider the six ergonomics criteria from Eggers et al. (2003); Marc
Oliver Wagner & Eggers (2003) while using an RL algorithm to design an optimal keyboard layout.
RL has the ability to find the optimal conditions of all the objective functions while generating the
desired system. Additionally, we show that LayoutRL can achieve an optimized yet similar layout
to the ’QWERTY. Furthermore, we explored the contribution of these six ergonomic criteria and
discussed their validity in constructing an optimized keyboard layout.

2 METHODOLOGY

LayoutRL works on the standard ’QWERTY’ English keyboards and learns the policy to converge on
the optimized layout, producing more efficient layouts than ’QWERTY’. The RL approach considers
six ergonomic criteria to learn the optimal policy. Additionally, we have added constraints so that
it remains similar to the ’QWERTY’. In this section, we first discuss the keyboard structure and the
ergonomic criteria considered. Then, we discuss how the RL model can be formulated to optimize
the layout. Finally, we discuss the LayoutRL optimization process and its algorithm to understand
its capabilities further.

2.1 KEYBOARD STRUCTURE AND ERGONOMICS CRITERIA CONSIDERED

We consider a typical ’QWERTY’ keyboard layout where the alphabets are mapped to each key.
These keys are divided into columns of rows. A sample of the keyboard layout we considered is

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

q

A

Z

W

S

X

E

D

C

R

F

V

T

g

B

Y

H

N

U

J

M

I

K

O

L

P

` ~Row

1

Col 6 Col 2 Col 1Col 5 Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8

Col 0

Col 4 Col 3

Row

2

Row

3

Row

4

Row

3

1 ! 2 @ 3 # 4 $

Fore Finger

Thumb Thumb

Left Hand Right hand

Fore FingerPinkie Finger Pinkie FingerMF MFRF RF

5 % 6 ^ 7 & 8 * 9 (

, <

0)

. >

- _

/ ?

[{

; :

= +

] }

‘ ”

\ |

Enter

R
Right Shift

Space

L
Left Shift

Figure 1: Representation of our keyboard layout structure for the standard ”QWERTY” keyboard
layout.

shown in Figure 1. A similar layout was mentioned in this work by Eggers et al. (2003). Like this
work, We also consider the following structures for our keyboard layout:

• a hand (left, right),

• a column (0–7 for the left hand and 0–8 for the right hand),

• a row (0–5, 0 standing for the top row and 3 for the rest row).

Accordingly, each key in this layout can be mapped to 5 different values: Hand, Row, Column,
Finger, Shift. We represent this mapping of the key to the following, Key : Hand[1 for left and
2 for right], Row [0 to 5], Column [0 to 7 or 0 to 8], Finger[thumb-0,forefinger-1,middlefinger-
2,ringfinger-3,pinkie-4], Shift[1 for shift else 0]

The objective function for our keyboard layout was formulated according to the six ergonomic cri-
teria mentioned in the research work by Eggers et al. (2003):

• Accessibility and load: Distribution of the keys should be such that the load is
shared equally by all the fingers for an optimal layout. The cost associated with this criteria
can be formulated using the following equation 1 (Eggers et al., 2003):

c1 =
∑

mi∈Ξm
1

(
fmi − f opt

mi

)2
(1)

fmi
indicates the frequency of a monograph. Monograph indicates an isolated key that is

struck in the process of typing a text.

• Key Number: While typing out the text, the number of hits (keystrokes) on the keyboard
should be minimized which can be considered as the second ergonomic criterion. For a
layout generated from ‘LayoutRL’, we run a large corpus using the generated layout and
count the number of keystrokes needed to type out the corpus. This cost is denoted by c2.

• Hand Alteration: Consecutive hits of the keys should be pressed by alternate hands
while typing out large texts. The cost associated with this criteria can be calculated using
the following equation (Eggers et al., 2003):

c3 =
∑

di∈Ξd
3

fdi (2)

In Equation.2, fdi
indicates the frequency of a digraph. Digraph indicates the occurrence

of two consecutive keys being hit in the process of typing a text. Consecutive keys should
be pressed by alternating hands of typists for the ease and comfort of typing. In our cost
calculation algorithm, we track the consecutive keys being pressed by the alternating hands
or not. The cost is proportional to the number of times consecutive keys that are pressed by
the same hands.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• Consecutive usage of the same finger: Similarly, consecutive hits of the
keys should be pressed by different fingers rather than the same finger. The cost associated
with this criteria can be calculated using the following equation 3 (Eggers et al., 2003):

c3 =
∑

di∈Ξd
4

fdidist(di) (3)

In equation 3, when typing digraphs, the distance between the consecutive keys is calcu-
lated and multiplied. The larger distance would result in a higher cost, hence multiplied.
The distance is calculated using the proposed Manhattan distance in equation 4:

dist(di) = |c2 − c1|+ |r2 − r1| (4)

Here, the c1, r1 and c2, r2 are the respective consecutive keys column and row values.

