OSC: Cognitive Orchestration through Dynamic Knowledge Alignment
in Multi-Agent LLLM Collaboration

Anonymous ACL submission

Abstract

This paper introduces OSC (Orchestrating
Cognitive Synergy), a knowledge-aware
adaptive collaboration framework designed
to enhance cognitive synergy in multi-agent
systems with large language models. While
prior work has advanced agent selection
and result aggregation, efficient linguistic
interactions for deep collaboration among
expert agents remain a critical bottleneck. OSC
addresses this gap as a pivotal intermediate
layer between selection and aggregation,
introducing Collaborator Knowledge Models
(CKM) to enable each agent to dynamically
perceive its collaborators’ cognitive states.
Through real-time cognitive gap analysis,
agents adaptively adjust communication
behaviors, including content focus, detail level,
and expression style, using learned strategies.
Experiments on complex reasoning and
problem-solving benchmarks demonstrate that
OSC significantly improves task performance
and communication efficiency, transforming
“parallel-working individuals” into a “deeply
collaborative cognitive team.” This framework
not only optimizes multi-agent collaboration
but also offers new insights into LLM agent
interaction behaviors.

1 Introduction

In recent years, large language models (LLMs)(Touvron
et al., 2023; Brown et al., 2020; Radford et al., 2019;
OpenAl, 2024) have shown exceptional capabilities
in tackling complex tasks, greatly advancing artificial
intelligence. However, scaling a single LLM often
leads to high computational costs and performance
bottlenecks. Multi-agent systems (MAS)(Guo et al.,
2024; Wang et al., 2024b; Huang et al., 2024; Chen et al.,
2024a) offer a scalable alternative by leveraging diverse
agents’ expertise to solve problems beyond the reach
of individual models, improving cost-efficiency and
unlocking LLMs’ full potential. Recent research(Huang
et al, 2024; Piskala et al, 2024; Zhang et al.,
2025) has focused on efficient MAS collaboration,
with “dynamic expert selection” and knowledge-aware
routing frameworks effectively matching tasks to expert
subsets, boosting adaptability and resource efficiency.

Moreover, ‘“aggregation strategies” aim to combine
multi-agent outputs into high-quality final solutions.

Yet, a critical challenge remains: even with
an optimal expert combination, enabling these
experts to dynamically adapt their linguistic

interactions—fostering shared understanding, resolving
discrepancies, and producing coherent, high-quality
outputs—remains a key bottleneck in MAS-LLM
research.

To tackle this, we propose OSC (Orchestrating
Cognitive Synergy), an end-to-end, knowledge-aware
adaptive collaboration framework. OSC serves as an
intermediate layer, enhancing linguistic interactions
among selected experts without replacing expert
selection or aggregation. In its “inter-expert
collaborative communication” phase, each agent e; uses
a dynamically learned Collaborator Knowledge Model
(CKM;(e; | Q, Hy)) to track collaborators’ cognitive
states (knowledge, reasoning, task understanding via
H;). CKM parameters (Ockm, Qupdae), initially pre-
trained, are fine-tuned end-to-end within OSC’s RL loop,
tailoring them for effective collaboration. A learnable
cognitive gap analysis module (G; ;) informs a policy
Teomm, Which dynamically shapes communication
behavior M;_,; (content, style, objectives; @gt) as
e;’s state). This enables precise information sharing,
plan coordination, and conflict resolution. OSC’s
components adapt through task feedback, ensuring
synergistic, adaptive collaboration.

OSC turns experts from "parallel workers" into a
"collaborative cognitive team" through adaptive
language interactions, enabling robust consensus,
efficient discrepancy resolution, and optimized
solutions.

The primary contributions of this work are:

e OSC Framework: A knowledge-aware, end-to-end
framework that enhances MAS-LLM collaboration
through adaptive inter-agent linguistic interactions.

¢ Collaboration Mechanisms: Trainable
components—Collaborator Knowledge Modeling
(CKM), cognitive gap analysis (G;;), and
communication policies (7 omm)—enable dynamic
information exchange and conflict resolution.

e Validation and Insights: OSC outperforms

baselines on complex reasoning benchmarks
(MATH(Hendrycks et al., 2021)), offering new
insights into LLM-agent collaboration.

2 Related Work

2.1 LLM-Driven Multi-Agent Systems

Recent work(Zhang et al., 2024a; Brawer et al., 2023)
on LLM-based multi-agent systems (MAS) explores
their potential for complex tasks by combining diverse
model strengths, improving efficiency over single
models. Some systems(Du et al., 2024; GenAl)
simulate software development teams, assigning roles
like product manager or programmer to LLM agents
for collaborative task completion. Others(Hong et al.,
2024; Li et al., 2023a) introduce structured workflows
to align with engineering practices or enable flexible
agent interactions that adapt to task needs. These
approaches show promise but rely on fixed roles and
protocols, lacking awareness of agents’ knowledge
states or adaptive adjustments. They prioritize final
task outcomes over optimizing collaboration, which our
OSC framework targets.

2.2 Agent Selection and Result Aggregation

Agent selection and result aggregation are critical
for MAS efficiency(Zhang et al., 2024b; Wang
et al., 2024a). Knowledge-aware routing(Dong et al.,
2024) matches tasks to agents based on capabilities,
while dynamic routing(Chen et al., 2024b) adjusts
allocations using historical performance. Continual
learning helps agents acquire new skills for better
task distribution. Aggregation methods include voting-
based techniques(Subramaniam et al., 2025), self-
assessment for response reliability(Yoffe et al., 2025),
and hierarchical fusion(Sanwal, 2025) for integrating
varied information. These treat collaboration as a black
box, neglecting interaction optimization, unlike OSC’s
focus on enhancing mid-process collaboration.

