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Abstract001

This paper introduces OSC (Orchestrating002
Cognitive Synergy), a knowledge-aware003
adaptive collaboration framework designed004
to enhance cognitive synergy in multi-agent005
systems with large language models. While006
prior work has advanced agent selection007
and result aggregation, efficient linguistic008
interactions for deep collaboration among009
expert agents remain a critical bottleneck. OSC010
addresses this gap as a pivotal intermediate011
layer between selection and aggregation,012
introducing Collaborator Knowledge Models013
(CKM) to enable each agent to dynamically014
perceive its collaborators’ cognitive states.015
Through real-time cognitive gap analysis,016
agents adaptively adjust communication017
behaviors, including content focus, detail level,018
and expression style, using learned strategies.019
Experiments on complex reasoning and020
problem-solving benchmarks demonstrate that021
OSC significantly improves task performance022
and communication efficiency, transforming023
“parallel-working individuals” into a “deeply024
collaborative cognitive team.” This framework025
not only optimizes multi-agent collaboration026
but also offers new insights into LLM agent027
interaction behaviors.028

1 Introduction029

In recent years, large language models (LLMs)(Touvron030
et al., 2023; Brown et al., 2020; Radford et al., 2019;031
OpenAI, 2024) have shown exceptional capabilities032
in tackling complex tasks, greatly advancing artificial033
intelligence. However, scaling a single LLM often034
leads to high computational costs and performance035
bottlenecks. Multi-agent systems (MAS)(Guo et al.,036
2024; Wang et al., 2024b; Huang et al., 2024; Chen et al.,037
2024a) offer a scalable alternative by leveraging diverse038
agents’ expertise to solve problems beyond the reach039
of individual models, improving cost-efficiency and040
unlocking LLMs’ full potential. Recent research(Huang041
et al., 2024; Piskala et al., 2024; Zhang et al.,042
2025) has focused on efficient MAS collaboration,043
with “dynamic expert selection” and knowledge-aware044
routing frameworks effectively matching tasks to expert045
subsets, boosting adaptability and resource efficiency.046

Moreover, “aggregation strategies” aim to combine 047
multi-agent outputs into high-quality final solutions. 048
Yet, a critical challenge remains: even with 049
an optimal expert combination, enabling these 050
experts to dynamically adapt their linguistic 051
interactions—fostering shared understanding, resolving 052
discrepancies, and producing coherent, high-quality 053
outputs—remains a key bottleneck in MAS-LLM 054
research. 055

To tackle this, we propose OSC (Orchestrating 056
Cognitive Synergy), an end-to-end, knowledge-aware 057
adaptive collaboration framework. OSC serves as an 058
intermediate layer, enhancing linguistic interactions 059
among selected experts without replacing expert 060
selection or aggregation. In its “inter-expert 061
collaborative communication” phase, each agent ei uses 062
a dynamically learned Collaborator Knowledge Model 063
(CKMi(ej | Q,Ht)) to track collaborators’ cognitive 064
states (knowledge, reasoning, task understanding via 065
Ht). CKM parameters (θCKM, θupdate), initially pre- 066
trained, are fine-tuned end-to-end within OSC’s RL loop, 067
tailoring them for effective collaboration. A learnable 068
cognitive gap analysis module (Gi,j) informs a policy 069
πcomm, which dynamically shapes communication 070

behavior Mi→j (content, style, objectives; Φ
(t)
i as 071

ei’s state). This enables precise information sharing, 072
plan coordination, and conflict resolution. OSC’s 073
components adapt through task feedback, ensuring 074
synergistic, adaptive collaboration. 075

OSC turns experts from "parallel workers" into a 076
"collaborative cognitive team" through adaptive 077
language interactions, enabling robust consensus, 078
efficient discrepancy resolution, and optimized 079
solutions. 080

The primary contributions of this work are: 081

• OSC Framework: A knowledge-aware, end-to-end 082
framework that enhances MAS-LLM collaboration 083
through adaptive inter-agent linguistic interactions. 084

• Collaboration Mechanisms: Trainable 085
components—Collaborator Knowledge Modeling 086
(CKM), cognitive gap analysis (Gi,j), and 087
communication policies (πcomm)—enable dynamic 088
information exchange and conflict resolution. 089

• Validation and Insights: OSC outperforms 090
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baselines on complex reasoning benchmarks091
(MATH(Hendrycks et al., 2021)), offering new092
insights into LLM-agent collaboration.093

2 Related Work094

2.1 LLM-Driven Multi-Agent Systems095

Recent work(Zhang et al., 2024a; Brawer et al., 2023)096
on LLM-based multi-agent systems (MAS) explores097
their potential for complex tasks by combining diverse098
model strengths, improving efficiency over single099
models. Some systems(Du et al., 2024; GenAI)100
simulate software development teams, assigning roles101
like product manager or programmer to LLM agents102
for collaborative task completion. Others(Hong et al.,103
2024; Li et al., 2023a) introduce structured workflows104
to align with engineering practices or enable flexible105
agent interactions that adapt to task needs. These106
approaches show promise but rely on fixed roles and107
protocols, lacking awareness of agents’ knowledge108
states or adaptive adjustments. They prioritize final109
task outcomes over optimizing collaboration, which our110
OSC framework targets.111

2.2 Agent Selection and Result Aggregation112

Agent selection and result aggregation are critical113
for MAS efficiency(Zhang et al., 2024b; Wang114
et al., 2024a). Knowledge-aware routing(Dong et al.,115
2024) matches tasks to agents based on capabilities,116
while dynamic routing(Chen et al., 2024b) adjusts117
allocations using historical performance. Continual118
learning helps agents acquire new skills for better119
task distribution. Aggregation methods include voting-120
based techniques(Subramaniam et al., 2025), self-121
assessment for response reliability(Yoffe et al., 2025),122
and hierarchical fusion(Sanwal, 2025) for integrating123
varied information. These treat collaboration as a black124
box, neglecting interaction optimization, unlike OSC’s125
focus on enhancing mid-process collaboration.126

2.3 Inter-Agent Communication127

Communication enables deep collaboration. Some128
approaches extend chain-of-thought prompting to share129
reasoning, use debate frameworks(Du et al., 2023;130
Khan et al., 2024) to refine solutions, or standardize131
dialogue formats. These remain static, lacking132
dynamic adaptation. Negotiation mechanisms resolve133
disagreements, and consensus-building techniques align134
diverse viewpoints, but they lack systematic knowledge135
modeling. Information-sharing methods, like shared136
memory(Gao and Zhang, 2024) or incremental137
learning(Jovanovic and Voss, 2024; Graziuso et al.,138
2024), focus on transmission without considering139
recipients’ cognitive states. In contrast, OSC employs140
Collaborator Knowledge Models (CKM) for precise141
cognitive state modeling, adaptive communication142
strategies based on cognitive gap analysis, and143
reinforcement learning(Schulman et al., 2017) to144
optimize interactions and enhance MAS collaboration.145

3 Method 146

To address inefficiencies in collaborative 147
communication within multi-agent systems (MAS) 148
using large language models (LLMs) post-expert 149
selection, we propose OSC (Orchestrating Cognitive 150
Synergy). OSC introduces a structured linguistic 151
interaction phase, transforming selected expert agents 152
from parallel workers into a cohesive, intelligent team. 153
This phase features dynamically learned models of 154
agents’ cognitive states and adaptive communication 155
policies, fine-tuned end-to-end. These enable agents 156
to perceive, reason, and respond to evolving team 157
knowledge and intentions. Through integrated learning, 158
agents refine solutions, resolve conflicts, and reach 159
robust consensus before final answer aggregation, 160
guided by a reinforcement-learned communication 161
policy, πcomm (see Section 3.4). 162

3.1 OSC Framework 163

The OSC framework acts as an adaptive collaborative 164
reasoning layer between expert selection and answer 165
aggregation. For a query Q and expert subset 166
St = e1, . . . , ek, OSC’s intelligence emerges via 167
core, interconnected stages. Dynamic Collaborator 168
Knowledge Model (CKM) and Adaptation. For 169
each expert ei ∈ St, a Collaborator Knowledge 170
Model CKMi(ej |Q,Ht) is created for every other 171
expert ej (j ̸= i). This dynamic model captures ei’s 172
evolving understanding of ej’s knowledge, reasoning, 173
confidence, and query Q comprehension as dialogue 174
Ht progresses. Initialized from pre-training on large- 175
scale dialogue corpora (Section 3.2, Appendix 6.7), 176
CKM parameters θCKM and θupdate are fine-tuned end- 177
to-end in OSC’s reinforcement learning loop. Iterative 178
Adaptive Communication. The system engages in 179
Nround communication rounds (typically Nround = 3 to 5 180
in our experiments, a hyperparameter tuned on a 181
development set). In each round r ∈ [1, Nround]: 182

• Each expert ei (following a round-robin speaking 183
order, though other scheduling policies can be 184
integrated) leverages its continuously updated 185

CKM
(r−1)
i (ej |Q,H(r−1)) for all collaborators 186

ej . This model is used to perform a learned 187

cognitive gap analysis, yielding G(r)
i,j . This 188

gap, detailed in Section 3.3, quantifies the 189
communicatively significant divergence between 190

ei’s internal cognitive state Φ
(r−1)
i (e.g., its own 191

solution plan or understanding related to Q) and its 192
CKM-derived assessment of ej’s corresponding 193
state. The function fgap that computes this is 194
itself a learnable component, enabling OSC to 195
identify discrepancies most relevant for guiding 196
communication. 197

• Based on the matrix of identified cognitive 198

gaps {G(r)
i,j }j ̸=i across the team, expert ei 199

employs its adaptive communication strategy 200
πcomm. This policy, optimized via reinforcement 201

2



Expert Pool

LLama 3

Qwen

Grok

Deepseek

O

S

C

R1

R2

Rn

...

