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Abstract

Coordinate compounds (CCs) and elaborate001
expressions (EEs) are coordinate constructions002
common in languages of East and Southeast003
Asia. Mortensen (2006) claims that (1) the lin-004
ear ordering of EEs and CCs in Hmong, Lahu,005
and Chinese can be predicted via phonological006
hierarchies and (2) these phonological hierar-007
chies lack a clear phonetic rationale. These008
claims are significant because morphosyntax009
has often been seen as in a feed-forward re-010
lationship with phonology, and phonological011
generalizations have often been assumed to012
be phonetically “natural”. We investigate013
whether the ordering of CCs and EEs can014
be learned empirically and whether computa-015
tional models (classifiers and sequence label-016
ing models) learn unnatural hierarchies similar017
to those posited by Mortensen (2006). We find018
that decision trees and SVMs learn to predict019
the order of CCs/EEs on the basis of phonol-020
ogy, with DTs learning hierarchies strikingly021
similar to those proposed by Mortensen. How-022
ever, we also find that a neural sequence la-023
beling model is able to learn the ordering of024
elaborate expressions in Hmong very effec-025
tively without using any phonological informa-026
tion. We argue that EE ordering can be learned027
through two independent routes: phonology028
and lexical distribution, presenting a more nu-029
anced picture than previous work. [ISO 639-3:030
hmn, lhu, cmn]031

1 Introduction032

In many languages of East and Southeast Asia,033

there are common constructions in which two034

words or phrases are coordinated without an overt035

marker like a conjunction (Hanna, 2013; Filbeck,036

1996; Johns and Strecker, 1987; Wheatley, 1982;037

Matisoff, 1973; Pan and Cao, 1972; Watson, 1966;038

Banker, 1964). In coordinate compounds (CCs),039

twowords are combined to form a compoundword040

whose semantics are often a generalization of those041

of the two conjoined words. Elaborate expressions042

(EEs) are similar, except that they can consist of 043

two phrases (rather than words) and include a re- 044

peated word. Take the following examples: 045

(1) Chinese coordinate compounds (CCs) 046

父母 fùmǔ father-mother ‘parents’
花木 huāmù flower-tree ‘vegetation’
天地 tiāndì heaven-earth ‘universe’
国家 guójiā country-home ‘nation’
风水 fēngshuǐ wind-water ‘geomancy’

047

(2) Lahu elaborate expressions (EEs) 048

a. ɔ̂
four

cē
corner

ɔ̂
four

phɔ̂
side

049

‘at every corner’ 050

b. chɔ
people

phôʔ
pile

chɔ
people

dì
lump

051

‘a throng of people’ 052

c. câ
eat

cûʔ
scarce

dɔ̀
drink

cûʔ
scarce

053

‘have nothing to eat or drink’ 054

Coordinating compounds are found throughout 055

the world, with varying semantic relationships be- 056

tween the whole and the parts (Obermüller, 2015). 057

Elaborate expressions are most common in main- 058

land Southeast Asia, where they occupy a position 059

of great prominence. They are often associated 060

with elevated styles of discourse, but they occur 061

in all genres and registers. 062

Earlier investigators have claimed the order 063

of the constituent words in CCs and EEs—in 064

some languages—is predictable by rule. Many 065

of the proposed ordering hierarchies are based 066

on phonology (Ting, 1975; Dai, 1986; Mortensen, 067

2006). Building on this earlier work, Mortensen 068

(2006) posited that Lahu EE orders could be pre- 069

dicted based on vowel quality—like Jingpho (Dai, 070

1986)—and that Hmong EE orders could be pre- 071

dicted based on tone, echoing earlier claims for 072

Chinese and Qe-Nao (Ting, 1975; Pan and Cao, 073

1972). These tone and vowel scales were, how- 074

ever, not easy to rationalize in phonetic terms and 075
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were used by Mortensen to argue for a phonology076

