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Abstract

Recently, leveraging pre-trained vision-language models (VLMs) for building
vision-language-action (VLA) models has emerged as a promising approach to
effective robot manipulation learning. However, only few methods incorporate
3D signals into VLMs for action prediction, and they do not fully leverage the
spatial structure inherent in 3D data, leading to low data efficiency. In this paper,
we introduce a new paradigm for constructing 3D VLAs. Specifically, we first
pre-train the VLM backbone to take 2D images as input and produce 2D heatmaps
as output. Using this pre-trained VLM as the backbone, we then fine-tune the
entire VLA model while maintaining alignment between inputs and outputs by:
(1) projecting raw point cloud inputs into multi-view images, and (2) predicting
heatmaps before generating the final action. Extensive experiments show that
the resulting model, BridgeVLA, can learn 3D manipulation both efficiently and
effectively. BridgeVLA outperforms state-of-the-art baselines across three simula-
tion benchmarks. In RLBench, it improves the average success rate from 81.4%
to 88.2%. In COLOSSEUM, it demonstrates significantly better performance in
challenging generalization settings, boosting the average success rate from 56.7%
to 64.0%. In GemBench, it surpasses all the comparing baseline methods in terms
of average success rate. In real-robot experiments, BridgeVLA outperforms a state-
of-the-art baseline method by 32% on average. It generalizes robustly in multiple
out-of-distribution settings, including visual disturbances and unseen instructions.
Remarkably, it is able to achieve a success rate of 95.4% on 10+ tasks with only 3
trajectories per task, while other VLA methods such as π0 fail completely. Project
Website: https://bridgevla.github.io/.

1 Introduction

Leveraging pre-trained vision-language models (VLMs) [3, 43, 2, 24] for developing large vision-
language-action (VLA) models has become a promising method for learning generalizable and robust
manipulation policies [26, 4, 17, 31, 7]. However, most VLA models only incorporate 2D image
inputs and require extensive efforts on data collection. On the other hand, 3D robot policies leverage
3D structural priors in model design and demonstrate exceptional sample efficiency in learning
complex 3D robot manipulation tasks [39, 25, 13–15]. Can we develop a unified 3D VLA model
which combines the effectiveness of VLA models with the efficiency from 3D policies?
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Figure 1: Overview. BridgeVLA is a novel 3D VLA model that aligns the input and output within a
unified 2D image space. It is pre-trained on object grounding using 2D heatmaps and fine-tuned on
action prediction for 3D manipulation. Experiment results in both simulation and the real world show
that it is able to learn 3D manipulation both efficiently and effectively.

Although there have been some works exploring integrating 3D information into VLMs for developing
3D VLA models [52, 37], these works typically convert actions into token sequences that do not have
spatial structure and use next-token prediction to predict actions. This strategy fails to take advantage
of the 3D structural priors as previous efficient 3D policies [39, 25, 13–15] that align the observation
input and action output into a unified space, therefore leading to poor sample efficiency. Another
significant challenge in developing 3D VLA models lies in the misalignment between the 3D inputs
used in action fine-tuning and the 2D image inputs used in original VLM pre-training, causing a large
distributional shift from the original VLM pre-training.

To tackle the challenges mentioned above, as inllustrated in Fig. 1, we present BridgeVLA, a novel
3D VLA model that achieves remarkable sample efficiency and strong generalization capabilities. To
ensure input alignment with the pre-trained VLM backbone, BridgeVLA transforms a 3D point cloud
observation into multiple 2D images captured from different orthographic projection views [14, 15].
To leverage the structural priors of the 3D input, BridgeVLA is trained to predict 2D heatmaps for
translational action prediction. The 2D heatmaps, generated from the tokens corresponding to the
projection images, share the same resolution as these images, aligning the input observations and
output actions within a unified spatial structure. Given that the original VLM is pre-trained to predict
token sequences, which is incompatible with our VLA’s 2D heatmap output, we also introduce a
scalable pre-training method, which trains the model to ground objects with heatmaps conditioned
on text inputs. This pre-training method equips the VLM with the capabilities to predict heatmaps
before downstream fine-tuning for policy learning. Overall, our design aligns the input and output
within a shared 2D space in both pre-training and fine-tuning.

We perform extensive experiments in both simulation and the real world to evaluate the proposed
method. Results show that BridgeVLA is able to learn 3D manipulation both efficiently and effec-
tively. It outperforms state-of-the-art baseline methods in RLBench [19], improving the average
success rate from 81.4% to 88.2%. In COLOSSEUM [35], it showcases strong performance in chal-
lenging generalization settings, boosting the success rate from 56.7% to 64.0%. In GemBench [12],
it surpasses all the comparing baseline methods in terms of average success rate. In real-robot experi-
ments, we evaluate on seven different settings, spanning from visual perturbations to manipulating
objects from unseen categories. BridgeVLA surpasses a state-of-the-art method by 32% on average
and demonstrates strong performance in generalizing to multiple out-of-distribution settings. Notably,
BridgeVLA is able to achieve a success rate of 96.8% on 10+ tasks using only 3 trajectories per task
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for training, highlighting its superb sample efficiency. In summary, the contributions of this paper are
threefold:

• We introduce BridgeVLA, a novel 3D VLA model that efficiently and effectively learns
3D robot manipulation with a vision-language model via input-output alignment with 2D
heatmaps.

• We propose a scalable pre-training method to equip the model with the capability to predict
heatmaps conditioned on text inputs via object grounding.

• We conduct extensive experiments in both simulation and real-world environments to
thoroughly evaluate the proposed method. Results show that BridgeVLA outperforms state-
of-the-art methods in both settings and achieves exceptional sample efficiency in real-robot
experiments.

2 Related Work

Language-Conditioned Visuomotor Policies. Most language-conditioned visuomotor policies
employ transformers to process 2D visual inputs and directly generate 3D actions for manipulation [6,
7, 26, 4, 17, 10, 31, 30, 8, 51, 44]. In these works, leveraging pre-trained vision-language models
(VLMs) for developing large vision-language-action (VLA) models has become popular for its
effectiveness on learning complex manipulation [7, 26, 31, 4, 17]. However, such 2D image-based
policies typically require significant efforts on data collection, often needing hundreds of trajectories
per task to learn effectively. On the other hand, 3D manipulation policies hold great potential for
efficient learning by taking advantage of the spatial structure inherent in the 3D inputs. A popular
line of works take as inputs point cloud data [9, 48, 47, 13, 25]. For example, Act3D [13] proposes
to create a 3D feature cloud by lifting image features to the observation point cloud and predicts
translational actions via classification for 3D points in the observation space. Another line of works
utilize voxels to represent the observation space and predict translational actions within the voxel
space, unifying the input observation and output actions within the same space [39, 20]. Recently,
RVT [14] and RVT-2 [15] propose to leverage orthographic projection of 3D point clouds to convert
3D signals to 2D images to avoid high computational cost on processing 3D inputs. Different from
the above methods, our method aims to unify the effectiveness of VLA models and the efficiency of
3D policies within a single cohesive framework, combining the best of both worlds.

3D Vision-Language-Action (VLA) Models. While 2D VLA models have been extensively
studied, 3D VLA models [52, 22, 47, 29] remain relatively under-explored. Zhen et al. [52] build
3D-VLA on top of a large language model (LLM) and train the model to perform 3D reasoning,
multi-modal goal generation, and robot planning. Lift3D [22] proposes to enhance 2D foundation
models (e.g., DINOv2 [34]) with implicit and explicit 3D robotic representation for learning 3D
manipulation policies. FP3 [47] leverages a transformer to fuse the information from point clouds,
proprioceptive states, and language instructions. PointVLA [29] utilizes a VLM and a point cloud
encoder to process 2D images and 3D point clouds, respectively. The embeddings from both encoders
are injected into an action expert for action prediction. SpatialVLA [37] introduces Ego3D position
encoding to inject 3D information into 2D image observation and adaptive action grids to represent
robot movement in a more transferable way. Our method is different from the above methods in that
it is designed in a way to take advantage of the spatial structure of 3D inputs in action prediction. In
addition, it bridges the gap between the 2D image inputs of pre-trained VLMs and the 3D inputs by
projecting the 3D inputs into multiple 2D images instead of injecting 3D information into the VLMs.
Such design enables it to simultaneously leverages the broad knowledge in the VLM backbone and
the spatial structure priors embedded in 3D inputs.

3 BridgeVLA

3.1 Preliminaries

BridgeVLA aims to learn a multi-task 3D robot manipulation policy π, which maps the observation
o and a language instruction l to an action a:

π : (o, l) 7→ a (1)
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Figure 2: Model Architecture. (a) 2D Heatmap Pre-training: we train BridgeVLA on 2D object
detection datasets. The model takes as inputs an image and a language describing the target object
and outputs a 2D heatmap which highlights regions of interest that correspond to the target object.
Note that the bounding box shown here is for illustrative purposes only; it is not present in the image
when input to the model. (b) 3D Action Fine-tuning: the model takes as inputs three orthographic
projection images of a 3D point cloud and a language instruction. It outputs three 2D heatmaps,
which highlight the position of the end-effector in the next keyframe across all three views. For the
remaining action components, it uses an MLP to process the image feature tokens to predict the
rotation action, gripper action, and collision flag of the next keyframe.

We assume access to a set of expert demonstrations D = {τ i}Ni=1 containing N trajectories. And
each trajectory contains a language instruction and a sequence of observation-action pairs, i.e.,
τ i = {li, (oi

1,a
i
1), ..., (o

i
H ,aiH)}. The observation o is one or multiple RGB-D images captured

from one or multiple viewpoints. Following prior works [39, 14, 13], the action a consists of a 6-DoF
end-effector pose T ∈ SE(3), a target gripper state g ∈ {0, 1}, and a collision flag c ∈ {0, 1} of the
next key frame. The collision flag c indicates whether the motion planner should avoid collisions
while moving towards the target pose. A key frame typically captures important or bottleneck steps
in a trajectory (detailed in appendix B.3) [23]. BridgeVLA operates through an iterative process: 1)
predicting the action at conditioned on the current observation ot and instruction l, 2) moving to the
predicted next keyframe pose Tt using a sampling-based motion planner [40, 28, 11], 3) updating
observation and repeating until task completion or reaching a maximum step Hmax.

