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Abstract
Global warming is a critical concern that re-001
quires both scientific understanding and public002
support for effective policy action. Stance de-003
tection using deep learning technologies, partic-004
ularly large language models (LLMs) like GPT005
and BERT, can help analyze public and pol-006
icy opinions on climate change. This study as-007
sesses the effectiveness of domain-specific pre-008
training versus general pretraining for stance009
detection tasks related to climate change, using010
a pretrained model named ClimateBERT. The011
aim is to determine if incorporating climate-012
specific knowledge into LLMs improves stance013
detection accuracy in climate-related discourse.014
The study compares the performance of Cli-015
mateBERT with general models like RoBERTa016
across various climate-related datasets. Results017
indicate that while domain-specific models of-018
fer some advantages, general-purpose models019
like RoBERTa often achieve higher accuracy020
and F1 scores, especially in fine-tuning settings.021
This suggests that robust general-purpose mod-022
els are often sufficient for specialized tasks,023
highlighting the need to balance model archi-024
tecture and domain adaptation for optimal per-025
formance in natural language processing appli-026
cations.027

1 Introduction028

Global warming remains a critical concern, with029

wide-reaching impacts on natural and human sys-030

tems (Grimm et al., 2015). To mitigate these031

challenges, deep learning-based global weather032

forecasting models such as KARINA, Graphcast,033

and FourcastNet have been developed, offering034

advanced predictive capabilities to better under-035

stand and respond to climate patterns (Cheon et al.,036

2024)(Pathak et al., 2022)(Lam et al., 2022).037

The primary objective of this paper is to assess038

and compare the effectiveness of domain-specific039

pretraining versus general pretraining for stance040

detection tasks related to global warming and cli-041

mate change through the pretrained model, named042

ClimateBERT (Webersinke et al., 2021). The 043

study focuses on determining whether incorporat- 044

ing domain-specific knowledge on climate change 045

into the pretraining of LLMs can improve the ac- 046

curacy of stance detection in climate-related dis- 047

course. By enhancing the performance of stance de- 048

tection models, this research aims to provide more 049

effective tools for gauging public opinion and im- 050

proving engagement strategies in the fight against 051

global warming (Maibach et al., 2011). This contri- 052

bution is essential for leveraging NLP technologies 053

in environmental science, thereby aiding efforts to 054

address one of the most pressing global challenges 055

(Kawintiranon and Singh, 2021a). 056

2 Related Works 057

Kawintiranon and Singh introduced a novel ap- 058

proach, termed Knowledge Enhanced Masked Lan- 059

guage Modeling (KE-MLM), integrated stance- 060

specific knowledge by selectively masking words 061

that are statistically significant in distinguishing 062

between stances in the context of the 2020 US Pres- 063

idential election. The researchers used two datasets 064

for stance detection: one unlabeled dataset with 065

over 5 million tweets from the 2020 US Presiden- 066

tial election and another labeled dataset of 2,500 067

tweets, divided equally between Joe Biden and 068

Donald Trump, annotated for support, opposition, 069

or neutrality. KE-MLM outperformed both the orig- 070

inal BERT and fine-tuned BERT models in stance 071

detection, achieving F1 macro scores of 0.7577 for 072

Biden and 0.7877 for Trump, compared to lower 073

scores achieved by the other models (Kawintiranon 074

and Singh, 2021b). 075

Inkpen and Caragea developed a substantial 076

dataset consisting of 21,574 English tweets re- 077

lated to political figures such as Donald Trump, 078

Joe Biden, and Bernie Sanders. This dataset is 079

designed for the task of stance detection, where 080

tweets are annotated to indicate whether the sen- 081

timent expressed is in favor of, against, or neutral 082
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towards the targeted political figure. To handle this083