in which structure reigns supreme and in which077

phonetic substance plays only an epiphenomenal078

role.079

These claims have been viewed with skepticism080

for two reasons: morphosyntax has been widely081

seen as providing the inputs to phonology, not be-082

ing driven by phonology; and phonology, since083

Jakobson et al. (1951) and Chomsky and Halle084

(1968) has usually been seen as grounded in pho-085

netic categories. Some investigators have claimed086

that sound patterns that are not phonetically natu-087

ral are inherently unlearnable. They can exist only088

as linguistic fossils deposited by a history of lan-089

guage change. In this paper, we undertake to in-090

vestigate what kind of data is needed for (compu-091

tational) learners to acquire these patterns. We re-092

port the following findings:093

• Even rather simple classifiers like decision094

trees can learn to predict the order of EEs in095

isolation in over 96% of cases (Hmong) and096

79% of cases (Lahu) using only phonological097

information.098

• The decision trees for Hmong, Lahu, and Chi-099

nese mirror the phonological hierarchies pro-100

posed for these languages, suggesting that101

these hierarchies are empirically robust and102

learnable from the available evidence.103

• However, correct and incorrect orderings of104

Hmong EEs can be effectively distinguished105

in context by a neural sequence labeling106

model without any phonological information,107

suggesting that learners would not have to ac-108

quire the phonological generalization directly109

in order to produce well-formed EEs.110

2 Theoretical Significance111

The experiments reported in this paper have a bear-112

ing on two assumptions widely held in phonologi-113

cal theory:114

1. True phonological generalizations are always115

grounded in phonetic realities (phonology is116

natural)117

2. Phonology operates on the outputs of syntax118

and morphology (grammar is serial)119

Both of these assumptions have been contested. If120

Mortensen’s (2006) analysis of EE and CC order-121

ing is sound, neither of these assumptions can be122

entirely correct.123

2.1 Phonological patterns and phonetic 124

substance 125

Starting even before Prague School phonology, it 126

was widely assumed that the grammatical cate- 127

gories and patterns making reference to sound are 128

coherent in terms of physical (articulatory, acous- 129

tic, and psychophysical) dimensions. For phono- 130

logically distinctive features, this was codified by 131

Jakobson et al. (1951) and injected into gener- 132

ative phonology by Chomsky and Halle (1968). 133

Even more radical statements about the relation- 134

ship between phonological form and substance 135

have been made since then (Donegan and Stampe, 136

1979; Flemming, 2013; Hayes, 2011; Donegan 137

and Stampe, 2009; Steriade et al., 2001). While 138

there has never been a complete consensus on 139

the matter (Fudge, 1967; Hyman, 1970; Hale and 140

Reiss, 2000, 2008), it has been widely assumed 141

that phonological patterns that are phonetically in- 142

coherent cannot be learned by humans or can be 143

learned only with difficulty (Hayes and White, 144

2013). More recently, artificial grammar learning 145

experiments have been inconclusive but have sug- 146

gested that the difficult-to-learn phonological pat- 147

terns are structurally complex, not phonetically 148

unnatural (Moreton and Pater, 2012a,b). 149

The phonological ordering generalizations pro- 150

posed by Mortensen (2006) are structurally quite 151

simple, but often phonetically incoherent. For 152

Hmong EEs, ordering follows the hierarchy pre- 153

sented in Table 1; an EE with an 𝐴𝐵1𝐴𝐵2 form1 is 154

ordered such that, if 𝐵1 and 𝐵2 differ in tone, the 155

tone of 𝐵1 is higher on the hierarchy than the tone 156

of 𝐵2. This hierarchy has one phonetically reason-

Order Orthography IPA Description

1 -j ˥˧ high falling
2 -b ˥ high
3 -m ˨˩ low creaky
4 -s ˨ low
5 -v ˧˥ rising
6 -g ˧˩ falling breathy
7 -∅ ˧ mid

Table 1: Phonetic values of the tones of Hmong Daw,
organized according the the EE ordering scale proposed
by Mortensen (2006)

1𝐴𝐵1𝐴𝐵2 (as in Lahu chɔ phôʔ chɔ dì) is also denoted
as 𝐴𝐵𝐴𝐶 in the literature. We use 𝐴𝐵1𝐴𝐵2 in this paper to
indicate that the second and fourth words are closely related
as they form a potential coordinate compound.
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157
able aspect—the first two tones start high (though158

their relative rank seems arbitrary). The rest of the159

hierarchy is puzzling: it goes from lowest to low to160

rising to falling to neutral. Mortensen’s generaliza-161

tion for Lahu elaborate expressions would be eas-162

ier to reconcile with phonetic substance (the higher163

in vowel space a vowel is, the better a candidate it164

is for the first position) were it not that the best165

first-position vowel is /o/, a mid, back, rounded166

vowel. The ordering generalizations that have167

been proposed for Chinese are similarly arbitrary-168

looking—they can be stated in terms of historical169

tonal categories (like the Middle Chinese tones)170

but appear incoherent in modern lects, in which the171

tones have “wandered” phonetically to a dramatic172

degree.173

If it can be shown that these patterns can be174

learned from naturalistic data, that they are robust175

predictors of EE and CC ordering, and that models176

trained to detect correctly ordered EEs and CCs in177

running text learn to use this kind of phonological178

evidence to assign labels, it would be suggestive,179

though not definitive, evidence against the position180

that phonological constraints must be grounded in181

phonetic substance.182

2.2 Word order conditioned on phonology183

In mainstream generative linguistics, grammar has184

usually been viewed as a feed-forward produc-185

tion system. While the nature of this pipeline has186

changed over various revisions of the theory, a187

consistent theme is that phonology operates on the188

output of syntax (Chomsky, 1981, 1995) and that,189

therefore, syntax should not be sensitive to phonol-190

ogy.2 If phonology can determine word order, this191

has some specific implications for the phonology-192

syntax interface.193

In fact, there is mounting evidence that word194

order can be sensitive to phonology. It has long195

been suggested that dative shift in English is sensi-196

tive to phonological weight (Ross, 1967) although197

this claim has also been long contested (Wasow198

and Arnold, 2003). Some newer evidence comes199

from coordinate compound and echo reduplication200

constructions in Japanese, Korean, and Jingpho201

(Kwon and Masuda, 2019; Dai, 1986). An even202

2An important caveat is that—in some versions of genera-
tive grammar—syntactic structures are pure hierarchy and are
not linearized until PF (phonetic form), when abstract lexical
and functional categories are “spelled-out” (Fox and Pesetsky,
2005). This potentially opens the door for interaction between
phonology and word order.

more interesting case comes from Tagalog noun- 203

adjective order, which is sometimes viewed as be- 204

ing free but which is actually sensitive to a set of 205

phonological constraints (Shih and Zuraw, 2017). 206

The current case would enrich the body of rele- 207

vant evidence in part because, while these cases 208

are all instances of “soft” statistical tendencies, the 209

Hmong ordering generalization is claimed to be 210

nearly categorical (with a few, principled, excep- 211

tions). 212

3 Hypotheses 213

Based on the existing volume of work, we propose 214

the following hypotheses: 215

1. The order of Hmong and Lahu EEs and Chi- 216

nese CCs can be predicted phonologically 217

(out of context). 218

2. The “phonetically unnatural” phonological 219

scales proposed by Mortensen (2006) and 220

Ting (1975) predict the ordering of EEs in 221

Hmong and Lahu and CCs in Chinese (out of 222

context). 223

3. These scales can be learned by decision tree 224

classifiers (out of context). 225

4. Phonological information facilitates the 226

recognition of correctly and incorrectly 227

ordered Hmong EEs in context. 228

4 Data 229

We examine the ordering effects across three lan- 230

guages: Hmong, Lahu, and Chinese (with Middle 231

Chinese and Mandarin pronunciations). 232

For Hmong, we use a list of 3253 unique elabo- 233

rate expressions extracted from a 12 million-word 234

Hmong corpus,3 which was manually annotated 235

and validated by human experts. All of the EEs 236

are of the form 𝐴𝐵1𝐴𝐵2 where 𝐵1𝐵2 forms a co- 237

ordinate compound. We also use the entire cor- 238

pus for the EE tagging task described in Section 239

5.2. For Lahu, we use a list of 1400 EEs compiled 240

by Matisoff (1989, 2006),4 which contains both 241

𝐴𝐵1𝐴𝐵2 and 𝐵1𝐴𝐵2𝐴 forms. For Chinese, we 242

use a list of 254 antonymic coordinate compounds 243

𝐵1𝐵2 recorded in the Modern Chinese Dictionary 244

3From the soc.culture.hmong Usenet group and
available at https://github.com/released/on/
acceptance.