As illustrated in Fig. 2, BridgeVLA employs a dual-phase training recipe. During pre-training, it is
trained to predict 2D heatmaps on object detection datasets. During fine-tuning, point clouds are
projected into multiple 2D images as inputs to the VLM backbone. The model is trained to predict
2D heatmaps for estimating the translational action and other action components. This design aligns
the input and output within a shared 2D space in both pre-training and fine-tuning.

3.2 2D-Heatmap Pre-training

The VLM backbone was originally pre-trained to predict token sequences without spatial structure.
To equip it with the same ability to predict heatmaps as downstream policy learning, we introduce
a pre-training stage which trains the model to ground target objects via heatmaps. Concretely, we
leverage the 120K object detection split of RoboPoint [49] as our pre-training dataset. For each
image, we construct the ground-truth heatmap Hgt from the bounding boxes of all objects of interest.
Specifically, for each object, we construct a probability map with spatial truncation:

Hgt
i (x) =

{
pi(x) if pi(x) ≥ pmin

0 otherwise (2)

where x = (u, v) denotes the pixel position, pi(x) = exp
(
−∥x− x̂i∥2/2σ2

)
, x̂i is the center of the

object bounding box, and pmin is a probability threshold. For all the objects of interest, we fuse the
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probability map of all objects via averaging and normalization to obtain Hgt:

Hgt(x) =
Havg(x)∑

x∈Ω Havg(x)
, where Havg(x) =

1

N

N∑
i=1

Hgt
i (x) (3)

where Ω denotes the pixel space. Please refer to Fig. 9 for samples of the ground-truth heatmaps.

As illustrated in Fig. 2, we input an image along with the text prompt describing the objects of
interest into the VLM backbone of BridgeVLA. In this paper, we employ PaliGemma [3] as the VLM
backbone, which consists of a SigLIP vision encoder [50] and a Gemma transformer backbone [41].
During its pre-training, PaliGemma takes as input one or multiple 2D images together with a prefix
text (e.g., a question about the image) and outputs a suffix text (e.g., an answer to the question). While
the model uses causal attention for predicting suffix text tokens, it adopts bidirectional attention for
the image tokens and the prefix text tokens. This allows the image tokens to fuse information from
the prefix text.

To predict the heatmap, we first rearrange the output image tokens according to their patch positions
to reconstruct the spatial feature grid. A convex upsampling block [42] then converts the grid into
a heatmap with the same resolution as the input image. Unlike fixed methods (e.g., bilinear or
nearest-neighbor), this upsampling module learns pixel-wise interpolation weights, allowing for finer
spatial detail recovery. The whole pipeline is trained with a cross-entropy loss to predict heatmaps
that localize the position of all objects of interest in the image. We emphasize that the proposed
pre-training strategy outputs a spatially aware 2D heatmap, in contrast to the conventional next-token-
prediction used in prior works [52, 37]. Moreover, this approach is highly scalable, as it can, in
principle, leverage any vision-language datasets that can be formulated as a heatmap prediction tasks,
such as keypoint detection and semantic segmentation.

3.3 3D Action Fine-tuning

During fine-tuning, we first reconstruct a point cloud of the scene from the RGB-D images captured
from calibrated cameras. To align with the 2D image input of the VLM backbone, we render three
orthographic projection images of the point cloud from three viewpoints (top, front, and right)
and use these images as the input images for the VLM backbone as in RVT [14] and RVT-2 [15].
These images, along with the task instruction, are then fed into the pre-trained VLM backbone to
generate a heatmap for each of the three views. Importantly, we do not incorporate any additional
information (e.g., robot states) during the VLM forward pass to minimize the distribution shift
between pre-training and fine-tuning.

For translational actions, we back-project the heatmaps of all three views to estimate the scores of all
3D point grids distributed uniformly across the robot workspace. The position of the 3D point with
the highest score determines the end-effector’s translation in the next keyframe. Similar to previous
works [14, 15], we use Euler angles to represent rotational actions where each axis is discretized
into 72 bins. To predict the rotation, binary gripper action, and collision avoidance flag, we integrate
features from global and local contexts. For the global feature, max-pooling is applied to the output
tokens of each inputted orthographic projection image, resulting in three tokens in total – one for each
view. For the local feature, we extract a token from the heatmap peak of each view, also resulting
in three tokens in total. All these tokens are concatenated and passed through MLP to predict the
rotation action, gripper action, and collision avoidance flag.

Following the approach in prior works [20, 15], BridgeVLA adopts a coarse-to-fine refinement
strategy for accurate action prediction. After the initial prediction on the original point cloud, we
zoom in and crop the point cloud with a cuboid centered at the predicted translation. A second
forward pass is performed on the cropped, zoomed-in point cloud. The predicted action from the
second pass is used for execution.

The training loss during fine-tuning consists of four components:

L = Ltrans + Lrot + Lgripper + Lcollision (4)

Similar to pre-training, Ltrans is a cross-entropy loss that supervises the heatmap prediction for
translational actions. The ground-truth heatmap for each orthographic view is the normalized single-
object probability map defined in Eq. 2, where x̂i represents the projected pixel position of the
ground-truth end-effector position in the next keyframe. As we discretize the Euler angles for rotation
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C2F-ARM-BC [20, 39] 20.1 10.72 24.0 24.0 4.0 20.0 20.0 0.0 8.0 72.0

HiveFormer [16] 45.3 8.47 52.0 76.0 0.0 100.0 52.0 0.0 80.0 84.0
PolarNet [9] 46.4 7.61 36.0 92.0 4.0 100.0 84.0 0.0 40.0 96.0
PerAct [18] 49.4 7.0 55.2±4.7 89.6±4.1 5.6±4.1 70.4±2.0 88.0±5.7 2.4±3.2 44.8±7.8 92.8±3.0
Act3D [13] 65.0 4.89 92.0 92.0 27.0 94.0 93.0 3.0 80.0 99.0
RVT [14] 62.9 4.92 52.0±2.5 99.2±1.6 11.2±3.0 88.0±2.5 71.2±6.9 4.0±2.5 91.0±5.2 100.0±0.0

3D Diffuser Actor [25] 81.3 2.67 96.0±2.5 100.0±0.0 65.6±4.1 96.8±1.6 89.6±4.1 24.0±7.6 93.6±4.8 98.4±2.0
RVT-2 [15] 81.4 2.75 100.0±0.0 99.0±1.7 40.0±0.0 99.0±1.7 74.0±11.8 38.0±4.5 95.0±3.3 100.0±0.0

BridgeVLA w/o heat 31.4 10.06 49.3±2.3 65.3±2.3 0.0±0.0 81.3±4.6 74.7±10.1 1.3±2.3 32.0±14.4 54.7±6.1
BridgeVLA w pos 56.2 5.97 96.0±0.0 58.7±6.1 26.7±2.3 96.0±0.0 97.3±2.3 14.7±4.6 81.3±8.3 86.7±2.3

BridgeVLA 88.2 2.03 100.0±0.0 100.0±0.0 88.0±2.8 100.0±0.0 100.0±0.0 58.4±10.0 88.0±2.8 98.4±2.2
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Image-BC (CNN) [21, 39] 0.0 8.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0
Image-BC (ViT) [21, 39] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.0
C2F-ARM-BC [20, 39] 0.0 4.0 12.0 8.0 16.0 8.0 0.0 0.0 0.0 68.0

HiveFormer [16] 32.0 68.0 76.0 8.0 64.0 8.0 8.0 0.0 28.0 80.0
PolarNet [9] 12.0 32.0 84.0 44.0 56.0 12.0 4.0 8.0 52.0 80.0
PerAct [18] 28.0±4.4 51.2±4.7 84.0±3.6 17.6±2.0 74.0±13.0 16.8±4.7 26.4±3.2 2.4±2.0 52.0±0.0 88.0±4.4
Act3D [13] 51.0 90.0 95.0 47.0 93.0 8.0 12.0 9.0 92.0 94.0
RVT [14] 49.6±3.2 88.0±5.7 91.2±3.0 48.0±5.7 81.6±5.4 36.0±2.5 28.8±3.9 26.4±8.2 72.0±0.0 93.6±4.1

3D Diffuser Actor [25] 85.6±4.1 96.0±3.6 97.6±2.0 82.4±2.0 97.6±3.2 44.0±4.4 68.3±3.3 47.2±8.5 84.0±4.4 99.2±1.6
RVT-2 [15] 66.0±4.5 96.0±0.0 96.0±2.8 88.0±4.9 92.0±2.8 35.0±7.1 80.0±2.8 69.0±5.9 100.0±0.0 99.0±1.7

BridgeVLA w/o heat 5.3±2.3 0.0±0.0 58.7±22.7 2.7±2.3 64.0±0.0 4.0±4.0 0.0±0.0 0.0±0.0 32.0±4.0 40.0±10.6
BridgeVLA w pos 10.7±2.3 78.7±2.3 97.3±4.6 16.0±4.0 72.0±0.0 21.3±8.3 17.3±2.3 4.0±4.0 53.3±2.3 84.0±0.0

BridgeVLA 73.6±4.6 99.2±1.8 99.2±1.8 87.2±6.6 96.0±2.8 60.8±7.7 76.8±8.7 81.6±3.6 87.2±1.8 92.8±3.3

Table 1: Results on RLBench. The "Avg. Rank" column reports the average rank of each method
across all 18 tasks, where lower values indicate better overall performance. "BridgeVLA w/o heat"
refers to the ablated version that directly predicts actions without using intermediate heatmaps.
"BridgeVLA w pos" refers to the ablated version that incorporates position features into the image
features. BridgeVLA achieves the best performance in 10 out of the 18 tasks.

into bins, we also apply cross-entropy loss in Lrot to supervise rotation prediction. For gripper
action and collision avoidance, we use the binary cross-entropy loss in Lgripper and Lcollision as
supervision. To enhance geometric robustness, random rigid-body transformations are applied jointly
to the point cloud and the ground-truth action during training. Additional training details can be
found in Appendix A.

4 Experiments

In this section, we perform extensive experiments in both simulation and the real world to evaluate
the proposed method. Through the experiments, we aim to answer five questions:

Q1: How effectively does BridgeVLA learn 3D robot manipulation compared to state-of-the-art
methods when sufficient data is available?

Q2: Does BridgeVLA learn more efficiently than existing state-of-the-art methods when data is
limited (e.g., 3 trajectories per task)?