A
ggregator

CKM Initialization
i ∈{1，2，…，n}

2

n

1

Agent i CKMi→n

CKMi→1

CKMi→2

N Round

Agent 2

Agent n

Agent 1
...

CKMi→n

CKMi→1

CKMi→2

Dialogue 
History

Update Trace

Knowledge 
Discrepancy 1 

Knowledge 
Discrepancy 2 

Knowledge 
Discrepancy n 

Agent i

Communication 
Policy

a i
(r)

communicate

Internal 
State CKM

(n round)

Final 
Response

Ri

i ∈{1，2，…，n}

ChatGPT

......

Expert Knowledge Profiling

Q: What is 
entropy in 
physics?

A: A measure 
of disorder or 
randomness in 
a system.

Figure 1: Your caption here.

learning (PPO; details in Appendix 6.1), selects202
a structured, abstract communication action203
a
(r)
i ∼ πcomm(· | Φ(r−1)

i , {CKM
(r−1)
i (ej)}j ̸=i,204

{G(r)
i,j }j ̸=i, Q, H(r−1)). The policy learns to map205

the rich, CKM-informed state to multi-faceted206
actions that are predicted to effectively bridge207
cognitive gaps and advance collective problem-208
solving.209

• The abstract action a
(r)
i encapsulates the210

learned communicative intent: specifically,211
what cognitive aspects to address, with which212
collaborator(s), using what communication213
objective (e.g., clarification, proposal, critique),214
and employing what interactional style (e.g.,215
level of detail, confidence expression). This216

structured directive a
(r)
i is then verbalized into a217

natural language message m
(r)
i by a generative218

language model, fLLM. Importantly, fLLM acts as219
a linguistic realization engine conditioned on220
the precise, strategically determined output from221
OSC’s learned components. OSC dictates the222
communicative strategy, while fLLM renders it into223
language (Section 3.4.1, with prompt details in224
Appendix 7.3).225

• All experts ej ∈ St update their dialogue history226

H(r) = H(r−1) ∪ {m(r)
i }i∈St

and, crucially,227
update their respective Collaborator Knowledge228

Models CKM
(r)
j (el|Q,H(r)) using the learned229

update mechanism fupdate (Section 3.2). 230

Optimized Independent Contribution Generation. 231
Following Nround rounds of OSC-driven communication, 232
each expert ei generates its refined individual response 233
Ri to query Q. This response is conditioned on its 234

final internal state Φ(Nround)
i , which has been significantly 235

shaped and informed by the preceding collaborative 236
dialogue, and its comprehensive understanding of 237
collaborators’ likely final states as encoded in 238

CKM
(Nround)
i . 239

Answer Aggregation and Propagated Collaborative 240
Reward. An aggregator module then combines 241
the individual, refined contributions {Ri}ki=1 (e.g., 242
using a learned meta-LLM aggregator or task-specific 243
heuristics) to produce the final system output Rfinal. 244
The quality of Rfinal (e.g., task success, score on a 245
benchmark) provides the primary reward signal Rtask 246
for optimizing πcomm. This global reward signal is also 247
used to provide supervisory signals for the end-to-end 248
fine-tuning of the CKM parameters (θCKM, θupdate) and 249
the cognitive gap analysis module (θgap), 250

3.2 Dynamic Collaborator Knowledge Model 251
(CKM) 252

The CKM is the epistemic foundation of OSC, enabling 253
each agent ei to construct and maintain a dynamic, 254
internal model CKMi(ej |Q,Ht) of each collaborator 255
ej’s evolving cognitive state relevant to the task Q and 256
the dialogue history Ht. 257

3



While a comprehensive ontology of cognitive features258
can be vast, OSC starts from a broad set of candidate259
cognitive dimensions C∗

Q = {c∗1, c∗2, . . . , c∗p}. These260
can include general linguistic markers, common261
reasoning patterns, or task-agnostic conversational acts262
(examples in Appendix 6.7 under "Candidate Cognitive263
Dimensions"). Critically, OSC does not rely on a264
fixed, manually selected subset of these for each task.265
Instead, the CKM function fCKM learns to attend to266
and represent the most task-relevant facets indicated267
by these candidate dimensions, effectively deriving a268

dynamic, latent cognitive state representation z
(t)
ij ∈269

Rdckm (dckm = 128 in our setup) that is optimally270
conditioned on ej’s behavior, the query Q, and history271
Ht:272

z
(t)
ij = fCKM(ej , Q,Ht; θCKM) (1)273

HereArchitecture in Appendix 6.7, θCKM are the274
parameters of fCKM (typically a Transformer encoder275
architecture; see Appendix 6.7 for model details).276

The learned latent vector z
(t)
ij implicitly encodes277

aspects crucial for collaboration, such as ej’s evolving278
understanding of specific sub-problems, its confidence279
on particular deductions, or its awareness of specific280
constraints, without these needing to be explicitly281
predefined as rigidly structured slots. fCKM processes282
ej’s utterances and interaction patterns to infer these283
latent attributes. The CKM parameters θCKM and284
the parameters θupdate of the state transition function285
fupdate (implemented as a GRU; dgru = 128; details in286
Appendix 6.7):287

z
(t+1)
ij = fupdate(z

(t)
ij ,m

(t)
j , Q,Ht; θupdate) (2)288

The models are initialized via pre-training on large289
dialogue corpora using self-supervised objectives290
(see Appendix 6.7). Crucially, after initialization,291
θCKM and θupdate are continuously fine-tuned during292
the main reinforcement learning phase of πcomm.293
Gradients from the overall task reward R, along with294
optional auxiliary losses for intermediate collaborative295
success (e.g., conflict resolution, plan alignment), are296
backpropagated to these modules. This end-to-end297
training enables CKM to represent collaborator states298
in ways that directly benefit the agent’s communication299
policy and task performance.300

3.3 Learned Cognitive Gap Analysis and Adaptive301
Communication Objectives302

Effective communication hinges on identifying and303

addressing the cognitive gap G(t)
i,j between an expert304

ei’s internal cognitive state Φ
(t)
i (e.g., its current plan305

embedding or understanding of Q) and its CKM-derived306

model of ej’s state z
(t)
ij . The mapping of Φ(t)

i and z
(t)
ij307

into a common, comparable representational space is308
facilitated by learnable projection layers, which are co-309
trained with the CKM and πcomm to ensure semantic310
alignment.311

The cognitive gap function, fgap, is itself a learnable 312
neural component parameterized by θgap: 313

G(t)
i,j = fgap(Φ

(t)
i , z

(t)
ij ; θgap) (3) 314

Unlike methods using manually weighted distances, fgap 315
(e.g., multi-head attention and feed-forward network) 316

learns to detect discrepancies between Φ
(t)
i and zij(t) 317

that predict communication needs or collaboration 318
risks. Parameters θgap are optimized with πcomm 319

and CKM, making gap representations G(t)
i,j highly 320

informative for communication actions, dynamically 321
identifying significant cognitive discrepancies based on 322
task, history, and collaborators. 323

Using Gi, j(t), OSC sets a communication objective 324
Ocomm(t). Instead of a fixed objective set, πcomm learns 325
to select or define objectives (as latent variables or 326
policy outputs) based on the current state, optimizing 327
for long-term rewards via policy gradients from global 328
task success, ensuring context-sensitive and impactful 329
collaboration. 330

3.4 Adaptive Communication Strategy πcomm 331

The adaptive communication strategy πcomm is the 332
core decision-making component of each OSC agent, 333
responsible for determining the optimal communication 334

action a
(t)
i at each step t. This policy is learned through 335

reinforcement learning (PPO; details in Appendix 6.1) 336
to maximize the expected long-term cumulative task 337
reward R, appropriately balanced with communication 338
costs. The sophistication of πcomm arises from its ability 339
to process and act upon a rich state representation, 340

state
(t)
i , which is dynamically constructed from its 341

internal cognitive state Φ
(t)
i and the outputs of its 342

continuously learned CKM (Section 3.2) and learned 343
cognitive gap analysis module (Section 3.3). 344

The action a
(t)
i is a structured tuple that encompasses: 345

(1) the dynamically determined communication 346

objective O(t)
comm (e.g., seek clarification, propose 347

refinement, highlight discrepancy), (2) the target 348
audience ej (or a subset of collaborators), and (3) 349
nuanced style and focus parameters ζ(t) (e.g., level 350
of detail, sentiment, evidential support, argumentation 351

strategy). All components of a(t)i are selected by the 352
policy: 353

a
(t)
i = (O(t)

comm, ej , ζ
(t)) ∼ πcomm(state(t)i ; θπ) (4) 354

where the comprehensive state state(t)i is defined as: 355

state(t)i =
(
Φ

(t)
i , {CKMi(el | Q, Ht)}l ̸=i, {G(t)

i,l }l ̸=i, Q, Ht

)
(5) 356

The policy network (a Transformer encoder architecture; 357
Nπ,enc = 4 layers, Hπ,enc = 4 heads, dπ,model = 256; 358
details in Appendix 6.1) with parameters θπ learns 359
to map this complex, dynamically evolving state to 360
effective, multi-faceted communication actions that 361
drive collaboration. 362
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3.4.1 Strategically Guided Linguistic Realization363