4Available at https://github.com/released/on/
acceptance.
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(Anonymous, 2016). Middle Chinese pronuncia-245

tions are retrieved from Wiktionary.5246

5 Experiments247

5.1 Learning Hmong, Lahu, and Chinese CC248

and EE Ordering with Classifiers over249

Phonological Features250

Experiment We first examine whether the or-251

ders in elaborate expressions and coordinate com-252

pounds can be learned by a classifier. We use the253

EE lists described in Section 4 as phrases with the254

attested ordering, and create an unattested list of255

EEs by switching the order of 𝐵1 and 𝐵2 (occa-256

sionally both orders are attested). We then formu-257

late the task as a binary classification problem to258

predict whether a given ordering is attested or unat-259

tested.260

To examine the degree to which the order can261

be predicted by phonology only, we use one-hot262

features of the onset, rhyme (vowel) and tone263

constituents in each syllable as classification fea-264

tures. We found that one-hot features were suffi-265

ciently expressive, and that using articulatory fea-266

tures (Mortensen et al., 2016) did not further im-267

prove the performance. In Section 5.3 we ana-268

lyze the effect of adding word embeddings to the269

feature set. For all classification experiments, we270

compute the 𝜒2 statistic on all input features and271

select the top 𝐾 features that most correlate with272

the class label, where 𝐾 is determined by a devel-273

opment set.274

We report the result on two types of classifiers:275

a decision tree (DT) classifier for maximal inter-276

pretability, and a support vector machine (SVM)277

with RBF kernel for the best classification per-278

formance.6 We also experimented with multi-279

layer perceptron classifiers of varying widths and280

depths, but they did not outperform SVM on this281

dataset. Since other classifiers do not offer the ex-282

plainability of DT or the performance of SVM, we283

only report results on these two models.284

We split the attested word list into 70%/30%285

train/test sets before augmenting it with unattested286

data in order to prevent the same EE from appear-287

ing in both the train and test sets. However, it288

would still be possible for the same (𝐵1, 𝐵2) to289

appear in both train and test sets with different290

𝐴 words (repeated words). To eliminate this pos-291

5Reconstruction from (Li, 1952)
6Classification models are trained using scikit-learn (Pe-

dregosa et al., 2011)

sibility, we also report results on randomly sam- 292

pled subsets of EEs wherein all (𝐵1, 𝐵2) pairs are 293

unique (so that there is no contamination across the 294

train and test sets). 295

Rule-Based Classification We also test how 296

well the ordering scales proposed in Mortensen 297

(2006) perform as a rule-based classifier, com- 298

pared to a DT and SVM trained on the dataset. Ta- 299

ble 2 shows the orders in Hmong, Lahu and Mid- 300

dle Chinese used in the rule-based classifier. When 301

there is a tie, the order is determined randomly. 302

Language Order

Hmong Tones j ≺ b ≺ m ≺ s ≺ v ≺ g ≺ ∅
Lahu Rhymes o ≺ u ≺ i ≺ ɨ ≺ ә ≺ ɔ ≺ e ≺ ɛ ≺ a
MC Tones ping ≺ shang ≺ qu ≺ ru

Table 2: Linear ordering of tones for rule-based classi-
fication, based on Mortensen (2006). 𝑎 ≺ 𝑏 represents
that 𝑎 occurs before 𝑏

Results Table 3 shows the classification accu- 303

racies for all languages. We report results on 304

two classifiers, using two different sets of fea- 305

tures: focal constituent for the group of phonemes 306

corresponding to the ordering rules (Rhyme for 307

Lahu and Tone for Hmong and Chinese), and all 308

constituents for all the onset, rhyme, and tone 309

phonemes. 310

Weobserve a robust correlation between phonol- 311

ogy and attested orders in all four languages, as 312

seen by the high accuracy a classifier can attain. 313

Even on unique (𝐵1, 𝐵2) pairs, the best classifier 314

and feature set achieves 71%–88% accuracy. This 315

means that the ordering effects are not simply due 316

to frequent (𝐵1, 𝐵2) pairs skewing the statistics; 317

rather, the ordering effect is robust across many 318

(𝐵1, 𝐵2) pairs in the four languages. 319

With only the focal constituent feature set, we 320

observe comparable accuracy between the rule- 321

based classification and either statistical classifier. 322

This suggests that the degree to which the focal 323

constituent alone determines EE ordering is no 324

more than the linear ordering scale proposed by 325

Mortensen (2006).7 However, when phonemes 326

from other constituents are included in the feature 327

set and an SVM is used, we observe an increase 328

of 3–11% in accuracy. This suggests the existence 329

7We ran an exhaustive search on all permutations of the
tones/vowels, and found the one presented here performs the
best as a rule-based classifier.
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Language Hmong Lahu Mandarin Middle Chinese

Data All Unique All Unique Unique Unique

N 6420 1404 2748 1664 254 251
Rules 88.8% 85.5% 68.3% 66.3% – 70.7%
DT (focal constituent) 89.0% 85.0% 67.2% 64.3% 65.3% 70.4%
DT (all constituents) 96.4% 85.3% 79.7% 67.8% 68.1% 75.3%
SVM (focal constituent) 89.1% 85.4% 67.3% 64.4% 65.3% 70.4%
SVM (all constituents) 96.7% 88.3% 81.9% 71.3% 76.1% 81.0%

Table 3: Classification accuracies with phoneme features (chance is 50%). Focal constituent is tone for Hmong
and Chinese and rhyme for Lahu. All constituents include onset, rhyme and tone. Unique for Hmong and Lahu is
the average result of 10 randomly sampled subsets of EEs with unique (𝐵1, 𝐵2). Chinese CCs are always unique.

ofmore complex phonological interactions beyond330

the linear scale over the focal constituent.331

Visualization of Learned Decision Tree By ex-332

amining the learned decision tree, one can derive333

a linear hierarchy based on the order of features334

on the no branch, and whether each branching ac-335

tion leads to majority attested words or majority336

unattested words. We find that phonemes that ap-337

pear topmost in the tree (the most order-defining338

phonemes) are exactly those at the two ends of the339

scales proposed by Mortensen (2006), and a deci-340

sion tree classifier can learn a strikingly similar hi-341

erarchy, as shown in Table 4. Details on the deriva-342

tion and the learned tree are shown in Appendix A.343

Language Order

Hmong Ling. j ≺ b ≺ m ≺ s ≺ v ≺ g ≺ ∅
Tree j ≺ b ≺ m ≺ v ≺ s ≺ g ≺ ∅

Lahu Ling. o ≺ u ≺ i ≺ ɨ ≺ ә ≺ ɔ ≺ e ≺ ɛ ≺ a
Tree o ≺ u ≺ ... ≺ e ≺ ɔ ≺ ɛ ≺ a

MC Ling. ping ≺ shang ≺ qu ≺ ru
Tree ping ≺ shang ≺ qu ≺ ru

Table 4: Linear orders similar to those posited by
Mortensen (2006) are learned by a decision tree