• Avoid big steps: Awkward hand positions such as big steps while typing out consec-
utive characters should be avoided. The cost associated with this criteria can be calculated
using the following equation 5 (Eggers et al., 2003):

c5 =
∑

di∈Ξd
5

k(di)fdi
(5)

k(di) is the big step coefficient that can emulate the awkward positions and big steps be-
tween different fingers. Higher coefficients indicate big steps. Hence, we conclude that the
cost in this criterion is proportional to c5.

• Hit direction: The optimal keyboard layout should be such that while typing out con-
secutive words, the small fingers are used first and then gradually towards the thumbs. The
cost associated with this criteria can be calculated using the following equation 6 (Eggers
et al., 2003):

c6 =
∑

di∈Ξd
6

fdi (6)

According to Eggers et al. (2003), the preferred hit direction in consecutive characters is
from little fingers towards the thumb. We discussed how the fingers are mapped in section
2.1. In this case, We track the consecutive keywords and the respective fingers that are used
while typing to determine the undesirable hit directions. Hence, we can conclude that the
cost, c6 is proportional to the frequency of undesirable hit directions.

The weighted average of these criteria are used as total cost for a particular keyboard layout. The
details of the weighting mechanism is adopted from Eggers et al. (2003).

2.2 DESIGN CHOICES

While optimizing the layout using our proposed method, we set some design constraints while using
RL to keep similarity with the ’QWERTY’ layout and the best layout generated from ’LayoutRL’.
Though this constraint limits high-level optimization of the state space freely, it has certain appeals
due to the general acceptance of the ’QWERTY’ to mass keyboard users. Our model maintains the
following constrains in the design phase:

• Restrictions on the placement of alphabet and non-alphabet
characters: In the ’QWERTY’ layout, the English alphabets and non-alphabet num-
bers are placed in separate spaces by grouping. We enforce our algorithm to do the same
by putting restrictions in state space while assigning them a character. For example, the
non-alphabet characters can be placed only in the orange-colored keys only, as specified in
Figure 1. Conversely, the alphabet characters can be assigned only on the black-colored
keys as demonstrated in Figure 1. This way we try to ensure more similarities between our
best layouts with the ’QWERTY’ layout.

• Static placement of Shift, Alt, and Space button: We considered
fixed positions of Shift, Alt, and Space buttons on the same keys ’QWERTY’ has and
do not include in the optimization algorithm.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

• Dynamic stroke of both handed buttons for the
hand-alteration: Furthermore, we consider the shift, Alt, and Space buttons
on both left and right hand in the layout. This is to ensure for consecutive key pressing,
alternating keys are pressed for proper hand alteration as discussed in the ’Hand Alteration’
ergonomic criteria.

2.3 MARKOV DECISION PROCESS FOR LAYOUTRL

We utilized a Markov decision process (MDP) formulation for optimizing the ’QWERTY’ layout.
Following are the components of the Markov Decision Process (MDP) model for LayoutRL.

• State Space: We consider each possible alphabet-key pair, along with all other as-
signed and unassigned keys on the keyboard constitute the states, S. There are 95 unique
characters, including capital and small alphabets and special characters, allocated to 96
keys. The possible state space can have approximately 96P95 different states. Due to this
large state space, it is computationally unfeasible to check every possible combination to
find the best solution. We consider the ’shift + key’ as separate keys on the keyboard.

• Actions: An action, a ∈ A in our MDP problem is defined as mapping an alphabet to
one of the 96 keys. While mapping, the algorithm checks whether the chosen key is already
occupied.

• Episode: Each episode, E consists of 95 actions taken by the agent, resulting in a com-
plete keyboard layout with the specified number of alphabet-key pairs. After each episode,
the generated keyboard is evaluated based on the six ergonomic criteria discussed above,
and a score is saved for use in subsequent episodes.

• Agent: The agent in this context creates a keyboard layout based on the available keys
and alphabets. The decision to create an alphabet-key pair is based on two factors: the
availability of the key and the weight associated with the key. To maximize the reward, the
agent selects the key with the highest value for a specific alphabet.

• Reward (r): For each action, a, the agent attempts to create an alphabet-key pair with the
highest weight. Initially, the reward for every pair is considered uniform, leading to random
allocations. Over several episodes, the state/action value matrix (weight matrix) is updated
after evaluating the return for each of the generated keyboards.

• Return: At the end of each episode, the performance of the newly generated keyboard
is evaluated by typing out a standard corpus and considering 6 ergonomic criteria. This
evaluation compares the typing cost of the new keyboard against a set number of previous
episodes. The return is determined by the rate of improvement in the new layout and can
be both positive and negative. The return also influences changes in the state/action value
matrix for that specific layout.