Q3: How robust is BridgeVLA in handling visual disturbances (e.g., distractors, background,
and lighting)?

Q4: How well does BridgeVLA generalize to novel object-skill combinations and objects from
previously unseen categories?

Q5: Are our architectural designs (e.g., predicting heatmaps before outputting actions) truly
useful when constructing 3D VLA?

4.1 Simulation Experiments

4.1.1 Experiments on RLBench

Setup. RLBench [19] implements tasks in CoppeliaSim [38] using a Franka Panda robot mounted
with a parallel-jaw gripper. The observation contains four RGB-D images captured from four
calibrated cameras positioned at the front, left shoulder, right should, and wrist. Following previous
works [39, 13, 14, 25, 15], we perform experiments on 18 tasks from RLBench. These tasks span 1)

6



non-prehensile manipulation (e.g., slide block to target), 2) pick-and-place (e.g., stack cups), and 3)
high-precision insertion (e.g., insert peg). Each task is provided with 100 expert demonstrations. And
each demonstration is paired with language instruction and multiple keyframes. Models are evaluated
via binary success rates over 25 trials per task, with a maximum of 25 action steps per trial.

Baselines. We compare BridgeVLA with multiple baselines. (1) Image-BC (CNN) and Image-BC
(ViT) [21] are two 2D baseline methods which predict the actions directly from 2D images using
CNN and ViT as the backbone, respectively. (2) C2F-ARM-BC [20] predicts the next keyframe
action in the voxel space with a coarse-to-fine strategy. (3) PerAct [39] also operates in the voxel
space and predicts the action with a perciever transformer [18]. (4) HiveFormer incorporates
historical information using a unified multi-modal transformer architecture. (5) PolarNet employs
PointNext [36] to encode the 3D scene and predicts both heatmaps and offsets for all points to
estimate translational actions. (6) Act3D [13] predicts the next keyframe action by selecting the
point with the highest score from a set of randomly sampled points in the workspace. (7) 3D
Diffuser Actor [25] generates 3D trajectories via a diffusion process conditioned on 3D observation
and language instructions. (8) RVT [14] uses multi-view transformer to aggregate information
from multiple orthographic views of the point cloud observation. (9) And RVT-2 [15], the current
state-of-the-art method, further improves the precision of its prior via a coarse-to-fine strategy.

Results. In total, we evaluate BridgeVLA five times to minimize statistical bias. The results are
shown in Table 1. BridgeVLA outperforms all the comparing baseline methods, achieving an average
success rate of 88.2% and an average rank of 1.9 across all the 18 tasks, establishing a new state of
the art in this benchmark. These results address Q1, demonstrating the effectiveness of BridgeVLA
in learning complex 3D manipulation tasks. We highlight that BridgeVLA outperforms the best
baseline method by a large margin in Insert Peg (88.0% vs 40.0%) and Sort Shape (60.8% vs 35.0%).
These two tasks demand highly precise alignment between the peg and hole and the block and
sorter, respectively. The high success rates of our method showcase its strong capabilities of learning
precise manipulation which is highly desirable in many industrial applications. Among the 18 tasks,
BridgeVLA performs the worst in Place Cups, despite surpassing all the comparing baseline methods.
We hypothesize this is because the target keypoints are often occluded in all orthographic projection
views, which makes learning and prediction more challenging. In the future, we plan to explore
dynamically selecting the projection views for rendering to avoid this problem.

4.1.2 Experiments on COLOSSEUM & GemBench

To further evaluate the generalization capabilities of BridgeVLA, we conduct experiments on the
COLOSSEUM benchmark [35] and GemBench [12]. These two benchmarks extend RLBench. The
COLOSSEUM benchmark evaluates models in environments with 12 axes of perturbations, which
were not seen during training. These perturbations include variations in object texture, color, size,
background, lighting, distractors, and camera poses. As such, this benchmark is used to assess Q3.

GemBench is a hierarchical generalization benchmark. Its training set consists of 16 tasks (31
variations) covering seven core action primitives: press, pick, push, screw, close, open, and stack/put.
The test set includes 44 tasks (92 variations), categorized into four increasingly challenging settings.
These settings incorporate novel object-skill combinations and new object categories, making it
suitable for evaluating Q4.

BridgeVLA outperforms all existing state-of-the-art 3D manipulation methods on both benchmarks,
addressing Q3 and Q4. Due to space limitations, the details of the environment setup, baselines, and
analysis can be found in Appendix B.1 and Appendix B.2.

4.2 Real-Robot Experiments

Setup. In this section, we perform real-robot experiments to validate the effectiveness of BridgeVLA
in the real world. Our real-robot setup includes a Franka Research 3 robot arm mounted with a
parallel-jaw gripper (Fig. 3). A static ZED 2i depth camera is used to provide the colored point cloud
observation. In total, we evaluate on 13 tasks (see Tab. 12 for a full list of tasks). These tasks ranges
from simple pick-and-place to complex long-horizon tasks, requiring the robot to open a drawer and
put items into the drawer. Each task contains 3-9 keyframes (see Fig. 7 and 8 for visualization). For
each task, we collect 10 expert trajectories for training.
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Method Put the soda can
in the bottom shelf

Put the giraffe
in the lower drawer

Place the red block
in the blue plate Press Sanitizer Put the RedBull can

in the top shelf
Put the RedBull can
in the bottom shelf

Put the coke can
in the top shelf

SpatialVLA(50) [37] 1/10 1/10 5/10 6/10 3/10 1/10 2/10
SpatialVLA(10) [37] 0/10 0/10 0/10 2/10 0/10 0/10 0/10
π0 [5] 0/10 0/10 2/10 1/10 0/10 1/10 0/10
ACT [51] 2/10 2/10 3/10 2/10 3/10 1/10 2/10
RVT-2 [15] 10/10 8/10 8/10 10/10 9/10 10/10 10/10
BridgeVLA 9/10 9/10 10/10 10/10 10/10 10/10 10/10

Method Place the orange block
in the green plate

Place the red block
in the purple plate

Place the yellow block
in the green plate

Put the zebra
in the upper drawer

Put the zebra
in the lower drawer

Put the wolf
in the upper drawer Average

SpatialVLA(50) [37] 6/10 3/10 5/10 2/10 0/10 2/10 28.5%
SpatialVLA(10) [37] 1/10 1/10 0/10 0/10 0/10 0/10 3.1%
π0 [5] 0/10 0/10 1/10 0/10 0/10 0/10 3.8%
ACT [51] 2/10 3/10 4/10 1/10 2/10 1/10 22.3%
RVT-2 [15] 10/10 9/10 9/10 7/10 8/10 9/10 90%
BridgeVLA 10/10 10/10 10/10 9/10 10/10 9/10 96.9%

Table 2: Per-task Success Rate in the Basic Setting. Except for SpatialVLA(50), which was trained
with 50 trajectories, all other methods were trained with 10 trajectories. BridgeVLA outperforms all
baseline methods, achieving an almost perfect success rate of 96.9%.

In total, we design 7 different settings to comprehensively evaluate our model’s performance. (1)
Basic: The model is evaluated in environments that are similar to the training data. (2) Distractor:
Distractor objects that are visually similar to at least one target object are added to the scene. (3)
Lighting: The model is tested in a visually distinct lighting condition in which the lights are turned
off. (4) Background: Three different tablecloths are used to change the background. (5) Height: All
objects for manipulation are placed on a drawer that is 9.5cm high. (6) Combination: We combine
objects and skills that are not paired together in the training datasets. That is, while the objects (e.g.,
red block and green plate) and skill (e.g., place A in B) are seen during training, the instruction that
pairs them together is novel (e.g., place the red block in the green plate). In total, we evaluate 13
novel object-skill combinations (Fig. 11 and 12). (7) Category: To test whether BridgeVLA is able
to transfer the broad knowledge from pre-training to downstream policy learning, we evaluate on
manipulating objects from categories that are unseen in the robot training data. In total, we test 7
novel objects (Fig. 13). Distractor, Lighting, Background, and Height aim to evaluate the robustness
against visual disturbances, while Combination and Category evaluate the generalization capabilities
for unseen instructions.

To demonstrate BridgeVLA’s advantages over existing manipulation policy, we compare it with four
types of representative methods:

1) SpatialVLA [37]: A state-of-the-art 3D VLA model that incorporates 3D information through
Ego3D positional encoding and leverages Adaptive Action Grids to accelerate inference.

2) π0 [5]: A state-of-the-art 2D VLA model pretrained on a large-scale cross-embodiment dataset.
It adopts a vision-language model (VLM) backbone and employs a flow matching action expert to
generate final actions.

3) ACT [51]: A state-of-the-art 2D non-VLA model using a Conditional Variational Autoencoder
(CVAE) to model action distributions. Though effective for fine-grained manipulation, ACT does not
support language conditioning, so we train a separate single-task model for each task, which should
theoretically perform better than a multi-task version.

4) RVT-2 [15]: A state-of-the-art 3D non-VLA model performing the best in our simulation experi-
ments. (See Sec. 4.1)

Results. We first compare BridgeVLA with these baselines on the basic setting. For every task,
we evaluated every baseline over 10 trials to ensure statistical robustness. For fair comparison,
we photographed each test scene and manually aligned the scenes across all methods. Results are
provided in Tab. 2. As we can see, most methods completely fails when given only 10 trajectories per
task except two 3D related methods: RVT-2 and BridgeVLA. Notably, although SpatialVLA also
utilises 3D information, its data efficiency is still very low. Even when the data are increased to 50
trajectories per task, its success rate is still much lower than BridgeVLA, which indicates only adding
3D information is not enough for constructing 3D VLA model and a carefully designed network
architecture is still very important. To assess the data efficiency of BridgeVLA, we also train the
model with only 3 trajectories per task. Remarkably, despite the limited data, BridgeVLA achieves
a success rate of 95.4% in Basic, matching the performance achieved with 10 trajectories per task.
This result underscores the data efficiency of the proposed method, directly addressing Q2. Detailed
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Real Robot Setup Basic Setting Generalization Settings

ZED 2i
Franka Research 3

Background Lighting Distractor

Combination Height Category

Figure 3: Real-Robot Experiments and Results. We use a Franka Research 3 robot arm and a ZED
2i camera to capture point clouds of the scene. To evaluate the model’s performance, we design 7
different settings including one basic setting and six generalization settings. Experimental results
show that BridgeVLA outperforms the state-of-the-art baseline method RVT-2 [15] by an average of
32%.

per-task results are provided in Appendix C.5 and observations about the baselines are detailed in
Appendix C.2.