5.2 Learning Hmong EE Ordering as344

Sequence Labeling345

Experiment Now we investigate whether mod-346

els can learn to recognize elaborate expressions347

and their ordering effects in context in a natural-348

istic corpus. We limit our experiments to Hmong349

in this section due to the unavailability of EE-350

annotated corpora in other languages. The Hmong351

dataset is annotated with BIO tags, where a BIII352

sequence represents a labeled EE. We train a neu- 353

ral sequence labeling model to predict the BIO tag 354

of each word in a sentence. 355

We experiment with two types of feature extrac- 356

tors: a bidirectional LSTM and a CNN. We use 357

both word-level and phoneme-level embeddings, 358

following the intuition that the phonologically con- 359

ditioned ordering helps speakers recognize an EE 360

structure in context. Implementation details and 361

hyperparameters are described in Appendix B. 362

In addition to the vanilla tagging task, to investi- 363

gate whether the models can learn the ordering of 364

EEs in context, we perform an experiment where 365

the orders of 𝐵1 and 𝐵2 are swapped for half of the 366

EEs, and the tags for the swapped EEs are changed 367

to B-fake and I-fake. This renders the task more 368

difficult as the model needs to both identify an EE 369

in context and classify whether the order has been 370

changed. 371

To prevent the model from memorizing certain 372

EEs, we split the data into train/val/test sets by par- 373

titioning the list of EEs into disjoint sets, so that 374

EEs in the validation and test sets do not appear 375

in the training split. This way, the model is only 376

given unseen EEs at test time. Furthermore, we 377

partition the EEs into swap/no-swap so that occur- 378

rences of each EE are either all swapped or all kept 379

unchanged. 380

Baseline The simplest baseline model would be 381

to tag every occurrence of 𝐴𝐵1𝐴𝐵2 (a 4-gram 382

where the first and third words are identical) in 383

the corpus as an EE without any consideration 384

of the word or its phonology. Doing so yields 385

100% recall but very poor precision, since most 386

occurrences of 𝐴𝐵1𝐴𝐵2 are not elaborate expres- 387

sions. Three strategies are employed to improve 388

the performance of this baseline: (1) ensure that 389
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(𝐴, 𝐵1, 𝐵2) are proper Hmong syllables parsable390

by a regular expression classifier; (2) set a word391

vector similarity threshold between the two CC392

words (𝐵1 and 𝐵2) so that 𝑐𝑜𝑠𝑖𝑛𝑒(𝑣𝐵1 , 𝑣𝐵2) > 𝛼,393

since many Hmong EEs have the two CC words of394

similar meanings (Mortensen, 2006);8 (3) ensure395

the tonal scale in Table 2 is followed between 𝐵1396

and 𝐵2397

Model F1 Precision Recall

Baseline 41.32 26.15 100.00
+ regex parsable 49.24 32.83 100.00
+ wv. sim. thresh 60.99 50.29 77.99
+ tonal scale 66.66 59.37 76.56

LSTM 74.10 66.12 84.36
+ phonemes 73.14 65.39 83.09
LSTM + swap clf. 64.38 57.54 73.29
+ phonemes 63.97 56.93 73.17

CNN 90.79 87.36 94.52
+ phonemes 90.26 85.98 95.58
CNN + swap clf. 89.01 85.73 92.62
+ phonemes 89.26 86.00 92.79

Table 5: Precision, recall and F1 scores for sequence
tagging on the test set. Results are averaged over 9 runs
(3 data splits ×3 initial seeds)

Results We report the F1 score of predicted tags398

on different models in Table 5. For the baseline399

model, all three strategies improve the tagging per-400

formance, suggesting that both semantic similarity401

and adherence to the tonal scale are indicators of402

being an EE. Despite the reasonable performance403

of the baseline, a neural sequence labeling model404

is able to beat it substantially, achieving a high405

F1 score in the EE tagging task. In particular, a406

CNN feature extractor outperforms an LSTM fea-407

ture extractor. We hypothesize that this is due to408

a convolution kernel being able to capture non-409

local interactions in an EE (i.e., identical first and410

third words, and similar second and fourth words),411

whereas the linear nature of an LSTM encoder be-412

comes restrictive in this task.413

When half of the EEs in the form of𝐴𝐵1𝐴𝐵2 are414

changed to 𝐴𝐵2𝐴𝐵1 and their tags are modified to415

B-fake and I-fake (swap clf. rows in the table),416

8Word vectors are trained usingWord2Vec (Mikolov et al.,
2013). We find that SkipGram outperforms CBOW on this
task, hence all results reported are SkipGram embeddings. 𝛼
is determined by grid search and we find that 𝛼 = 0.4 works
best.

themodel is still able to achieve high F1 scores that 417

are only slightly lower than the unswapped coun- 418

terpart, even though the B and I tags have split 419

into two types. The fact that increasing the number 420

of classes does not degrade the performance very 421

much suggests that the model can learn to distin- 422

guish attested and unattested orderings very well. 423

To quantify the model’s ability to learn Hmong EE 424

ordering, we calculate an in-context classification 425

accuracy by examining how many correctly identi- 426

fied EEs also have a correct prediction in whether 427

the order has been swapped. We find that the in- 428

context classification accuracy is 99.1% for LSTM 429

and 99.5% for CNN, which are both exceptionally 430

high. Note that this analysis excludes EEs that are 431

not correct identified (both false positives and false 432

negatives). Full confusion matrices are shown in 433

Appendix C. 434

Interestingly, we find that adding phoneme level 435

features to the input of either LSTM or CNN does 436

not improve the performance in both the swapped 437

and unswapped cases.9 This result is in contrast 438

with other similar sequence tagging tasks (e.g., 439

NER), where character level features are found 440

to improve performance (Yang et al., 2018; Kuru 441

et al., 2016). More importantly, this result presents 442

a contrast to the robust phonological patterns found 443

in the previous section, as it demonstrates that the 444

model is able to tag elaborate expressions and clas- 445

sify their orders successfully without any refer- 446

ence to phonology. This suggests that the ordering 447

(𝐵1, 𝐵2) can be predicted not only via phonology, 448

but also via word-level features through the embed- 449

dings trained with the tagging model. 450

Visualization of Word Embeddings It is a 451

rather perplexing result that a tagging model can 452

learn the ordering of EEs via word embeddings 453

only. Figure 1 shows the UMAP projection 454

(McInnes et al., 2018) of two types of learned em- 455

beddings into 2D space. Embeddings from the tag- 456

ging model show clear separation between words 457

that tend to occur first in an EE (in the 𝐵1 posi- 458

tion) and words that tend to occur second, where 459

as embeddings trained separately on the SkipGram 460

algorithm (Mikolov et al., 2013) show no separa- 461

tion. This suggests that the learned separation is 462

unique to the tagging model. However, there is no 463

way for the model to memorize EEs from the train- 464

9We also tried using character features or using only tones
(the focal constituent for Hmong), but they were equally inef-
fective.
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Figure 1: UMAP projection of word embeddings from
neural sequence tagger (top) and separately trained
SkipGram (bottom). Each circle is one Hmong word.
The pie indicates proportion of times the word occurs
first or second. Size of the dot indicates frequency in
list of EEs.