• State transition probabilities (p(s, r|s, a)): The state transition in this
model is non-deterministic. The probability of state transition is determined by the
state/action value matrix, where the weights of key allocation for an alphabet are evalu-
ated, and the key with the highest weight/probability is chosen.

• Discount Factor (γ): The agent takes actions by assigning a key to an alphabet and
moves to another alphabet for assigning. However, since we formulate the policy to update
based on the total return after a complete episode, we conclude that state changes have no
significant benefits and set the discount factor, γ to zero.

• Policy (π): The ultimate objective is to learn the optimal policy (π∗) that will determine
the optimal mapping of alphabets to different states. We learn the policy for our MDP
from the total cost of the layout after each episode. Initially, a random/equiprobable policy
is used for mapping alphabets to keys. After each episode, we compare the total cost of
the present layout to the previous optimized layout. If the total cost reduces, we treat
the present layout as the optimized one and increase the corresponding state/action value.
Conversely, we decrease the state/action value if the total cost increases. The state/action
value will eventually converge, providing the optimal policy.

The value function in the states can be calculated according to the following definitions (Andrew &
Richard S, 2018):

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Weight Matrix

}initialized with

uniform values

av
ai

la
bl

e
bu

tt
on

s
fo

r
as

si
gn

m
en

t

all symbols that are to assigned to the keyboard

[A, B, C, 1, 2, 3, ,-, +, $, *, >,]

List of Alphabets

“A large body of English text representing naturally

typed documents.”

English Text Corpus

An Episode

....G....
.

.

B34

.

.

Agent chooses the alphabet-

button pair with largest weight

Agent repeats this process for

all alphabets and completes a

layout.

Initially the assignments are

done randomly to prepare the

weight matrix .

The English corpus is typed

using the generated keyboard

and the cost is calculated

based on the 6 ergonomic

criteria.

The cost is compared with

the average cost of last ‘n’

episodes. Positive for lower

cost and negative for higher.

The cost determines the return

of the episode and adjusts the

weight matrix accordingly.

Over time the weights are assigned

to alphabet-button pairs that guide

the agent toward better layout design.

Figure 2: MDP Approach to obtain optimal layout for the English keyboard

vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a) [r + γvπ(s
′)] for all s ∈ S (7)

According to equation 7, the proposed LayoutRL starts with the equiprobability of assigning an
alphabet to a key. Then, each complete episode consists of assigning all the alphabet to keys, and
after generating a completely new layout, the expected cost is calculated which is evaluated, r. If the
cost is higher, LayoutRL considers it a negative reward system and updates the state-action matrix,
vπ(s|a) as well as the policy, π(s|a). We can observe the overall formulation of how we approached
reinforcement learning-based solutions for our keyboard problem in Figure 2.

In Figure 2, we initially took the ’QWERTY’ layout as the ’base’ layout and determined its total cost
using the objective function. Additionally, we initialize a state/action value matrix where the rows
are the available keys on the keyboard and columns represent the alphabets and symbols. Initially,
each alphabet has an equal probability of being assigned to any of the keys. Then, we start assigning
the alphabet to the empty keys. For English alphabets, When the small character is assigned to one
key, the corresponding capital character is also simultaneously assigned to the ’shift + key’. For
non-alphabet characters, no such restriction is imposed on the assignment of a ’key’ or ’shift + key.’
After assigning all the alphabets to the keys, the model types out the corpus using the new layout
generated from the algorithm. The total cost of the keyboard is determined and compared with the
total cost of the ’QWERTY’ layout. If the total cost becomes lower than the ’QWERTY’ layout,
we consider that layout to be the optimized one compared to the ’QWERTY’ layout. This improved
cost is used to increase the weights within the state/action value matrix for ’alphabet-key’ pairs that
have been used in the generated keyboard, simultaneously reducing the weights for others. On the
other hand, if the total cost of the layout is greater than the ’QWERTY’ layout, then the next episode
of the MDP to update the state/action value matrix. For updating, we add a negative value to the
already selected alphabet-key pair as the total cost of the layout is high and increase the other values
in the matrix. This way, we can converge the state/action matrix to determine the optimal policy and
get an optimized layout then the ’QWERTY’ layout. Furthermore, we can set the base layout as the
newly generated optimized layout and continue repeating the episodes to find the more optimized
layout.

2.4 PROPOSED OPTIMAL KEYBOARD DESIGN ALGORITHM

The overall optimization process in LayoutRL’s algorithm can be divided into two events: random
episodes for initial policy learning and optimizing episodes for generating the optimized layouts.
The function Run Series function initializes the state-action matrix for the keyboard and then
random episodes are run to make the state-action matrix randomized for effective convergence in
the optimal policy learning. In the optimizing episodes, the agent assigns all the characters to keys
based on the weights(probabilities) in the randomized state-action matrix.