Considering that only RVT-2 and BridgeVLA have a good performance in basic setting, we only
further evaluate these two methods on other generalization settings. The average success rates are
shown in Fig. 3. BridgeVLA outperforms RVT-2 in all the seven settings. As we can see, RVT-2
struggles in both visual generalization settings and semantic generalization settings, while BridgeVLA
performs much better, especially in Lighting and Combination. These results addresses Q3 and Q4,
indicating that BridgeVLA is able to handle visual disturbance and novel instructions robustly.

Figure 4: Prediction on Pre-training Data after
Fine-tuning. To simulate the multi-view inputs
during fine-tuning, we repeat each pre-training im-
age three times and feed them into the fine-tuned
model to generate heatmaps. Note that these sam-
ples are not cherry-picked. Additional samples can
be found in Appendix C.4.

Although our method outperforms baseline
methods in the Category setting, its absolute
success rate is not high. A common failure
mode is that the robot often ignores the target
object and moves directly to the destination dur-
ing pick-and-place manipulation. We believe
this relatively low performance is not due to
BridgeVLA forgetting the knowledge gained
from pre-training, as it still predicts heatmaps
accurately when provided with samples from the
pre-training dataset after fine-tuning (see Fig. 4
and Appendix C.4). Instead, we hypothesize that
the reduced performance stems from two factors:
1) The images in the pre-training dataset are
mostly captured from third-person views, which
differ significantly from the projection images in
our robot data; 2) The pre-training task focuses
solely on object localization, whereas manipu-
lation involves predicting keypoints that do not
correspond to an object. To address these issues,
we plan to expand both the scale and diversity of
the pre-training dataset and explore more expres-
sive action-decoding methods to better leverage
the preserved pre-training knowledge.
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4.3 Ablation Studies

To prove the effectiveness of our model design and provide insights for the community, we conduct
three ablation studies:

Whether we need to predict heatmaps before predicting actions. Our approach avoids direct
action prediction by first generating 2D heatmaps using a convex upsampling module. Target
positions are then computed by projecting 3D workspace points onto the heatmaps and selecting the
point with the highest mean probability. For ablation, we replaced the convex upsampling module
(309M parameters) with a similarly sized Transformer decoder (303M) to directly predict target
positions, supervised by MSE loss. All other modules were kept the same as before. We performed a
hyperparameter grid search and evaluated the model on RLBench. Results are shown in the Tab. 1.
Replacing heatmap prediction with direct position regression reduced the average success rate from
88.2% to 31.4%, confirming the effectiveness of our heatmap-based design. The ablated model was
also harder to train and more sensitive to hyperparameters—requiring a batch size of 192 and careful
learning rate tuning—while our original model trains reliably even with a batch size of 64. We see
three main reasons for this outcome: (1) Heatmaps offer denser supervision than 3D position vectors,
enabling more effective learning. (2) Projecting 3D points onto heatmaps introduces helpful spatial
priors, easing the learning process. (3) The 2D heatmaps share the same spatial structure as the input
images, enhancing alignment and improving performance.

Whether we need to remove the 3D position input to the VLM backbone. Unlike typical 3D VLA
models like SpatialVLA, we deliberately avoid using per-pixel 3D position inputs and rely solely on
RGB images. This design preserves alignment between the input feature spaces of fine-tuning and
VLM pretraining, which we find crucial for effective vision-language-action (VLA) modeling. To
test this, we added a 3D convolutional module to encode per-pixel 3D positions, fused them with
2D features, and fed the result into the backbone. Although this adds richer spatial cues, it alters
the image feature distribution seen during pretraining, leading to a performance drop from 88.2% to
56.2% on RLBench. Detailed results are shown in the Tab. 1.

Whether we need to do 2D heatmap pre-training to the VLM backbone. The original VLM
backbone can not predict heatmaps, while our downstream policy learning requires such ability. To
bridge the gap, we do 2D heatmap pre-training to the VLM backbone. To verify its effectiveness, we
ablate this pre-training and evaluate model’s performance in the real world, the results are shown in
Fig. 3. As we can see, BridgeVLA w/o Pre-train is not able to generalize well in both language-related
generalization settings and can not even beat RVT-2, while BridgeVLA achieves the best performance
across the two generalization settings especially in Combination, highlighting its ability to understand
language semantics. We hypothesize that the 2D-heatmap pre-training equips BridgeVLA with the
ability to connect the semantics in language instructions with image observations in the heatmap
space. All the above experiment results address Q5 and highlight the effectiveness of our architectural
designs.

5 Conclusions & Future Work
This paper has introduced BridgeVLA, a novel and efficient 3D vision-language-action (VLA) model
built on top of a pre-trained vision-language model (VLM) [3]. Keys to our method are that (1) it
converts 3D inputs to 2D images to align with the 2D image inputs of the pre-trained VLM; (2)
it aligns the input observation and the output action to a unified 2D image space via 2D heatmap
prediction; (3) it adopts a scalable pre-training method to equip the VLM with the capability to predict
heatmaps before fine-tuning on action prediction. Extensive experiments show that the proposed
method is able to learn 3D manipulation efficiently and effectively in both simulation and the real
world. In the future, we plan to explore pre-training on more diverse tasks, including semantic
segmentation and keypoint detection. We also want to incorporate more expressive action-decoding
methods (e.g., diffusion [10]) into the framework to continue improving the policy performance.
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limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: All results in this paper are supported by experiments and we do not include
any theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have showed the main information of our method and experiment settings
in the main paper. Meanwhile, we also display details in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will opensource the code, data and checkpoints upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have specified these details in Sec. 3, Sec. 4, Sec. A, Sec. B and Sec. C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report both the success rate and variance in Tab. 1, Tab. 6 and Tab. 7
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide these information in Sec. A
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We did not identify any aspects that violate the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work introduces a novel 3D VLA framework aimed at advancing the AI
and robotics community. We do not identify any direct societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not find such risks in this project.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: For the code, data and other assets we use in this paper, we have cited original
paper and respected their terms.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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————Appendix————

Table 3: Training hyperparameters for BridgeVLA

Pretrain RLBench Finetune Colosseum Finetune Real-robot Finetune

learning rate 5e-5 8e-5 8e-5 2e-5
optimizer AdamW AdamW AdamW AdamW
batch size 384 192 192 192

warmup steps 400 - - -

A Training & Inference Details

Detailed training configurations are summarized in Tab. 3. Throughout both pre-training and fine-
tuning, we keep the SigLIP vision encoder and language token embeddings frozen.

Computational Resources:

1. Pre-training: 8 NVIDIA A100 GPUs for 3,800 steps (≈2 hours)

2. RLBench fine-tuning: 48 NVIDIA H100 GPUs for 83,000 steps (≈20 hours)

3. COLOSSEUM fine-tuning: 48 NVIDIA H100 GPUs for 83,000 steps (≈20 hours)

4. GemBench fine-tuning: 40 NVIDIA A100 GPUs for 50 epochs (≈2.1 hours)

5. Real-world fine-tuning: 8 NVIDIA A100 GPUs for 300 epochs (≈1.5 hours)

For inference, we run BridgeVLA on a machine equipped with an NVIDIA RTX 4090 GPU. To
evaluate its inference speed, we conducted 100 trials. From point cloud input to action output, the
average end-to-end inference time is 0.21 seconds.

B Simulation Experiments

B.1 Experiments on COLOSSEUM

Setup. The COLOSSEUM benchmark is an extension to the RLBench benchmark. The model is
trained on the data from the original RLBench benchmark but evaluated in environments spanning 12
axes of perturbations. These perturbations, which are unseen during training, encompass changes
in object texture, color, and size, backgrounds, lighting, distractors and camera poses. In total, the
COLOSSEUM creates 20,371 unique task perturbations instances to comprehensively evaluate the
generalization capabilities of the model. Specifically, our evaluation includes three steps: 1) train
the model with the original RLBench data without perturbations (100 trajectories per task) on 20
tasks, 2) evaluate each task over 25 trials per perturbation, 3) compute the average success rate of all
evaluated tasks for every perturbation. Besides the 12 types of perturbations, we also evaluate on
basic variations from the original RLBench (denoted as RLBench in Tab. 4), and a more challenging
setting which combines all the 12 types of perturbations (denoted as All Perturbations in Tab. 4).

Baselines. We compare BridgeVLA with five baseline methods. R3M-MLP and MVP-MLP
are two 2D methods that utilize pre-trained visual encoders to process observation images and an
MLP for action prediction. Specifically, R3M-MLP uses R3M [33] that is pre-trained on large-scale
egocentric human videos; MVP-MLP uses MVP [46] that is pre-trained on millions of in-the-wild
data. Both visual encoders show strong adaptability on various robotics tasks in both simulation and
the real world. We also compare with three 3D methods introduced in Sec. 4.1.1, i.e., PerAct [39],
RVT [14], and RVT-2 [15].
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Overall Success Rate (%)

Models Avg. SR (%) ↑ Avg. Rank ↓ All Perturbations MO-COLOR RO-COLOR MO-TEXTURE RO-TEXTURE MO-SIZE

R3M-MLP[33] 0.8 5.71 0.6 0.4 0.0 0.0 0.0 1.8
MVP-MLP[46] 1.6 5.0 0.8 1.2 0.0 0.4 0.0 4.44

PerAct[18] 27.9 3.71 7.2 24.0 29.2 28.8 17.71 35.6
RVT[14] 35.4 3.28 6.4 26.0 31.3 44.8 41.1 35.3

RVT-2[15] 56.7 1.92 15.6 ± 0.8 53.0 ± 0.9 54.6 ± 0.6 59.7 ± 0.7 56.7 ± 1.4 60.9 ± 0.9
BridgeVLA (Ours) 64.0 1.07 18.7 ± 2.2 60.5 ± 1.1 63.8 ± 0.1 63.5 ± 1.5 68.4 ± 3.3 69.3 ± 1.0

Models RO-SIZE Light Color Table Color Table Texture Distractor Background Texture RLBench Camera Pose

R3M-MLP[33] 0.0 1.0 1.4 0.2 1.6 1.2 2.0 0.8
MVP-MLP[46] 0.0 1.6 1.6 1.0 3.8 2.2 2.0 2.6

PerAct[18] 29.3 29.1 30.4 23.2 27.1 33.5 39.4 36.3
RVT[14] 40.5 34.0 30.0 45.2 18.8 46.4 53.4 42.2

RVT-2[15] 53.4 ± 1.5 58.0 ± 1.1 62.6 ± 0.9 56.6 ± 0.9 60.8 ± 0.5 68.7 ± 1.1 68.8 ± 1.3 64.4 ± 0.5
BridgeVLA (Ours) 61.7 ± 0.8 69.7 ± 1.2 75.7 ± 0.9 71.3 ± 0.7 51.8 ± 1.5 74.8 ± 1.0 73.1 ± 0.2 73.8 ± 0.3

Table 4: Results on the COLOSSEUM Benchmark. The table shows the success rates across 14
generalization settings. The “Avg. Rank” column reports the average rank of each method across all
perturbations, where lower values indicate better overall performance. Compared to the state-of-the-
art baseline, BridgeVLA improves the average success rate by 7.3%.