2.3 Inter-Agent Communication

Communication enables deep collaboration. Some
approaches extend chain-of-thought prompting to share
reasoning, use debate frameworks(Du et al., 2023;
Khan et al., 2024) to refine solutions, or standardize
dialogue formats. These remain static, lacking
dynamic adaptation. Negotiation mechanisms resolve
disagreements, and consensus-building techniques align
diverse viewpoints, but they lack systematic knowledge
modeling. Information-sharing methods, like shared
memory(Gao and Zhang, 2024) or incremental
learning(Jovanovic and Voss, 2024; Graziuso et al.,
2024), focus on transmission without considering
recipients’ cognitive states. In contrast, OSC employs
Collaborator Knowledge Models (CKM) for precise
cognitive state modeling, adaptive communication
strategies based on cognitive gap analysis, and
reinforcement learning(Schulman et al., 2017) to
optimize interactions and enhance MAS collaboration.

3 Method

To address inefficiencies in collaborative
communication within multi-agent systems (MAS)
using large language models (LLMs) post-expert
selection, we propose OSC (Orchestrating Cognitive
Synergy). OSC introduces a structured linguistic
interaction phase, transforming selected expert agents
from parallel workers into a cohesive, intelligent team.
This phase features dynamically learned models of
agents’ cognitive states and adaptive communication
policies, fine-tuned end-to-end. These enable agents
to perceive, reason, and respond to evolving team
knowledge and intentions. Through integrated learning,
agents refine solutions, resolve conflicts, and reach
robust consensus before final answer aggregation,
guided by a reinforcement-learned communication
policy, Tecomm (see Section 3.4).

3.1 OSC Framework

The OSC framework acts as an adaptive collaborative
reasoning layer between expert selection and answer
aggregation. For a query) and expert subset
S, e1,...,ek, OSC’s intelligence emerges via
core, interconnected stages. Dynamic Collaborator
Knowledge Model (CKM) and Adaptation. For
each expert e; € &St, a Collaborator Knowledge
Model CKM;(e;|Q, Hy) is created for every other
expert e; (j # ¢). This dynamic model captures e;’s
evolving understanding of e;’s knowledge, reasoning,
confidence, and query () comprehension as dialogue
H, progresses. Initialized from pre-training on large-
scale dialogue corpora (Section 3.2, Appendix 6.7),
CKM parameters /CKM and 0,pdac are fine-tuned end-
to-end in OSC’s reinforcement learning loop. Iterative
Adaptive Communication. The system engages in
Niound cOmmunication rounds (typically Nioyng = 3 t0 5
in our experiments, a hyperparameter tuned on a
development set). In each round r € [1, Nyoynd):

¢ Each expert e; (following a round-robin speaking
order, though other scheduling policies can be
integrated) leverages its continuously updated
CKM" ™V (e;]Q, H"=1) for all collaborators
ej. This model is used to perform a learned
cognitive gap analysis, yielding Qi(,rj). This
gap, detailed in Section 3.3, quantifies the
communicatively significant divergence between
e;’s internal cognitive state <I>§T71) (e.g., its own
solution plan or understanding related to @) and its
CKM-derived assessment of e;’s corresponding
state. The function f,,, that computes this is
itself a learnable component, enabling OSC to
identify discrepancies most relevant for guiding
communication.

e Based on the matrix of identified cognitive
gaps {QZ(TJ) }j#i across the team, expert e;
employs its adaptive communication strategy
Teomm- Lhis policy, optimized via reinforcement

Expert Knowledge Profiling

e —— 3
v 00 LLama 3 (4 6Grok . — @ —R:—
x
Q Wh , , % A: A measure
: at is ! ! ;

. ' ChatGPT Deepseek ' —» . _, 3 _, ofdisorderor
e:trc?py’m - ¥ P ' S . Rz kg randomness in
physics: . : : o+ a system.

1 \ / Wen 1

! L/ v — € —R.— S

- Expert Pool--------------- '
== -CKM INitialization - === m e mom o m i
Vigfl, 2, ., n} . : Dialogue N Round ;
: I?} — CKM -1 : ! Hlstof'y :
X ¢ X : Update Trace l (5])
! ||17|| e CKMz ! ! —) , ;
1 . q 1 H ledge |
Cagenti S5 g, B CKM e, ;
———————————————————————— . Agent! Communication i
- -- - A 1 lE’l | CKM 7‘ Knowledge |‘il| PO/iCy ;
| i - X | =27 Discrepancy 21 A) :
' Final ' F_'rl vl Agent2 [" Agenti a; :
| Response | | (! '\ I : : i
| i ;o e i
! Ri ! [T L e ! 1 IEII I CKM i=n[) Disc‘rj‘:pfmi‘;n 1 !
: .\ Internal: ! : i Agent n boscestansoa: ‘ 1
' iefl, 2, .., n} X , _ State ! | 1 — communicate i

Figure 1: Your caption here.

learning (PPO; details in Appendix 6.1), selects
a structured, abstract communication action
0" ~ Teomn(- | B ACKM™ (€)1,
{gi(j"j) }izi, Q, H"=1)). The policy learns to map
the rich, CKM-informed state to multi-faceted
actions that are predicted to effectively bridge
cognitive gaps and advance collective problem-
solving.

(r)

The abstract action a; encapsulates the
learned communicative intent: specifically,
what cognitive aspects to address, with which
collaborator(s), using what communication
objective (e.g., clarification, proposal, critique),
and employing what interactional style (e.g.,
level of detail, confidence expression). This

(r) is then verbalized into a

structured directive a;
natural language message mzm by a generative
language model, fi1y. Importantly, fi1y acts as
a linguistic realization engine conditioned on
the precise, strategically determined output from
OSC’s learned components. OSC dictates the
communicative strategy, while fiy renders it into
language (Section 3.4.1, with prompt details in

Appendix 7.3).