The abstract, structured communication action a
(t)
i364

selected by πcomm serves as a detailed strategic blueprint365
for communication. This blueprint is then instantiated366

into a concrete natural language message m
(t)
i by367

a generative large language model, fLLM. It is368
crucial to distinguish the roles: OSC, through its369
learned components (πcomm, CKM, fgap), determines370
the high-level communicative strategy—the content371
focus, underlying intent, target selection, and stylistic372
nuances of the interaction. The fLLM then functions as a373
sophisticated linguistic realization engine, translating374
these strategically determined, abstract directives into375
fluent and contextually appropriate natural language.376

The prompt generation function, prompt(·),377
dynamically constructs a rich, tailored input for fLLM378
(see Appendix 7.3 for prompt structure examples):379

m
(t)
i = fLLM(prompt(a(t)i ,Φ

(t)
i , CKMi(ej |Q,Ht)))

(6)380
The prompt carefully integrates the selected action381

a
(t)
i (objective and style), agent ei’s internal state382

Φ
(t)
i (e.g., hypothesis or solution fragment), and383

insights from CKMi(ej |Q,Ht) (e.g., ej’s inferred384
misunderstandings or divergent perspectives). This385
structured, context-driven prompting aligns fLLM’s386
output with OSC’s strategic goals. OSC’s key387
contribution is its learned formulation of these388
directives, easing fLLM’s need for autonomous high-389
level reasoning about collaboration and reducing390
unconstrained generation.391

3.4.2 Reinforcement Learning Optimization392

The adaptive communication strategy with parameters393
θπ is optimized using Proximal Policy Optimization394
(PPO), an actor-critic algorithm known for its stability395
and sample efficiency. The objective is to maximize396
the expected long-term discounted cumulative reward397
R, which is a composite function reflecting both task398
success and communication efficiency (PPO details and399
reward shaping logic are in Appendix 6.1):400

max
θπ

Eτ∼πcomm

[
Tmax∑
k=0

γk (Rtask(τk)− λcostCcomm(τk))

]
(7)401

where τ = (s0, a0, s1, a1, . . . ) is the trajectory402
from policy πcomm, γ ∈ [0, 1] (e.g., 0.99) is the403
discount factor, Rtask(τk) is the extrinsic reward404
(e.g., +1 for correct Rfinal, -0.1 for incorrect), and405
Ccomm(τk) is the communication cost (e.g., message406
length penalty, λcost = 0.001). To address sparse407
extrinsic rewards and promote useful intermediate408
behaviors in complex collaboration, we add an intrinsic409
shaped reward rshape. Positive rshape (e.g., 0.05) is410
given for: (1) significant, verifiable reduction in a411
cognitive gap Gi,j (e.g., a collaborator’s confidence on412
a key concept rises above threshold τconf_increase after413
targeted communication); and (2) successful completion414

of a high-value communication goal that improves 415
knowledge alignment (e.g., a request_information 416
action is followed by relevant information, verified via 417
semantic matching in CKM). 418

4 Experiment 419

4.1 Main Results and Analysis 420

Experimental Setup For fair comparison, our multi- 421
agent OSC system adopts the same pool of six 422
strong open-source models as KABB: Qwen2-72B- 423
Instruct(qwe, 2024), LLaMa-3-70B-Instruct(AI@Meta, 424
2024), WizardLM-2-8x22B(Xu et al., 2023), Gemma-2- 425
27B(Team, 2024), Deepseek-V3(DeepSeek-AI, 2024), 426
and Deepseek-R1(DeepSeek-AI, 2025)1. While 427
KABB uses tailored prompts for expert specialization, 428
OSC leverages these models within a collaborative 429
framework featuring dynamic Collaborator Knowledge 430
Models (CKM), cognitive gap analysis, and adaptive 431
communication strategies (πcomm; see Section 3). 432
Qwen2-72B-Instruct serves as the aggregator, consistent 433
with MoA and KABB. We also include a single-model 434
variant, OSC-Single-LLaMa3, using only LLaMa-3- 435
70B-Instruct for all roles. Evaluation is primarily based 436
on AlpacaEval 2.0(Li et al., 2023b) (805 instructions), 437
with outputs compared to GPT-4 Preview and judged 438
by a GPT-4-based evaluator using the length-controlled 439
(LC) win rate. Additional assessments include MT- 440
Bench(Zheng et al., 2023) for multi-turn dialogue, 441

Experimental Results As shown in Table 1, OSC 442
(Ours) achieves the highest LC win rate on AlpacaEval 443
2.0 at 81.4%, outperforming KABB (77.9%) and 444
MoA (68.1%), and also leading in the standard win 445
rate (76.2%). While Deepseek-R1 (80.1%) is close, 446
OSC’s ensemble approach delivers a stronger overall 447
collaborative effect. OSC-Single-LLaMa3 (36.1%) also 448
surpasses both KABB-Single-LLaMa3 (34.7%) and 449
the base LLaMa-3-70B-Instruct (34.4%), highlighting 450
the effectiveness of OSC’s collaboration framework 451
even with a single model. On MT-Bench, OSC sets 452
a new state-of-the-art with an average score of 9.94, 453
outperforming KABB (9.65), MoA (9.41), and all other 454
baselines, and maintains top scores on both the first 455
(9.96) and second (9.73) turns. Across all benchmarks, 456
OSC demonstrates robust and consistent improvements, 457
particularly in multi-turn dialogue and collaborative 458
tasks, confirming that its advanced mechanisms for 459
cognitive orchestration, dynamic knowledge alignment, 460
and adaptive communication significantly enhance 461
multi-agent system performance. 462

4.2 Communication Efficiency and Quality 463
Analysis 464

Experimental Setup This experiment is designed to 465
validate the core hypothesis that the OSC framework 466
significantly enhances both the efficiency and quality 467

1Inference was conducted using the Together Inference
Endpoint: https://api.together.ai/playground/chat.
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AlpacaEval 2.0 MT-Bench

Model LC win. (%) win. (%) Avg. 1st turn 2nd turn

OSC (Ours) 81.4 76.2 9.94 9.96 9.73
KABB 77.9 72.3 9.65 9.85 9.45
MoA 68.1 65.4 9.41 9.53 9.29
GPT-4 Omni (05/13) 57.5 51.3 9.19 9.31 9.07
GPT-4 Turbo (04/09) 55.0 46.1 9.31 9.35 9.28
GPT-4 Preview (11/06) 50.0 50.0 9.20 9.38 9.03
GPT-4 (03/14) 35.3 36.1 8.84 9.08 8.61
Qwen2-72B-Instruct 38.1 29.9 9.15 9.25 9.05
Gemma-2-27B 44.9 33.2 9.09 9.23 8.95
WizardLM-2-8x22B 51.3 62.3 8.78 8.96 8.61
OSC-Single-LLaMa3 36.1 37.4 9.37 9.34 9.42
KABB-Single-LLaMa3 34.7 36.2 9.16 9.10 9.23
LLaMa-3-70B-Instruct 34.4 33.2 8.94 9.20 8.68
Deepseek-V3 67.2 69.3 9.51 9.59 9.42
Deepseek-R1 80.1 75.4 9.30 9.40 9.20

Table 1: Comparison of OSC (Ours) and other models on AlpacaEval 2.0 and MT-Bench. MoA (with 2 layers) shares
a similar expert model configuration as the KABB and OSC setups, involving 6 different proposers and 1 aggregator.
For AlpacaEval 2.0, the performance of GPT-4 variants, LLaMa-3-70B-Instruct, and Qwen2-72B-Instruct are
sourced from public leaderboards; WizardLM-2-8x22B results are from prior work. We reproduced results for
Deepseek-V3, Deepseek-R1, and Gemma-2-27B on AlpacaEval 2.0. For MT-Bench, we conducted evaluations to
obtain turn-based scores, except for the results of GPT-4 variants, LLaMa-3-70B-Instruct, and WizardLM-2-8x22B,
which are from prior work. OSC (Ours) results demonstrate the benefits of its advanced collaboration mechanisms.

of inter-agent communication, thereby transforming468
a group of agents into a “deeply collaborative469
cognitive team” and aiming to demonstrate OSC’s470
ability to foster more targeted information exchange471
and effective discrepancy resolution for high-quality472
consensus with reduced communication overhead.473
To this end, evaluations are conducted on tasks474
derived from the AlpacaEval 2.0 instruction set,475
specifically selecting complex, multi-step instructions476
that necessitate collaborative effort. These instructions,477
such as those requiring in-depth planning, the generation478
of multifaceted arguments, or creative and extensive479
content generation, are reframed as problems for480
a multi-agent team to solve collectively, allowing481
for the detailed analysis of their communication482
dynamics during the collaborative process. The483
evaluation encompasses a suite of quantitative and484
qualitative metrics. Key quantitative metrics include485
the average number of communication rounds to reach486
a solution, the total tokens exchanged per successfully487
completed task, communication redundancy assessed488
via semantic similarity analysis (lower indicating less489
repetition), the conflict resolution rate measuring490
successfully resolved disagreements, and task-relevant491
information density which evaluates the proportion492
of pertinent content in communications. Qualitative493
assessment involves human evaluation by independent494
reviewers rating dialogues on Coherence, Relevance,495
Naturalness, and overall Collaborative Smoothness496
(using a 1-5 Likert scale), alongside detailed case497
studies of selected interaction dialogues to provide in-498

depth insights into how OSC’s CKM and cognitive 499
gap analysis mechanisms guide more effective 500
communication strategies. For this comparative analysis 501
of communication metrics, OSC’s performance is 502
benchmarked against four recent state-of-the-art multi- 503
agent collaboration frameworks: DyLAN(Liu et al., 504
2024), REMALIS(Qiu et al., 2024), MAC(Talebirad 505
and Nadiri, 2023), and TalkHier(Wang et al., 2025). 506
This comparison aims to position OSC’s specialized 507
communication mechanisms relative to other advanced 508
approaches in the field focusing on multi-agent task- 509
oriented collaboration and communication structures. 510
All systems, including OSC and these contemporary 511
frameworks, are configured to utilize the same pool 512
of base LLMs (as specified in Section 2) to ensure 513
a fair and rigorous comparison of their respective 514
collaborative and communication architectures. 515