dataset, the team employed a variety of deep learn-084

ing models, particularly focusing on the BERTweet085

model, which achieved a macro-average F1-score086

of 80.21%. This result showed that the BERTweet087

outperformed the original BERT which yielded088

76.27 %. This performance underscores the ef-089

fectiveness of using advanced language models090

fine-tuned on large, domain-specific datasets for091

improved stance detection in social media texts (Li092

et al., 2021).093

Grasso et al. evaluated various BERT-based mod-094

els on the stance detection task using the EcoV-095

erse dataset, which includes 3,023 English tweets096

related to environmental issues. The evaluation097

showed that RoBERTa and its distilled version,098

DistilRoBERTa, performed the best with accuracy099

scores of 81.29% each. The specialized Climate-100

BERT models showed varied performance, with101

ClimateBertF scoring 69.60%, ClimateBertS at102

72.51%, and ClimateBertS+D at 75.44% in accu-103

racy (Grasso et al., 2024).104

Schimanski1 et al. described the development105

and application of ClimateBERT-NetZero, a spe-106

cialized NLP model for detecting net zero and107

emission reduction targets in text. The model was108

trained using a dataset of 3,500 expert-annotated109

text samples focused on sustainability commit-110

ments. ClimateBERT-NetZero achieved an impres-111

sive accuracy of 96.6% with a standard deviation112

of 0.004, outperforming both DistilRoBERTa and113

RoBERTa-base models in similar tests. Further-114

more, the study described how this model can ana-115

lyze the ambitiousness of these targets in real-world116

texts, such as earnings call transcripts, highlight-117

ing its practical applications for tracking corporate118

and institutional climate actions (Schimanski et al.,119

2023).120

Webersinke et al. described the development121

of ClimateBERT, a language model specifically122

pretrained on over 2 million paragraphs of diverse123

climate-related texts sourced from news, corporate124

disclosures, and scientific articles. This model sig-125

nificantly enhanced performance on NLP tasks by126

incorporating domain-specific pretraining, which is127

crucial because traditional models trained on a gen-128

eral text show limited effectiveness in handling spe-129

cialized climate-related terminology and contexts.130

By adapting the model to this niche, the authors131

achieved a 48% improvement on a masked lan-132

guage model objective, leading to significant error133

rate reductions between 3.57% and 35.71% across 134

various downstream tasks such as text classification, 135

sentiment analysis, and fact-checking. This demon- 136

strated the model’s capability to provide more ac- 137

curate analyses of climate-related texts, supporting 138

deeper insights into environmental discourse (We- 139

bersinke et al., 2021). 140

Whereas specialized models like ClimateBERT 141

frequently outperform general models like BERT 142

in stance detection tasks related to politics, our ob- 143

servations with ClimateBERT applied to climate- 144

related tasks did not show a significant improve- 145

ment over the original BERT model. This surpris- 146

ing outcome motivates more research into the pos- 147

sible causes of this performance disparity. To gain 148

further insight into the subtleties of ClimateBERT’s 149

performance, we intend to apply it to a wider range 150

of natural language processing jobs. We hope to 151

pinpoint particular domains in which ClimateBERT 152

performs particularly well or poorly by expanding 153

the range of tasks and situations it is evaluated in. 154

By using this method, we can improve the model’s 155

training and fine-tuning procedures and possibly 156

identify important variations in the data. 157

3 Materials and Methods 158

3.1 BERT 159

BERT (Bidirectional Encoder Representations 160

from Transformers) was developed by researchers 161

at Google and introduced in their 2018 paper. 162

BERT is unique for its deep bidirectional train- 163

ing, where it learns information from both the left 164

and right context of a token within all layers of 165

its architecture. The model’s architecture is built 166

on the Transformer mechanism, and utilizes only 167

encoder parts of the Transformer (Vaswani et al., 168

2017). For pre-training, BERT was trained on the 169

BookCorpus with 800 million words and a version 170

of the English Wikipedia containing 2,500 million 171

words. BERT also utilizes two innovative train- 172

ing strategies: Masked Language Model (MLM) 173

and Next Sentence Prediction (NSP), which help 174

it understand language context and relationships 175

between sentences (Devlin et al., 2018). 176

3.2 RoBERTa 177

RoBERTa (Robustly optimized BERT approach) is 178

an enhanced version of BERT, designed for en- 179

hanced performance through several main opti- 180

mizations. It involves training the model for longer 181

durations with larger batches over more extensive 182
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datasets, enabling it to learn from a more diverse183