All experts e; € S; update their dialogue history
HM = HO-Yy {mgr)}iegt and, crucially,
update their respective Collaborator Knowledge
Models CKMJ(T)(GHQ,H(T)) using the learned

update mechanism fypdaee (Section 3.2).

Optimized Independent Contribution Generation.
Following N;oyng rounds of OSC-driven communication,
each expert e; generates its refined individual response
R; to query). This response is conditioned on its
final internal state <I>§Nr"“"“), which has been significantly
shaped and informed by the preceding collaborative
dialogue, and its comprehensive understanding of
collaborators’ likely final states as encoded in
CK Mi(JVmund) .

Answer Aggregation and Propagated Collaborative
Reward. An aggregator module then combines
the individual, refined contributions {R;}*_; (e.g.,
using a learned meta-LLLM aggregator or task-specific
heuristics) to produce the final system output Rpp,.
The quality of Ry, (e.g., task success, score on a
benchmark) provides the primary reward signal Rk
for optimizing 7 .omm. This global reward signal is also
used to provide supervisory signals for the end-to-end
fine-tuning of the CKM parameters (Ockm, update) and
the cognitive gap analysis module (fgap),

3.2 Dynamic Collaborator Knowledge Model
(CKM)

The CKM is the epistemic foundation of OSC, enabling
each agent e; to construct and maintain a dynamic,
internal model C'K M;(e;|@Q, Hy) of each collaborator
e;’s evolving cognitive state relevant to the task ¢ and
the dialogue history H;.

While a comprehensive ontology of cognitive features
can be vast, OSC starts from a broad set of candidate
cognitive dimensions C}y = {ci,c3,...,c;}. These
can include general linguistic markers, common
reasoning patterns, or task-agnostic conversational acts
(examples in Appendix 6.7 under "Candidate Cognitive
Dimensions"). Critically, OSC does not rely on a
fixed, manually selected subset of these for each task.
Instead, the CKM function fckv learns to attend to
and represent the most task-relevant facets indicated
by these candidate dimensions, effectively deriving a
dynamic, latent cognitive state representation zz(-;-) €
R (dym = 128 in our setup) that is optimally
conditioned on e;’s behavior, the query (), and history
H, t-

Zl(*;) = fexm(ej, Q, Hy; Ockm) (1

HereArchitecture in Appendix 6.7, Ockm are the
parameters of fcxm (typically a Transformer encoder
architecture; see Appendix 6.7 for model details).
The learned latent vector zg;) implicitly encodes
aspects crucial for collaboration, such as e;’s evolving
understanding of specific sub-problems, its confidence
on particular deductions, or its awareness of specific
constraints, without these needing to be explicitly
predefined as rigidly structured slots. fcxm processes
e;’s utterances and interaction patterns to infer these
latent attributes. The CKM parameters Ocxy and
the parameters fypdae Of the state transition function
fupdae (implemented as a GRU; dg, = 128; details in
Appendix 6.7):

ZZ(;JFI) = fuPdﬂtC(Zz(';)7 m;t), Qv Ht; eupdale) (2)

The models are initialized via pre-training on large
dialogue corpora using self-supervised objectives
(see Appendix 6.7). Crucially, after initialization,
Ockm and Oypaae are continuously fine-tuned during
the main reinforcement learning phase of 7comm.
Gradients from the overall task reward R, along with
optional auxiliary losses for intermediate collaborative
success (e.g., conflict resolution, plan alignment), are
backpropagated to these modules. This end-to-end
training enables CKM to represent collaborator states
in ways that directly benefit the agent’s communication
policy and task performance.

3.3 Learned Cognitive Gap Analysis and Adaptive
Communication Objectives

Effective communication hinges on identifying and
. . (t)
addressing the cognitive gap G, ; between an expert

e;’s internal cognitive state <I>§t) (e.g., its current plan
embedding or understanding of @) and its CKM-derived
model of e;’s state zz(;). The mapping of @gt) and zg;)
into a common, comparable representational space is
facilitated by learnable projection layers, which are co-
trained with the CKM and 7.omm to ensure semantic

alignment.

The cognitive gap function, fg.p, is itself a learnable
neural component parameterized by 0gap:

G = feap(@), 20 00) 3)

Unlike methods using manually weighted distances, fyap
(e.g., multi-head attention and feed-forward network)
learns to detect discrepancies between <I>£t) and z: j(t)
that predict communication needs or collaboration
risks. Parameters fgap are optimized with 7comm
and CKM, making gap representations (]Z(t]) highly
informative for communication actions, dynamically
identifying significant cognitive discrepancies based on
task, history, and collaborators.

Using Gi, j (t), OSC sets a communication objective
Ocomm® . Instead of a fixed objective set, Teomm learns
to select or define objectives (as latent variables or
policy outputs) based on the current state, optimizing
for long-term rewards via policy gradients from global
task success, ensuring context-sensitive and impactful
collaboration.

3.4 Adaptive Communication Strategy 7comm

The adaptive communication strategy meomm 1S the
core decision-making component of each OSC agent,
responsible for determining the optimal communication
action al(t) at each step ¢. This policy is learned through
reinforcement learning (PPO; details in Appendix 6.1)
to maximize the expected long-term cumulative task
reward R, appropriately balanced with communication
costs. The sophistication of meomm arises from its ability
to process and act upon a rich state representation,

statez(-t), which is dynamically constructed from its
internal cognitive state <I>§t) and the outputs of its
continuously learned CKM (Section 3.2) and learned

cognitive gap analysis module (Section 3.3).