Experimental Results As evidenced in 2, 516
OSC surpasses SOTA multi-agent frameworks in 517
communication efficiency, completing tasks in 4.6 518
rounds and 3.31k tokens, compared to TalkHier (4.9 519
rounds, 3.52k tokens), REMALIS (5.2 rounds, 3.78k 520
tokens), DyLAN (5.5 rounds, 3.95k tokens), and MAC 521
(5.7 rounds, 4.15k tokens). It achieves the lowest 522
Communication Redundancy at 14.2% (vs. 15.3% for 523
TalkHier), highest Conflict Resolution Rate at 89.5% 524
(vs. 85.8% for TalkHier), and highest Task-Relevant 525
Information Density at 84.5% (vs. 81.9% for TalkHier). 526
OSC’s dynamic models and adaptive policies ensure 527
efficient agent coordination. 528
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Figure 2: Radar chart illustrating the communication
efficiency and quality metrics of OSC (Ours) compared
to recent state-of-the-art multi-agent collaboration
frameworks. Each metric is normalized such that the
best-performing system in each dimension is set to
100%, and others are scaled proportionally. For metrics
where lower values are better, normalization is reversed.
This visualization highlights OSC’s overall superior
performance across all key indicators.

4.3 Ablation Study of OSC Components529

To assess the individual contributions of OSC’s530
key components—Collaborator Knowledge Models531
(CKM), learned cognitive gap analysis (fgap), adaptive532
communication policy (πcomm), and intrinsic shaped533
rewards (rshape)—we conducted a comprehensive534
ablation study on the AlpacaEval 2.0 dataset, utilizing535
the same diverse pool of six LLMs and aggregator536
as in our main experiments, with all variants trained537
via PPO for 5 × 106 timesteps. The detailed538
performance metrics, including LC Win Rate and539
various communication efficiency indicators (average540
rounds, tokens, redundancy, conflict resolution, and541
information density), are presented in 2. These results542
consistently show that the OSC (Full) framework543
achieves superior performance. Notably, disabling544
critical elements such as the CKM (reducing LC Win545
Rate from 81.4% to 71.2% and significantly worsening546
all communication metrics) or the adaptive policy πcomm547
(LC Win Rate dropping to 69.4% with substantial548
increases in communication overhead) leads to the549
most pronounced degradation in both task success and550
communication efficiency. Ablating the learned fgap551
module or removing rshape also results in clear, albeit552
comparatively smaller, performance drops across the553
board (e.g., LC Win Rates decreasing to 75.8% and554
74.1%, respectively, with corresponding impacts on555
communication metrics).556

4.4 Scalability Experiment with Varying Number557
of Agents558

Experimental Settings This scalability study was559
conducted on the AlpacaEval 2.0 dataset, utilizing 805560

instructions for training and evaluation, with specific 561
subsets of 160 instructions reserved for development 562
and validation respectively. The multi-agent system 563
employed the same pool of six open-source LLMs 564
previously detailed, with Qwen2-72B-Instruct serving 565
as the aggregator. We systematically varied the number 566
of collaborating agents, evaluating configurations with 567
2, 4, 6, 8, and 10 agents. Key hyperparameters 568
for the OSC framework were maintained, including 569
Nround = 4 communication rounds per interaction, a 570
communication cost factor λcost = 0.001, and a discount 571
factor γ = 0.99. Each experimental configuration 572
underwent training for 5 × 106 environment steps 573
using Proximal Policy Optimization (PPO), and results 574
were averaged over 3 independent runs to ensure 575
robustness. Performance was assessed using the LC Win 576
Rate (%) against GPT-4 Preview, along with detailed 577
communication metrics: Average Rounds, Average 578
Tokens exchanged (in thousands, k), Redundancy 579
(%), Conflict Resolution Rate (%), and Task-Relevant 580
Information Density (%). 581

Results and Analysis The experimental results, 582
detailed in 3, reveal several key insights into OSC’s 583
scalability. Optimal task performance, measured by 584
an LC Win Rate of 81.4%, was achieved with a 585
configuration of 6 agents. Employing fewer agents 586
(e.g., 2 agents, 72.3% LC Win Rate) appeared to 587
limit the depth of collaboration and diversity of 588
perspectives, while increasing the team to 10 agents 589
(77.5% LC Win Rate) introduced coordination overhead 590
that slightly diminished the primary success metric. 591
An examination of communication dynamics shows 592
that as the number of agents increased from 2 to 593
10, the average number of communication rounds 594
naturally rose from 3.8 to 5.2, and the average token 595
count increased from 2.45k to 3.62k. Despite this 596
increase in overall communication volume, OSC’s core 597
mechanisms, particularly the Collaborator Knowledge 598
Models (CKM) and learned cognitive gap analysis 599
(fgap), were effective in maintaining low communication 600
redundancy (reaching a minimum of 12.6% with 6 601
agents) and high conflict resolution rates (peaking at 602
91.7% with 6 agents). However, scalability challenges 603
became evident with larger teams. With 10 agents, we 604
observed an approximate 15% increase in CKM update 605
latency and a 30% growth in memory consumption 606
per inference step. Cognitive state modeling faced 607
bottlenecks, with conflict resolution dropping to 87.8%, 608
as agents sometimes misjudged collaborators’ states in 609
complex interactions. 610

4.5 Price-Performance Balance Analysis 611

Experimental Setup This experiment analyzes the 612
price-performance trade-off for the OSC framework on 613
the AlpacaEval 2.0 benchmark. We evaluated OSC 614
configurations with a varying number of active expert 615
agents (N ∈ {1, 2, 3, 4, 5, 6}), where these experts are 616
dynamically selected and coordinated from a shared 617
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System Variant LC Win Rate (%) Avg. Rounds Avg. Tokens (k) Redundancy (%) Conflict Res. (%) Info Density (%)

OSC (Full) 81.4 4.3 2.87 12.6 91.7 86.2
OSC w/o CKM 71.2 6.7 4.58 23.5 72.4 73.9
OSC w/o fgap 75.8 6.2 4.12 20.8 79.3 78.5
OSC w/o πcomm 69.4 8.4 5.63 29.7 65.8 69.4
OSC w/o rshape 74.1 5.9 3.95 18.9 82.6 80.0

Table 2: Ablation study of OSC components. Performance metrics include LC Win Rate (%) on AlpacaEval 2.0 and
various communication efficiency indicators. The OSC (Full) configuration is highlighted.

# of Agents LC Win Rate
(%)

Avg. Rounds Avg. Tokens
(k)

Redundancy
(%)

Conflict
Resolution

(%)

Info Density
(%)

2 72.3 3.8 2.45 18.2 85.1 80.4
4 78.9 4.1 2.72 14.5 89.3 84.7
6 81.4 4.3 2.87 12.6 91.7 86.2
8 80.2 4.6 3.15 13.8 90.5 85.3

10 77.5 5.2 3.62 16.7 87.8 82.9

Table 3: Comparison of performance with different numbers of agents; optimal values are shown in bold and shaded.

pool of six open-source LLMs (Qwen2-72B-Instruct,618
LLaMa-3-70B-Instruct, WizardLM-2-8x22B, Gemma-619
2-27B, Deepseek-V3, and Deepseek-R1) with Qwen2-620
72B-Instruct serving as the aggregator. The primary621
metrics are the Length-Controlled (LC) Win Rate (%)622
and the average Cost per Instruction ($), calculated623
based on OSC’s dynamic expert routing statistics624
and public API pricing for the constituent models.625
The resulting price-performance landscape, including626
comparisons against individual base models, KABB627
(Full), and several proprietary models, is visualized in 3.628
For proprietary models like GPT-4 variants and Claude-629
3.7, we reference the price from the OpenRouter API.630
All API prices are indicative as of early 2025 and are631
normalized for relative comparison in this study.632

Results and Analysis 3OSC (N=1 to N=6 experts)633
traces a strong Pareto frontier, balancing performance634
and cost. OSC (N=6) achieves the highest LC Win Rate635
( 81.4%) among OSC setups, outperforming KABB636
(Full) ( 77.9%) at a slightly higher cost ( 0.97vs.0.91).637
Compared to proprietary models like GPT-4o and638
Claude-3.7, OSC (N=3 or N = 4) offers comparable639
or better LC Win Rates at lower costs. Even N=1 or640
N=2 setups beat many base models while remaining641
cost-efficient. OSC’s expert routing and adaptive642
communication enable precise control over the price-643
performance curve, making it a versatile, cost-effective644
solution for top results across budgets.645