ing set, since the test set contains non-overlapping465

EEs. How, then, would the tagging model learn466

what words tend to occur first and what words tend467

to occur second in an EE?468

It appears that the model is able to learn the or-469

der of 𝐵1 and 𝐵2 from other occurrences of these470

words in the training set. For an EE 𝐴𝐵1𝐴𝐵2 in471

the test set, although 𝐴𝐵1𝐴𝐵2 never appears in472

the training set, 𝐵1 and 𝐵2 do appear either as a473

coordinate compound 𝐵1𝐵2/𝐵2𝐵1, or as parts of474

another EE 𝑋𝐵1𝑋𝐵2/𝑋𝐵2𝑋𝐵1 in the training set.475

As shown in Figure 2, appearances of the same or-476

der greatly outnumbers those of the reversed order.477

As a result, the model may be able to learn which478

words tend to be 𝐵1 or 𝐵2 from these distributional479

properties of the EE words.480

B1B2 B2B1 XB1XB2 XB2XB1

100

101

102

103

Co
un

t i
n 
tra

in
 sp

lit

Occurrence of Test B1B2 in training corpus

Figure 2: Occurrence of 𝐵1 and 𝐵2 words in test set
EEs (𝐴𝐵1𝐴𝐵2) in the training set as different forms
(𝑋 ≠ 𝐴). Forms with the same ordering (blue and
green) outnumbers formswith the reversed ordering (or-
ange and red)

Data All Unique

focal constituent (tone) 89.1% 85.4%
all phonemes 96.7% 88.8%

wv-sg 94.4% 71.1%
wv-tagger 96.4% 88.3%
all phonemes + wv-sg 96.6% 88.8%
all phonemes + wv-tagger 97.1% 93.8%

Table 6: Classification accuracies for Hmong using
SVM with phoneme and word embedding features.
First two rows are from Table 3. wv-sg: separately
trained skipgram embeddings. wv-tagger: embeddings
from the CNN sequence tagging model

5.3 Learning Hmong EE Ordering with 481

Classifiers over Word Vectors 482

Experiment To further investigate to what ex- 483

tent word embeddings determine the order of 484

(𝐵1, 𝐵2) in Hmong EEs, we revisit the out-of- 485

context classification experiment presented in sec- 486

tion 5.1, this time adding word vector features. We 487

experiment with both SkipGram embeddings and 488

embeddings extracted from the CNN sequence tag- 489

gingmodel (without swapping). Embeddings from 490

the tagging model are expected to perform better 491

on the classification task, since they are optimized 492

to detect words contained in EEs in the attested 493

order. On the other hand, embeddings separately 494

trained via SkipGram aremore “pure,” as they only 495

capture the distributional semantics of the words 496

without additional information. 497
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Results Table 6 shows the classification accura-498