range of data. Unlike BERT, RoBERTa removes184

the Next Sentence Prediction (NSP) objective, sim-185

plifying the training process. It also trains on longer186

sequences, allowing it to capture more context187

within texts. Additionally, RoBERTa employs a188

dynamically changing masking pattern, ensuring189

that the masked tokens vary with each epoch, pre-190

venting the model from seeing the same masked191

sequence twice (Liu et al., 2019).192

3.3 DistilBERT193

DistilBERT uses knowledge distillation during the194

pre-training phase, reducing the model size by195

40% and increasing speed by 60%, while only196

sacrificing about 3% of BERT’s performance. It197

leverages a technique called knowledge distillation,198

where the smaller DistilBERT model (the student)199

is trained to mimic the larger BERT model (the200

teacher). This process involves learning not just201

from the final outputs but also from the intermedi-202

ate layers of BERT. DistilBERT achieves its com-203

pactness by reducing the number of layers from204

12 to 6, significantly decreasing computational re-205

quirements. Despite being 60% smaller and 60%206

faster than BERT, it retains 97% of BERT’s perfor-207

mance on various NLP benchmarks (Sanh et al.,208

2019).209

4 Experiments210

4.1 Dataset Description211

For the experiment, a total of five different datasets212

were utilized, all sourced from Hugging Face: Cli-213

mate Environmental Claims, Climate Detection,214

Climate Sentiment, Climate Commitment Actions,215

and Climate Specificity. The Climate Environmen-216

tal Claims dataset supports a binary classification217

task, determining whether a given sentence consti-218

tutes an environmental claim. The Climate Detec-219

tion dataset supports a binary classification task of220

identifying whether a given paragraph is climate-221

related. The Climate Sentiment dataset involves222

a ternary sentiment classification task, categoriz-223

ing climate-related paragraphs as expressing op-224

portunity, neutrality, or risk. The Climate Commit-225

ment Actions dataset supports a binary classifica-226

tion task, identifying whether a paragraph discusses227

climate commitments and actions. Lastly, the Cli-228

mate Specificity dataset supports a binary classi-229

fication task, assessing whether a climate-related230

paragraph is specific (Team, 2024). Examples from231

each dataset are detailed in the table below. 232

Based on the findings from the existing studies, 233

we can conclude that both model architecture and 234

domain adaptation are crucial for the performance 235

of large language models (LLMs). Advanced archi- 236

tectures like BERT and RoBERTa provide a robust 237

foundation, but pretraining and fine-tuning within 238

a specific domain significantly enhance their effec- 239

tiveness. Domain adaptation, particularly for polit- 240

ical contexts, is especially important, as demon- 241

strated by the superior performance of models 242

like PoliBERTweet over general models such as 243

RoBERTa and BERTweet in tasks like stance de- 244

tection. This highlights that domain-specific pre- 245

training can lead to substantial gains in accuracy 246

and reliability, underscoring the importance of con- 247

sidering both architecture and domain adaptation 248

in developing LLMs (Burnham, 2024)(Burnham, 249

2023). 250

4.2 Experiment Description 251

Based on the findings from previous studies, which 252

highlight the critical role of both model architec- 253

ture and domain adaptation, we hypothesize that 254

these factors will similarly influence performance 255

on climate-related datasets. Specifically, the prior 256

research demonstrates that domain adaptation, es- 257

pecially in politically sensitive areas, significantly 258

enhances model performance. To test whether 259

these results are consistent with climate-related 260

tasks, we will conduct experiments using various 261

LLMs, including those with general architectures 262

like RoBERTa and those adapted to specific do- 263

mains. By comparing the performance of these 264

models on climate environment claims, climate de- 265

tection, climate sentiment, climate commit action, 266

and climate specificity datasets, we aim to verify if 267

domain-specific pretraining leads to similar gains 268

in accuracy and reliability in the context of climate- 269

related data. This experiment will help determine 270

whether the importance of domain adaptation ob- 271

served in political contexts extends to other special- 272

ized domains, such as climate science. 273

5 Results 274

The following experiments were evaluated using 275

the F1 score to ensure a robust comparison of 276

model performance across different tasks. We 277

first conducted experiments on Climate Stance 278

datasets. Since Webersinke et al. already per- 279

formed the same experiment, we brought the re- 280
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Datasets Example
Climate Environmental Claims The project will make a significant contribution to the German

and European hydrogen strategy and hence to achievement of the
climate targets.