After finishing the episode, the run episode function returns the cost for the newly generated layout
from ’LayoutRL’. Based on this returned cost compared with the previous average cost, the state-
action matrix is updated. LayoutRL iteratively runs and checks the cost ratio comparisons until

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1: Pseudo code for the LayoutRL
Input: Number of random episodes, Number of optimizing episodes, Learning rate, Cost for QWERTY, Triviality.
Output: Cost for the best keyboard, Best keyboard layout, State/Action value matrix.
Data: English corpus, Set of symbols, Accessible buttons.

1
2 Run Series(input,data)
3
4 Function Run Series(Inputs, Data):
5 State/Action value matrix = uniform matrix of shape(Number of keys X Number of alphabets)
6 for episode in Number of random episodes do
7 keyboard, cost = run episode()
8 improve amount = ((avg previous costs - cost) / avg previous costs) * Learning rate

/* The average costs of the generated layouts are recorded */
9 avg previous costs = (avg previous costs X episode + cost) / (episode + 1)

10 adjust corresponding values(State/Action value matrix, improve amount, keyboard)

11 for episode in Number of optimizing episodes do
12 keyboard, cost = run episode()
13 improve amount = ((avg previous costs - cost) / avg previous costs) * Learning rate

/* weighted average costs of the generated layouts are recorded */
14 avg previous costs = (avg previous costs * (Triviality - 1) + cost) / Triviality
15 adjust corresponding values(State/Action value matrix, improve amount, keyboard)
16 if cost ¡ best recorded cost then
17 best recorded cost = cost
18 best keyboard = keyboard

19 return best recorded cost, best keyboard, State/Action value matrix

20
21 Function run episode(Inputs, Data):
22 for alphabets in Set of symbols do
23 if random assignment episode then
24 keyboard = create random key-alphabet pairs

25 else
26 keyboard = create key-alphabet pairs with highest weights in State/Action value matrix

27 cost = type the corpus with ergonomics(keyboard, English corpus)

28 return keyboard, cost

29

pinkie(4) RF(3) MF(2) FF(1) thumb(0) <Fingers> thumb(0) FF(1) MF(2) RF(3) pinkie(4)
7 6 5 4 3 2 1 0 <Column> 0 1 2 3 4 5 6 7 8

v Rows v
0 1 2 3 4 5 6 7 0 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 1 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 2 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 3 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 4 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 5 93 94 95 96 97 98 99 100 101

Allocated for special characters (dynamically assigned)
Allocated for English alphabets (dynamically assigned)
Allocated for both handed buttons (fixed assignment)
Inaccessible / irrelevent keys

Figure 3: Representation of the metadata provided by the generated keyboards

the cost convergence. Different keyboard layouts with lower costs can be generated by running
LayoutRL’s algorithm.

3 EVALUATION

After the Run Series function is completed, several artifacts are produced that can be utilized to
evaluate the generated layout design. The artifacts are the best keyboard design, the cost of using
that keyboard to type the corpus, the state/action value matrix, and a series of costs generated by
each episode. In the following sections, each of the artifacts is evaluated and analyzed.

3.1 ARTIFACT: BEST KEYBOARD

This artifact is generated as a dictionary, where the keys represent the alphabets/symbols and the
values identify the corresponding button number along with other metadata like which hand is used
for the stroke, row number, column number, which finger is used for the stroke, if shift is used, and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Keyboard Uses traditional layout
structure

Cost of corpus comple-
tion

comparative
cost

QWERTY Yes 37373 100%
AZERTY (Eggers et al., 2003) Yes 38618 103.3%
Colemak (Francis, 2015) Yes 36210 96.9%
Ant-keyboard (Eggers et al., 2003) No 30422 81.4%
LayoutRL Yes 32765 87.6%

Table 1: Cost performance comparison with best designs from LayoutRL with other standard key-
board layouts

the button number. This lets us reconstruct the physical keyboard layouts. Figure 3 provides a visual
representation of the metadata provided by the dictionary.

D T

HF

N

K

B

Y

W

S

X

M

E

A

J

V

I

O

G

L

Q

U

Z

, & 1 < ` } ‘ 3 + ? ! 6 { = . * 4] ^ ;

7 ~

(9 / %

“ 2

> _

- #

:)

$ \

0 5 [8

R
Right Shift

Space

L
Left Shift

| @

PRC

Enter

L

B

M

N

Z

X

H

C

W

S

J

P

R

V

G

I

T

D

Q

O

E

K

A

U

Y

F

%] # } > & < _ 4 6 7 5 (\ ` * ! } “ 8

^ ~

0 -

1 ’

(|

= $

. :

Enter

, ;

? @

2 [

3 +

9 /

R
Right Shift

Space

L
Left Shift

(a)

(b)

Figure 4: Samples of Keyboards generated by ’LayoutRL’ with low cost compared to the ’QW-
ERTY’ Layout (a) Best Layout 1 (b) Best Layout 2 from ’LayoutRL’.