The action av(;t) is a structured tuple that encompasses:

(1) the dynamically determined communication
objective Og;,)nm (e.g., seek clarification, propose
refinement, highlight discrepancy), (2) the target
audience e; (or a subset of collaborators), and (3)
nuanced style and focus parameters ((V) (e.g., level
of detail, sentiment, evidential support, argumentation
strategy). All components of agt) are selected by the
policy:

ol = (0}

comm?

€5, C(t)) ~ 71-comm(Statel('t); 977) (4)

(®)

where the comprehensive state state; * is defined as:

stategm = ((I)gr), {CKM;(e; | Q, Hy)}izi, {Q{?}l#u Q, Ht) (5)

The policy network (a Transformer encoder architecture;
Nx ene = 4 layers, Hy o = 4 heads, dr moder = 256;
details in Appendix 6.1) with parameters 6, learns
to map this complex, dynamically evolving state to
effective, multi-faceted communication actions that
drive collaboration.

3.4.1 Strategically Guided Linguistic Realization

The abstract, structured communication action agt)

selected by 7comm Serves as a detailed strategic blueprint
for communication. This blueprint is then instantiated
into a concrete natural language message ml(-t) by
a generative large language model, fipm. It is
crucial to distinguish the roles: OSC, through its
learned components (Tcomm, CKM, foap), determines
the high-level communicative strategy—the content
focus, underlying intent, target selection, and stylistic
nuances of the interaction. The fi1y then functions as a
sophisticated linguistic realization engine, translating
these strategically determined, abstract directives into
fluent and contextually appropriate natural language.

The prompt generation function, prompt(-),
dynamically constructs a rich, tailored input for fim
(see Appendix 7.3 for prompt structure examples):

mi” = fiim(prompt(al”, 81, CK M;(e;|Q, Hy)))

(6)
The prompt carefully integrates the selected action
agt) (objective and style), agent e;’s internal state
@Et) (e.g., hypothesis or solution fragment), and
insights from CKM;(e;|Q, Hy) (e.g., e;’s inferred
misunderstandings or divergent perspectives). This
structured, context-driven prompting aligns fiim’s
output with OSC’s strategic goals. OSC’s key
contribution is its learned formulation of these
directives, easing frim’s need for autonomous high-
level reasoning about collaboration and reducing

unconstrained generation.

3.4.2 Reinforcement Learning Optimization

The adaptive communication strategy with parameters
0 is optimized using Proximal Policy Optimization
(PPO), an actor-critic algorithm known for its stability
and sample efficiency. The objective is to maximize
the expected long-term discounted cumulative reward
‘R, which is a composite function reflecting both task
success and communication efficiency (PPO details and
reward shaping logic are in Appendix 6.1):

TmCIX
HéaX IETNTK'comm Z ’Yk (Rlask (Tk) — Acost Ceomm (Tk))

k=0

(7N
where 7 = (sg,a0,81,0a1,...) is the trajectory
from policy 7eomm» ¥ € [0,1] (e.g., 0.99) is the
discount factor, Ry (7x) is the extrinsic reward
(e.g., +1 for correct Rfpy, -0.1 for incorrect), and
Ceoomm(7x) is the communication cost (e.g., message
length penalty, Acosx = 0.001). To address sparse
extrinsic rewards and promote useful intermediate
behaviors in complex collaboration, we add an intrinsic
shaped reward 7gpape. Positive 7gpape (e.g., 0.05) is
given for: (1) significant, verifiable reduction in a
cognitive gap G; ; (e.g., a collaborator’s confidence on
a key concept rises above threshold Teonf increase after
targeted communication); and (2) successful completion

of a high-value communication goal that improves
knowledge alignment (e.g., a request_information
action is followed by relevant information, verified via
semantic matching in CKM).

4 Experiment

4.1 Main Results and Analysis

Experimental Setup For fair comparison, our multi-
agent OSC system adopts the same pool of six
strong open-source models as KABB: Qwen2-72B-
Instruct(qwe, 2024), LLaMa-3-70B-Instruct(Al@Meta,
2024), WizardLM-2-8x22B(Xu et al., 2023), Gemma-2-
27B(Team, 2024), Deepseek-V3(DeepSeek-Al, 2024),
and Deepseek-R1(DeepSeek-Al, 2025)'. While
KABB uses tailored prompts for expert specialization,
OSC leverages these models within a collaborative
framework featuring dynamic Collaborator Knowledge
Models (CKM), cognitive gap analysis, and adaptive
communication strategies (7comm; S€€ Section 3).
Qwen2-72B-Instruct serves as the aggregator, consistent
with MoA and KABB. We also include a single-model
variant, OSC-Single-LLaMa3, using only LLaMa-3-
70B-Instruct for all roles. Evaluation is primarily based
on AlpacaEval 2.0(Li et al., 2023b) (805 instructions),
with outputs compared to GPT-4 Preview and judged
by a GPT-4-based evaluator using the length-controlled
(LC) win rate. Additional assessments include MT-
Bench(Zheng et al., 2023) for multi-turn dialogue,

Experimental Results As shown in Table 1, OSC
(Ours) achieves the highest LC win rate on AlpacaEval
2.0 at 81.4%, outperforming KABB (77.9%) and
MOoA (68.1%), and also leading in the standard win
rate (76.2%). While Deepseek-R1 (80.1%) is close,
OSC’s ensemble approach delivers a stronger overall
collaborative effect. OSC-Single-LLaMa3 (36.1%) also
surpasses both KABB-Single-LLaMa3 (34.7%) and
the base LLaMa-3-70B-Instruct (34.4%), highlighting
the effectiveness of OSC’s collaboration framework
even with a single model. On MT-Bench, OSC sets
a new state-of-the-art with an average score of 9.94,
outperforming KABB (9.65), MoA (9.41), and all other
baselines, and maintains top scores on both the first
(9.96) and second (9.73) turns. Across all benchmarks,
OSC demonstrates robust and consistent improvements,
particularly in multi-turn dialogue and collaborative
tasks, confirming that its advanced mechanisms for
cognitive orchestration, dynamic knowledge alignment,
and adaptive communication significantly enhance
multi-agent system performance.