cies using word embedding features, as well as499

word embedding combined with one-hot phoneme500

features. We observe that embeddings trained with501

the tagger indeed perform better than those trained502

via SkipGram. What is surprising is that using em-503

bedding features from the tagger alone produces504

a classification accuracy comparable to using all505

phonemes (88%). Moreover, an even higher ac-506

curacy can be achieved by combining phoneme507

features with embeddings from the tagger. This508

suggests that EE ordering in Hmong can be pre-509

dicted from two independent butmutually reinforc-510

ing routes, namely phonology and lexical distribu-511

tion. Either method alone is a good predictor of the512

ordering, but combining the two achieves the best513

accuracy, because the two routes each offer addi-514

tional information that are important in predicting515

the ordering of Hmong EEs.516

6 Discussion517

In this paper, we set out to explore the ways that518

the order of words in EEs and CCs in Hmong,519

Lahu, and Chinese can be learned by computa-520

tional models. Motivated by earlier linguists’ find-521

ings, we first use phonological features alone to522

discriminate between attested and unattested or-523

ders of words. We find that in the case of all three524

languages, the order of words can indeed be pre-525

dicted phonologically, and the “phonetically un-526

natural” hierarchies do predict the ordering of EEs527

and CCs. Furthermore, a decision tree classifier528

is able to learn more-or-less the same hierarchies,529

suggesting that speakers of those languages could530

in principle learn the linear hierarchies through ex-531

posure to the language, and use these hierarchies532

to decide on the correct order of words in EEs and533

CCs. These findings provide positive evidence for534

hypotheses 1–3 from Section 3. We then explored535

the ways models can utilize context and distribu-536

tional patterns of words to learn the orders in the537

sequence tagging experiments, and we were not538

able to find evidence for hypothesis 4. We were539

surprised to find that models can perform well us-540

ing only word features, and that adding phonemes541

to the feature set does not help at all.542

The seemingly contradictory results of our in-543

vestigation point in an interesting direction. Infor-544

mation on which a model could rely to learn the545

ordering of these constructions is present redun-546

dantly in phonology (on the one hand) and in lexi-547

cal and distributional patterns (on the other). When 548

allowed to cooperate on a level playing field, em- 549

beddings and phonology-based features both con- 550

tribute to the identification of well-formed EEs at 551

a similar level. In other words, while it is possi- 552

ble that language users may use phonological hi- 553

erarchies like those proposed in Mortensen (2006) 554

to select appropriate orders for EEs and CCs, it is 555

clearly not the case that they must (though they 556

will perform a bit better if they do). These phono- 557

logical hierarchies may have been more order- 558

defining in the history of the languages, but as 559

the sequence tagging experiments have suggested, 560

they may also have become fossilized in the lex- 561

icon and in distributional patterns in the modern 562

form. Many times, a (𝐵1, 𝐵2) pair appears abun- 563

dantly in multiples EEs (as 𝑋𝐵1𝑋𝐵2), as a CC (as 564

𝐵1𝐵2), or in other—more complicated—discourse 565

patterns in the same order, so that language users 566

could learnwhether a givenword tends to appear in 567

the 𝐵1 or 𝐵2 position. If a tagging model can learn 568

a word representation that distinguishes between 569

𝐵1 and 𝐵2, language users may do the same. 570

In a sense, these results should be pleasing 571

to both the “structure” (Mortensen, Hale, Reiss) 572

and the “substance” (Hayes, Flemming, Steriade) 573

camps. They show, once again, that generaliza- 574

tions about sounds can be robust but phonetically 575

arbitrary. However, they leave open the possibil- 576

ity that the relevant synchronic generalizations are 577

not actually phonological. 578

7 Future Directions 579

We have shown two independent routes, namely 580

phonology and lexical distribution, by which com- 581

putational methods can predict the order of words 582

in Hmong EEs. A language user could probably 583

do the same, relying on both routes to some degree 584

when they need to select the order of words in EEs. 585

However, there is no way to know for sure without 586

conducting a psycholinguistic experiment with na- 587

tive speakers, which would shed light on whether 588

any of the modeling actually translates to human 589

cognition. The Chinese and Lahu cases also raise 590

interesting questions for future work: does the 591

same two-route mechanism work for EEs and CCs 592

in these languages as well? Answering this ques- 593

tion will require additional data collection and an- 594

notation, but will shed significant light on this the- 595

oretically important issue. 596

8



References597

Anonymous. 2016. Xiandai Hanyu Cidian. Commer-598
cial Press, Beijing.599

Elizabeth M. Banker. 1964. Bahnar reduplication.600
Mon-Khmer Studies, 1:119–134.601

Noam Chomsky. 1981. Lectures on Government and602
Binding: The Pisa Lectures. Studies in Generative603
Grammar. de Gruyter.604

Noam Chomsky. 1995. The Minimalist Program. MIT605
Press.606

Noam Chomsky and Morris Halle. 1968. The Sound607
Pattern of English. ERIC.608

Qingxia Dai. 1986. Jingpo yu binglie jiegou fuheci de609
yuanyin hexie. Minzu Yuwen, 1986(5):23–29.610

Patricia Donegan andDavid Stampe. 2009. Hypotheses611
of natural phonology. Poznań Studies in Contempo-612
rary Linguistics, 45(1):1–31.613

Patricia J Donegan and David Stampe. 1979. The study614
of natural phonology. Current approaches to phono-615
logical theory, 126173.616

David Filbeck. 1996. Couplets and duplication in Mal.617
Mon-Khmer Studies, 26:91–106.618

Edward S Flemming. 2013. Auditory representations619
in phonology. Routledge.620

Danny Fox and David Pesetsky. 2005. Cyclic lineariza-621
tion of syntactic structure. Theoretical Linguistics,622
31(1-2):1–45.623

Eric C Fudge. 1967. The nature of phonological primes.624
Journal of Linguistics, 3(1):1–36.625

Mark Hale and Charles Reiss. 2000. “substance abuse”626
and “dysfunctionalism”: current trends in phonology.627
Linguistic inquiry, 31(1):157–169.628

Mark Hale and Charles Reiss. 2008. The phonological629
enterprise. Oxford University Press.630

William J. Hanna. 2013. Elaborate expressions in631
Dai Lue. Linguistics of the Tibeto-Burman Area,632
36(1):33–56.633

Bruce Hayes. 2011. Introductory phonology, vol-634
ume 32. John Wiley & Sons.635

Bruce Hayes and James White. 2013. Phonological636
Naturalness and Phonotactic Learning. Linguistic In-637
quiry, 44(1):45–75.638

Larry M Hyman. 1970. How concrete is phonology?639
Language, pages 58–76.640

Roman Jakobson, C Gunnar Fant, and Morris Halle.641
1951. Preliminaries to speech analysis: The distinc-642
tive features and their correlates. MIT press.643

Brenda Johns and David Strecker. 1987. Lexical 644
and phonological sources of Hmong elaborate ex- 645
pressions. Linguistics of the Tibeto-Burman Area, 646
10(2):106–112. 647

Onur Kuru, Ozan Arkan Can, and Deniz Yuret. 2016. 648
CharNER: Character-level named entity recognition. 649
In Proceedings of COLING 2016, the 26th Inter- 650
national Conference on Computational Linguistics: 651
Technical Papers, pages 911–921, Osaka, Japan. The 652
COLING 2016 Organizing Committee. 653

Nahyun Kwon and Keiko Masuda. 2019. On the or- 654
dering of elements in ideophonic echo-words versus 655
prosaic dvandva compounds, with special reference 656
to korean and japanese. Journal of East Asian Lin- 657
guistics, 28(1):29–53. 658

Rong Li. 1952. Qieyun Yinxi. Chinese Academy of 659
Sciences, Beijing. 660

James A.Matisoff. 1973. The Grammar of Lahu. Num- 661
ber 75 inUniversity of California Publications in Lin- 662
guistics. University of California Press, Berkeley. 663

James A. Matisoff. 1989. The Dictionary of Lahu. Uni- 664
versity of California Press, Berkeley and Los Ange- 665
les. 666

James A Matisoff. 2006. English-Lahu Lexicon. Uni- 667
versity of California Press, Berkeley and Los Ange- 668
les. 669

Leland McInnes, John Healy, Nathaniel Saul, and 670
Lukas Großberger. 2018. Umap: Uniform mani- 671
fold approximation and projection. Journal of Open 672
Source Software, 3(29):861. 673

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor- 674
rado, and Jeff Dean. 2013. Distributed representa- 675
tions of words and phrases and their compositional- 676
ity. In Advances in Neural Information Processing 677
Systems, volume 26. Curran Associates, Inc. 678

Elliott Moreton and Joe Pater. 2012a. Structure and 679
substance in artificial-phonology learning, part i: 680
Structure. Language and Linguistics Compass, 681
6(11):686–701. 682

Elliott Moreton and Joe Pater. 2012b. Structure and 683
substance in artificial-phonology learning, part ii: 684
Substance. Language and Linguistics Compass, 685
6(11):702–718. 686

David R. Mortensen. 2006. Logical and Substantive 687
Scales in Phonology. Ph.D. thesis, University of Cal- 688
ifornia, Berkeley. 689

David R. Mortensen, Patrick Littell, Akash Bharad- 690
waj, Kartik Goyal, Chris Dyer, and Lori S. Levin. 691
2016. Panphon: A resource for mapping IPA seg- 692
ments to articulatory feature vectors. In Proceed- 693
ings of COLING 2016, the 26th International Con- 694
ference on Computational Linguistics: Technical Pa- 695
pers, pages 3475–3484. ACL. 696