Figure 3 demonstrates the numbering of all 102 keys in the layout. LayoutRL returns the best
keyboard layout in a dictionary containing the hand, row, and column which can be mapped to the
key locations. For example, key 38 indicates that this key is on the left side of the layout having
been placed exactly at the 2nd row and 3rd column.

3.2 ARTIFACT: COST OF USING THE BEST KEYBOARD DESIGNS AND STATE/ACTION
VALUE MATRIX

As discussed and shown in section 2.2 and Figure 3, our design keeps the generated layout similar
to ’QWERTY’; the generated keyboard layouts follow the traditional keyboards in the placement
of the alphabet and special characters in their separate sections. Figure 4 shows two such layouts
with 12% and 12.5% lower cost scores than the QWERTY keyboard. We can see the cost for each
of the six ergonomic criteria for the second layout in table 2. Though the table does not perform
exceptionally in any particular aspects other than ’Big steps’, the cumulative cost is lower than all
the traditional layouts. As the layout is not performing highly in any particular area, specific design
criteria or patterns are hard to identify in the design. We compare the cost of the best designs from
’LayoutRL’ with other standard layouts as demonstrated by table 1. This table shows that the cost
determined according to the six ergonomic criteria, LayoutRL beats every standard layout except
the Ant-keyboard layout. However, the lower cost of the Ant-keyboard is due to the free mix of the
alphabet and non-alphabet characters, resulting in high optimization of the space. Yet, it is not a
traditional layout structure and required special button placement in the physical layout. From table
1, we conclude that our best designs adhere to the traditional keyboard structure while reducing the
typing cost making them feasible to use with regular keyboard with custom keybinding software.
This removes the hurdles of designing and manufacturing new products. Additionally, users can
explore these layouts without any minimal cost.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Moreover, The state/Action matrix is another artifact in LayoutRL’s results. It is initially uniform
while policy learning, and evolves with every episode. Figure 5 shows how the values are adjusted
over time. After initiation with uniform values, the first episode creates a keyboard layout and
compares its cost against the base cost. If the new cost is lower than the base cost the alphabet-
key pairs within the state/action matrix are set to a higher value than the rest which can be seen in
the first image in figure 5. Here, the matrix colors are black and white representing lower weight
for the unassigned buttons and higher value for the assigned ones respectively. Over time different
alphabet-keys are tested in different layouts per episode. The new costs per episode are compared
against the weighted average of previous layouts, leading to the evolution of the state/action matrix
as shown in the later three images in figure 5. We can observe a converging pattern in the matrix
over time.

Episode 1 Episode 500 Episode 1000 Episode 3000

Figure 5: The evolution of the state/action value matrix.

3.3 ARTIFACT: SERIES OF COST/EPISODE

The last artifact helps us understand how the costs of the layout design adjust over time. In figure
6 for episodes 0-2400, the episodes are run with random assignments. This helps us prepare the
state/value matrix for optimization in the later episodes. In the first 2400 episodes, we can see
that there is no converging pattern in the costs of the generated layout as expected from a random
assignment strategy.

Figure 6: The evolution of the state/action value matrix. Hyperparameters (Preparatory episodes =
2400, Optimizing episodes = 3000, Learning rate = 0.4, Triviality = 10)

After 2400 episodes of random assignments, the optimization episodes start where we observe a
sharp decline in the costs of the generated layout according to the figure 6. This is due to the policy
defined for the assignments of alphabet-key pairs. It indicates the improvement in the generated
layout for the optimizing episodes. The cost values converge near the cost of 33000 in this particular
case. As the arrangements are initiated randomly for the primary episodes, the resulting keyboard
and minimum cost at the end of each series can differ to some extent, as seen in figure 4.

In addition to the artifacts discussed above, our methodology allows us to determine which keyboard
layout performs best among each of the six ergonomic criteria. In table 2 we can observe the Cole-
mak layout achieved the lowest cost in the ’Accessibility and Load’ ergonomic criteria.
Considering the frequency of letters in the English language, the most common characters include

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Keyboards Cost for
Accessibility Key Hand Consecutive Big steps Hit

and load Number Alteration finger use direction
QWERTY 1308 15571 13100 325 3826 3154
AZERTY 1555 15812 13398 346 3983 3272
Colemak 954* 15571 12478 95* 3780 3223

Ant-keyboard 971 15505* 9915* 390 1844 1689*
LayoutRL 1553 15615 10722 703 1760* 2722

MLRL 1060 15553 13241 668 2864 2842

Table 2: The individual cost comparison between the six ergonomic criteria for different keyboards
and LayoutRL