Results. Results are shown in Tab. 4. We use the results of R3M-MLP [33], MVP-MLP [46],
RVT [14], and PerAct [39] from the original COLOSSEUM paper [35]. For RVT-2 [15] and
BridgeVLA, we perform our own training and evaluation process. We performed three test repetitions
and report the average success rate and variance of BridgeVLA and RVT-2 for each task under
different perturbations in Tab.6 and Tab.7, respectively. BridgeVLA outperforms all the comparing
baseline methods in terms of average success rate, significantly outperforming the best baseline
method by 7.3%. Among all the 14 evaluated perturbations, our method ranks the best among all
methods in 13 of them. These results address Q3, showcasing that BridgeVLA possesses strong
robustness against visual perturbation.

B.2 Experiments on GemBench

Setup. GemBench [12] is a hierarchical generalization benchmark built on the RLBench simula-
tor [19]. Its training set contains 16 tasks (31 variations) covering seven core action primitives—press,
pick, push, screw, close, open, and stack/put. The test set consists of 44 tasks (92 variations),
categorized into four increasingly challenging settings:

L1 (Novel Placements): L1 consists of the original 16 tasks (31 variations). The object placements
are randomized within the workspace. In addition, chromatic distractors are introduced to test the
ability to handle additional visual complexity.

L2 (Novel Rigid Objects): L2 involves 15 unseen tasks (28 variations) that require interaction with 8
novel rigid objects using learned primitives. The generalization capabilities are evaluated across two
categories: novel object-color compositions and novel object shapes.

L3 (Novel Articulated Objects): L3 consists of 18 unseen tasks (21 variations) that involve interact-
ing with articulated objects. It evaluates the generalization capabilities across three categories: novel
action-part compositions, novel object instances, and novel object categories.

L4 (Novel Long-Horizon Tasks): L4 includes 6 complex long-horizon tasks (12 variations) that
require combining multiple actions to finish a whole task.

Baselines. In total, we compare with six baseline methods. 3D-LOTUS [12] processes point cloud
inputs through a language-conditioned point cloud transformer architecture [45]. It showcases notable
multi-tasking capabilities and high training efficiency. Its enhanced variant, 3D-LOTUS++ [12],
integrates the generalization capabilities of large-scale models into 3D-LOTUS with a modular
architecture consisting of three components: (1) LLM-based task planning [1], (2) VLM-based object
grounding [32, 27], and (3) motion control inherited from 3D-LOTUS. We also compare with four
methods introduced in Sec. 4.1.1, i.e., Hiveformer [16], PolarNet [9], 3D Diffuser Actor [25],
RVT-2 [15]

Results. Overall results are shown in Tab. 5 and per-task success rates on the four settings of
GemBench are shown in Tab. 8, 9, 10, 11. The results of baseline methods are sourced from [12].
In total, we evaluate on 5 random seeds to reduce statistical variance. And for every seed, we

23



Method Average L1 L2 L3 L4

Hiveformer [16] 30.4 60.3 ± 1.5 26.1 ± 1.4 35.1 ± 1.7 0.0 ± 0.0
PolarNet [9] 38.4 77.7 ± 0.9 37.1 ± 1.4 38.5 ± 1.7 0.1 ± 0.2
3D Diffuser Actor [25] 44.0 91.9 ± 0.8 43.4 ± 2.8 37.0 ± 2.2 0.0 ± 0.0
RVT-2 [15] 44.0 89.1 ± 0.8 51.0 ± 2.3 36.0 ± 2.2 0.0 ± 0.0
3D-LOTUS [12] 45.7 94.3 ± 1.4 49.9 ± 2.2 38.1 ± 1.1 0.3 ± 0.3
3D-LOTUS++[12] 48.0 68.7 ± 0.6 64.5 ± 0.9 41.5 ± 1.8 17.4 ± 0.4
BridgeVLA (Ours) 50.0 91.1 ± 1.1 65.0 ± 1.3 43.8 ± 1.2 0.0 ± 0.0

Table 5: Results on GemBench. We show the average success rates on the four evaluation settings
of GemBench. BridgeVLA establishes a new state of the art on this benchmark, achieving an average
success rate of 50.0%.

run 20 trials per task variation. BridgeVLA consistently outperforms all the comparing baseline
methods in terms of average success rate across the four evaluation settings. Notably, BridgeVLA
achieves state-of-the-art results in both the L2 and L3 settings, demonstrating strong generalization
capabilities, addressing Q4. However, similar to most baseline approaches, BridgeVLA exhibits
limited performance in the L4 setting, where each task comprises multiple sub-tasks. In the future,
we plan to explore leveraging large language models (LLMs) for long-horizon task decomposition
and further improve the performance in such setting.

B.3 Key frame Selection

For all the simulation and real-robot experiments, we adopt the same key frame selection strategy as
PerAct [39]. A time step is labeled as a key frame if (i) the robot is stationary, (ii) the gripper state
changes, or (iii) the step is the final state of the episode. The robot is considered stationary when the
absolute velocities of all joints fall below 0.1 rad/s.

B.4 Data

Following [39, 14, 15], we select 18 tasks from RLBench [19] to evaluate the performance of our
method on complex manipulation tasks. These tasks are visualized in Fig. 5.

To assess the generalization capability of BridgeVLA, we also evaluate on the COLOSSEUM
benchmark [35] and GemBench [12]. The COLOSSEUM benchmark includes 20 basic tasks and 12
types of perturbations. These perturbations, which are unseen during training, encompass changes in
object texture, color, and size, backgrounds, lighting, distractors and camera poses. The benchmark
evaluates on all the 12 types of perturbations, a setting with basic variations from the original
RLBench, and a more challenging setting which combines all the 12 types of perturbations. We
visualize all perturbations except the one from the original RLBench in Fig. 6.

For GemBench, the training set includes 16 tasks (31 variations) spanning seven fundamental
action primitives (press, pick, push, screw, close, open, stack/put). The test set includes 44 tasks (92
variations) organized into four increasingly challenging settings. Unlike RLBench and COLOSSEUM,
where demo augmentation is used, we train BridgeVLA using only keyframes from each trajectory
without performing any demo augmentation in GemBench.

C Real-Robot Experiments

C.1 Experiment Setup

Fig. 3 illustrates our real-robot setting. The platform comprises a 7-DoF Franka Research 3 manipu-
lator with a parallel-jaw gripper and a ZED 2i stereo camera mounted on a tripod for capturing point
clouds of the workspace. We collect expert trajectories with a kinestheic teaching approach. We first
move the manipulator to keypoints of an expert trajectory and then play back the keypoints to record
the observation and action at each keypoint.
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C.2 Basic Setting

This setting provides a scene similar to the training dataset, where only the object layouts are modified.
To highlight BridgeVLA’s advantages over existing manipulation policies, we compare it with four
representative methods in this setting. The behaviors of these baselines are as follows:

SpatialVLA [37]: In the experimental setup, we initially trained SpatialVLA using only 10 trajecto-
ries per task. However, it failed on nearly all tasks, often struggling to move toward the correct target
object. To improve performance, we augmented the dataset with an additional 40 trajectories per task.
While this improved performance, it still lagged significantly behind BridgeVLA—particularly on
more challenging tasks, such as "Put the giraffe in the lower drawer." These findings suggest that
BridgeVLA provides a more effective and data-efficient solution for 3D VLA.

π0 [5]: Similarly, π0 fails with only 10 trajectories per task, likely due to overfitting—it performs
well on the training set but often fails during online testing. Common failure modes include missing
or failing to grasp the target and prematurely opening the gripper before reaching the goal. Notably,
both BridgeVLA and π0 share the same PaliGemma backbone and are trained end-to-end. This
highlights a key contribution of our work: while VLAs like π0 perform well with large-scale data,
they struggle in low-data regimes—even on simpler tasks, such as "Press sanitizer." In contrast,
BridgeVLA achieves near-perfect success and generalizes robustly across diverse settings.

ACT [51]: ACT also underperforms compared to BridgeVLA. It demonstrates limited spatial
generalization, performing well only in areas densely covered during training, but often failing when
the target is near the workspace boundaries. This behavior is consistent with its design: ACT models
actions using a Gaussian prior, which assigns low probability to peripheral regions, limiting its spatial
generalization capabilities.

RVT-2 [15]: RVT-2 performs the best among all the baselines. It can successfully solve most tasks,
but it is not as robust as BridgeVLA. For instance, it sometimes fails to pick up the block precisely or
place the object accurately, leading to task failure. Meanwhile, by utilizing the capabilities of VLM,
BridgeVLA’s advantages are further amplified in generalization settings, as detailed in Sec. 4.2.

C.3 Generalization Settings

We evaluate on a total of six generalization settings: Distractor, Lighting, Background, Height,
Combination, and Category. For Distractor, Lighting, Background, and Height, we visualize these
settings in Fig. 10. We visualize the settings of Combination and Category in Fig. 11 and Fig. 12,
respectively.

In Distractor, we add distractor objects that are visually similar to at least one target object to the
scene. In Lighting, we evaluate the model in a novel lighting condition in which the lights are off. In
Background, we use three different tablecloths to change the background. For Height, we elevate all
objects for manipulation with a drawer that is about 10cm high. Distractor, Lighting, Background,
and Height aim to evaluate the robustness against visual disturbances.