Climate Detection A material portion of this network is still relatively immature and
there are risks that may develop over time. For example, it is
possible that branches may not be able to sustain the level of
revenue or profitability that they currently achieve (or that it is
forecasted that they will achieve).

Climate Sentiment We emitted 13.4 million tonnes CO2 of Scope 2 (indirect emis-
sions), being emissions arising from our consumption of purchased
electricity, steam or heat. Our Scope 3 emissions include emis-
sions from a broad range of sources, including shipping and land
transportation. More details on our Scope 3 emissions will be
available in our 2014 report.

Climate Commitments actions The Group is not aware of any noise pollution that could negatively
impact the environment, nor is it aware of any impact on biodiver-
sity. With regards to land use, the Group is only a commercial user,
and the Group is not aware of any local constraints with regards
to water supply. The Group does not believe that it is at risk with
regards to climate change in the near-or mid-term.

Climate Specificity Climate change is a challenge faced by the entire P&C insurance
industry. In particular, our home insurance business has been
affected due to changing climate patterns and an increase in the
number and cost of claims associated with severe storms. Water
damages now make up more than half of our home insurance
claims.

Table 1: Examples of datasets and their contents used in the experiment
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sults from that paper. DistilRoBERTa achieved281

an F1 score of 0.825, while the different vari-282

ants of ClimateBERT, namely ClimateBERT_F,283

ClimateBERT_S, ClimateBERT_D, and Climate-284

BERT_D+S, scored 0.838, 0.836, 0.835, and 0.834,285

respectively. RoBERTa, when fine-tuned for stance286

detection, achieved the highest F1 score of 0.84375.287

Despite the domain-specific adaptations of the Cli-288

mateBERT models, they did not surpass the per-289

formance of the general-purpose RoBERTa in the290

fine-tuning setting. Additionally, the loss values291

for these models ranged from 0.138 to 0.150, with292

DistilRoBERTa exhibiting the highest loss.293

Figure 1: Performance of various models in stance de-
tection based on ClimateBERT