E, A, R, and O. The placement of most of these characters in the Colemak layout approximates the
hand’s natural resting position on a keyboard. This leads to a lower cost for this ergonomic criteria.
The cost for Number of Keys is more or less similar for all the layouts as it highly correlates
to the number of alphabets that are to be typed. The slight change in values is caused by the use of
’shift’ and ’alt’ (in AZERTY) keys for typing capital alphabets and special characters. The Hand
Alteration cost is lowest for Ant-keyboard, implying the possibility of using the same hand for
consecutive characters while typing is minimal. Also, the low Hit direction cost indicates
that while using the Ant-keyboard, the inner fingers are seldom used immediately after the use of an
outer one. Colemak performs highly in the Consecutive use of fingers criteria, imply-
ing that the layout minimizes using the same finger of the same hand for back-to-back keystrokes.
Though our generated keyboard may not perform exceptionally in specific ergonomic criteria except
Big step, the cumulative cost of the layout outperforms all the traditional designs.

3.4 DISCUSSION

In this work, we demonstrate how Reinforcement learning can be used to optimize keyboard layout.
Although various optimization algorithms have been used in this particular problem, we are the first
to use the RL approach to solve for optimization. Our proposed method, ’LayoutRL’ can optimize
the keyboard layout and generate various optimized layouts over many standard keyboards such
as ’QWERTY’, ’Colemak’, etc. Furthermore, the research on such optimization problems has indi-
cated the popularity of ’QWERTY’ and its familiarity with users. This led many researchers to focus
on proposing layouts having close similarities to the ’QWERTY’. We adopted this constraint in our
method also by dividing the state space into two sections for alphabets and non-alphabets. This
’QWERTY’ like-similar properties addition to our algorithm enhances the usefulness of the best
layouts from ’LayoutRL’ because it enables these layouts to be deployed in real life to the users, not
just from a theoretical perspective. Additionally, we address the ergonomic perspective considered
in different keyboard optimization problems in this work. Six ergonomics criteria have been used in
various keyboard layout optimization problems (Eggers et al., 2003; Deshwal & Deb, 2006). While
LayoutRL optimizes the keyboard layouts utilizing these six criteria, we further explored these cri-
teria by comparing their individual costs for different standard layouts. We believe this problem
can be further optimized by incorporating aspects like unigrams, bigrams, sequence frequency of
characters in the English language and ergonomic criteria along with their relative weights.

4 CONCLUSION

We introduced Reinforcement Learning (RL) for the first time to optimize layouts for English key-
boards. Our approach integrates ergonomic criteria and practical design considerations to generate
optimized layouts. The best layouts produced by our method demonstrate significant improvements
over the traditional ’QWERTY’ layout and other conventional designs. Our results indicate that lay-
outs generated by ‘LayoutRL’ achieve approximately 12.4% lower costs than ‘QWERTY’. More-
over, these layouts outperform conventional ones in terms of cost-efficiency when simulated with a
standard English corpus. This RL-based optimization effectively generates highly efficient keyboard
layouts and can be extended to various design contexts, including touchscreen devices, smartphones,
virtual keyboards, and gesture typing. The broad applicability of our method highlights its robust-
ness. In future work, we plan to explore the use of similar RL-based optimization techniques for
keyboard layouts on a wide range of digital devices.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Barto Andrew and Sutton Richard S. Reinforcement learning: An introduction. 2018.

Xiaojun Bi and Shumin Zhai. Ijqwerty: What difference does one key change make? gesture
typing keyboard optimization bounded by one key position change from qwerty. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems, CHI ’16, pp. 49–58,
New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450333627. doi:
10.1145/2858036.2858421. URL https://doi.org/10.1145/2858036.2858421.

Xiaojun Bi, Barton A. Smith, and Shumin Zhai. Quasi-qwerty soft keyboard optimization. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10,
pp. 283–286, New York, NY, USA, 2010. Association for Computing Machinery. ISBN
9781605589299. doi: 10.1145/1753326.1753367. URL https://doi.org/10.1145/
1753326.1753367.

Xiaojun Bi, Tom Ouyang, and Shumin Zhai. Both complete and correct? multi-objective opti-
mization of touchscreen keyboard. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, CHI ’14, pp. 2297–2306, New York, NY, USA, 2014. Associa-
tion for Computing Machinery. ISBN 9781450324731. doi: 10.1145/2556288.2557414. URL
https://doi.org/10.1145/2556288.2557414.

P.S. Deshwal and K. Deb. Ergonomic design of an optimal hindi keyboard for convenient use. In
2006 IEEE International Conference on Evolutionary Computation, pp. 2187–2194, 2006. doi:
10.1109/CEC.2006.1688577.

Mark Dunlop and John Levine. Multidimensional pareto optimization of touchscreen keyboards
for speed, familiarity and improved spell checking. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’12, pp. 2669–2678, New York, NY, USA, 2012.
Association for Computing Machinery. ISBN 9781450310154. doi: 10.1145/2207676.2208659.
URL https://doi.org/10.1145/2207676.2208659.