5 Conclusion646

The paper presents OSC (Orchestrating Cognitive647
Synergy), a framework that improves multi-agent LLM648
collaboration by modeling each agent’s knowledge649
through Collaborator Knowledge Models (CKM). By650
continuously analyzing cognitive gaps within the651
team and using reinforcement learning to adapt652
communication strategies, OSC enables agents to share653
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Figure 3: Price-performance trade-off on AlpacaEval
2.0. OSC configurations (hexagons) are compared
against KABB (Full) (circle), individual single-models
(triangles), and proprietary models (stars). OSC
demonstrates a strong Pareto frontier, optimizing
performance relative to cost. The dashed line
connects OSC configurations, highlighting improved
performance with increasing, yet efficiently managed,
expert collaboration.

information more efficiently and purposefully, reducing 654
redundant exchanges. This approach allows agents 655
to better understand what their collaborators know or 656
need, leading to more targeted and effective teamwork. 657
Experiments on benchmarks like AlpacaEval 2.0 show 658
that OSC-equipped teams achieve notably higher task 659
performance and efficiency than traditional baselines, 660
such as reaching an 81.4% win rate. Overall, OSC 661
fosters the formation of deeply collaborative cognitive 662
teams, enabling agents to collectively solve problems 663
more effectively. 664
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Limitations665

While the OSC framework demonstrates significant666
advancements in multi-agent LLM collaboration,667
certain limitations are identified in the present study:668

Scalability with Increasing Agent Numbers: The669
framework’s performance, while robust, shows optimal670
results with a specific number of agents (e.g., 6 agents671
in the scalability experiment). Increasing the number of672
agents further (e.g., to 8 or 10) can lead to coordination673
overhead and a slight diminishment in the primary674
success metric. Specifically, with 10 agents, there675
was an observed increase in CKM update latency and676
memory consumption per inference step. The average677
number of communication rounds and token counts also678
naturally rose with more agents.679

Cognitive State Modeling Complexity in Larger680
Teams: As the number of collaborating agents681
increases, the complexity of accurately modeling each682
collaborator’s cognitive state appears to become more683
challenging. This was indicated by a drop in the conflict684
resolution rate in larger teams, with instances suggesting685
agents occasionally misjudged collaborators’ cognitive686
states.687

Reliance on Shaped Rewards: The optimization of688
the adaptive communication policy (πcomm) benefits689
from intrinsic shaped rewards to mitigate the sparsity690
of the primary task success signal (Rtask) and to guide691
the learning of nuanced collaborative behaviors. This692
suggests that learning purely from sparse extrinsic task693
rewards might be less effective or slower.694

Hyperparameter Sensitivity: The performance695
of the OSC framework can be sensitive to the696
tuning of key hyperparameters. For instance, the697
number of communication rounds (Nround) and the698
communication cost weight (λcost) were identified as699
critical parameters requiring careful selection to balance700
collaboration depth and conciseness for optimal task701
success.702

Computational and Communication Cost Growth:703
Although OSC demonstrates a strong price-performance704
balance, the absolute computational cost and705
communication overhead (in terms of average rounds706
and tokens exchanged) tend to increase as more agents707
are involved in the collaboration.708
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6 Appendix A:OSC Framework901

Implementation Details902

This appendix elaborates on the specific implementation903
choices and learning paradigms for the core components904
of the OSC (Orchestrating Cognitive Synergy)905
framework, as deployed in the experiments reported906
in this paper. These details directly support the907
methodology described in Section 3, focusing on the908
end-to-end learning of the adaptive communication909
strategy, the dynamic operationalization of the910
Collaborator Knowledge Model (CKM), and the learned911
mechanisms for cognitive gap analysis and adaptive912
communication objective determination.913

6.1 Adaptive Communication Strategy (πcomm)914
Learning and End-to-End Optimization915

The adaptive communication strategy πcomm is916
optimized via deep reinforcement learning (RL),917
forming the central learning axis of OSC, as introduced918
in Section 3.4.919

6.2 Reinforcement Learning Algorithm920

We employ Proximal Policy Optimization (PPO) to921
train the policy πcomm. PPO, an Actor-Critic method,922
is selected for its stability in complex action spaces923
and its sample efficiency. It optimizes a clipped924
surrogate objective function to ensure monotonic policy925
improvement.926

6.3 State Representation and Input Preprocessing927

The input state state(t)i (Equation 6 in Section 3.4) for928
the policy πcomm is meticulously constructed to provide929
a comprehensive view of the collaborative context:930

• Φ
(t)
i : The agent’s internal cognitive state (e.g.,931

embedding of its current reasoning trace, plan, or932
hypothesis concerning query Q). This is typically933
derived from an intermediate layer of the agent’s934
own internal LLM or a dedicated, fine-tuned935
sentence/document encoder (e.g., Sentence-BERT936
tailored to reasoning tasks).937

• {CKMi(el|Q,Ht)}l ̸=i: The dynamic state 938

vectors z
(t)
il for each collaborator, produced by 939

the fine-tuned fCKM module (see Section 3.2 and 940
Appendix 6.7). These vectors represent learned 941
beliefs about collaborators’ cognitive states. 942

• {G(t)
i,l }l ̸=i: The cognitive gap representations 943

computed by the learned fgap function (see 944
Section 3.3), highlighting communicatively 945
relevant discrepancies. 946

• Q: An embedding of the user query, generated 947
using the same fine-tuned sentence encoder applied 948

to Φ
(t)
i to ensure consistent representational spaces. 949

• Ht: A condensed representation of the recent 950
dialogue history (e.g., an aggregation of the 951
embeddings of the last kh = 5 utterances, or 952
a context vector from a hierarchical dialogue 953
encoder). 954

All component embeddings are projected to a consistent 955
dimensionality and concatenated before being fed into 956
the policy network. The parameters of any encoders 957

used for Φ(t)
i , Q, and Ht are also fine-tuned alongside 958

the policy πcomm to optimize the state representation for 959
decision-making. 960

6.4 Policy Network Architecture (πcomm) 961

The policy network πcomm(·|state(t)i ; θπ) maps the 962

comprehensive state state(t)i to a distribution over 963

abstract communication actions a
(t)
i . This network 964

employs a Transformer-based encoder architecture: 965

• Encoder Configuration: Nπ,enc = 4 Transformer 966
layers, Hπ,enc = 4 attention heads per layer, a 967
model hidden dimension of dπ,model = 256, and a 968
feed-forward network dimension of dπ,ff = 1024 969
within each Transformer block. 970

• Action Head: The output representation from the 971
Transformer encoder is passed to separate linear 972
layers to produce distributions for the different 973

components of the abstract action a
(t)
i (i.e., 974

communication objective, target, style parameters). 975
For discrete components, a softmax activation is 976
used; for continuous style parameters (if any), 977
appropriate continuous distributions are modeled. 978

6.5 Reward Function and End-to-End Signal 979
Propagation 980

The composite reward function R(Ht, Rfinal) 981
(Equation 8 in Section 3.4.2) guides the learning 982
process. 983

• Task Performance Reward (Rtask(Rfinal)): A 984
primary sparse signal based on final task outcome 985
(e.g., +1 for success, -0.1 for failure on benchmarks 986
like MATH or GSM8K). 987

• Communication Cost (Ccomm(Ht)): 988
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Ccomm(Ht) =
∑Nround

k=1 (length of message mk),989
measured in tokens, weighted by λcost = 0.001.990
This encourages conciseness without sacrificing991
clarity.992

• Intrinsic Reward Shaping (rshape): To mitigate993
sparsity and guide the learning of nuanced994
collaborative behaviors, we augment the extrinsic995
reward with an intrinsic shaped reward rshape =996
0.05. This is provided for:997

– Learned Cognitive Gap Resolution: A998
positive reward is given if a communication999

action a
(t)
i leads to a verifiable positive1000

change in the CKM’s assessment of a targeted1001
collaborator ej’s state concerning a previously1002
identified significant cognitive gap (e.g., if1003
CKMi(ej) indicates increased alignment or1004
reduced misunderstanding regarding a key1005
aspect after ei’s intervention, as measured1006
by the learned fgap or specific probes into1007

the CKM state z
(t+1)
ij ). The threshold for1008

"significant" is dynamically learned rather1009
than being based on fixed dimension scores.1010

– Effective Communication Objective1011
Fulfillment: A reward is given when the1012
execution of a chosen communication1013
objective O(t)

comm (determined by πcomm)1014
demonstrably leads to an improved1015
collaborative state (e.g., a ‘request_-1016
explanation‘ action is followed by a response1017
from ej that CKMi assesses as providing1018
high-quality, relevant information that fills an1019
identified knowledge gap).1020

The gradients from this overall reward signal are not1021
only used to update θπ but are also propagated back1022
to fine-tune the parameters of the CKM modules1023
(θCKM, θupdate) and the cognitive gap analysis module1024
(θgap). This ensures that these representation-learning1025
components are optimized to produce states and gap1026
analyses that best support the policy’s long-term1027
objectives.1028

6.6 Training Environment and Protocol1029

Training environments are constructed using tasks from1030
complex reasoning benchmarks such as MATH and1031
GSM8K. Each episode consists of a full collaborative1032
dialogue over Nround = 5 communication turns. The1033
entire OSC system, including πcomm, fCKM, fupdate, and1034
fgap, is trained end-to-end for 5× 106 total environment1035
timesteps. Detailed PPO hyperparameters and specific1036
configurations for actor and critic networks are provided1037
in 4.1038

6.7 Dynamic Collaborator Knowledge Model1039
(CKM) Implementation1040

The CKM, CKMi(ej |Q,Ht), dynamically models1041
collaborator ej’s cognitive state. Its parameters are1042

fine-tuned end-to-end as part of the OSC learning loop. 1043
Candidate Cognitive Dimensions and Learned Facet 1044
Representatio As outlined in Section 3.2, OSC begins 1045
with a broad set of candidate cognitive dimensions C∗

Q. 1046
These are not task-specific, hard-coded features but 1047
rather general categories of information that might be 1048
relevant for modeling collaborators. Examples include: 1049

• Linguistic Cues: Derived from utterance 1050
embeddings (e.g., Sentence-BERT), capturing 1051
sentiment, certainty, interrogative force, etc. 1052

• Conversational Structure: Features related to 1053
dialogue acts (question, answer, propose, critique), 1054
turn-taking patterns, and topic continuity. 1055

• Reasoning Attributes (General): Indicators of 1056
logical structure, presence of claims/evidence, 1057
or common argument patterns, identifiable via 1058
specialized classifiers or pattern matchers applied 1059
to utterances. 1060

• Task-Agnostic Meta-Cognitive States: General 1061
indicators of confusion, confidence, attention, or 1062
surprise, potentially inferred from disfluencies, 1063
response latencies (in simulated environments), or 1064
explicit meta-cognitive expressions. 1065

The CKM function fCKM (a Transformer encoder: 1066
Nckm,enc = 2 layers, Hckm,enc = 2 heads, dckm,model = 1067
128) takes embeddings of ej’s recent utterances (last 1068
khist = 5), the query Q, and the history Ht 1069
as input. Through its attention mechanisms and 1070
subsequent layers, fCKM learns to dynamically select, 1071
combine, and transform features corresponding to 1072
these candidate dimensions into a dense, latent 1073

cognitive state vector z
(t)
ij ∈ R128. This vector 1074

z
(t)
ij implicitly represents the most salient aspects of 1075

ej’s state relevant for the current collaborative context, 1076
rather than being a simple concatenation of pre-defined 1077
feature values. The model learns which "facets" of 1078
understanding, confidence, or intent are crucial for 1079
effective collaboration on a given task type. 1080

7 CKM Initialization and End-to-End 1081

Fine-tuning of (θCKM, θupdate) 1082

The parameters θCKM of fCKM and θupdate of the GRU- 1083
based update function fupdate (dgru = 128) are initialized 1084
through pre-training on a large, diverse corpus of multi- 1085
turn dialogues (e.g., >1M turns from educational forums, 1086
collaborative problem-solving datasets). Pre-training 1087
objectives include: 1088

• Masked Utterance Prediction: Predicting 1089
missing utterances given surrounding context and 1090
a preliminary CKM state. 1091

• Next Dialogue Act Prediction: Forecasting the 1092
type of communicative act an agent might perform 1093
next. 1094
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• Self-Supervised Contrastive Learning: Training1095
the CKM to produce similar representations for1096
dialogue states that lead to similar collaborative1097
outcomes, and dissimilar representations1098
otherwise.1099

This pre-training provides a robust initialization.1100
Subsequently, during the main RL training of πcomm,1101
both θCKM and θupdate are actively fine-tuned. Gradients1102
from the overall PPO objective (Equation 8) are1103
propagated back to these parameters. Additionally,1104
auxiliary prediction tasks can be introduced during1105
fine-tuning, such as predicting specific elements1106
of a collaborator’s next utterance if it can be1107
reliably estimated, or a self-supervisory signal that1108
rewards CKM states that accurately predict successful1109
intermediate steps in the collaboration. This ensures the1110
CKM representations are not only descriptive but also1111
maximally useful for the policy πcomm.1112

7.1 A.3.1 Learned Cognitive Gap Function (fgap)1113

The cognitive gap G(t)
i,j is computed by a learnable1114

function fgap(Φ
(t)
i , z

(t)
ij ; θgap), as described in1115

Section 3.3.1116

• Architecture of fgap: We implement fgap1117
as a neural network that takes the agent’s1118

own cognitive state embedding Φ
(t)
i and the1119

CKM’s representation of the collaborator z(t)ij as1120
input. These are first projected into a common1121
dimensionality. A common approach involves a1122

multi-head cross-attention mechanism where Φ
(t)
i1123

attends to z
(t)
ij (and vice-versa) to identify points1124

of divergence and alignment. The outputs of1125
these attention layers are then processed through1126
feed-forward layers to produce the final gap1127

representation vector G(t)
i,j ∈ Rdgap .1128

• Optimization of θgap: The parameters θgap are1129
learned jointly with θπ and the CKM parameters.1130
The utility of the generated gap representation1131

G(t)
i,j is implicitly judged by its contribution to1132

the policy’s ability to achieve high rewards. An1133

effective G(t)
i,j will highlight discrepancies that, if1134

addressed, lead to better collaboration and task1135
outcomes.1136

7.2 A.3.2 Adaptive Communication Objective1137
Determination1138

As stated in Section 3.3, the determination of the1139
communication objective O(t)

comm is integrated into the1140
policy πcomm, rather than relying on a fixed classifier1141
over a predefined set of objectives.1142

• Mechanism: The policy network πcomm has1143
a dedicated output head (or part of its multi-1144

faceted action output) that determines O(t)
comm.1145

This could involve selecting from a predefined1146
but extensible set of abstract objectives O∗1147

(e.g., ‘query_understanding‘, ‘propose_step‘, 1148
‘challenge_assumption‘, ‘align_plan_element‘). 1149
The key difference is that the mapping from state 1150

(including G(t)
i,j ) to an objective in O∗ is learned 1151

via RL. 1152

• Alternative Latent Objectives: In a more 1153

advanced formulation, O(t)
comm can be a learned 1154

latent variable, an embedding itself, which then 1155
conditions the rest of the action generation (target, 1156
style). This allows the policy to discover and 1157
formulate nuanced objectives beyond a predefined 1158
discrete set. For the experiments in this paper, we 1159
focus on πcomm learning to select from an expanded, 1160
strategically relevant candidate set O∗. 1161

• Learning: The choice of objective is thus directly 1162
influenced by the overall task reward R, ensuring 1163
that the agent learns to select objectives that are 1164
instrumentally useful for achieving its goals. This 1165
contrasts with supervised learning on bootstrapped 1166
data, which may not capture the full dynamics of 1167
utility in diverse collaborative settings. 1168

Any bootstrapping of initial objective selection 1169
tendencies (e.g., using simpler heuristic rules for pre- 1170
training initialization of πcomm) is clearly separated from 1171
the primary adaptive learning mechanism. 1172

7.3 A.4 Strategically Guided Linguistic 1173
Realization via fLLM 1174

The process of converting the abstract communication 1175

action a
(t)
i = (O(t)

comm, ej , ζ
(t)) into a concrete message 1176

m
(t)
i using fLLM (e.g., GPT-4) is carefully structured to 1177

ensure OSC’s strategic decisions are faithfully executed, 1178
as detailed in Section 3.4.1. 1179

The dynamically generated prompt for fLLM is rich and 1180
multi-faceted: 1181

• Role and Context: Explicitly defines ei’s role, 1182
the collaborator ej , the overarching task Q, and a 1183
summary of the pertinent dialogue history Ht. 1184

• OSC’s Strategic Insights: 1185

– CKM-derived Collaborator Assessment: 1186
Provides a concise summary from 1187
CKMi(ej |Q,Ht) regarding ej’s inferred 1188
state concerning the aspects relevant to 1189
the current communication objective (e.g., 1190
"Expert ej appears to be proceeding with 1191
assumption Y, which CKMi flags as 1192
potentially conflicting with constraint Z. 1193
Confidence in this assessment is high."). 1194

– Agent’s Own State Summary: A summary 1195

of ei’s own internal state Φ
(t)
i relevant to the 1196

objective (e.g., "My current plan involves step 1197
X, which relies on constraint Z being met."). 1198

– Cognitive Gap Focus: Highlights the 1199
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specific cognitive gap G(t)
i,j that the current1200

communication aims to address.1201

• Explicit Communicative Directives from a
(t)
i :1202

– Communication Objective (O(t)
comm): A clear1203

instruction like "Your objective is to request1204
clarification from ej regarding their use1205
of assumption Y, highlighting its potential1206
conflict with constraint Z."1207

– Style Parameters (ζ(t)): Directives such as1208
"Adopt a collaborative and questioning tone,1209
not accusatory. Be concise but ensure the1210
potential conflict is clearly stated."1211

• Instruction to Generate: A final prompt for ei’s1212
utterance.1213

This structured approach ensures that fLLM’s generation1214
is tightly constrained by OSC’s learned strategy, making1215
fLLM a powerful tool for linguistic realization rather1216
than the primary driver of collaborative reasoning. The1217
quality of OSC is therefore assessed by its ability to1218

formulate effective abstract actions a(t)i , which are then1219
reliably translated by fLLM.1220

7.4 A.5 Hyperparameter Settings1221

A summary of key hyperparameters for the OSC1222
framework components, reflecting the learning setup1223
described, is provided in 4 and 5 . These values were1224
determined through systematic ablation and tuning on a1225
held-out development set of tasks.1226

Table 4: Key Hyperparameters for the OSC Framework.

Component Group Parameter Value

PPO Algorithm
Learning Rate (Adam, απ) for πcomm 1× 10−4

Learning Rate (Adam, αcrit) for Critic 3× 10−4

Discount Factor (γ) 0.99
PPO Clipping Range (ϵ) 0.2
Batch Size (experience replay) 2048 steps
Mini-batch Size for updates 256 steps
Epochs per PPO Update 10
GAE Lambda (λGAE) 0.95
Entropy Coefficient for πcomm 0.01

Policy Network (πcomm)
Transformer Layers (Nπ,enc) 4
Attention Heads (Hπ,enc) 4
Model Dimension (dπ,model) 256
Feed-Forward Network Dim. (dπ,ff) 1024

CKM (fCKM, fupdate)
Transformer Layers in fCKM (Nckm,enc) 2
Attention Heads in fCKM (Hckm,enc) 2
Model Dimension (dckm,model) 128
GRU Hidden Size in fupdate (dgru) 128
History Length for CKM input (khist) 5 utterances
Learning Rate (Adam, αckm) for CKM fine-tuning 5× 10−5

Cognitive Gap Function (fgap)
Architecture MLP (2 layers, 128 units, ReLU)
Input Projection Dim. 128
Output Gap Vector Dim. (dgap) 64
Learning Rate (Adam, αgap) for fine-tuning 5× 10−5

Reward Function
Communication Cost Weight (λcost) 0.001
Intrinsic Shaped Reward (rshape) 0.05

General Training Setup
Communication Rounds per Episode (Nround) 3–5 (curriculum or fixed)
Total Training Timesteps 5× 106 to 1× 107

Base Sentence Encoder Sentence-BERT
Linguistic Realization Engine (fLLM) GPT-4 Series / Equivalent API

Note: The learning rates for CKM (αckm) and fgap (αgap)1227
modules during end-to-end fine-tuning are typically set lower1228
than the main policy learning rate απ to ensure stability, as1229
these components influence the state representation itself. The1230
specific values are subject to empirical tuning.1231

Table 5: Supplementary Hyperparameters for the OSC
Framework.

Component Group Parameter Value

State Representation
Embedding Projection Dimension 128
Dialogue History Encoder Hierarchical (2 layers, 128 units)
History Aggregation Length (kh) 5 utterances

Reward Function
Task Performance Reward (Rtask) Success: +1, Failure: –0.1
Intrinsic Reward Trigger Learned gap resolution

Policy Network (πcomm)
Discrete Action Space Size 10 objectives (extensible)
Continuous Style Parameter Range [0, 1] (uniform)

CKM Pre-training
Pre-training Dataset Size 1 M dialogue turns
Pre-training LR (αpretrain) 1× 10−4

Pre-training Objective Weights Equal (masked utterance, dialogue act)

Linguistic Realization (fLLM)
Prompt Length Limit 512 tokens
Generation Temperature 0.7
Top-p Sampling 0.9

8 OSC Hyperparameter Tuning on 1232

AlpacaEval 2.0 1233

We tuned the OSC framework on the AlpacaEval 1234
2.0 development set by optimizing communication 1235
rounds (Nround) and communication cost weight (λcost) 1236
to identify the optimal configuration, demonstrating 1237
their critical impact on task success rate (LC win 1238
rate) and communication efficiency (rounds, token 1239
count). Hyperparameter Selection: Communication 1240
Rounds (Nround): Defines the number of dialogue rounds 1241
for agent collaboration, determining interaction depth. 1242
Candidate values: {2, 3, 4, 5}, covering the default 1243
range (3–5). Reason: Nround affects collaboration 1244
quality; too few rounds lead to insufficient information, 1245
while too many increase redundancy. Communication 1246
Cost Weight (λcost): Defines the penalty weight for 1247
message token count in the PPO reward function, 1248
R = Rtask − λcost · Ccomm. Candidate values: 1249
{0.0005, 0.001, 0.002}, centered on the default 0.001. 1250
Reason: λcost controls communication conciseness, 1251
balancing information completeness. Experimental 1252
Setup: Dataset: AlpacaEval 2.0 (805 instructions), 1253
using development set ( 160 instructions) for tuning. 1254
Models: Six open-source LLMs (Qwen2-72B-Instruct, 1255
LLaMa-3-70B-Instruct, WizardLM-2-8x22B, Gemma2- 1256
27B, Deepseek-V3, Deepseek-R1), with Qwen2-72B- 1257
Instruct as aggregator. Training: Each configuration 1258
trained for 5×106 steps using PPO, with discount factor 1259
γ = 0.99 (default). Evaluation Metrics: Task Success 1260
Rate: LC win rate (%), based on GPT-4 evaluator. 1261
Communication Efficiency: Average rounds (Avg. 1262
Rounds, lower is better), Average token count (Avg. 1263
Tokens, k, lower is better). Tuning Method: Grid search 1264
(4 × 3 = 12 configurations), each run 3 times, averaged. 1265
Experimental Procedure: Used default configuration 1266
(Nround = 4, λcost = 0.001) as baseline. Tested 1267
all combinations on the development set, recording 1268
LC win rate and communication efficiency. Selected 1269
the configuration with the highest LC win rate and 1270
reasonable rounds and token count 5. 1271
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Figure 4: Hyperparameter tuning results.

9 Pretraining and Fine-tuning: OSC1272

Validation on AlpacaEval 2.01273

We validated the impact of pretraining and fine-1274
tuning the Collaborator Knowledge Model (CKM)1275
and cognitive gap analysis module (fgap) on OSC1276
performance, analyzing task success rate and1277
communication efficiency. Pretraining: CKM and1278
fgap learned dialogue patterns via masked utterance1279
prediction, next action prediction, and contrastive1280
learning. CKM: Transformer encoder (Nckm,enc = 2,1281
Hckm,enc = 2, dckm,model = 128). fgap: Multi-1282
head cross-attention. Fine-tuning: On AlpacaEval1283
2.0 (805 instructions, 160 for fine-tuning, 1601284
for validation) using PPO, 5 × 106 steps, reward1285
R = Rtask − 0.001 · Ccomm + 0.05. Hyperparameter:1286
Nround = 4. Experiments: (1) Pretraining Only: Freeze1287
CKM, fgap, optimize πcomm. (2) Pretraining+Fine-1288
tuning: Fine-tune all components. Baseline: KABB1289
(77.9% LC win rate). Metrics: LC win rate (%),1290
avg. rounds, avg. tokens (k). Results: Pretraining1291
Only: 76.8% LC win rate, 5.1 rounds, 3.45k tokens.1292
Pretraining+Fine-tuning: 81.4% LC win rate, 4.31293
rounds, 2.87k tokens. KABB: 77.9% LC win rate, no1294
communication data. Analysis: Fine-tuning boosts LC1295
win rate (76.8% to 81.4%) and efficiency (rounds: 5.11296
to 4.3; tokens: 3.45k to 2.87k), outperforming KABB,1297
highlighting dynamic collaboration benefits 5.1298

10 Reward Function Component1299

Analysis: Detailed Validation of the1300

OSC Framework on AlpacaEval 2.01301

Analyzing the contribution of different components1302
(task reward Rtask, communication cost Ccomm, intrinsic1303

shaping reward rshape) in the OSC framework’s reward 1304
function to collaborative behavior, and detailedly 1305
evaluating the impact of each component on task success 1306
rate and communication efficiency. The experimental 1307
design is as follows: The reward function is formulated 1308
as R = Rtask − λcost · Ccomm + rshape. Here, Rtask is 1309
the task success reward, +1 for success and -0.1 for 1310
failure. Ccomm is the communication cost (number 1311
of message tokens), with λcost = 0.001. rshape is 1312
the intrinsic shaping reward (0.05), rewarding the 1313
reduction of cognitive discrepancies or the achievement 1314
of collaborative goals. Reward combinations include: 1315
Only Rtask, i.e., using only the task reward; Rtask−λcost · 1316
Ccomm, i.e., adding a communication cost penalty; Full 1317
Reward (Rtask − λcost · Ccomm + rshape), i.e., adding the 1318
intrinsic shaping reward. The baseline is KABB, with 1319
an LC win rate of 77.9% (Table 1) and no dynamic 1320
communication. Experimental Settings: The dataset 1321
used is AlpacaEval 2.0 (containing 805 instructions), 1322
with its development set (approx. 160 instructions) 1323
used for training and the validation set (approx. 160 1324
instructions) for evaluation. Six open-source LLMs 1325
were selected (e.g., Qwen2-72B-Instruct, LLaMa-3- 1326
70B-Instruct, etc.), with Qwen2-72B-Instruct serving 1327
as the aggregator. Training was conducted using 1328
the PPO algorithm for 5 × 106 environment steps, 1329
with Nround = 4. Evaluation metrics include: Task 1330
Success Rate (LC Win Rate, %); Communication 1331
Efficiency, specifically including Average Rounds 1332
(Avg. Rounds, lower is better), Average Tokens 1333
(Avg. Tokens, in k, lower is better), Communication 1334
Redundancy (Redundancy, %), and Conflict Resolution 1335
Rate (Conflict Res., %). Experimental Procedure: First, 1336
initialization is performed by loading the pre-trained 1337
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CKM and fgap. Then, reward combination experiments1338
are conducted: for each reward combination, OSC1339
is trained on the development set, and CKM, fgap,1340
and πcomm are fine-tuned end-to-end. Finally, testing1341
is performed on the validation set, and the metrics1342
are recorded. The experimental results are shown1343
in the table below: Results Analysis: When using1344
only Rtask, the LC win rate was 74.1%, lower than1345
KABB’s 77.9%, mainly due to a lack of guidance for1346
collaboration. At this point, Avg. Rounds was 5.9,1347
Avg. Tokens was 3.95k, Redundancy was 18.9%, and1348
Conflict Res. was 82.6%, indicating low communication1349
efficiency. After introducing Rtask − λcost · Ccomm, the1350
LC win rate increased to 78.2%, close to KABB. The1351
communication cost penalty effectively reduced the1352
number of rounds (5.0) and tokens (3.20k). Redundancy1353
decreased to 15.7%, and Conflict Res. improved to1354
86.5%, indicating some improvement in collaborative1355
behavior. With the full reward, the LC win rate reached1356
81.4% (Table 1), outperforming KABB. Avg. Rounds1357
decreased to 4.3, Avg. Tokens to 2.87k, Redundancy1358
to 12.6%, and Conflict Res. increased to 91.7%,1359
demonstrating optimal collaborative performance. The1360
KABB baseline had an LC win rate of 77.9% but1361
no relevant data on dynamic communication. Further1362
Analysis: When using only Rtask, the sparse reward1363
led to slow learning of collaborative behavior, resulting1364
in a lower LC win rate (74.1%) and more redundant1365
communication (18.9%). After adding Ccomm, the1366
communication cost penalty encouraged the model to1367
generate more concise communication, reducing rounds1368
from 5.9 to 5.0, tokens from 3.95k to 3.20k, and1369
increasing the LC win rate from 74.1% to 78.2%. After1370
adding rshape, the intrinsic shaping reward effectively1371
guided collaborative behavior (e.g., promoting the1372
reduction of cognitive discrepancies), leading to an LC1373
win rate of 81.4%, an increase in conflict resolution rate1374
to 91.7%, and a decrease in communication redundancy1375
to 12.6%. Compared to KABB, the OSC framework1376
with the full reward outperformed KABB in LC win rate1377
(81.4% vs. 77.9%), indicating that the dynamic reward1378
mechanism achieved significant effects.1379

11 OSC Computational Resource 1380

Efficiency Results 1381

We adopt the AlpacaEval 2.0 dataset (160 development 1382
examples, 160 validation examples), six agents (e.g., 1383
LLaMa-3-13B-Instruct and other compressed models) 1384
with a Qwen2-13B aggregator in the OSC system, 1385
running on a single NVIDIA A100 GPU. Training uses 1386
mixed precision for 1 × 106 steps, freezing the CKM 1387
and fgap modules and training only πcomm. During 1388
inference, we apply INT8 quantization, set Nround = 3, 1389
and cache CKM states. Hyperparameters are Nround = 1390
3, λcost = 0.001, and γ = 0.99. We evaluate training 1391
GPU hours, training memory usage (GB), inference 1392
latency (seconds per instruction), inference memory 1393
usage (GB), and LC win rate (%). As shown in Table 1 1394
, OSC requires 10.8 GPU hours for training, uses 11.3 1395
GB of memory during training, achieves 1.79 s per 1396
instruction and 7.8 GB of memory during inference, and 1397
attains an LC win rate of 78.6%. 1398

11.1 Qualitative Analysis of CKM and Cognitive 1399
Gap and Fine-Grained Ablation Study 1400

To address reviewer requests 8, we conducted a 1401
qualitative analysis of the CKM and cognitive gap in 1402
the OSC framework, focusing on how CKM represents 1403
knowledge and how fgap identifies and bridges cognitive 1404
gaps, alongside a fine-grained ablation study examining 1405
the impact of CKM feature dimensions, fupdate 1406

mechanism, communication action a
(t)
i components, 1407

prompt simplification, and fgap alternatives. The 1408
qualitative analysis used three complex instructions 1409
from the AlpacaEval 2.0 validation set (mathematical 1410
reasoning, planning, argument generation) with 6 agents 1411
(Qwen2-72B-Instruct, etc.), Qwen2 as the aggregator. 1412

We extracted CKM state vectors z
(t)
ij to analyze 1413

knowledge dimensions (understanding, confidence, 1414

assumptions) and inspected fgap outputs G(t)
i,j to 1415

identify gap types (factual misunderstandings, reasoning 1416
divergences, goal misalignments). Three dialogue 1417
snippets were selected to demonstrate CKM and fgap 1418
guidance. Human evaluation (3 reviewers) assessed 1419
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Reward Combination LC Win Rate (%) Avg. Rounds Avg. Tokens (k) Redundancy (%) Conflict Res. (%)
Only Rtask 74.1 5.9 3.95 18.9% 82.6%
Rtask − λcost · Ccomm 78.2 5.0 3.20 15.7% 86.5%
Full Reward (Rtask − λcost · Ccomm + rshape) 81.4 4.3 2.87 12.6% 91.7%
KABB (Baseline) 77.9% - - - -

Table 6: Your caption here.

dialogue clarity, relevance, and collaborativeness (1–1420
5 scale). Case 1 (mathematical reasoning, solving1421
x2 − 5x + 6 = 0): CKM showed agent A1422
with high confidence (0.9) in factorization, agent B1423
preferring the quadratic formula (0.7); fgap detected1424
a method divergence (cosine distance 0.4), A proposed1425
factorization, B agreed after verification, scores (clarity1426
5, relevance 5, collaborativeness 4.7). Case 2 (planning,1427
3-week project): CKM captured agent C’s 5-day1428
estimate vs. D’s 7-day for task X; fgap identified1429
a timing discrepancy (attention weight 0.6 on time1430
dimension), C queried D’s estimate, D clarified testing1431
needs, C adjusted, scores (clarity 4.7, relevance 4.3,1432
collaborativeness 4.7). Case 3 (argument generation,1433
environmental policy): CKM reflected agent E’s focus1434
on economic costs vs. F’s on environmental benefits;1435
fgap detected a priority gap (semantic distance 0.5), E1436
prompted long-term benefits, F provided data, scores1437
(clarity 4.3, relevance 4.7, collaborativeness 4.3). CKM1438
dynamically captured task understanding, fgap precisely1439
identified method, timing, and priority gaps, resolving1440
them within 3 rounds, average scores (clarity 4.7,1441
relevance 4.7, collaborativeness 4.6). The ablation study1442
used a single A100 80GB GPU, 6 agents, 1 × 1061443
training steps, hyperparameters Nround = 3, λcost =1444
0.001, γ = 0.99. Ablations included: CKM feature1445
dimensions (linguistic-only, reasoning-only, full), fupdate1446

(GRU vs. average, static), a
(t)
i components (fixed1447

objective, no style), simplified prompts (only a
(t)
i ), and1448

fgap alternatives (L2 distance, MLP). Metrics were LC1449
win rate (%), average rounds, tokens (k), and conflict1450
resolution rate (%).

Table 7: Qualitative Analysis Case Study Scores

Case Task Clarity Relevance Collaborativeness

1 Mathematical Reasoning 5.0 5.0 4.7
2 Planning 4.7 4.3 4.7
3 Argument Generation 4.3 4.7 4.3

Average 4.7 4.7 4.6

1451
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Table 8: Fine-Grained Ablation Study Results

System LC Win Rate (%) Avg. Rounds Avg. Tokens (k) Conflict Resolution (%)

OSC (Full) 78.6 3.2 2.5 88.4
CKM-Ling 74.2 3.7 3.0 82.1
CKM-Reas 75.8 3.5 2.8 84.3
fupdate-Avg 73.9 3.8 3.1 80.7
fupdate-Static 71.5 4.0 3.4 78.2
FixObj 75.4 3.6 2.9 83.5
NoStyle 76.1 3.5 2.7 85.2
Simplified Prompt 73.2 3.9 3.2 79.8
fgap-L2 74.8 3.7 3.0 82.9
fgap-MLP 76.3 3.4 2.8 86.1

18


	Introduction
	Related Work
	LLM-Driven Multi-Agent Systems
	Agent Selection and Result Aggregation
	Inter-Agent Communication

	Method
	OSC Framework
	Dynamic Collaborator Knowledge Model (CKM)
	Learned Cognitive Gap Analysis and Adaptive Communication Objectives
	Adaptive Communication Strategy pi_comm
	Strategically Guided Linguistic Realization
	Reinforcement Learning Optimization


	Experiment
	Main Results and Analysis
	Communication Efficiency and Quality Analysis
	Ablation Study of OSC Components
	Scalability Experiment with Varying Number of Agents
	Price-Performance Balance Analysis

	Conclusion
	Appendix A:OSC Framework Implementation Details
	Adaptive Communication Strategy (_comm) Learning and End-to-End Optimization
	Reinforcement Learning Algorithm
	State Representation and Input Preprocessing
	Policy Network Architecture (_comm)
	Reward Function and End-to-End Signal Propagation
	Training Environment and Protocol
	Dynamic Collaborator Knowledge Model (CKM) Implementation

	CKM Initialization and End-to-End Fine-tuning of (_CKM, _update)
	A.3.1 Learned Cognitive Gap Function (f_gap)
	A.3.2 Adaptive Communication Objective Determination
	A.4 Strategically Guided Linguistic Realization via f_LLM
	A.5 Hyperparameter Settings

	OSC Hyperparameter Tuning on AlpacaEval 2.0
	Pretraining and Fine-tuning: OSC Validation on AlpacaEval 2.0
	Reward Function Component Analysis: Detailed Validation of the OSC Framework on AlpacaEval 2.0
	OSC Computational Resource Efficiency Results
	Qualitative Analysis of CKM and Cognitive Gap and Fine-Grained Ablation Study