The experimental results provide a nuanced view294

regarding the hypothesis that both model archi-295

tecture and domain adaptation are important for296

the performance of LLMs. The data show that297

fine-tuning generally results in superior perfor-298

mance compared to zero-shot learning across vari-299

ous climate-related datasets. However, the results300

indicate that the general-purpose RoBERTa model301

often outperforms the domain-adapted models, es-302

pecially in fine-tuning contexts. For instance, in the303

Climate Specificity and Climate Commitment Ac-304

tions datasets, RoBERTa achieved the highest fine-305

tuning scores, surpassing both Distil-RoBERTa and306

ClimateBERT. Notably, ClimateBERT showed the307

lowest scores in several fine-tuning tasks, such as308

in the Climate Detection and Climate Environment309

Claim datasets, where it failed to outperform even310

the distilled version of RoBERTa.311

Furthermore, using the net zero datasets intro-312

duced in the related work section, ClimateBERT313

achieved a score of 0.966, DistilRoBERTa yielded314

0.959, and RoBERTa-base gained 0.963. Although315

ClimateBERT attained first place among the three316

models, the differences are quite small (Schimanski317

et al., 2023). 318

This suggests that while domain adaptation can 319

enhance performance in zero-shot settings, it does 320

not consistently provide an advantage over well- 321

architected general models when fine-tuning is 322

applied. Moreover, the time and resources re- 323

quired for domain adaptation might not always 324

result in proportional gains in performance effi- 325

ciency. Thus, while domain-specific pretraining 326

has its merits, particularly in zero-shot contexts, 327

the overall effectiveness and efficiency of using 328

domain-adapted models versus robust general mod- 329

els like RoBERTa should be carefully evaluated 330

based on the specific requirements and constraints 331

of the task at hand. These findings highlight the 332

importance of considering both model architecture 333

and the practicality of domain adaptation in achiev- 334

ing optimal performance for specialized tasks such 335

as climate-related analyses. The detailed summary 336

of the results is summarized in Table 2. 337

6 Discussion 338

One potential reason behind this result is that 339

the general-purpose language models, such as 340

RoBERTa, are already sufficiently robust and ver- 341

satile to handle a wide range of topics, including 342

climate-related content, without needing extensive 343

domain-specific adaptations. The relatively small 344

differences in performance among ClimateBERT, 345

DistilRoBERTa, and RoBERTa-base suggest that 346

the underlying model architecture and general lan- 347

guage understanding capabilities play a more criti- 348

cal role than the specialized domain knowledge for 349

these tasks. This indicates that while domain adap- 350

tation can provide some benefits, the gains may not 351

be substantial enough to justify the additional com- 352

plexity and resources required for domain-specific 353

pretraining in certain contexts. 354

Furthermore, comprehensive surveys on do- 355

main specialization techniques suggest that while 356

domain-specific adaptations can improve perfor- 357

mance, the benefits are sometimes marginal com- 358

pared to the robust baseline provided by general- 359

purpose models. These insights indicate that 360

for climate-related tasks, the general architec- 361

ture and pretraining of models like RoBERTa are 362

sufficiently powerful, making extensive domain- 363

specific pretraining less critical. This highlights 364

the importance of balancing the need for domain 365

adaptation with the inherent strengths of general- 366

purpose language models (Zhao et al., 2023). 367
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Dataset Name Metric Roberta Distil-Roberta Climate-Bert

Climate Specificity
Fine-tuning 0.8375 0.80625 0.825
Zero-shot 0.4125 0.5875 0.5875

Climate Commitment Actions
Fine-tuning 0.84375 0.8875 0.85
Zero-shot 0.34375 0.65625 0.65625

Climate Detection
Fine-tuning 0.975 0.965 0.965
Zero-shot 0.77 0.23 0.23

Climate Environment Claim
Fine-tuning 0.886364 0.924242 0.901515
Zero-shot 0.265152 0.265152 0.265152

Table 2: Performance results by diverse model and dataset for each circumstance.

7 Limitation368

The datasets included in this study may not fully369

represent the range of discourse associated with cli-370

mate change because they were retrieved from par-371

ticular sources. The findings’ applicability to other372

settings or domains relevant to climate change may373

be impacted by this constraint. Discussions about374

climate change varies greatly throughout various375

platforms, such as social media, policy-making, sci-376

entific research, and the media (Mavrodieva et al.,377

2019). A model that performs well on training378

data but finds it difficult to generalize to new, un-379

seen data from other settings may result from the380

datasets’ restricted emphasis. Further investiga-381

tions ought to integrate a wider range of infor-382

mation in order to enhance the model’s resilience383

and suitability for a variety of climate-related dis-384

courses.385

8 Conclusion386

This paper explored the performance of general-387

purpose and domain-specific language models on388

climate-related tasks, with a focus on models such389

as RoBERTa, DistilRoBERTa, and various Climate-390

BERT variants. The results indicate that while391

domain-specific pretraining can offer some perfor-392

mance benefits, these gains are often marginal com-393

pared to the robust performance of well-architected394

general-purpose models. RoBERTa, in particu-395

lar, consistently performed well across different396

datasets, both in fine-tuning and zero-shot settings,397

highlighting its versatility and robust architecture.398

The findings underscore the importance of balanc-399

ing the inherent strengths of general-purpose mod-400

els with the targeted improvements offered by do-401

main adaptation. While domain-specific models402

can provide benefits in certain contexts, the versa-403

tility and robustness of models like RoBERTa are404

sufficiently powerful for many specialized tasks, 405

including those related to climate. This points to a 406

more nuanced approach in leveraging both general- 407

purpose and domain-specific strategies to achieve 408

optimal performance in natural language process- 409

ing applications. 410
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