Jan Eggers, Dominique Feillet, Steffen Kehl, Marc Oliver Wagner, and Bernard Yannou. Opti-
mization of the keyboard arrangement problem using an ant colony algorithm. European Jour-
nal of Operational Research, 148(3):672–686, 2003. ISSN 0377-2217. doi: https://doi.org/10.
1016/S0377-2217(02)00489-7. URL https://www.sciencedirect.com/science/
article/pii/S0377221702004897.

Katherine Fennedy, Angad Srivastava, Sylvain Malacria, and Simon T. Perrault. Towards a unified
and efficient command selection mechanism for touch-based devices using soft keyboard hotkeys.
ACM Trans. Comput.-Hum. Interact., 29(1), January 2022. ISSN 1073-0516. doi: 10.1145/
3476510. URL https://doi.org/10.1145/3476510.

Darryl Francis. Dvorak and colemak keyboards. Word Ways, 48(4):17, 2015.

Soumalya Ghosh, Sayan Sarcar, and Debasis Samanta. Designing an efficient virtual keyboard for
text composition in bengali. In Proceedings of the 3rd Indian Conference on Human-Computer
Interaction, IndiaHCI ’11, pp. 84–87, New York, NY, USA, 2011. Association for Computing
Machinery. ISBN 9781450307291. doi: 10.1145/2407796.2407809. URL https://doi.
org/10.1145/2407796.2407809.

David E Glover. Solving a complex keyboard configuration problem through generalized adaptive
search. Genetic algorithms and simulated annealing, 1987.

Byungkil Han and Kwangtaek Kim. Typing performance evaluation with multimodal soft keyboard
completely integrated in commercial mobile devices. Journal on Multimodal User Interfaces, 9
(3):173–181, Sep 2015. ISSN 1783-8738. doi: 10.1007/s12193-015-0177-4. URL https:
//doi.org/10.1007/s12193-015-0177-4.

Ana Herthel and Anand Subramanian. Optimizing single-finger keyboard layouts on smartphones.
Computers Operations Research, 120:104947, 04 2020. doi: 10.1016/j.cor.2020.104947.

11

https://doi.org/10.1145/2858036.2858421
https://doi.org/10.1145/1753326.1753367
https://doi.org/10.1145/1753326.1753367
https://doi.org/10.1145/2556288.2557414
https://doi.org/10.1145/2207676.2208659
https://www.sciencedirect.com/science/article/pii/S0377221702004897
https://www.sciencedirect.com/science/article/pii/S0377221702004897
https://doi.org/10.1145/3476510
https://doi.org/10.1145/2407796.2407809
https://doi.org/10.1145/2407796.2407809
https://doi.org/10.1007/s12193-015-0177-4
https://doi.org/10.1007/s12193-015-0177-4

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ahmer Khan and Kalyanmoy Deb. Optimizing keyboard configuration using single and multi-
objective evolutionary algorithms. In Proceedings of the Companion Conference on Genetic and
Evolutionary Computation, GECCO ’23 Companion, pp. 219–222, New York, NY, USA, 2023.
Association for Computing Machinery. ISBN 9798400701207. doi: 10.1145/3583133.3590580.
URL https://doi.org/10.1145/3583133.3590580.

Emad Khorshid, Abdulaziz Alfadhli, and Majed Majeed. A new optimal arabic keyboard layout
using genetic algorithm. Int. J. of Design Engineering, 3:25 – 40, 01 2010. doi: 10.1504/IJDE.
2010.032821.

Tae-Ho Lee, Sunwoong Kim, Taehyun Kim, Jin-Sung Kim, and Hyuk-Jae Lee. Virtual keyboards
with real-time and robust deep learning-based gesture recognition. IEEE Transactions on Human-
Machine Systems, 52(4):725–735, 2022. doi: 10.1109/THMS.2022.3165165.

G.W. Lesher, B.J. Moulton, and D.J. Higginbotham. Optimal character arrangements for ambiguous
keyboards. IEEE Transactions on Rehabilitation Engineering, 6(4):415–423, 1998. doi: 10.1109/
86.736156.

JR Lewis, PJ Kennedy, and MJ LaLomia. Improved typing-key layouts for single-finger or stylus
input, 1992. Technical report, IBM Technical Report TR 54.692, IBM.

Chen Liao and Pilsung Choe. Chinese keyboard layout design based on polyphone disambigua-
tion and a genetic algorithm. International Journal of Human–Computer Interaction, 29(6):
391–403, 2013. doi: 10.1080/10447318.2013.777827. URL https://doi.org/10.1080/
10447318.2013.777827.

Lissa W Light and Peter Anderson. Designing better keyboards. AI EXPERT, 8:20–20, 1993.