In Combination, we combine objects and skills that are not paired together in the training datasets.
That is, while the object for manipulation and the manipulation skill are seen during training, the
instruction that pairs them together is novel. The setting of Combination helps us evaluate whether
the model is able to generalize across novel object-skill combinations. In Category, we want to
evaluate whether BridgeVLA is able to manipulate objects from categories that are unseen in the
robot training data. In total, we test 7 novel objects.

C.4 Preservation of Object Grounding Capability after Fine-tuning

We observe that even after fine-tuning on robot action data, BridgeVLA retains the object grounding
capability learned during pre-training. We visualize its predictions on the pre-training dataset after
fine-tuning in Fig. 14. It is important to note that the samples in Fig. 14 are not cherry-picked.
BridgeVLA does not forget its pre-training knowledge after 3D action fine-tuning.
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C.5 Per-task Success Rate

We showcase per-task success rates of BridgeVLA in the basic setting in Tab. 12. Notably, BridgeVLA
achieves exceptionally high success rates even with only 3 trajectories per task, highlighting its superb
sample efficiency.
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basketball_in_hoop 100.0±0.0 4.0±3.3 94.7±1.9 96.0±0.0 84.0±5.7 - 100.0±0.0 68.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 37.3±1.9 100.0±0.0 100.0±0.0 100.0±0.0

close_box 100.0±0.0 72.0±0.0 94.7±1.9 - - - 93.3±1.9 - 100.0±0.0 100.0±0.0 98.7±1.9 98.7±1.9 100.0±0.0 97.3±1.9 100.0±0.0

close_laptop_lid 100.0±0.0 11.1±15.7 82.7±3.8 - - - 67.9±14.6 - 89.3±8.2 92.0±0.0 97.3±3.8 82.7±6.8 96.0±3.3 100.0±0.0 96.0±0.0

empty_dishwasher 0.0±0.0 0.0±0.0 1.3±1.9 1.3±1.9 - 1.3±1.9 4.0±3.3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 1.3±1.9 1.3±1.9 0.0±0.0

get_ice_from_fridge 94.7±1.9 5.3±1.9 86.7±1.9 90.7±7.5 90.7±5.0 - 84.0±3.3 73.3±1.9 96.0±3.3 98.7±1.9 89.3±7.5 56.0±8.6 94.7±1.9 96.0±3.3 98.7±1.9

hockey 57.3±5.0 9.3±3.8 44.0±6.5 50.7±8.2 - 50.7±13.2 46.7±8.2 65.3±5.0 45.3±1.9 64.0±8.6 53.3±1.9 20.0±3.3 56.0±5.7 49.3±5.0 50.7±5.0

insert_onto_square_peg 93.3±3.8 23.3±2.4 52.0±3.3 94.7±1.9 - 76.0±8.6 85.3±3.8 70.7±3.8 84.0±0.0 88.0±3.3 88.0±3.3 44.0±11.8 86.7±1.9 77.3±5.0 96.0±0.0

meat_on_grill 96.0±0.0 9.3±1.9 32.0±0.0 88.0±5.7 - - 100.0±0.0 - 100.0±0.0 92.0±6.5 90.7±1.9 98.7±1.9 97.3±1.9 100.0±0.0 100.0±0.0

move_hanger 37.3±3.8 2.7±3.8 26.7±3.8 46.7±3.8 - - - - 52.0±0.0 84.0±0.0 52.0±5.7 52.0±5.7 33.3±5.0 42.7±1.9 24.0±0.0

open_drawer 96.0±0.0 60.0±3.3 97.3±1.9 - - - 90.7±1.9 - 88.0±3.3 93.3±1.9 100.0±0.0 90.7±1.9 100.0±0.0 94.7±1.9 96.0±0.0

place_wine_at_rack_location 88.0±5.7 17.3±13.6 82.7±5.0 89.3±7.5 - 92.0±6.5 93.3±3.8 90.7±3.8 90.7±5.0 97.3±1.9 88.0±3.3 74.7±3.8 90.7±6.8 92.0±3.3 92.0±8.6

put_money_in_safe 94.7±1.9 6.7±5.0 78.7±1.9 74.7±1.9 81.3±6.8 89.3±5.0 92.0±3.3 - 37.3±12.4 84.0±3.3 84.0±3.3 84.0±3.3 89.3±1.9 86.7±8.2 86.7±1.9

reach_and_drag 100.0±0.0 0.0±0.0 89.3±3.8 96.0±0.0 94.7±5.0 84.0±5.7 94.7±1.9 38.7±5.0 92.0±3.3 88.0±5.7 78.7±3.8 28.0±8.6 100.0±0.0 100.0±0.0 94.7±3.8

scoop_with_spatula 96.0±3.3 6.7±1.9 94.7±1.9 93.3±1.9 85.3±3.8 85.3±3.8 78.7±3.8 86.7±5.0 90.7±1.9 88.0±6.5 77.3±1.9 20.0±5.7 90.7±6.8 89.3±1.9 93.3±1.9

setup_chess 10.7±1.9 0.0±0.0 1.3±1.9 8.0±0.0 8.0±3.3 - 13.3±1.9 - 12.0±5.7 21.3±8.2 13.3±3.8 5.3±1.9 20.0±5.7 16.0±5.7 4.0±3.3

slide_block_to_target 100.0±0.0 24.0±3.3 74.7±1.9 - 92.0±3.3 - - - 100.0±0.0 100.0±0.0 98.7±1.9 84.0±9.8 100.0±0.0 100.0±0.0 100.0±0.0

stack_cups 58.7±3.8 29.3±1.9 66.7±1.9 - 50.7±1.9 - 44.0±3.3 - 62.7±1.9 64.0±3.3 65.3±8.2 26.7±7.5 73.3±8.2 64.0±14.2 72.0±8.6

straighten_rope 61.3±6.8 8.0±5.7 16.0±5.7 - 48.0±3.3 - - - 61.3±9.4 65.3±1.9 54.7±8.2 37.3±5.0 70.7±8.2 66.7±7.5 72.0±6.5

turn_oven_on 93.3±1.9 85.3±3.8 94.7±3.8 - - - 90.7±1.9 - 93.3±3.8 94.7±7.5 96.0±3.3 96.0±3.3 96.0±0.0 88.0±3.3 100.0±0.0

wipe_desk 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 - 0.0±0.0 - 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Task Mean 73.9±0.7 18.7±2.2 60.5±1.1 63.8±0.1 63.5±1.5 68.4±3.3 69.3±1.0 61.7±0.8 69.7±1.2 75.7±0.9 71.3±0.7 51.8±1.5 74.8±1.0 73.1±0.2 73.8±0.3

Table 6: Success Rates of BridgeVLA under Different Perturbations of COLOSSEUM.
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basketball_in_hoop 100±0.0 40±4.9 99±1.7 33±1.7 96±0.0 - 99±1.7 100±0.0 87±4.4 54±2.0 91±11.4 55±9.1 100±0.0 97±1.7 100±0.0

close_box 96±4.9 32±16.7 43±3.3 - - - 91±5.2 - 84±2.8 78±3.5 91±9.1 96±2.8 98±3.5 96±2.8 95±3.3

close_laptop_lid 30±4.5 48±7.5 50±4.5 - - - 56±6.9 - 28±2.8 23±4.4 42±12.8 49±5.2 44±0.0 33±1.7 48±2.8

empty_dishwasher 0±0.0 0±0.0 0±0.0 0±0.0 - 1±1.7 1±1.7 1±1.7 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 1±1.7 1±1.7

get_ice_from_fridge 66±4.5 2±2.0 67±3.3 11±1.7 67±5.2 - 71±3.3 44±2.8 24±0.0 35±1.7 77±4.4 65±3.3 70±3.5 69±1.7 71±4.4

hockey 12±2.8 0±0.0 18±6.0 0±0.0 - 14±3.5 2±3.5 9±3.3 7±5.9 10±2.0 16±15.0 5±1.7 13±1.7 5±1.7 9±4.4

meat_on_grill 45±1.7 56±8.5 62±4.5 33±1.7 - - 64±2.8 - 61±1.7 65±1.7 49±5.2 67±11.1 63±3.3 62±4.5 51±3.3

move_hanger 0±0.0 0±0.0 0±0.0 0±0.0 - - - - 0±0.0 0±0.0 0±0.0 21±9.1 0±0.0 0±0.0 0±0.0

wipe_desk 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 - 0±0.0 - 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

open_drawer 97±1.7 9±5.9 100±0.0 - - - 100±0.0 - 90±4.5 56±0.0 100±0.0 89±5.2 100±0.0 97±1.7 96±0.0

slide_block_to_target 100±0.0 37±10.7 100±0.0 - 100±0.0 - - - 100±0.0 91±1.7 88±20.8 90±12.8 100±0.0 100±0.0 100±0.0

reach_and_drag 86±2.0 1±1.7 34±2.0 64±2.8 75±4.4 74±4.5 95±1.7 79±1.7 20±0.0 24±0.0 72±15.7 43±21.4 81±1.7 75±1.7 80±2.8

put_money_in_safe 63±1.7 1±1.7 62±2.0 5±1.7 58±2.0 75±1.7 64±2.8 - 60±0.0 47±3.3 82±4.5 60±4.9 60±0.0 60±2.8 48±0.0

place_wine_at_rack_location 96±4.9 59±11.4 94±4.5 94±2.0 - 96±2.8 91±1.7 88±2.8 87±5.9 93±4.4 94±2.0 80±16.0 88±2.8 95±3.3 96±4.9

insert_onto_square_peg 5±1.7 0±0.0 0±0.0 13±1.7 - 9±3.3 16±0.0 6±3.5 0±0.0 0±0.0 0±0.0 2±3.5 4±0.0 4±0.0 5±1.7

stack_cups 44±0.0 2±3.5 42±2.0 - 50±4.5 - 8±0.0 - 20±0.0 13±1.7 10±6.0 15±3.3 40±0.0 36±0.0 24±0.0

turn_oven_on 97±1.7 5±1.7 34±4.5 - - - 68±2.8 - 96±2.8 97±1.7 98±2.0 97±1.7 96±2.8 92±0.0 93±5.2

straighten_rope 54±2.0 0±0.0 32±0.0 - 57±4.4 - - - 77±1.7 51±4.4 14±11.8 27±20.3 61±1.7 66±2.0 59±1.7

setup_chess 5±3.3 0±0.0 1±1.7 4±2.8 7±3.3 - 4±2.8 - 8±4.9 4±2.8 12±2.8 10±10.4 18±8.2 15±5.2 7±4.4

scoop_with_spatula 96±0.0 0±0.0 11±1.7 73±3.3 82±24.2 85±1.7 81±1.7 81±5.2 57±1.7 87±3.3 83±4.4 57±11.8 93±1.7 85±3.3 92±2.8

Average 55±0.5 15±1.9 42±0.6 25±0.2 59±2.6 51±1.8 54±1.0 51±1.3 45±0.3 41±0.0 51±2.7 46±2.2 56±0.5 54±0.5 54±0.4

Table 7: Success Rates of RVT-2 under Different Perturbations of COLOSSEUM.
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Method Avg. Close
Fridge+0

Close
Jar+15

Close
Jar+16

CloseLaptop
Lid+0

Close
Microwave+0

LightBulb
In+17

LightBulb
In+19

Open
Box+0

Open
Door+0

Open
Drawer+0

Hiveformer [16] 60.3±1.5 96±4.2 64±13.9 92±2.7 90±3.5 88±7.6 12±4.5 13±6.7 4±4.2 53±15.2 15±12.2

PolarNet [9] 77.6±0.9 99±2.2 99±2.2 99±2.2 95±3.5 98±2.7 72±12.5 71±6.5 32±11.5 69±8.9 61±12.4

3D diffuser actor [25] 91.9±0.8 100±0.0 100±0.0 100±0.0 99±2.2 100±0.0 85±5.0 88±2.7 11±2.2 96±4.2 82±9.1

RVT-2 [15] 89.0±0.8 77±11.0 97±4.5 98±2.7 77±13.0 100±0.0 93±5.7 91±8.2 7±4.5 98±4.5 93±5.7

3D-LOTUS [12] 94.3±3.5 96±3.7 100±0.0 100±0.0 98±2.5 98±4.0 84±7.4 85±9.5 99±2.0 77±2.5 83±8.7

3D-LOTUS++ [12] 68.7±0.6 95±0.0 100±0.0 99±2.0 28±2.5 87±5.1 55±10.5 45±8.9 55±8.9 79±9.7 68±12.5

BridgeVLA (Ours) 91.1±1.1 99±2.0 98±4.0 100±0.0 97±2.5 85±5.5 90±5.5 87±7.5 76±10.2 70±12.3 86±5.8

Method Open
Drawer+2

Pick&
Lift+0

Pick&
Lift+2

Pick&
Lift+7

PickUp
Cup+8

PickUp
Cup+9

PickUp
Cup+11

Push
Button+0

Push
Button+3

Push
Button+4

PutIn
Cupboard+0

Hiveformer [16] 59±7.4 86±4.2 92±6.7 93±2.7 83±7.6 69±12.9 61±19.8 84±11.9 68±6.7 87±7.6 34±8.2

PolarNet [9] 90±7.1 92±9.1 84±7.4 88±5.7 82±7.6 79±4.2 72±10.4 100±0.0 100±0.0 99±2.2 52±7.6

3D diffuser actor [25] 97±4.5 99±2.2 99±2.2 99±2.2 96±2.2 97±4.5 98±2.7 98±2.7 96±4.2 98±2.7 85±5.0

RVT-2 [15] 94±4.2 99±2.2 98±2.7 100±0.0 99±2.2 99±2.2 99±2.2 100±0.0 100±0.0 100±0.0 88±8.4

3D-LOTUS [12] 93±6.0 99±2.0 100±0.0 99±2.0 97±4.0 96±3.7 94±4.9 99±2.0 99±2.0 100±0.0 89±5.8

3D-LOTUS++ [12] 75±4.5 97±6.0 94±3.7 93±5.1 86±8.0 88±6.8 91±4.9 100±0.0 100±0.0 100±0.0 1±2.0

BridgeVLA(Ours) 99±2.0 99±2.0 100±0.0 98±2.5 96±2.0 94±3.7 99±2.0 100±0.0 98±4.0 98±4.0 74±6.6

Method PutIn
Cupboard+3

PutMoney
InSafe+0

PutMoney
InSafe+1

Reach&
Drag+14

Reach&
Drag+18

Slide
Block+0

Slide
Block+1

Stack
Blocks+30

Stack
Blocks+36

Stack
Blocks+39

Hiveformer [16] 74±6.5 85±3.5 88±2.7 37±5.7 32±7.6 99±2.2 91±12.4 6±5.5 7±4.5 6±4.2

PolarNet [9] 88±4.5 93±4.5 95±5.0 99±2.2 99±2.2 100±0.0 0±0.0 34±10.8 30±9.4 36±12.9

3D diffuser actor [25] 82±11.5 95±5.0 98±2.7 100±0.0 99±2.2 100±0.0 89±4.2 88±7.6 85±6.1 89±5.5

RVT-2 [15] 80±6.1 93±8.4 96±8.5 85±10.0 94±2.2 100±0.0 37±6.7 88±5.7 93±2.7 88±11.5

3D-LOTUS [12] 72±11.2 94±3.7 99±2.0 99±2.0 100±0.0 100±0.0 100±0.0 94±5.8 91±6.6 90±4.5

3D-LOTUS++ [12] 2±2.5 22±6.8 16±4.9 94±3.7 62±8.7 100±0.0 65±5.5 86±5.8 20±4.5 28±13.6

BridgeVLA (Ours) 84±6.6 79±9.7 86±3.7 96±5.8 97±4.0 100±0.0 90±5.5 77±8.1 87±4.0 85±7.8

Table 8: Per-task Success Rate on GemBench Level 1.

Method Avg. Push
Button+13

Push
Button+15

Push
Button+17

Pick&
Lift+14

Pick&
Lift+16

Pick&
Lift+18

PickUp
Cup+10

PickUp
Cup+12

PickUp
Cup+13

Hiveformer 26.1±1.4 97±2.7 85±10.0 88±2.7 21±6.5 9±4.2 8±6.7 30±7.1 22±13.5 26±10.6

PolarNet 37.1±1.4 100±0.0 100±0.0 85±7.9 3±4.5 1±2.2 0±0.0 48±11.0 46±8.9 16±6.5

3D diffuser actor 43.4±2.8 87±13.0 81±6.5 60±9.4 9±4.2 18±9.1 0±0.0 84±5.5 60±11.7 62±13.0

RVT-2 51.0±2.3 100±0.0 100±0.0 100±0.0 47±7.6 29±9.6 8±4.5 81±8.2 59±9.6 72±9.7

3D-LOTUS 49.9±2.2 99±2.0 100±0.0 100±0.0 3±2.5 18±8.7 33±9.3 89±3.7 78±8.7 57±7.5

3D-LOTUS++ 64.5±0.9 99±2.0 100±0.0 99±2.0 94±3.7 96±3.7 95±3.2 79±4.9 89±9.7 84±10.2

BridgeVLA (Ours) 65.0±1.3 100±0.0 100±0.0 100±0.0 74±9.7 89±4.9 0±0.0 91±3.7 90±3.2 90±6.3

Method Stack
Blocks+24

Stack
Blocks+27

Stack
Blocks+33

Slide
Block+2

Slide
Block+3

Close
Jar+3

Close
Jar+4

LightBulb
In+1

LightBulb
In+2

Lamp
On+0

Hiveformer 0±0.0 4±4.2 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 4±4.2 0±0.0 7±4.5

PolarNet 1±2.2 2±2.7 6±8.2 0±0.0 0±0.0 20±10.6 82±5.7 22±11.5 17±8.4 14±10.8

3D diffuser actor 66±13.9 82±2.7 50±14.6 0±0.0 0±0.0 23±16.8 82±5.7 51±17.8 60±10.0 7±7.6

RVT-2 18±4.5 56±16.7 45±13.7 0±0.0 1±2.2 7±7.6 77±5.7 68±14.4 6±6.5 0±0.0

3D-LOTUS 13±8.1 40±9.5 69±5.8 0±0.0 0±0.0 71±5.8 90±4.5 24±4.9 41±8.6 0±0.0

3D-LOTUS++ 22±9.3 83±7.5 59±3.7 27±9.8 5±3.2 98±2.5 96±3.7 56±9.7 43±7.5 2±2.0

BridgeVLA (Ours) 61±10.7 51±13.2 79±8.6 12±9.3 3±4.0 66±6.6 88±4.0 66±8.6 74±5.8 7±4.0

Method Reach&
Drag+5

Reach&
Drag+7

PutCube
InSafe+0

Pick&Lift
Cylinder+0

Pick&Lift
Star+0

Pick&Lift
Moon+0

Pick&Lift
Toy+0

PutIn
Cupboard+7

PutIn
Cupboard+8

Hiveformer 1±2.2 0±0.0 4±2.2 78±5.7 73±7.6 88±2.7 87±4.5 0±0.0 0±0.0

PolarNet 61±8.2 10±6.1 40±14.1 93±6.7 88±8.4 93±6.7 90±3.5 0±0.0 0±0.0

3D diffuser actor 0±0.0 64±6.5 3±2.7 99±2.2 43±17.9 91±9.6 30±9.4 0±0.0 3±4.5

RVT-2 91±2.2 89±6.5 6±5.5 98±2.7 98±4.5 94±4.2 78±8.4 0±0.0 0±0.0

3D-LOTUS 95±4.5 18±10.8 25±5.5 88±8.7 69±6.6 80±8.4 96±3.7 0±0.0 0±0.0

3D-LOTUS++ 94±2.0 64±12.4 37±5.1 91±2.0 94±3.7 29±6.6 71±2.0 1±2.0 0±0.0

BridgeVLA (Ours) 94±3.7 96±3.7 3±2.5 98±2.5 99±2.0 95±3.2 93±5.1 0±0.0 0±0.0

Table 9: Per-task Success Rate on GemBench Level 2.
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Method Avg. Close
Door+0

Close
Box+0

Close
Fridge2+0

CloseLaptop
Lid2+0

Close
Microwave2+0

Open
Door2+0

Open
Box2+0

Hiveformer 35.1±1.7 0±0.0 1±2.2 34±9.6 52±9.1 15±7.1 32±11.5 5±3.5

PolarNet 38.5±1.7 0±0.0 0±0.0 78±5.7 26±8.2 74±6.5 33±6.7 23±8.4

3D diffuser actor 37.0±2.2 0±0.0 0±0.0 97±2.7 23±6.7 88±7.6 86±7.4 67±9.8

RVT-2 36.0±2.2 1±2.2 2±2.7 72±6.7 42±14.0 71±8.9 79±6.5 5±6.1

3D-LOTUS 38.1±1.1 0±0.0 58±8.1 36±9.7 54±10.7 85±7.1 42±6.8 11±6.6

3D-LOTUS++ 41.5±1.8 1±2.0 29±8.6 93±2.5 50±9.5 99±2.0 52±10.3 16±8.0

BridgeVLA (Ours) 43.8±1.2 0±0.0 1±2.0 95±5.5 77±4.0 54±10.2 68±10.8 74±4.9

Method Open
Drawer2+0

Open
Drawer3+0

OpenDrawer
Long+0

OpenDrawer
Long+1

OpenDrawer
Long+2

OpenDrawer
Long+3

Toilet
SeatUp+0

Open
Fridge+0

Hiveformer 59±11.9 39±11.9 78±8.4 82±4.5 49±4.2 57±11.5 6±4.2 0±0.0

PolarNet 91±4.2 29±8.2 84±11.9 88±5.7 63±8.4 37±7.6 2±2.7 4±2.2

3D diffuser actor 19±8.2 1±2.2 15±5.0 35±13.7 26±9.6 79±12.9 0±0.0 7±5.7

RVT-2 81±11.9 0±0.0 84±8.2 39±10.8 11±8.9 75±6.1 7±5.7 0±0.0

3D-LOTUS 90±3.2 22±8.1 56±13.9 33±11.2 17±8.1 75±6.3 0±0.0 4±5.8

3D-LOTUS++ 70±5.5 41±4.9 72±4.0 52±10.8 23±8.1 78±5.1 8±5.1 0±0.0

BridgeVLA (Ours) 65±6.3 87±6.0 59±8.6 34±8.0 18±10.3 85±8.4 6±5.8 7±2.5

Method OpenLaptop
Lid+0

Open
Microwave+0

PutMoney
InSafe+2

Open
Drawer+1

Close
Drawer+0

Close
Grill+0

Hiveformer 100±0.0 0±0.0 0±0.0 0±0.0 83±5.7 44±10.8

PolarNet 100±0.0 0±0.0 1±2.2 4±4.2 29±11.9 42±11.5

3D diffuser actor 100±0.0 0±0.0 2±4.5 0±0.0 66±7.4 65±13.7

RVT-2 93±5.7 0±0.0 0±0.0 6±2.2 78±8.4 9±4.2

3D-LOTUS 100±0.0 0±0.0 0±0.0 0±0.0 87±8.1 29±6.6

3D-LOTUS++ 86±6.6 0±0.0 13±8.1 0±0.0 69±5.8 19±13.9

BridgeVLA (Ours) 95±0.0 0±0.0 2±2.5 0±0.0 58±12.9 35±12.3

Table 10: Per-task Success Rate on GemBench Level 3.

Method Avg. Push
Buttons4+1

Push
Buttons4+2

Push
Buttons4+3

TakeShoes
OutOfBox+0

PutItems
InDrawer+0

PutItems
InDrawer+2

Hiveformer 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

PolarNet 0.1±0.2 1±2.2 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D diffuser actor 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

RVT-2 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D-LOTUS 0.3±0.3 3±4.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D-LOTUS++ 17.4±0.4 76±7.4 49±8.6 37±8.1 0±0.0 0±0.0 0±0.0

BridgeVLA (Ours) 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

Method PutItems
InDrawer+4 Tower4+1 Tower4+3 Stack

Cups+0
Stack

Cups+3
PutAllGroceries
InCupboard+0

Hiveformer 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

PolarNet 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D diffuser actor 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

RVT-2 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D-LOTUS 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D-LOTUS++ 0±0.0 17±10.8 30±13.4 0±0.0 0±0.0 0±0.0

BridgeVLA (Ours) 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

Table 11: Per-task Success Rate on GemBench Level 4.
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Put groceries in cupboard Put item in drawer Put money in safe

Reach and drag Slide block to color target Stack cups

Sweep to dustpan of size Turn tap Stack blocks

Place shape in shape sorter Place wine at rack locationMeat off grill

Light blub inClose jar Insert onto square peg

Open drawer Place cupsPush buttons

Figure 5: Visualization of 18 RLBench [19] Tasks.
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All Variations

Manipulation-
Object-Color

Receiving-
Object-Color

Manipulation-
Object-Texture

Receiving-
Object-Texture

Manipulation-
Object-Size

Receiving-
Object-Size

Light-Color

Table-Color

Table-Texture

Distractor

Backgroun
d-Texture

Camera Pose

Basketball in hoop Close box Close laptop lid

Empty dishwasher Get ice from fridge Insert onto square peg

Hockey Meat on grill Place wine at rack location

Put money in safe Reach and drag Scoop with spatula

Hockey Insert onto square peg Place wine at rack location

Setup chess Turn oven on Wipe desk

Basketball in hoop Hockey Insert onto square peg

Stack cups Strengthen rope Turn oven on

Put money in safe Reach and drag Scoop with spatula

Close laptop lid Get ice from fridge Open drawer

Move hanger Setup chess Slide block to target

Basketball in hoop Open drawer Wipe desk

Close box Empty dishwasher Setup chess

Figure 6: Visualization of Perturbations in COLOSSEUM [35].
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Task 3 trajectories 10 trajectories

Put the RedBull can in the top shelf 9/10 10/10
Put the soda can in the bottom shelf 9/10 9/10

Put the RedBull can in the bottom shelf 10/10 10/10
Put the coke can in the top shelf 10/10 10/10

Place the red block in the blue plate 10/10 10/10
Place the orange block in the green plate 10/10 10/10

Put the wolf in the upper drawer 7/10 9/10
Place the red block in the purple plate 10/10 10/10

Place the yellow block in the green plate 10/10 10/10
Press sanitizer 10/10 10/10

Put the zebra in the upper drawer 9/10 9/10
Put the giraffe in the lower drawer 10/10 9/10
Put the zebra in the lower drawer 10/10 10/10

Table 12: Per-task Success Rates of BridgeVLA in the Basic Setting.
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Initial Scene
Place orange block in green plate

Place red block in blue plate
Initial Scene

Initial Scene
Place red block in purple plate

Initial Scene
Place yellow block in green plate

Initial Scene
Press sanitizer

Initial Scene
Put soda can in bottom shelf

Initial Scene
Put coke can in top shelf

Figure 7: Real-Robot Rollouts (I).
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Initial Scene
Put Redbull can in bottom shelf

Initial Scene
Put Redbull can in top shelf

Initial Scene
Put giraffe in lower drawer

Initial Scene
Put wolf in upper drawer

Initial Scene
Put zebra in upper drawer

Initial Scene
Put zebra in lower drawer

Figure 8: Real-Robot Rollouts (II).
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half eaten frosted donut behind cup horse in the back kid in glasses playing wii

orange slice under grapes person taking photo right animal

tractor with orange
small lamb sitting on ground on the 
right hand side next to two others. the woven place matt

white bowl with vegetables. white doughnut right white keyboard

zebra facing out number three 
from tree

15 an elephant with other two elephants

baby far middle right elephant
Find all instances of a circular frame 

with spokes

Find all instances of a decorative 
arrangement of flowers.

Find all garments from waist to knee 
or ankle, covering each leg separately Find all instances of bike

Find all instances of boot Find all instances of clock tower Find all instances of cup

greenest apple by banana
Find all instances of a piece of furniture 
holding one or more electric light bulbs Find all instances of surfboard

white bowl with vegetables Find all instances of street sign the woven place matt

Figure 9: Visualization of Pre-training Data. We list some samples of pre-training data. For every
sample, the left shows the original image; the middle shows the bounding boxes of the objects of
interest; the right shows the ground-truth heatmap used for training.
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Task

Put the 
RedBull can in 

the top shelf

Put the soda can 
in the bottom 

shelf

Place the red 
block in the blue 

plate

Place the orange 
block in the green 

plate

Press sanitizer

Put the zebra in 
the upper 

drawer

Put the giraffe 
in the lower 

drawer

Distractor Lighting HeightBackground

Figure 10: Visualization of the Distractor, Lighting, Background, and Height settings.
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put the wolf in 
the lower drawer

put the 
giraffe in the 
upper drawer

place the 
orange block 
in the purple 

plate

place the red 
block in the 
green plate

place the 
orange block in 
the blue plate

place the 
yellow block in 
the blue plate

place the yellow 
block in the 
purple plate

put the soda can 
in the top shelf

Figure 11: Visualization of the Combination Setting (I). During training, the manipulated objects
and skills are seen, but their combinations are unseen.
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Put the red block 
in the bottom 

shelf

Put the orange 
block in the lower 

drawer

Put the soda can 
in the upper 

drawer

Put the Redbull 
can in the green 

plate

Place the zebra in 
the blue plate

Figure 12: Visualization of the Combination Setting (II). During training, the manipulated objects
and skills are seen, but their combinations are unseen.
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Press the 
mouse

Put the apple in 
the top shelf

Put the peach in 
the bottom shelf

Put the sneaker 
in the upper 

drawer

Put the panda in 
the lower 
drawer

Place the bread 
in the green 

plate

Place the bottle 
in the blue plate

Figure 13: Visualization of the Category Setting. In total, we evaluate on 7 objects from novel
categories that are unseen during training.
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Find all instances of a round faster Find all instances of baggage Find all instances of cutlery

Find all instances of mug Find all instances of neckwear Dog laying down

Find all instances of a container Find all instances of a long tube made of 
metal or plastic

Find all instances of alarm clock

white doughnut right Find all instances of veilFind all instances of bedding

Figure 14: Visualization of BridgeVLA’s Prediction on Pre-training Dataset after Fine-tuning.
To simulate the multi-view inputs during fine-tuning, we repeat the input image three times and feed
them into the fine-tuned model to generate heatmaps. For each sample, the first row shows the input
image; the second row shows the heatmap prediction; the third row shows the ground truth.
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