4.2 Communication Efficiency and Quality
Analysis

Experimental Setup This experiment is designed to
validate the core hypothesis that the OSC framework
significantly enhances both the efficiency and quality

'Inference was conducted using the Together Inference
Endpoint: https://api.together.ai/playground/chat.

https://api.together.ai/playground/chat

AlpacaEval 2.0 MT-Bench
Model LC win. (%) win. (%) Avg. 1st turn 2nd turn
OSC (Ours) 814 76.2 9.94 9.96 9.73
KABB 71.9 723 9.65 9.85 9.45
MoA 68.1 65.4 9.41 9.53 9.29
GPT-4 Omni (05/13) 57.5 51.3 9.19 9.31 9.07
GPT-4 Turbo (04/09) 55.0 46.1 9.31 9.35 9.28
GPT-4 Preview (11/06) 50.0 50.0 9.20 9.38 9.03
GPT-4 (03/14) 35.3 36.1 8.84 9.08 8.61
Qwen2-72B-Instruct 38.1 29.9 9.15 9.25 9.05
Gemma-2-27B 44.9 33.2 9.09 9.23 8.95
WizardLM-2-8x22B 51.3 62.3 8.78 8.96 8.61
OSC-Single-LLaMa3 36.1 37.4 9.37 9.34 9.42
KABB-Single-LLaMa3 34.7 36.2 9.16 9.10 9.23
LLaMa-3-70B-Instruct 34.4 33.2 8.94 9.20 8.68
Deepseek-V3 67.2 69.3 9.51 9.59 9.42
Deepseek-R1 80.1 75.4 9.30 9.40 9.20

Table 1: Comparison of OSC (Ours) and other models on AlpacaEval 2.0 and MT-Bench. MoA (with 2 layers) shares
a similar expert model configuration as the KABB and OSC setups, involving 6 different proposers and 1 aggregator.
For AlpacaEval 2.0, the performance of GPT-4 variants, LLaMa-3-70B-Instruct, and Qwen2-72B-Instruct are
sourced from public leaderboards; WizardLM-2-8x22B results are from prior work. We reproduced results for
Deepseek-V3, Deepseek-R1, and Gemma-2-27B on AlpacaEval 2.0. For MT-Bench, we conducted evaluations to
obtain turn-based scores, except for the results of GPT-4 variants, LLaMa-3-70B-Instruct, and WizardLM-2-8x22B,
which are from prior work. OSC (Ours) results demonstrate the benefits of its advanced collaboration mechanisms.

of inter-agent communication, thereby transforming
a group of agents into a “deeply collaborative
cognitive team” and aiming to demonstrate OSC’s
ability to foster more targeted information exchange
and effective discrepancy resolution for high-quality
consensus with reduced communication overhead.
To this end, evaluations are conducted on tasks
derived from the AlpacaEval 2.0 instruction set,
specifically selecting complex, multi-step instructions
that necessitate collaborative effort. These instructions,
such as those requiring in-depth planning, the generation
of multifaceted arguments, or creative and extensive
content generation, are reframed as problems for
a multi-agent team to solve collectively, allowing
for the detailed analysis of their communication
dynamics during the collaborative process. The
evaluation encompasses a suite of quantitative and
qualitative metrics. Key quantitative metrics include
the average number of communication rounds to reach
a solution, the total tokens exchanged per successfully
completed task, communication redundancy assessed
via semantic similarity analysis (lower indicating less
repetition), the conflict resolution rate measuring
successfully resolved disagreements, and task-relevant
information density which evaluates the proportion
of pertinent content in communications. Qualitative
assessment involves human evaluation by independent
reviewers rating dialogues on Coherence, Relevance,
Naturalness, and overall Collaborative Smoothness
(using a 1-5 Likert scale), alongside detailed case
studies of selected interaction dialogues to provide in-

depth insights into how OSC’s CKM and cognitive
gap analysis mechanisms guide more effective
communication strategies. For this comparative analysis
of communication metrics, OSC’s performance is
benchmarked against four recent state-of-the-art multi-
agent collaboration frameworks: DyLAN(Liu et al.,
2024), REMALIS(Qiu et al., 2024), MAC(Talebirad
and Nadiri, 2023), and TalkHier(Wang et al., 2025).
This comparison aims to position OSC’s specialized
communication mechanisms relative to other advanced
approaches in the field focusing on multi-agent task-
oriented collaboration and communication structures.
All systems, including OSC and these contemporary
frameworks, are configured to utilize the same pool
of base LLMs (as specified in Section 2) to ensure
a fair and rigorous comparison of their respective
collaborative and communication architectures.

Experimental Results As evidenced in 2,
OSC surpasses SOTA multi-agent frameworks in
communication efficiency, completing tasks in 4.6
rounds and 3.31k tokens, compared to TalkHier (4.9
rounds, 3.52k tokens), REMALIS (5.2 rounds, 3.78k
tokens), DyLAN (5.5 rounds, 3.95k tokens), and MAC
(5.7 rounds, 4.15k tokens). It achieves the lowest
Communication Redundancy at 14.2% (vs. 15.3% for
TalkHier), highest Conflict Resolution Rate at 89.5%
(vs. 85.8% for TalkHier), and highest Task-Relevant
Information Density at 84.5% (vs. 81.9% for TalkHier).
OSC’s dynamic models and adaptive policies ensure
efficient agent coordination.