Carlos Lugay, Yoshiki Kurata, Joseph Leofando, Janfil Pamisal, and Jeryl Salas. An analysis on the
effects of different types of keyboards on users’ productivity and hand muscle strain. 01 2022.
doi: 10.54941/ahfe1001980.

I. Scott MacKenzie and Shawn X. Zhang. The design and evaluation of a high-performance soft
keyboard. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’99, pp. 25–31, New York, NY, USA, 1999. Association for Computing Machinery. ISBN
0201485591. doi: 10.1145/302979.302983. URL https://doi.org/10.1145/302979.
302983.

Steffen Kehl Dominique Feillet Marc Oliver Wagner, Bernard Yannou and Jan Eggers. Ergonomic
modelling and optimization of the keyboard arrangement with an ant colony algorithm. Journal of
Engineering Design, 14(2):187–208, 2003. doi: 10.1080/0954482031000091509. URL https:
//doi.org/10.1080/0954482031000091509.

Claude Marsan. Perfectionnements aux claviers de machinesa écrire et similaires. brevet d’invention,
(76-23323):l, 1976.

Keren Nivasch and Amos Azaria. A deep genetic method for keyboard layout optimization. pp.
435–441, 11 2021. doi: 10.1109/ICTAI52525.2021.00070.

MH Oladeinde, CA Oladeinde, and EE Diagboya. Performance evaluation of three computer key-
board layouts for novice typists.

BJ Oommen, JS Valveti, and JR Zgierski. Application of genetic algorithms to the keyboard opti-
mization problem. Techincal Report, Carleton University, Ottawa, Canada, 1989.

Antti Oulasvirta, Anna Reichel, Wenbin Li, Yan Zhang, Myroslav Bachynskyi, Keith Vertanen, and
Per Ola Kristensson. Improving two-thumb text entry on touchscreen devices. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, pp. 2765–2774,
New York, NY, USA, 2013. Association for Computing Machinery. ISBN 9781450318990. doi:
10.1145/2470654.2481383. URL https://doi.org/10.1145/2470654.2481383.

12

https://doi.org/10.1145/3583133.3590580
https://doi.org/10.1080/10447318.2013.777827
https://doi.org/10.1080/10447318.2013.777827
https://doi.org/10.1145/302979.302983
https://doi.org/10.1145/302979.302983
https://doi.org/10.1080/0954482031000091509
https://doi.org/10.1080/0954482031000091509
https://doi.org/10.1145/2470654.2481383

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Brian A. Smith, Xiaojun Bi, and Shumin Zhai. Optimizing touchscreen keyboards for gesture
typing. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Com-
puting Systems, CHI ’15, pp. 3365–3374, New York, NY, USA, 2015. Association for Com-
puting Machinery. ISBN 9781450331456. doi: 10.1145/2702123.2702357. URL https:
//doi.org/10.1145/2702123.2702357.

Pradeepmon T.G., Vinay Panicker, and Rajagopalan Sridharan. Hybrid estimation of distribution
algorithms for solving a keyboard layout problem. Journal of Industrial and Production Engi-
neering, 35:1–16, 09 2018. doi: 10.1080/21681015.2018.1508080.

Colton Turner, Barbara Chaparro, Inga Sogaard, and Jibo He. The effects of keyboard layout and
size on smartphone typing performance. Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 64:985–989, 12 2020. doi: 10.1177/1071181320641237.

Shumin Zhai and Per Ola Kristensson. Interlaced qwerty: accommodating ease of visual search
and input flexibility in shape writing. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’08, pp. 593–596, New York, NY, USA, 2008. Association for
Computing Machinery. ISBN 9781605580111. doi: 10.1145/1357054.1357149. URL https:
//doi.org/10.1145/1357054.1357149.

Shumin Zhai, Michael Hunter, and Barton A. Smith. The metropolis keyboard - an exploration
of quantitative techniques for virtual keyboard design. In Proceedings of the 13th Annual ACM
Symposium on User Interface Software and Technology, UIST ’00, pp. 119–128, New York, NY,
USA, 2000. Association for Computing Machinery. ISBN 1581132123. doi: 10.1145/354401.
354424. URL https://doi.org/10.1145/354401.354424.

13

https://doi.org/10.1145/2702123.2702357
https://doi.org/10.1145/2702123.2702357
https://doi.org/10.1145/1357054.1357149
https://doi.org/10.1145/1357054.1357149
https://doi.org/10.1145/354401.354424

	Introduction
	Methodology
	Keyboard Structure and Ergonomics Criteria Considered
	Design Choices
	Markov Decision Process for LayoutRL
	Proposed Optimal keyboard design Algorithm

	Evaluation
	Artifact: Best Keyboard
	Artifact: Cost of using the Best Keyboard Designs and State/Action Value Matrix
	Artifact: Series of Cost/Episode
	Discussion

	Conclusion