9

https://doi.org/doi:10.1515/thli.2005.31.1-2.1
https://doi.org/doi:10.1515/thli.2005.31.1-2.1
https://doi.org/doi:10.1515/thli.2005.31.1-2.1
https://doi.org/10.1162/LING_a_00119
https://doi.org/10.1162/LING_a_00119
https://doi.org/10.1162/LING_a_00119
https://aclanthology.org/C16-1087
https://doi.org/10.1007/s10831-019-09189-1
https://doi.org/10.1007/s10831-019-09189-1
https://doi.org/10.1007/s10831-019-09189-1
https://doi.org/10.1007/s10831-019-09189-1
https://doi.org/10.1007/s10831-019-09189-1
https://doi.org/10.1007/s10831-019-09189-1
https://doi.org/10.1007/s10831-019-09189-1
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/10.1002/lnc3.363
https://doi.org/10.1002/lnc3.363
https://doi.org/10.1002/lnc3.363
https://doi.org/10.1002/lnc3.363
https://doi.org/10.1002/lnc3.363
https://doi.org/10.1002/lnc3.366
https://doi.org/10.1002/lnc3.366
https://doi.org/10.1002/lnc3.366
https://doi.org/10.1002/lnc3.366
https://doi.org/10.1002/lnc3.366
https://escholarship.org/uc/item/0sp1b9w8
https://escholarship.org/uc/item/0sp1b9w8
https://escholarship.org/uc/item/0sp1b9w8


Tina Obermüller. 2015. Co-Compounds vs. Coordi-697
nate Compounds: A formal, functional and semantic698
analysis. AV Akademikerverlag, Saarbrücken.699

Yuanen Pan and Cuiyin Cao. 1972. Four-syllable coor-700
dinative constructions in the Miao languages of east-701
ern Kweichow. In Herbert C. Purnell, editor, Miao702
and Yao Linguistic Studies, number 88 in Data Pa-703
pers, pages 211–234. Cornell University Southeast704
Asia Program, Ithaca, New York.705

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,706
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,707
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,708
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-709
esnay. 2011. Scikit-learn: Machine learning in710
Python. Journal of Machine Learning Research,711
12:2825–2830.712

John Robert Ross. 1967. Constraints on variables in713
syntax. Ph.D. thesis, Massachusetts Institute of Tech-714
nology.715

Stephanie S Shih and Kie Zuraw. 2017. Phonological716
conditions on variable adjective and nounword order717
in tagalog. Language, 93(4):e317–e352.718

Donca Steriade et al. 2001. Directional asymmetries in719
place assimilation: A perceptual account. The role720
of speech perception in phonology, pages 219–250.721

Pa-Hsin Ting. 1975. Tonal relationship between the722
two consistuent of the coordinate construction in723
the analects, the meng-tze, and the book of odes.724
Bulletin of the Institute of History and Philology,725
Academia Sinica, 47(1):17–52.726

Thomas Wasow and Jennifer Arnold. 2003. Post-727
verbal constituent ordering in English, pages 119–728
154. De Gruyter Mouton.729

Richard L. Watson. 1966. Reduplication in Pacoh.730
Master’s thesis, The Hartford Seminary Foundation.731

Julian Wheatley. 1982. Burmese: A Grammatical732
Sketch. Ph.D. thesis, University of California, Berke-733
ley.734

Jie Yang, Shuailong Liang, and Yue Zhang. 2018. De-735
sign challenges and misconceptions in neural se-736
quence labeling. In Proceedings of the 27th Inter-737
national Conference on Computational Linguistics738
(COLING).739

Jie Yang and Yue Zhang. 2018. Ncrf++: An open-740
source neural sequence labeling toolkit. In Proceed-741
ings of the 56th Annual Meeting of the Association742
for Computational Linguistics.743

A Trained Decision Trees744

Figures 3, 4, 5 show what the trained decision tree745

looks like in the three languages. In each tree node,746

the top half of the box show the current majority747

class, attested (ATT) or unattested (FAKE), as well748

Hmong Tones

class = ATT
value = [700, 704]

ton(B₁) = j ?

class = FAKE
value = [685, 479]

ton(B₁) = b ?

No

class = ATT
value = [15, 225]

(...)

Yes

class = FAKE
value = [624, 206]

ton(B₂) = ∅ ?

No

class = ATT
value = [61, 273]

(...)

Yes

class = FAKE
value = [610, 138]

ton(B₂) = g ?

No

class = ATT
value = [14, 68]

(...)

Yes

class = FAKE
value = [571, 89]

ton(B₂) = s ?

No

class = ATT
value = [39, 49]

(...)

Yes

class = FAKE
value = [543, 59]

ton(B₂) = j ?

No

class = ATT
value = [28, 30]

(...)

Yes

class = FAKE
value = [348, 56]

ton(B₂) = b ?

No

class = FAKE
value = [195, 3]

(...)

Yes

class = FAKE
value = [104, 40]

ton(B₁) = m ?

No

class = FAKE
value = [244, 16]

(...)

Yes

class = FAKE
value = [88, 22]

ton(B₁) = v ?

No

class = ATT
value = [16, 18]

(...)

Yes

class = FAKE
value = [79, 15]

(...)

No

class = FAKE
value = [9, 7]

(...)

Yes

Figure 3: Decision tree trained on Hmong elaborate ex-
pressions predicts the following order of tones: j ≺ b ≺
m ≺ v ≺ s ≺ g ≺ ∅ .
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Lahu Rhymes

class = ATT
value = [1348, 1400]

rhy(B₂) = a ?

class = FAKE
value = [1108, 847]

rhy(B₁) = a ?

No

class = ATT
value = [240, 553]

(...)

Yes

class = ATT
value = [625, 643]

rhy(B₂) = o ?

No

class = FAKE
value = [483, 204]

(...)

Yes

class = ATT
value = [538, 614]

rhy(B₂) = u ?

No

class = FAKE
value = [87, 29]

(...)

Yes

class = ATT
value = [404, 548]

rhy(B₁) = ɛ ?

No

class = FAKE
value = [134, 66]

(...)

Yes

class = ATT
value = [318, 494]

rhy(B₁) = ɔ ?

No

class = FAKE
value = [86, 54]

(...)

Yes

class = ATT
value = [204, 394]

rhy(B₁) = o ?

No

class = FAKE
value = [114, 100]

(...)

Yes

class = ATT
value = [183, 318]

rhy(B₂) = ɛ ?

No

class = ATT
value = [21, 76]

(...)

Yes

class = ATT
value = [158, 235]

rhy(B₁) = e ?

No

class = ATT
value = [25, 83]

(...)

Yes

class = ATT
value = [129, 214]

(...)

No

class = FAKE
value = [29, 21]

(...)

Yes

Figure 4: Decision tree trained on Lahu elaborate ex-
pressions predicts the following order of rhymes: o ≺ u
≺ ... ≺ e ≺ ɔ ≺ ɛ ≺ a.

Middle Chinese Tones

class = ATT
value = [243, 247]

ton(B₁) = ∅ ?

class = FAKE
value = [182, 112]

ton(B₂) = ∅ ?

No

class = ATT
value = [61, 135]

(...)

Yes

class = ATT
value = [94, 95]

ton(B₁) = X ?

No

class = FAKE
value = [88, 17]

(...)

Yes

class = FAKE
value = [68, 41]

ton(B₂) = X ?

No

class = ATT
value = [26, 54]

(...)

Yes

class = FAKE
value = [36, 36]

ton(B₁) = p̚ ?

No

class = FAKE
value = [32, 5]

(...)

Yes

class = ATT
value = [33, 36]

ton(B₂) = p̚ ?

No

class = FAKE
value = [3, 0]

Yes

class = FAKE
value = [33, 33]

ton(B₁) = k̚ ?

No

class = ATT
value = [0, 3]

Yes

class = ATT
value = [24, 27]

ton(B₂) = k̚ ?

No

class = FAKE
value = [9, 6]

(...)

Yes

class = FAKE
value = [20, 20]

ton(B₂) = H ?

No

class = ATT
value = [4, 7]

(...)

Yes

class = FAKE
value = [3, 2]

(...)

No

class = ATT
value = [17, 18]

(...)

Yes

Figure 5: Decision tree trained onMiddle Chinese coor-
dinate compounds predicts the following order of tones:
ping (∅) ≺ shang (X) ≺ qu (H) ≺ ru (p̚, t̚, k̚)
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as the number of votes. The bottom half of the749

box shows the variable to branch on. As noted750

in the main text, a linear ordering can be induced751

from the tree by following the branches. Take the752

Hmong tree (Figure 3) as an example. The first753

factor to split on is whether 𝐵1 has the j tone, and754

if the answer is yes, the majority of words are at-755

tested (255 attested vs 15 unattested/fake). This756

suggests that j has a strong tendency to occur in757

the 𝐵1 position, since it is the most distinguishing758

factor to split on. Hence j can be placed as the first759

tone on the scale. If𝐵1 does not have the j tone, the760

next question to ask is whether 𝐵1 has the b tone.761

Since a yes answer again leads to majority attested762

words (273 attested vs 61 unattested/fake), b can763

be placed second on the scale. The next three ques-764

tions to ask concern with the 𝐵2 word. Since a yes765

answer leads to attested words in all three cases, it766

suggests that ∅, g and s have a tendency to appear767

in the 𝐵2 position, hence they can be placed on the768

end of the scale in that order. The next two factors769

concern with the j and b tones, which have already770

been placed on the scale, so we skip them. This771

process of following the left child (the no branch)772

and placing tones at either end of the scale is re-773

peatedly applied, yielding the induced linear scales774

shown in Table 4.775

B Implementation Details776

B.1 Data777

TheHmong corpus consists of 740k sentences with778

a positive rate of around 3.1% (i.e. 96.9% of sen-779

tences contain no EEs). The EEs are randomly780

split into disjoint train and val/test sets with ap-781

proximate ratios of 91%/4.5%/4.5%. To reduce the782

possibility that certain splits are easier than others,783

three such splits are independently produced. The784

positive sentences are split into train and val/test785

sets according to the EE partitions, and the nega-786

tive sentences are split with approximate ratios of787

91%/4.5%/4.5%.788

B.2 Models789

The sequence tagging model consists of a feature790

extractor followed by a fully connected layer to791

predict the tags: {B,I,O} in the unswapped case792

and {B,B-fake,I,I-fake,O} in the swapped793

classification experiments. Two feature extractors794

are used: 1) an LSTM with bidirectional encod-795

ing, and 2) a CNN, consisting of four layers of 1D796

convolution, ReLU, Dropout, and BatchNorm.10 797

When character or phoneme level features are used, 798

the character embeddings go through a CharCNN 799

before being concatenated with the word embed- 800

ding. Details on model configuration is shown in 801

Table 7. The LSTMmodel contains approximately 802

1.4M parameters and the CNN contains approxi- 803

mately 1.7M parameters. Our code is based on 804

NCRF++ (Yang and Zhang, 2018).11 805

Hyperparameter Value

Word embed dim 100
Char embed dim 30
LSTM hidden dim 100
CNN hidden dim 200
CNN kernel size 3
CharCNN hidden dim 50
CharCNN kernel size 3
Dropout probability 0.5

Table 7: Model configuration hyperparameters.

B.3 Training and Decoding 806

The model is trained with cross entropy loss using 807

an SGD optimizer with momentum. Early stop- 808

ping is used on the F1 score of the validation set, 809

with a patience of 10 epochs. During training, 810

negative sentences in the training set are down- 811

sampled to 90% (resampled every epoch) instead 812

of 97%, which leads to 3x faster training time but 813

minimal impact on performance. Validation and 814

test sets are used in their entirety. Training hyper- 815

parameters are shown in Table 8. Training typi- 816

cally takes less than 2 hours to complete on a single 817

GeForce RTX 2080 Ti GPU . 818

Hyperparameter Value

Batch size 64
Learning rate 0.02
SGD momentum 0.9
Early stopping patience 10

Table 8: Training hyperparameters.
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Figure 6: Confusion matrices for the swap classifica-
tion experiments for LSTM (top) and CNN (bottom)

C Confusion Matrices819

Figure 6 shows the confusionmatrices for the swap
classification experiments. As mentioned in the
main text, an in-context classification accuracy can
be calculated from the tokens that are correctly
identified as part of an EE but may or may not have
a correct prediction of the orders (i.e. confuses B
with B-fake). For example, the in-context classi-
fication accuracy for the CNN confusion matrix is

𝑎𝑐𝑐𝐶𝑁𝑁 = 439 + 447
439 + 447 + 4 = 99.55%

10An extensive architecture search was not performed, be-
cause the purpose of the experiments is not to achieve the best
performing model.

11 https://github.com/jiesutd/NCRFpp, under Apache 2.0
License which permits use for research purposes.
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