— DyLAN
REMALIS

Avg. Tokens (k) — yac

—— TalkHier

—— 05C (Ours)

Redundancy (%

Avg. Rounds

Conflict Res. (%)

Info Density (%)

Figure 2: Radar chart illustrating the communication
efficiency and quality metrics of OSC (Ours) compared
to recent state-of-the-art multi-agent collaboration
frameworks. Each metric is normalized such that the
best-performing system in each dimension is set to
100%, and others are scaled proportionally. For metrics

where lower values are better, normalization is reversed.

This visualization highlights OSC’s overall superior
performance across all key indicators.

4.3 Ablation Study of OSC Components

To assess the individual contributions of OSC’s
key components—Collaborator Knowledge Models
(CKM), learned cognitive gap analysis (fgap), adaptive
communication policy (7comm), and intrinsic shaped
rewards (7spape)—we conducted a comprehensive
ablation study on the AlpacaEval 2.0 dataset, utilizing
the same diverse pool of six LLMs and aggregator
as in our main experiments, with all variants trained
via PPO for 5 x 10° timesteps. The detailed
performance metrics, including LC Win Rate and
various communication efficiency indicators (average
rounds, tokens, redundancy, conflict resolution, and
information density), are presented in 2. These results
consistently show that the OSC (Full) framework
achieves superior performance. Notably, disabling
critical elements such as the CKM (reducing LC Win
Rate from 81.4% to 71.2% and significantly worsening
all communication metrics) or the adaptive policy Teomm
(LC Win Rate dropping to 69.4% with substantial
increases in communication overhead) leads to the
most pronounced degradation in both task success and
communication efficiency. Ablating the learned foap
module or removing 7ghape also results in clear, albeit
comparatively smaller, performance drops across the
board (e.g., LC Win Rates decreasing to 75.8% and
74.1%, respectively, with corresponding impacts on
communication metrics).

4.4 Scalability Experiment with Varying Number
of Agents

Experimental Settings This scalability study was
conducted on the AlpacaEval 2.0 dataset, utilizing 805

instructions for training and evaluation, with specific
subsets of 160 instructions reserved for development
and validation respectively. The multi-agent system
employed the same pool of six open-source LLMs
previously detailed, with Qwen2-72B-Instruct serving
as the aggregator. We systematically varied the number
of collaborating agents, evaluating configurations with
2, 4, 6, 8, and 10 agents. Key hyperparameters
for the OSC framework were maintained, including
Nround = 4 communication rounds per interaction, a
communication cost factor Aoy = 0.001, and a discount
factor v = 0.99. Each experimental configuration
underwent training for 5 x 10° environment steps
using Proximal Policy Optimization (PPO), and results
were averaged over 3 independent runs to ensure
robustness. Performance was assessed using the LC Win
Rate (%) against GPT-4 Preview, along with detailed
communication metrics: Average Rounds, Average
Tokens exchanged (in thousands, k), Redundancy
(%), Conflict Resolution Rate (%), and Task-Relevant
Information Density (%).

Results and Analysis The experimental results,
detailed in 3, reveal several key insights into OSC’s
scalability. Optimal task performance, measured by
an LC Win Rate of 81.4%, was achieved with a
configuration of 6 agents. Employing fewer agents
(e.g., 2 agents, 72.3% LC Win Rate) appeared to
limit the depth of collaboration and diversity of
perspectives, while increasing the team to 10 agents
(77.5% L.C Win Rate) introduced coordination overhead
that slightly diminished the primary success metric.
An examination of communication dynamics shows
that as the number of agents increased from 2 to
10, the average number of communication rounds
naturally rose from 3.8 to 5.2, and the average token
count increased from 2.45k to 3.62k. Despite this
increase in overall communication volume, OSC’s core
mechanisms, particularly the Collaborator Knowledge
Models (CKM) and learned cognitive gap analysis
(feap), were effective in maintaining low communication
redundancy (reaching a minimum of 12.6% with 6
agents) and high conflict resolution rates (peaking at
91.7% with 6 agents). However, scalability challenges
became evident with larger teams. With 10 agents, we
observed an approximate 15% increase in CKM update
latency and a 30% growth in memory consumption
per inference step. Cognitive state modeling faced
bottlenecks, with conflict resolution dropping to 87.8%,
as agents sometimes misjudged collaborators’ states in
complex interactions.

4.5 Price-Performance Balance Analysis

Experimental Setup This experiment analyzes the
price-performance trade-off for the OSC framework on
the AlpacaEval 2.0 benchmark. We evaluated OSC
configurations with a varying number of active expert
agents (N € {1,2,3,4,5,6}), where these experts are
dynamically selected and coordinated from a shared

System Variant LC Win Rate (%) Avg. Rounds Avg. Tokens (k) Redundancy (%) Conflict Res. (%) Info Density (%)
OSC (Full) 81.4 4.3 2.87 12.6 91.7 86.2

OSC w/o CKM 71.2 6.7 4.58 23.5 72.4 73.9

OSC w/0 faup 75.8 6.2 4.12 20.8 79.3 78.5

OSC W/0 Tcomm 69.4 8.4 5.63 29.7 65.8 69.4

OSC w/0 Tshape 74.1 5.9 3.95 18.9 82.6 80.0

Table 2: Ablation study of OSC components. Performance metrics include LC Win Rate (%) on AlpacaEval 2.0 and
various communication efficiency indicators. The OSC (Full) configuration is highlighted.

#of Agents LC WinRate Avg. Rounds Avg. Tokens Redundancy Conflict Info Density
(%) (k) (%) Resolution (%)
(%)

2 72.3 3.8 2.45 18.2 85.1 80.4
4 78.9 4.1 2.72 145 89.3 84.7
6 814 4.3 2.87 12.6 91.7 86.2
8 80.2 4.6 3.15 13.8 90.5 85.3
10 77.5 52 3.62 16.7 87.8 82.9

Table 3: Comparison of performance with different numbers of agents; optimal values are shown in bold and shaded.

pool of six open-source LLMs (Qwen2-72B-Instruct,
LLaMa-3-70B-Instruct, WizardLM-2-8x22B, Gemma-
2-27B, Deepseek-V3, and Deepseek-R1) with Qwen2-
72B-Instruct serving as the aggregator. The primary
metrics are the Length-Controlled (LC) Win Rate (%)
and the average Cost per Instruction ($), calculated
based on OSC’s dynamic expert routing statistics
and public API pricing for the constituent models.
The resulting price-performance landscape, including
comparisons against individual base models, KABB
(Full), and several proprietary models, is visualized in 3.
For proprietary models like GPT-4 variants and Claude-
3.7, we reference the price from the OpenRouter API.
All API prices are indicative as of early 2025 and are
normalized for relative comparison in this study.

Results and Analysis 30SC (N=1 to N=6 experts)
traces a strong Pareto frontier, balancing performance
and cost. OSC (N=6) achieves the highest LC Win Rate
(81.4%) among OSC setups, outperforming KABB
(Full) (77.9%) at a slightly higher cost (0.97vs.0.91).
Compared to proprietary models like GPT-40 and
Claude-3.7, OSC (N=3 or N = 4) offers comparable
or better LC Win Rates at lower costs. Even N=1 or
N=2 setups beat many base models while remaining
cost-efficient. OSC’s expert routing and adaptive
communication enable precise control over the price-
performance curve, making it a versatile, cost-effective
solution for top results across budgets.

5 Conclusion

The paper presents OSC (Orchestrating Cognitive
Synergy), a framework that improves multi-agent LLM
collaboration by modeling each agent’s knowledge
through Collaborator Knowledge Models (CKM). By
continuously analyzing cognitive gaps within the
team and using reinforcement learning to adapt
communication strategies, OSC enables agents to share

4 0SC (N=6)
0SC (N=5)
80 4 = A Deepseek-R1
osc (NSa)g)
] KABB (Full) Claudets.7
0SC (N=3
] N=3) *Gprao
70 05C (N=2)
S fosc (N=1) 5
l Deepseek-V3
©
>
o
o
® 60
o
<
c
5}
o
2
T
-4 A wizardLM-2-8x228
€50 - GPT-4-1106-preview
=
S
A Gemma-2-278
Model Type
40 * Proprietary
A Qwen2-72B-Instruct ® KABB
0sc
A LLaMa-3-70B-Instruct A Single-Model

0.25 0.50 0.75 1.00 1.25 1.50 175 2.00 2.25
Cost per Instruction on AlpacaEval 2.0 ($)

Figure 3: Price-performance trade-off on AlpacaEval
2.0. OSC configurations (hexagons) are compared
against KABB (Full) (circle), individual single-models
(triangles), and proprietary models (stars). OSC
demonstrates a strong Pareto frontier, optimizing
performance relative to cost. The dashed line
connects OSC configurations, highlighting improved
performance with increasing, yet efficiently managed,
expert collaboration.

information more efficiently and purposefully, reducing
redundant exchanges. This approach allows agents
to better understand what their collaborators know or
need, leading to more targeted and effective teamwork.
Experiments on benchmarks like AlpacaEval 2.0 show
that OSC-equipped teams achieve notably higher task
performance and efficiency than traditional baselines,
such as reaching an 81.4% win rate. Overall, OSC
fosters the formation of deeply collaborative cognitive
teams, enabling agents to collectively solve problems
more effectively.

Limitations

While the OSC framework demonstrates significant
advancements in multi-agent LLM collaboration,
certain limitations are identified in the present study:

Scalability with Increasing Agent Numbers: The
framework’s performance, while robust, shows optimal
results with a specific number of agents (e.g., 6 agents
in the scalability experiment). Increasing the number of
agents further (e.g., to 8 or 10) can lead to coordination
overhead and a slight diminishment in the primary
success metric. Specifically, with 10 agents, there
was an observed increase in CKM update latency and
memory consumption per inference step. The average
number of communication rounds and token counts also
naturally rose with more agents.

Cognitive State Modeling Complexity in Larger
Teams: As the number of collaborating agents
increases, the complexity of accurately modeling each
collaborator’s cognitive state appears to become more
challenging. This was indicated by a drop in the conflict
resolution rate in larger teams, with instances suggesting
agents occasionally misjudged collaborators’ cognitive
states.

Reliance on Shaped Rewards: The optimization of
the adaptive communication policy (7.omm) benefits
from intrinsic shaped rewards to mitigate the sparsity
of the primary task success signal (R;4s%) and to guide
the learning of nuanced collaborative behaviors. This
suggests that learning purely from sparse extrinsic task
rewards might be less effective or slower.

Hyperparameter Sensitivity: The performance
of the OSC framework can be sensitive to the
tuning of key hyperparameters. For instance, the
number of communication rounds (NV,,unq) and the
communication cost weight (A.s:) were identified as
critical parameters requiring careful selection to balance
collaboration depth and conciseness for optimal task
success.

Computational and Communication Cost Growth:
Although OSC demonstrates a strong price-performance
balance, the absolute computational cost and
communication overhead (in terms of average rounds
and tokens exchanged) tend to increase as more agents
are involved in the collaboration.

References
2024. Qwen? technical report.
Al@Meta. 2024. Llama 3 model card.

Jake Brawer, Kayleigh Bishop, Bradley Hayes, and
Alessandro Roncone. 2023. Towards a natural language

interface for flexible multi-agent task assignment.
Preprint, arXiv:2311.00153.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, and 12
others. 2020. Language models are few-shot learners.
Preprint, arXiv:2005.14165.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter
Bailis, Ion Stoica, Matei Zaharia, and James Zou.
2024a. Are more llm calls all you need? towards
scaling laws of compound inference systems. Preprint,
arXiv:2403.02419.

Lingjiao Chen, Matei Zaharia, and James Zou. 2024b.
Frugalgpt: How to use large language models while
reducing cost and improving performance. Transactions
on Machine Learning Research.

DeepSeek-Al. 2024. Deepseek-v3 technical report.
Preprint, arXiv:2412.19437.

DeepSeek-Al. 2025. Deepseek-rl: Incentivizing
reasoning capability in llms via reinforcement learning.
Preprint, arXiv:2501.12948.

Junnan Dong, Qinggang Zhang, Chuang Zhou, Hao
Chen, Daochen Zha, and Xiao Huang. 2024. Cost-
efficient knowledge-based question answering with
large language models. In Advances in Neural
Information Processing Systems, volume 37, pages
115261-115281. Curran Associates, Inc.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B.
Tenenbaum, and Igor Mordatch. 2023. Improving
factuality and reasoning in language models through
multiagent debate. Preprint, arXiv:2305.14325.

Zhuoyun Du, Chen Qian, Wei Liu, Zihao Xie, Yifei
Wang, Yufan Dang, Weize Chen, and Cheng Yang. 2024.
Multi-agent software development through cross-team
collaboration. Preprint, arXiv:2406.08979.

Hang Gao and Yongfeng Zhang. 2024. Memory sharing
for large language model based agents. Preprint,
arXiv:2404.09982.

Joe El Khoury GenAl. strategies-for-team-success-in-
llm-application-development. https://medium.com/
@jelkhoury880,.

Natalia Graziuso, Andrea Zugarini, and Stefano Melacci.
2024. Task-incremental learning on long text sequences.
In Proceedings of the 10th Italian Conference on
Computational Linguistics (CLiC-it 2024), pages 410—
416, Pisa, Italy. CEUR Workshop Proceedings.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi
Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest,
and Xiangliang Zhang. 2024. Large language model
based multi-agents: A survey of progress and challenges.
In Proceedings of the Thirty-Third International
Joint Conference on Artificial Intelligence, IJCAI-24,
pages 8048—-8057. International Joint Conferences on
Artificial Intelligence Organization. Survey Track.

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2311.00153
https://arxiv.org/abs/2311.00153
https://arxiv.org/abs/2311.00153
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2403.02419
https://arxiv.org/abs/2403.02419
https://arxiv.org/abs/2403.02419
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://proceedings.neurips.cc/paper_files/paper/2024/file/d0aafec03d59db29a92fa683bd783374-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d0aafec03d59db29a92fa683bd783374-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d0aafec03d59db29a92fa683bd783374-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d0aafec03d59db29a92fa683bd783374-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d0aafec03d59db29a92fa683bd783374-Paper-Conference.pdf
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2406.08979
https://arxiv.org/abs/2406.08979
https://arxiv.org/abs/2406.08979
https://arxiv.org/abs/2404.09982
https://arxiv.org/abs/2404.09982
https://arxiv.org/abs/2404.09982
https://medium.com/@jelkhoury880
https://medium.com/@jelkhoury880
https://medium.com/@jelkhoury880
https://aclanthology.org/2024.clicit-1.49/
https://doi.org/10.24963/ijcai.2024/890
https://doi.org/10.24963/ijcai.2024/890
https://doi.org/10.24963/ijcai.2024/890

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob
Steinhardt. 2021. Measuring mathematical problem
solving with the math dataset. NeurIPS.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou,
Chenyu Ran, Lingfeng Xiao, Chenglin Wu, and Jiirgen
Schmidhuber. 2024. MetaGPT: Meta programming for
a multi-agent collaborative framework. In The Twelfth
International Conference on Learning Representations.

Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao,
Chen Zhang, Yang Jin, Kun Xu, Kun Xu, Liwei Chen,
Songfang Huang, and Yansong Feng. 2024. Harder task
needs more experts: Dynamic routing in MoE models.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 1288312895, Bangkok, Thailand.
Association for Computational Linguistics.

Mladjan Jovanovic and Peter Voss. 2024. Towards
incremental learning in large language models: A
critical review. Preprint, arXiv:2404.18311.

Akbir Khan, John Hughes, Dan Valentine, Laura
Ruis, Kshitij Sachan, Ansh Radhakrishnan, Edward
Grefenstette, Samuel R. Bowman, Tim Rocktéschel,
and Ethan Perez. 2024. Debating with more persuasive
1lms leads to more truthful answers. In Proceedings of
the 41st International Conference on Machine Learning,
ICML’24. JMLR.org.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem. 2023a.
Camel: Communicative agents for "mind" exploration
of large language model society. In Thirty-seventh
Conference on Neural Information Processing Systems.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023b. Alpacaeval: An
automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and
Diyi Yang. 2024. A dynamic llm-powered agent
network for task-oriented agent collaboration. Preprint,
arXiv:2310.02170.

OpenAl. 2024.
arXiv:2303.08774.

Gpt-4 technical report. