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Abstract

Supervised domain adaptation (SDA) is an area of machine learning, where the goal is to
achieve good generalization performance on data from a target domain, given a small corpus
of labeled training data from the target domain and a large corpus of labeled data from a
related source domain. In this work, based on a generalization of a well-known theoretical
result of Ben-David et al. (2010), we propose an SDA approach, in which the adaptation
is performed by aligning the marginal and conditional components of the input-label joint
distributions. In addition to being theoretically grounded, we demonstrate that the proposed
approach has two advantages over existing SDA approaches. First, it applies to a broad
collection of learning tasks, such as regression, classification, multi-label classification, and
few-shot learning. Second, it takes into account the geometric structure of the input and
label spaces. Experimentally, despite its generality, our approach demonstrates on-par or
superior results compared with recent state-of-the-art task-specific methods. Our code is
available here.

1 Introduction

The Empirical Risk Minimization (ERM) principle, which is the theoretical basis of supervised machine
learning, is based on the assumption that the training data is sampled from the data distribution that
the model will encounter after deployment. Unfortunately, in practice, this assumption does not hold in
many applications and tasks, and often significant discrepancies between the train and test distributions are
prevalent. Mitigating these discrepancies is systematically addressed by domain adaptation (DA). In the
literature, many contexts of DA are considered. Here, we focus on supervised domain adaptation (SDA)
in the following setting. Given a large corpus of labeled data from a source domain and a small corpus of
labeled data from a target domain, the goal is to facilitate learning with a good generalization on data from
the target domain. This setting is highly suitable for scenarios such as emerging domains (e.g. early stages of
a pandemic), rare events (e.g. natural disasters), costly data acquisition (e.g. remote sensing or certain types
of environmental monitoring), and privacy concerns (e.g. in healthcare or finance sectors, where data privacy
regulations may limit even unlabeled data use). These challenges necessitate effective SDA approaches.

In their seminal work, Ben-David et al. (2010) presented an upper bound on the generalization error on
the target domain for binary classification and deterministic labeling functions. Here, we generalize this
result (i) by considering arbitrary supervised learning tasks, and (ii) by defining the domain as an input-
label joint distribution. The derived upper bound consists of two terms. The first term, often referred
to as the covariate shift, conveys the discrepancy between the marginal distributions on the input space.
The second term represents the discrepancy between the conditional distributions on the label space, and
therefore, we term it as the cross-domain conditional agreement (CDCA) error. The covariate shift has
been widely investigated in the literature of unsupervised DA (UDA) Pan et al. (2010); Long et al. (2018);
Sun et al. (2017); Zhang et al. (2019b), and many of the existing algorithms for UDA attempt to minimize
it. For example, in Richard et al. (2021), inspired by the bound proposed in Ben-David et al. (2010), the
authors derive a bound that is based on the conditional distribution of the input space given the considered
hypothesis function, and devise a method to find a hypothesis function minimizing the derived bound. In
contrast to UDA, existing methods for SDA are not driven by this theoretical bound and both the covariate
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shift and the CDCA term have been overlooked. More specifically, the main paradigm of SDA methods,
which are designed specifically for classification tasks, is to employ heuristics that aim to map samples from
the same class to a single point, ignoring the distribution of the samples in the input space.

While the generalized result has its own merit, we show that the derived upper bound introduces a new SDA
approach, in which the input space and the label space are decoupled. Specifically, based on the covariate
shift and the CDCA error terms, we formulate the problem of SDA as a multi-term optimization problem
and propose to solve it using a Siamese neural network. In our experiments, we demonstrate the broad
applicability of the proposed method to classification, regression, multi-label classification, and few-shot
learning tasks, where we show on-par or superior results compared to recent state-of-the-art methods that
are specific for each task.

The main contributions of this paper are as follows. First, we present a new approach to SDA that is
theoretically grounded and widely applicable. Second, we extend the upper bound of the generalization
error in the target domain to broader and more practical scenarios. Third, driven by the extended upper
bound, we introduce a new loss term, and subsequently, a geometry-aware SDA method that is based on a
Siamese neural network.

2 Related Work

The task of SDA is highly related to UDA and multi-task learning (MTL) Zhang et al. (2019a); Dakota
et al. (2021), continual learning Tang et al. (2021), and catastrophic forgetting Thompson et al. (2019); Li
et al. (2022). While in SDA we aim to transfer knowledge between domains (joint distributions of inputs and
labels), in UDA we aim to transfer knowledge between input spaces (marginal distributions of inputs), and in
MTL we aim to transfer knowledge by sharing information essential to different tasks (marginal distributions
of the label space, assuming the same distribution of the input space). However, since our SDA approach
shares principles with UDA approaches, we begin this section with a survey of UDA methods. Then, we
focus on SDA techniques.

2.1 Unsupervised Domain Adaptation

The ultimate goal of UDA is to minimize the covariate shift between the domains. The large majority
of methods for UDA can be broadly divided into two paradigms – instance-based methods and feature-
based methods. The instance-based paradigm is based on samples re-weighting. The core idea behind this
paradigm is to approximate the target error using a weighted sum of source errors. One notable shortcoming
of instance-based methods is that they assume a large overlap between the supports of the source and
target densities, and hence, are limited when the covariate shift is relatively large Teshima et al. (2020). In
these cases, the second paradigm of feature-based methods becomes preferable. The common trait shared by
methods in the feature-based paradigm is the application of a mapping function to the input features. Early
methods in UDA attempt to minimize the covariate shift by finding a mapping from the target distribution
to the source distribution Gopalan et al. (2011); Gong et al. (2012); Fernando et al. (2013). A different,
yet related approach, which is often used for domain generalization, is to find a latent space in which the
representation is domain-invariant. Long et al. (2013); Pan et al. (2010). When the samples from the source
domain are labeled, the labels are also taken into account. In the last decade, due to the emergence of deep
neural networks, utilizing Siamese neural networks (NN) for domain adaptation has become the leading
technique to incorporate the source labels, e.g. Tzeng et al. (2014); Sun et al. (2017); Ganin & Lempitsky
(2015); Tzeng et al. (2017; 2015); Long et al. (2018; 2015; 2017). In some methods, domain invariance is
obtained by incorporating probability measures such as maximum mean discrepancy (MMD) Tzeng et al.
(2014), multi-kernel MMD Long et al. (2015), joint MMD Long et al. (2017), or even second-order statistics
Sun et al. (2017). Other methods utilize adversarial approaches, e.g., Tzeng et al. (2017); Long et al. (2018).

2.2 Supervised Domain Adaptation

While minimizing the covariate shift is a compromise when no labels from the target domain are at hand,
one could argue that same approaches for UDA can be employed in SDA in order to match the conditional
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distributions as well. However, when facing a small amount of data points from the target domain, this is
unfortunately not the case. Therefore, existing methods for SDA employ other strategies. These strategies
can be broadly divided according to the downstream task, or more specifically, according to the marginal
distributions of labels. In recent years, a substantial body of literature in SDA addressed classification
tasks, while regression tasks have gained less attention. For regression, the main strategy is re-weighting,
e.g., Yao & Doretto (2010); Pardoe & Stone (2010). Recently, in accordance with many UDA methods,
employing NNs combined with an adversarial mechanism was proposed for the weights selection de Mathelin
et al. (2021). In Teshima et al. (2020), the authors proposed a new SDA approach for regression tasks that
does not fall into the previously mentioned paradigms, and is based on data augmentation, where the target
dataset is augmented using the learned statistics from the source dataset. In classification, the main strategy
can be viewed as a feature-based approach. The main paradigm for SDA classification is contrastive-based,
e.g., Motiian et al. (2017b;a). The objective of these methods is to map samples from the same class to
a single point while separating the points representing different classes. Note that in contrast to UDA,
these methods do not explicitly aim to minimize the covariate shift or the CDCA term. Moreover, their
objective often contracts the within-class geometry and ignores the between-class geometry. The second
paradigm for SDA classification is geometry-based, e.g., Xu et al. (2019); Morsing et al. (2021), in which
a locally geometry-aware loss is employed. For example, in Xu et al. (2019) this is a modified-Hausdorff
distance which is employed via stochastic neighborhood embedding, while in Morsing et al. (2021) this is a
modification of the Rayleigh quotient. Note that although being geometry-aware, these methods do not aim
to preserve between-class and within-class geometries.

3 Learning Setup and Problem Formulation

We adopt the formulation of Ben-David et al. (2010) with some modifications. Let X be an input space and
Y be the label space. We will use the terms label space and output space interchangeably to emphasize that
our work is not restricted to discrete or categorical label spaces.
Definition 3.1 (Domain). A joint distribution P defined on the input-output product space X ×Y is called
a domain. We assume that a domain P has a density function, denoted by P (x, y).
Definition 3.2 (Hypothesis and Error). A hypothesis is a function h : X → Y. The error of a hypothesis
h with respect to a domain P is ϵP(h) ≜ E(x,y)∼P ℓ(h(x), y), where ℓ : Y × Y → R is a loss function that is
typically determined by the specific downstream task.

Consider a source domain PS and a target domain PT , and consider NS samples {(xS
i , yS

i )}NS

i=1 drawn from
the source domain PS and NT samples {(xT

i , yT
i )}NT

i=1 drawn from the target domain PT , where (xv
i , yv

i ) iid∼ Pv

for v ∈ {S, T}. Following the common practice, we assume that NT ≪ NS . Our goal is to find a hypothesis
h∗, such that: h∗ ≜ argminh ϵPT (h).

4 Bounding the Error of the Target Domain

Ben-David et al. (2010) presented an upper bound of the target error of a hypothesis. Their bound is derived
for deterministic labeling functions and binary output spaces. We generalize their result to (i) the definition
of a domain as a joint distribution and (ii) arbitrary supervised learning tasks.

Let Qv denote the marginal distribution over the input space in domain v ∈ {S, T} equipped with the density
function Qv(x) =

∫
y∈Y P v(x, y)dy for any x ∈ X . Let d(QS , QT ) denote the total variation distance between

the marginals, given by: d(QS , QT ) ≜ supB∈B |QS(B) − QT (B)|, where we define, with a slight abuse of
notation, Qv(B) =

∫
x∈B

Qv(x)dx and B is the σ-algebra of all measurable subsets in the support of QS and
QT . We define the cross-domain conditionals agreement (CDCA) error of a domain v ∈ {S, T} by:

χv ≜ E
x∼Qv

E
y∼PS

x

y′∼PT
x

ℓ(y, y′) (1)

where Pv
x denotes the conditional distribution of the output space given x ∈ X in domain v ∈ {S, T}.
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We further assume that there exists an upper bound, denoted by M , for the expectation of the loss M ≜
max{suph ϵPS (h), suph ϵPT (h)}. Note that, for example, if ℓ is the 0 − 1 loss, then M ≤ 1. We remark that
for the Cross-entropy (CE) loss this assumption does not hold, however, since CE is used as a surrogate for
the intractable 0 − 1 loss, it does not affects the generality of this assumption.
Theorem 4.1. For any hypothesis function h : X → Y and loss function satisfying: |ℓ(x, y) − ℓ(x, z)| ≤
|ℓ(y, z)|, we have:

ϵPT (h) ≤ ϵPS (h) + Md(QT , QS) + min{χS , χT }. (2)

The proof is in Appendix A. Note that the requirement on the loss function in Theorem 4.1 is satisfied
by frequently-used loss functions, such as the 0 − 1, L1, and L2 losses. CE does not generally satisfy this
assumption. However, in certain cases involving densities that result from CE minimization, it does Shore
& Johnson (1981).

The derived upper bound in equation 2 consists of three terms. The first term, ϵPS (h), is the error of
the hypothesis with respect to the source domain. The second term, d(QT , QS), is originated from the
covariate shift between the marginal distributions of the input space. The last term, min{χS , χT }, conveys
the discrepancy between the conditional distributions of the two domains.

5 Proposed Approach

5.1 From the Theory to an Optimization Algorithm

At first glance, the bound in Theorem 4.1 may be viewed only as a theoretical guarantee for the adaptation
capability between two domains. However, a closer look from an algorithmic viewpoint suggests a practical
utility. Specifically, consider a (measurable) mapping function ϕ from the input space X to some embedding
space E . Let P̃v, v ∈ {S, T}, be the joint distribution defined on the embedded-output space that is induced
by the marginal pushforward distribution, i.e., the joint distribution of (ϕ(x), y), where (x, y) ∼ Pv.

Considering the embedded space E as an analog of the input space X introduces another degree of freedom
that depends on the mapping function ϕ. Specifically, we can now use the upper bound in Theorem 4.1 to
find a hypothesis and a mapping function ϕ that minimizes the following objective:

(ϕ∗, h̃∗) = argmin
(ϕ,h̃)

ϵP̃S (h̃) + d(Q̃S, Q̃T) + min{χ̃S , χ̃T }, (3)

where Q̃v and χ̃v denote the marginal pushforward distribution and the corresponding CDCA error for
v ∈ {S, T}, respectively, and h̃ : E → Y is a hypothesis function defined on the embedded space.

Putting the optimization in equation 3 into practical use in the context of the considered SDA problem
involves two elements. The first element is the approximation of the terms based on the available data at
hand. A straightforward approximation of the error ϵP̃S (h̃) is given by: ϵ̂P̃S (h̃) ≜ 1

Ns

∑Ns

i=1 ℓ(h̃(ϕ(xS
i )), yS

i ).
The approximation of the covariate shift, denoted by d̂(Q̃S , Q̃T ), can be obtained by employing any UDA
technique to the embedded training data via ϕ. For example, Long et al. (2015) approximated this term
using the MMD distance between {ϕ(xS

i )}NS

i=1 and {ϕ(xT
i )}NT

i=1.

The approximation of the term min{χ̃S , χ̃T } is more challenging. By observing the definition of the CDCA
error from Equation (1), we see that the approximation of χ̃S requires input-label samples (x, y) from the
source domain, which are available, but also input-label samples (x, y′), where x is sampled from the source
domain x ∼ QS but y′ from the marginal distribution induced by the target domain P̃T . An analogous
challenge is raised in the approximation of χ̃T . We propose to address these challenges using kernel regression
in Section 5.2.

The second practical element is the incorporation of the available labeled data from the target domain. So
far, our focus was on the minimization of equation 3, which is based on the upper bound of the hypothesis
error in the target domain in the r.h.s. of equation 2. Importantly, in our SDA setting, a small number of
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input-output samples from the target domain are available. Although they are not sufficient for accurate
or meaningful learning, the available target samples facilitate an approximation of the error: ϵ̂P̃T (h̃) ≜

1
Nt

∑Nt

i=1 ℓ(h̃(ϕ(xT
i )), yT

i ). For any 0 ≤ α ≤ 1, we can express the bound from eq. (2) as follows:

ϵP̃T (h) = (1 − α)ϵP̃T (h) + αϵP̃T (h) ≤ (1 − α)ϵP̃T (h) + α
(
ϵP̃S (h) + Md(Q̃T , Q̃S) + min{χ̃S , χ̃T }

)
.

which gives rise to the following optimization problem:
(ϕ∗, h̃∗) = argmin

(ϕ,h̃)
(1 − α)ϵ̂P̃T (h̃) + α(ϵ̂P̃S (h̃) + align(P̃S , P̃T )), (4)

where: align(P̃S , P̃T ) ≜ d̂(Q̃S, Q̃T) + min{χ̃S , χ̃T }. In practice, the selection of the hyper-parameter α
reflects the prior belief for the capability to estimate h̃ from the available target samples. We remark that
the proposed objective assumes the form of typical objective functions for SDA consisting of a source term,
a target term, and an alignment term.

5.2 Implementation

We adopt a popular approach employed in DA and utilize a Siamese network architecture Motiian et al.
(2017b); Xu et al. (2019). We consider the last layer as the hypothesis function h̃, and the rest of the network
is viewed as the mapping function ϕ of the input data to an embedded space. During training, this network
is simultaneously fed with pairs of mini-batches from the source and target domains.

Let (XS , Y S), (XT , Y T ) denote mini-batches of n samples from the source and target training sets, re-
spectively. We denote their mappings by ϕ(Xv) ∈ Rn×d for v = {S, T}, where d is a hyperparameter
denoting the dimensionality of the output layer of ϕ. In this setting, the implementation of ϵ̂P̃S (h̃) and
ϵ̂P̃T (h̃) translates to the following loss term: L(h̃(ϕ(XT )), Y T ) + L(h̃(ϕ(XS)), Y S), where L(X, Y ) is an
aggregation operator of the considered loss function ℓ: L(X, Y ) ≜

∑n
i=1 ℓ(Xi, Yi), and Xi and Yi denotes

the ith sample in X and Y , respectively. The implementation of the empirical covariate shift, d̂(Q̃S, Q̃T), is
given by LUDA(ϕ(XS), ϕ(XT )), where LUDA denotes the loss term of the chosen UDA technique.

In our experiments, we used the UDA method proposed in Sun et al. (2017), which attempts to minimize
the covariate shift by aligning the second-order statistics of the source and target distributions. This method
does not require hyperparameters tuning, is easy to apply, and according to a recent survey achieves state-
of-the art performance on standard benchmarks (see Table I in Preciado-Grijalva & Muthireddy (2021)). We
note that we also tested other UDA techniques, e.g., MMD Tzeng et al. (2014) and the adversarial method
from Tzeng et al. (2017), which led to similar results.

The CDCA term in equation 4 is approximated by using kernel regression (KR) Watson (1964), aiming
to generate labels from a certain domain given the mapped features and labels of its cross-domain. More
specifically, let v̄ denote the cross-domain of v ∈ {S, T}, we use KR in order to generate ŷ that admits
the distribution of P̃ v̄

x where x ∼ Qv. Then we use these generated samples in order to generate pairs
of (ϕ(x), ŷ) to approximate χ̃v. The exact procedure is described in Algorithm 1. We remark that the
motivation for using kernel regression, rather than a standard parametric estimator like a neural network,
is to avoid overfitting due to the small number of available training samples from the target domain. This
choice raises computational complexity and limitations, which we further discuss in Appendix D.

Let Ŷ v, v ∈ {S, T}, denote the output of the application of Algorithm 1 to ϕ(Xv), ϕ(X v̄), and Y v̄. Then,
the computation of the CDCA term is given by: min{L(Y S , Ŷ S), L(Y T , Ŷ T )}.

To conclude, the proposed method includes a Siamese NN, as presented in Figure 1. During training,
the network is fed with pairs of labeled mini-batches: (XS , Y S) and (XT , Y T ). The training objective,
analogous to equation 4, is to minimize the following loss term:

L(h̃(ϕ(XT )), Y T ) + L(h̃(ϕ(XS)), Y S) + Lalign(ϕ(XS), Y S , ϕ(XT ), Y T ), (5)

where the alignment term Lalign, analogous to align(P̃S , P̃T ) in equation 4, is given by:

Lalign(ϕ(XS), Y S , ϕ(XT ), Y T ) = LUDA(ϕ(XS), ϕ(XT )) + min{L(Y S , Ŷ S), L(Y T , Ŷ T )}.
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Figure 1: A schematic illustration of our proposed approach.

In practice, the terms in the proposed loss can be weighted according to hyperparameters tuning.

Algorithm 1 Cross-domain samples generation via KR
Input: 1. Two mapped features of mini-batches, one from each domain ϕ(Xv) ∈ Rd×n, v ∈ {S, T}. 2. The
labels for the mini-batch of the cross-domain Y v̄.
Output: A mini-batch sample Ŷ v, where each y ∈ Ŷ v admits the distribution of P̃ v̄

x , where x ∼ Qv.
1: Compute Dv,v̄[i, j] = ∥ϕ(Xv

i ) − ϕ(X v̄
j )∥2, for i, j = 1, . . . , n, where Xv

i denotes the ith row of Xv

(corresponding to the ith sample in the batch).
2: Compute: Kv,v̄[i, j] = exp

(
− D2

v,v̄ [i,j]
ϵ2

v

)
, where ϵv = maxi minj Dv,v̄[i, j].

3: Approximate Ŷ v using kernel-based weighted average: Ŷ v = (diag (Kv,v̄1))−1
Kv,v̄Y v̄, where 1 is a

column vector of all ones.

6 Experimental Study

Our experimental study begins in Section 6.1 with commonly-used benchmarks for classification. We compare
our approach to state-of-the-art (SOTA) methods for classification and show that our approach obtains on-
par or superior results. In Section 6.2, we focus on scenarios that highlight the benefits stemming from taking
the geometry of the input and output spaces into account. We present new datasets and learning tasks and
demonstrate superior results compared to the SOTA baseline methods used in Section 6.1. We complete this
section with an evaluation of regression tasks in Section 6.3. There, we show superior results compared to
SOTA methods for regression, demonstrating the universality of our method and its broad applicability. In
summary, throughout this section, we demonstrate on-par or superior results on multiple tasks compared to
the SOTA methods tailored specifically for the respective task (i.e., classification or regression).

6.1 Classification on benchmark tasks

We consider three commonly-used benchmark tasks for DA. The “Digits” task consists of two domains
(datasets): the MNIST dataset LeCun et al. (2010), denoted by M, and the USPS dataset LeCun et al.
(1989), denoted by U . The “Office” task Saenko et al. (2010) consists of 3 domains: Amazon, Webcam,
and DSLR, denoted by A, W, and D, respectively. The “VisDA-C” task Peng et al. (2018) consists of two
domains: a synthetic domain of 3D rendered objects, denoted by S, and a real domain of images-in-the-
wild, denoted by R. An illustration of the datasets is presented in Figure 2. We compare our method
to three state-of-the-art SDA methods. The first method, termed CCSA Motiian et al. (2017b), represents
contrastive-based approaches. The second method, d-SNE Xu et al. (2019), represents geometric approaches.
The third method, termed NEM Wang et al. (2019) is a combination of these two approaches. All of these
methods share the same objective of mapping samples from the same class to a single point while separating
the points representing different classes. In addition to these methods, we compare our approach with its
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Figure 2: Illustrative samples from the “Digits” (M and U), “Office” (A, W and D) and the “VisDA-C” (S
and R) tasks.

ablated versions. In the first ablation, denoted by “Ab-UDA”, we discard the UDA loss term LUDA, and in
the second ablation, denoted by “Ab-CDCA”, we discard the CDCA term. For reference, we further report
the results of three naïve baselines that include training using the source or target domain only (denoted by
S-Only or T-Only, respectively) and simultaneously training on both domains (denoted by S+T).

In the first experiment, we consider the “Digits” tasks. We follow the same experimental protocol from
Motiian et al. (2017b); Xu et al. (2019) (see details in Appendix C). We conduct several experiments, and
in each experiment, we consider a different number of samples per class from the target domain. We repeat
each experiment 10 times. In this experiment, 200 samples per class from the source domain and X samples
per class from the target domain are randomly selected as the training set, where X ∈ {1, 3, 5, 7}. We note
that in most real-world problems, the data from the source domain is considered to be unlimited. Still, for
the sake of a fair comparison, we chose to adopt the common evaluation protocol employed by the considered
baselines Motiian et al. (2017b); Xu et al. (2019). In the sequel, we conduct experiments where we consider
the entire source dataset for evaluation and observe similar results. The average results and their standard
deviations are presented in Table 1. We note that we reproduced the baselines’ results, see Appendix B for
details. Bold indicates the best results, and underline indicates the second-best. In the table, we see that our
proposed approach achieves on-par results with the compared baselines. In addition, we see the contribution
of each term in the proposed loss in equation 5. Specifically, we see that the contribution of the UDA and
the CDCA terms is especially pronounced when considering fewer samples per class.

In the second experiment, we consider the “Office” tasks. We consider six DA tasks: A → D, A → W, D →
A, D → W, W → A and W → D. We follow the same experimental protocol from Motiian et al. (2017b);
Xu et al. (2019). For the source domain, we randomly pick 20 samples per class from Amazon and 8 samples
per class from Webcam and DSLR. For the target domain, we randomly pick 3 samples per class. For more
details, see Appendix C. We repeat this procedure 5 times, the average results and their standard deviations
are presented in Table 2. Same as in Table 1, we see that our approach attains on-par results with the
current SOTA methods.

In the third experiment, we consider a DA task from the synthetic domain (S) of the 3D rendered objects
in “VisDA-C” to the real domain (R). We follow the experimental protocol from Xu et al. (2019). For more
details, see Appendix C. We conduct several experiments, and in each experiment, we consider a different
number of samples per class from the target domain. We repeat each experiment 10 times, the average results
and their standard deviations are presented in Table 3. Here as well we see that our approach achieves on-par
results with the current SOTA methods.

6.2 Leveraging the intrinsic geometry of a dataset

In this section, we highlight the scenarios in which our method is expected to excel and validate it empirically.
In the first experiment, we present a variation of the SDA task. We randomly pick some classes and discard
their associated training samples from the target domain. For the remaining target classes, we take one
sample per class. We term the target classes we discard “cold” target classes and this entire task zero-
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Table 1: Classification accuracy for the “Digits” tasks. In the upper part, we consider adaptation from U
to M. In the lower part, we consider the opposite direction. In each column, we test a different number of
samples per class from the target domain.

U → M

1 3 5 7 #Best

S-Only 59.35 ± 2.55 63.74 ± 1.76 59.56 ± 1.59 60.02 ± 2.57 0
T-Only 46.26 ± 0.98 65.24 ± 2.13 76.85 ± 1.79 82.73 ± 1.26 0

S+T 77.40 ± 1.31 85.99 ± 1.44 87.35 ± 1.36 91.68 ± 0.78 0
CCSA 82.40 ± 1.56 88.00 ± 1.24 90.05 ± 1.02 90.82 ± 1.21 2
NEM 75.75 ± 1.82 83.76 ± 1.43 88.27 ± 1.29 89.70 ± 1.14 0
d-SNE 79.42 ± 1.88 85.35 ± 1.16 89.09 ± 0.93 90.93 ± 0.91 0
Ours 81.67 ± 1.73 86.31 ± 1.07 90.20 ± 1.14 92.08 ± 0.50 2

Ab-UDA 74.24 ± 1.67 84.43 ± 1.77 87.78 ± 1.51 91.09 ± 0.71 0
Ab-CDCA 78.43 ± 1.80 85.60 ± 1.38 89.38 ± 0.91 90.84 ± 1.04 0

M → U

S-Only 78.07 ± 1.04 78.04 ± 1.25 78.25 ± 1.13 76.72 ± 1.47 0
T-Only 61.87 ± 1.58 76.46 ± 1.63 81.18 ± 1.41 84.41 ± 1.28 0

S+T 82.41 ± 1.50 87.94 ± 1.11 89.23 ± 1.38 90.14 ± 0.77 0
CCSA 85.11 ± 1.23 87.51 ± 1.15 89.60 ± 0.94 90.35 ± 0.71 0
NEM 84.38 ± 1.22 87.16 ± 1.32 89.88 ± 1.01 90.54 ± 1.15 0
d-SNE 84.39 ± 1.42 89.04 ± 1.14 89.42 ± 1.05 91.34 ± 0.88 0
Ours 85.85 ± 0.87 89.46 ± 0.90 90.80 ± 0.67 91.52 ± 0.88 4

Ab-UDA 83.09 ± 1.48 87.67 ± 1.34 89.46 ± 0.69 91.05 ± 0.83 0
Ab-CDCA 84.51 ± 1.18 87.35 ± 1.03 90.62 ± 0.90 91.46 ± 0.80 0

Table 2: Classification accuracy for the “Office” tasks. In each column, we consider a different task.

A → D A → W D → A D → W W → A W → D #Best

S-Only 57.86 ± 1.75 54.11 ± 1.62 50.10 ± 1.16 90.05 ± 1.36 48.39 ± 1.24 92.77 ± 1.66 0
T-Only 82.03 ± 1.00 81.38 ± 1.52 59.14 ± 1.46 79.74 ± 1.45 59.26 ± 1.53 84.38 ± 1.73 0
S+T 82.81 ± 1.35 84.74 ± 1.14 66.44 ± 0.85 93.02 ± 0.61 64.51 ± 0.91 97.27 ± 1.00 1
CCSA 70.41 ± 1.52 71.72 ± 1.27 59.33 ± 1.37 94.37 ± 0.86 57.26 ± 1.07 94.53 ± 1.21 1
NEM 84.77 ± 1.61 85.02 ± 1.02 63.44 ± 1.12 94.32 ± 1.20 64.32 ± 1.33 96.96 ± 0.94 1
d-SNE 83.50 ± 2.25 84.58 ± 1.52 65.52 ± 0.99 94.06 ± 0.77 64.59 ± 1.33 96.35 ± 1.01 0
Ours 87.56 ± 1.65 83.50 ± 0.82 65.56 ± 0.94 93.08 ± 1.05 66.28 ± 1.40 97.42 ± 0.75 3

shot SDA. We use the datasets from the “Digits” tasks as in Section 6.1 and follow the same experimental
protocol. In this experiment, 200 samples per class from the source domain and one sample per class from
the target domain are randomly selected as the training set. In addition, in each experiment, we consider a
different number of “cold” target classes which are then ablated from the training set. We remark that in the
remainder of this section, the entire source datasets are utilized for the evaluation. For brevity, we consider
two representative baselines from Section 6.1: CCSA Motiian et al. (2017b), a contrastive-based approach,
and d-SNE Xu et al. (2019), a geometry-based approach. The results are presented in Table 4. First,
comparing d-SNE to CCSA, we see a clear benefit of incorporating geometric considerations into the model’s
design. Next, comparing our approach with d-SNE, we see that incorporating the marginals distribution
alignment into the loss term attains even more significant improvements, especially when considering a large
number of “cold” classes. This improvement is evident both in the average accuracy and in the standard
deviations.

In the second experiment, we test a multi-label classification task in a zero-shot setting that is based on the
“Digits” datasets. We consider an input space that consists of a concatenation of 7 digit slots, where each
slot can either contain an instance of a digit or be blank. The associated output space consists of binary
indicator vectors, where the ith entry indicates whether the ith digit appeared in the concatenated image.
The concatenated images in the source domain consist of MNIST digits and the concatenated images in the
target domain consist of USPS digits. In addition, the source domain admits a zero-shot setting, where the
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Table 3: Classification accuracy for the “VisDA-C” task. In each row, we test a different number of samples
per class from the target domain.

S-Only T-Only S+T CCSA NEM dSNE Ours

10 40.55 ± 1.14 53.98 ± 1.47 60.64 ± 1.36 48.43 ± 1.46 61.88 ± 1.33 60.54 ± 1.05 62.90 ± 1.13
15 38.89 ± 1.24 60.14 ± 1.35 62.76 ± 0.77 47.43 ± 0.99 64.66 ± 0.94 63.71 ± 1.20 64.39 ± 1.07
20 35.12 ± 1.12 62.62 ± 0.71 66.26 ± 0.73 49.55 ± 0.86 65.80 ± 0.80 65.41 ± 0.98 66.55 ± 1.22

Table 4: Classification accuracy for zero-shot DA task. In each column, we consider a different proportion
(number) of “cold” classes.

70% (7) 50% (5) 20% (2)

CCSA 72.67 ± 5.68 75.29 ± 2.58 77.19 ± 5.02
d-SNE 73.41 ± 4.33 78.09 ± 4.23 82.99 ± 2.83
Ours 77.24 ± 2.25 81.36 ± 1.26 84.00 ± 2.35

training set contains only images that are associated with 1-hot output vectors, i.e., they consist of a single
digit. For the training set from the target domain, we follow a similar approach. We randomly pick 32
labels, and for each label we randomly generate 3 training datapoints. An illustration of these domains is
presented in Figure 3(a).

We repeat this experiment 10 times and report in Table 5 three evaluation metrics for this multi-label
classification: F1-Score, AUC, and the Hamming distance between the predicted indicator vectors and the
true indicator vectors. We see that our approach obtained superior results compared to CCSA and d-SNE.
We note that for fair comparison we adapted both CCSA and d-SNE to multi-label classification. See
Appendix C for details.

In the third experiment, we consider a colored version of the “Digits” tasks. Specifically, we replace the
original single-digit grayscale images with colored versions of multi-digit images. Each image is a

(
1 + ⌈ Nc

10 ⌉
)
-

digit number, where Nc denotes the number of colors in the color palette. For example, for Nc = 3, we get
2-digit images. The digits in the image are randomly sampled from the corresponding domain (MNIST or
USPS). The color of each image is determined by the ⌈ Nc

10 ⌉ most significant digits in the image, and the
label is set according to the presented number in the image. The resulting dataset consists of 10 · Nc classes,
divided into Nc clusters dominated by the color of the images. In Figure 3(b) we present an illustrative
t-SNE embedding Van der Maaten & Hinton (2008) of a colored version of the MNIST dataset for Nc = 3.
Observing Figure 3(b), we can see that the input space geometry is indeed dominated by the colors of the
images. We repeat the same experiment as in Section 6.1 but for a DA task from colored MNIST to colored
USPS. We expect our approach to capture the geometry of the output space, in contrast to the competing
methods that map input data of the same class to a single point. This may be conveyed in our approach
by mapping input data with the same color but different digits to nearby locations in the embedded space,
thereby facilitating fewer errors in predicting the true color. Therefore, in addition to the accuracy measure,
we report the proportion of partial errors, where the color of the predicted classes is different than the color
of the true class. The results are presented in the table in Table 6.

In the upper part of the table, we show the obtained accuracy for Nc = 10, 20, 30. We see that the
geometric-aware methods (ours and d-SNE) obtain superior results compared to the contrastive-based ap-
proach (CCSA). At the lower part of Table 6 we present the proportion of out-of-color (OOC) errors. We
see that the geometric-aware methods (ours and d-SNE) manage to yield significantly lower OOC errors.

6.3 Regression

We demonstrate the universality of our method and apply it to regression tasks. In contrast to classification
tasks, to the best of our knowledge, there is no definitive benchmark for SDA in regression tasks. Here, we
consider two datasets that were used in two recent SDA methods for regression.
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Figure 3: (a) Illustration of the images from the multi-label classification task. The images on the left
(right) side are associated with the source (target) domain. (b) An illustrative t-SNE embeddings of the raw
datapoints from a colored MNIST dataset for Nc = 3. Each image is a 2-digit number, where the color is
encoded in the tens digit.

Table 5: F1-Score, AUC (higher is better), and Hamming distance (lower is better) for the multi-label DA
task.

F1-Score (↑) AUC (↑) Hamming (↓)

CCSA 0.22 ± 0.25 0.55 ± 0.16 0.46 ± 0.10
d-SNE 0.69 ± 0.15 0.73 ± 0.10 0.31 ± 0.08
Ours 0.74 ± 0.15 0.80 ± 0.16 0.26 ± 0.15

The first experiment is taken from de Mathelin et al. (2021) and is based on the CityCam vehicle counting
dataset Zhang et al. (2017). This dataset consists of images acquired by traffic cameras, where each image is
annotated with a label indicating the number of vehicles in a certain range of interest. We follow the same
experimental protocol as in de Mathelin et al. (2021), where the authors consider images from 4 cameras:
two located on a highway and two located at an intersection. The images from one of the intersections are
considered as the target domain, and the rest are considered as the source domain. For more details, see
Appendix C. We consider 20, 50, 100 and 200 samples from the target domain and compute the obtained
mean-absolute-error (MAE). In Table 7, we present our results along with the results from de Mathelin et al.
(2021). We see that our approach outperforms classical approaches such as TrAdaB Pardoe & Stone (2010),
KLIEP Sugiyama et al. (2007), and KMM Huang et al. (2006), while obtaining competitive results compared
to the recent WANN de Mathelin et al. (2021), especially when fewer samples from the target domain are
available.

The second experiment is taken from Teshima et al. (2020), and it is based on a gasoline consumption dataset
(William (2008), p.284, Example 9.5). This dataset consists of tabular data describing gasoline usage in 18
of the OECD countries over 19 years. We follow the same experimental protocol as in Teshima et al. (2020),
where the experiment is repeated 18 times. Each time, one country is considered as the target domain, and
the rest are considered as the source domain. The evaluation metric considered in Teshima et al. (2020)
is a normalized version of the mean square error (NMSE). For more details, see Appendix C. In Table 8,
we present our results along with the results from Teshima et al. (2020). For convenience, in addition to
the evaluated metric from Teshima et al. (2020), on the right side of Table 8, we present the performance
ranking obtained by each method for each target country. We see that our approach performs better for
most of the domains as well as on average.

7 Conclusions

In this paper, we proposed a new approach for SDA. We presented an upper bound of the generalization
error in the target domain, which extends the setting considered by Ben-David et al. (2010). Based on
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Table 6: Adaptation results of the colored MNIST to the colored USPS. In each column, we consider a
different number of colors Nc. In the upper part, we show the accuracy obtained by each method, and in
the lower part, we present the proportion of out-of-color errors.

Acc (↑)

10 20 30

CCSA 77.49 ± 0.84 74.90 ± 2.53 68.86 ± 1.76
d-SNE 75.55 ± 1.72 75.22 ± 1.25 71.71 ± 2.81
Ours 78.54 ± 1.74 80.45 ± 0.69 80.71 ± 1.14

OOC (↓)
CCSA 0.67 ± 0.52 7.95 ± 1.73 25.07 ± 4.68
d-SNE 0.73 ± 0.17 5.33 ± 1.41 16.14 ± 3.70
Ours 0.23 ± 0.17 1.32 ± 0.45 5.67 ± 0.92

Table 7: MAE for the CityCam vehicle counting dataset. In each row, we consider a different number of
samples from the target domain.

TrAdaB. KLIEP KMM WANN Ours

20 3.30 ± 0.18 3.05 ± 0.48 2.79 ± 0.16 2.79 ± 0.22 2.67 ± 0.30
50 2.96 ± 0.13 2.60 ± 0.15 2.52 ± 0.10 2.48 ± 0.08 2.41 ± 0.19
100 2.52 ± 0.16 2.34 ± 0.1 2.32 ± 0.07 2.26 ± 0.04 2.21 ± 0.32
200 2.28 ± 0.11 2.07 ± 0.07 2.06 ± 0.09 1.98 ± 0.07 2.05 ± 0.23

Table 8: Results for the gasoline dataset. In each row, a different country is considered the target domain.
On the left side, we present the Normalized MSE as presented in Teshima et al. (2020). On the right side,
we present the ranking of the methods (lower is better).

Target
Country T-Only S-Only S+T CMTra Ours

AUT 5.88 ±1.60 9.67 ±0.57 9.84 ±0.62 5.39 ±1.86 2.89 ± 1.47
BEL 10.70 ±7.50 8.19 ±0.68 9.48 ±0.91 7.94 ±2.19 3.36 ± 1.48
CAN 5.16 ±1.36 157.74 ±8.83 156.65 ±10.69 3.84 ±0.98 15.29 ± 4.03
DNK 3.26 ±0.61 30.79 ±0.93 28.12 ±1.67 3.23 ±0.63 3.45 ± 1.97
FRA 2.79 ±1.10 4.67 ±0.41 3.05 ±0.11 1.92 ±0.66 1.20 ± 0.67
DEU 16.99 ±8.04 229.65 ±9.13 210.59 ±14.99 6.71 ±1.23 30.71 ± 4.54
GRC 3.80 ±2.21 5.30 ±0.90 5.75 ±0.68 3.55 ±1.79 1.85 ± 1.42
IRL 3.05 ±0.34 135.57 ±5.64 12.34 ±0.58 4.35 ±1.25 82.22 ± 1.46
ITA 13.00 ±4.15 35.29 ±1.83 39.27 ±2.52 14.05 ±4.81 3.64 ± 2.19
JPN 10.55 ±4.67 8.10 ±1.05 8.38 ±1.07 12.32 ±4.95 0.48 ± 0.61
NLD 3.75 ±0.80 0.99 ±0.06 0.99 ±0.05 3.87 ±0.79 80.30 ± 0.30
NOR 2.70 ±0.51 1.86 ±0.29 1.63 ±0.11 2.82 ±0.73 80.66 ± 0.59
ESP 5.18 ±1.05 5.17 ±1.14 4.29 ±0.72 6.09 ±1.53 0.54 ± 0.48
SWE 6.44 ±2.66 2.48 ±0.23 2.02 ±0.21 5.47 ±2.63 1.42 ± 1.05
CHE 3.51 ±0.46 43.59 ±1.77 7.48 ±0.49 2.90 ±0.37 1.93 ± 1.23
TUR 1.65 ±0.47 1.22 ±0.18 0.91 ±0.09 1.06 ±0.15 6.30 ± 9.98
GBR 5.95 ±1.86 15.92 ±1.02 10.05 ±1.47 2.66 ±0.57 5.07 ± 1.81
USA 4.98 ±1.96 21.53 ±3.30 12.28 ±2.52 1.60 ±0.42 18.41 ± 3.20

#Best 1 1 2 5 9

Target
Country T-Only S-Only S+T CMTra Ours

AUT 3 4 5 2 1
BEL 5 3 4 2 1
CAN 2 5 4 1 3
DNK 2 5 4 1 3
FRA 3 5 4 2 1
DEU 2 5 4 1 3
GRC 3 4 5 2 1
IRL 1 5 3 2 4
ITA 2 4 5 3 1
JPN 4 2 3 5 1
NLD 3 1 2 4 5
NOR 3 2 1 4 5
ESP 4 3 2 5 1
SWE 5 3 2 4 1
CHE 3 5 4 2 1
TUR 4 3 1 2 5
GBR 3 5 4 1 2
USA 2 5 3 1 4
Mean 3 3.83 3.33 2.44 2.39

this bound, we formulated the task of SDA as a new optimization problem. We proposed to solve this
optimization problem using a Siamese neural network. Experimental results demonstrate the effectiveness
and broad applicability of the proposed approach for various classification and regression tasks.

We hope this work will spark interest in employing the principles of Ben-David et al. (2010) to SDA tasks. In
future work, we will extend the proposed approach for semi-supervised domain adaptation. This is a natural
extension of the proposed approach that follows the decoupling between the input and labels distributions
in the derived bound.
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Appendix
A Proof for Theorem 4.1

Proof. Recall the definition for the error of a hypothesis: ϵP(h) ≜ E
(x,y)∼P

ℓ(h(x), y), which we can recast

the error as ϵP(h) = E
x∈Q

E
y∈Px

ℓ(h(x), y). In addition, let Qv(·) denote the density function of the marginal

distribution Qv for v ∈ {S, T}. Then, we have:
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∣∣QS(x) − QT (x)
∣∣ dx (12)

= ϵPS (h) + χS + Md(QT , QS), (13)

where the transition from equation 11 to equation 12 is due to the assumption: |ℓ(x, y) − ℓ(x, z)| ≤ |ℓ(y, z)|
and the upper bound of the expected loss function M . Repeating the same derivation, but replacing ϵPS (h)
by ϵPT (h) in the r.h.s of equation 6 results in a similar bound: ϵPT (h) ≤ ϵPS (h) + χT + Md(QT , QS),
implying that:

ϵPT (h) ≤ ϵPS (h) + Md(QS , QT ) + min{χS , χT }.
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B Baselines Reproducibility on Benchmarks Dataset

In our experimental study, we faced difficulties reproducing the results on the benchmark datasets of “Digits”
and “Office” of the two most recognized methods for SDA: CCSA Motiian et al. (2017b) and dSNE Xu et al.
(2019). These difficulties stem from the following reasons:

• Known implementation issues: When considering few-shot learning scenarios the randomly
picked training datapoints from the target domain can highly affect the results. Therefore, a common
practice is to repeat each experiment multiple times. This is indeed the practice that appears in
the source code published by the authors of CCSA 1. However, in their code, the model parameters
are not initialized between each experiment. As a consequence, the model accumulates knowledge
from previous experiments. Note that this is a known issue 2, which the authors have not yet
addressed. Similarly, the authors of dSNE published their code 3. However, we, among others, could
not reproduce their results4.

• Backbone inconsistencies: In recent years, many DA methods are based on Siamese neural
networks. The choice of the backbone, its architecture, and whether it is pre-trained or not, highly
affect the results (for example, see the bottom line in Table I in Hedegaard et al. (2021)). Therefore,
in order to fairly compare DA techniques, it is crucial to perform the evaluation with the same
backbone. We note that in the literature, there are works that do not follow this guideline. For
example, in dSNE, for the “Digits” datasets, instead of using the same backbone as in Motiian et al.
(2017b;a), a close look at the code reveals that LeNet++ was used Wen et al. (2016).

• Datasets: At first glance, the protocol for preparing the benchmark datasets is straightforward, as
described in Section 6, and in more detail in Appendix C. However, the following aspects are often
overlooked:

– Augmentations. Datasets augmentations can highly improve the model’s ability to generalize,
especially when evaluating the ability of a model that was trained on catalog images (Amazon)
to classify images from the wild (DLSR or Webcam). Similar to the backbone, a fair comparison
between methods should rely on the same augmentations protocol.

– Partitioning. Although the train-test partitioning is clearly defined, it is not clear how to
construct the validation set. For example, in the extreme case of 1 sample per target class,
choosing the validation set is not straightforward. Inspecting the code of recently published
papers shows that the prevalent practice is to use the test set as validation. The absence of a
validation set introduces a risk for model selection, especially when systematic hyperparameter
tuning is conducted. This concern was recently raised by Hedegaard et al. (2021), where the
authors proposed a rectified experimental protocol and released a Python package for benchmark
datasets 56. This protocol is yet to be considered as a standard, however, in our experiments,
we adopted their protocol and we wish to encourage others to do so as well. We note that this
protocol only mitigates the difficulties that stem from the inability to properly define a validation
set. Although the target datapoints in the validation set are not explicitly introduced to the
model during training, they do affect the model’s hyperparameters. Therefore, in order to
perform a fair comparison between different models is it important to ensure that the same
computational budget was used in the hyperparameter tuning of each method.

• Hyperparameters inconsistency: Similarly to the choice of the backbone, the selection of the
hyperparameters can highly affect the model’s performance. Therefore, in order to conduct a fair
comparison between different models, it is important to ensure that the same hyperparameters are
tuned in each experiment. Otherwise, especially in the absence of a validation set, the experiment

1https://github.com/samotiian/CCSA
2https://github.com/samotiian/CCSA/issues/10
3https://github.com/aws-samples/d-SNE
4https://github.com/aws-samples/d-SNE/issues/13
5https://pypi.org/project/office31
6https://pypi.org/project/mnistusps
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results might reflect the quality of the hyperparameters tuning procedure rather than the quality of
the evaluated model. Many works, however, do not follow this practice. For example, in Hedegaard
et al. (2021), the set of hyperparameters employed by the model was significantly larger than the
ones considered in Motiian et al. (2017b;a); Xu et al. (2019). Moreover, the hyperparameters tuning
protocol conducted by Hedegaard et al. (2021) requires large computational resources.

Therefore, when considering the results obtained by a specific method in a specific experiment, we see a wide
range of values reported in different papers. The results for CCSA Motiian et al. (2017b) and dSNE Xu et al.
(2019), as reported by different papers for the MNIST to USPS experiment are presented in Table 9. We see
that although the same method was evaluated on the same benchmark, different papers report significantly
different results. A similar inconsistency was observed in the experiments related to the “Office” dataset, as
can be seen in Table 10. Note that the implementation of CCSA in Morsing et al. (2021) and in Hedegaard
et al. (2021) deviates from the original one proposed in Motiian et al. (2017b) and includes the explicit error
term on the target domain.

In order to cope with the inability to rely on prior results, we reproduced the baseline results using the same
pipeline employed for all the methods.

Table 9: Experimental results for the MNIST to USPS experiment as reported by different papers (Table 1
in this paper). The results in the upper part are related to CCSA and the results in the lower part are
related to dSNE.

CCSA

Reported by 1 3 5 7
Motiian et al. (2017b) (Authors) 85.0 90.1 92.4 92.9

Reproduced by us 85.11 ± 1.23 87.51 ± 1.15 89.60 ± 0.94 90.35 ± 0.71
Morsing et al. (2021) 75.6 ± 2.1 85.0 ± 1.4 87.8 ± 0.7 89.1 ± 0.7

Hedegaard et al. (2021) 89.1 ± 1.1 91.2 ± 0.9 93.8 ± 0.4 94.3 ± 0.4

dSNE

Xu et al. (2019) (Authors) 92.9 93.55 95.13 96.13
Reproduced by us 84.39 ± 1.42 89.04 ± 1.14 89.42 ± 1.05 91.34 ± 0.88

Morsing et al. (2021) 69.0 ± 1.7 80.4 ± 1.7 86.1 ± 0.9 87.7 ± 0.9
Hedegaard et al. (2021) 88.3 ± 1.7 91.4 ± 1.2 93.1 ± 0.5 93.6 ± 0.6

Table 10: Experimental results for the ”Office" experiment as reported by different papers (Table 2 in this
paper). The results in the upper part are related to CCSA and the results in the lower part are related to
dSNE.

CCSA

Reported by A → D A → W D → A D → W W → A W → D
Motiian et al. (2017b) (Authors) 89.0 ± 1.2 88.2 ± 1.0 71.8 ± 0.5 96.4 ± 0.8 72.1 ± 1.0 97.6 ± 0.4

Reproduced by us 70.41 ± 1.52 71.72 ± 1.27 59.33 ± 1.37 94.37 ± 0.86 57.26 ± 1.07 94.53 ± 1.21
Morsing et al. (2021) 84.8 ± 2.1 87.5 ± 1.5 66.5 ± 1.9 97.2 ± 0.7 64.0 ± 1.6 98.6 ± 0.4

Hedegaard et al. (2021) 86.4 ± 2.5 84.5 ± 2.1 65.5 ± 1.2 97.5 ± 0.9 60.8 ± 1.5 98.4 ± 1.0

dSNE

Xu et al. (2019) (Authors) 91.4 ± 0.23 90.1 ± 0.07 71.1 ± 0.18 97.1 ± 0.07 71.7 ± 0.42 97.5 ± 0.24
Reproduced by us 83.50 ± 2.25 84.58 ± 1.52 65.52 ± 0.99 94.06 ± 0.77 64.59 ± 1.33 96.35 ± 1.01

Morsing et al. (2021) 86.5 ± 2.5 88.7 ± 1.9 65.9 ± 1.1 97.6 ± 0.7 63.9 ± 1.2 99.0 ± 0.5
Hedegaard et al. (2021) 84.7 ± 1.3 82.3 ± 2.4 65.1 ± 0.9 98.2 ± 0.4 59.9 ± 1.6 99.7 ± 0.4

C Technical Details and Additional Results

In this section, we provide more details and additional results to the experimental study in Section 6. Our
code is publicly available 7

7https://github.com/SDA-Code-Submission/Supervised-Domain-Adaptation-Based-on-Marginal-and-Conditional-
Distributions-Alignment
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C.1 Benchmark datasets

In these experiments, we follow the experimental setting from Motiian et al. (2017b); Xu et al. (2019). The
data partitioning is carried out according to the rectified experimental protocol suggested in Hedegaard
et al. (2021) using their released Python packages 8 9. The hyperparameters set includes the mini-batch
size, optimizer selection (Adam Kingma & Ba (2014) or SGD), learning rate, weight-decay, and the number
of training epochs. Hyperparameters tuning was carried out manually based on the validation set for each
experiment, and then, the same set of hyperparameters was used for all the methods. The selected hyper-
parameters for each experiment appear in our published code. The training loss in these experiments is the
binary cross-entropy (BCE) loss. The CDCA term is applied by representing the labels as 1-hot vectors in
RC , where C denotes the cardinality of the labels space.

C.1.1 “Digits” experiments

In this setting, each experiment is repeated 10 times. In each experiment, 200 samples per class from the
source domain and X samples per class from the target domain are randomly selected as the training set,
where X ∈ {1, 3, 5, 7}. The images from the MNIST dataset are resized to fit the size of the images from the
USPS dataset. No data augmentation was applied. The network architecture consists of two convolutional
layers with a kernel size of 3 × 3 and 32 filters followed by max-pooling layers and 2 fully connected layers
of sizes 120 and 84. We note that this architecture deviates from the architecture reported in Motiian et al.
(2017b), but it is taken from their published source code 10 (see lines 94-98). We further emphasize that we
used the same architecture for all the evaluated methods.

C.1.2 “Office” and “VisDA-C” experiments

In this setting, each experiment is repeated 5 times. In each experiment, the samples for each class are
sampled according to the quantities described in Section 6. In line with the experimental protocol from
Motiian et al. (2017b); Xu et al. (2019), for the “Office” tasks we perform the default data augmentations
used in the Python package TLlib 11. These augmentations are based on a random resized crop of size
224×224. The network architecture consists of the convolutional layers of a VGG-16 model Kobayashi et al.
(2015) pre-trained on ImageNet Russakovsky et al. (2015), followed by 2 fully connected layers of sizes 1024
and 128.

C.2 Zero-shot, multi-label, and colored “Digits” experiment

For the zero-shot experiment, we used the same architecture as in the “Digits” experiment. For the multi-label
and colored experiment, we made subtle modifications to support the size of the modified image. Specifically,
for the multi-label experiment, we modified the fully-connected layer located after the max-pooling layer from
1152 × 120 to 10368 × 120. For the colored experiment, we changed the first convolutional layer to support
3 (RGB) input channels. The training loss in the zero-shot and the colored digits experiments is the BCE
loss, and in the multi-label experiment it is the sum of the BCE loss applied to each slot. The CDCA term
is implemented by representing the labels as vectors in RC , where C denotes the cardinality of the label
space. In the zero-shot and the colored digits experiments, these vectors are 1-hot, whereas in the multi-label
experiment, they may contain any binary representation.

C.3 CityCam experiment

We followed the experiment protocol from de Mathelin et al. (2021).The CityCam dataset is taken from
Zhang et al. (2017) and is publicly available12. Four cameras from the dataset were selected: “253”, “511”,
“572”, and “495”. Cameras “253”, “511”, and “572” are considered as the source domain, while camera

8https://pypi.org/project/mnistusps
9https://pypi.org/project/office31

10https://github.com/samotiian/CCSA/blob/master/Initialization.py
11https://github.com/thuml/Transfer-Learning-Library
12https://www.citycam-cmu.com/dataset
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“495” is considered as the target domain. Each experiment was repeated 10 times. In each experiment, X
datapoints from the target domain were randomly selected for training, while the rest were kept for testing.
All the datapoints from the source domain are used for training. The images acquired by each camera were
pre-processed using a pre-trained ResNet50 model.The pre-processing code can be found here 13, and the
processed dataset can be found here 14. We used the same network architecture as in de Mathelin et al.
(2021), which consists of a multi-layer perceptron with two hidden layers of size 100 and 10. The training
loss is the MSE loss.

C.4 Gasoline experiment

We followed the experiment protocol from Teshima et al. (2020). The Gasoline dataset is publicly available
here 15, its parsed version is available here 16. The dataset consists of gasoline usage in 18 of the OECD
countries over 19 years. Each record in the dataset describes the gasoline consumption in a certain year and
country and contains four variables: per-capita income, gasoline price, stock of cars per capita, and gasoline
consumption per car. The first three are considered as the predictor variable and the latter is considered as
the label. We follow the same procedure as in Teshima et al. (2020), where the time-series structure (i.e.,
temporal order) is ignored, and instead the data is considered as i.i.d. samples for each country. For each
country, we perform the following procedure. We randomly pick 6 datapoints from their associated records
to create the target training dataset, while the rest of its associated datapoints are used for testing. The
source training dataset consists of all the datapoints from the rest of the countries. The training loss is
the MSE loss. We use the same evaluation metric as in Teshima et al. (2020), which is the MSE distance
normalized by the closest label in the target set (including the test datapoints). We repeat this procedure
10 times with different train-test splits of target domain data.

D Implementation, Computational Complexity and Limitations

Incorporating geometrical considerations typically requires the ability to process large mini-batches (see for
example Xu et al. (2019)). Indeed, traditional methods for UDA, such as DDC Tzeng et al. (2014), DAN
Long et al. (2015), and CORAL Sun et al. (2017) require large mini-batches. However, this limitation can
be mitigated by considering adversarial approaches for UDA, such as ADDA Tzeng et al. (2017). In addition
to the covariate shift, which is addressed using UDA methods, our approach relies on the approximation of
the CDCA term. Since we approximate this term using non-parametric kernel regression, its resolution is
also limited by the size of the mini-batch. This challenge will be addressed in future work by implementing
the CDCA term parametrically. More specifically, following the recent advances in UDA and the emergence
of adversarial methods, we plan to use an adversarial mechanism to sample from the cross-domain, rather
than generate samples using the non-parametric kernel regression.

13https://github.com/antoinedemathelin/wann/blob/master/notebooks/CityCam_preprocessing.ipynb
14https://github.com/antoinedemathelin/wann/tree/master/dataset
15https://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=4338&itemId=1118672321&resourceId=13452
16https://github.com/takeshi-teshima/few-shot-domain-adaptation-by-causal-mechanism-transfer/tree/master/experiments/icml2020/data/gasoline_raw
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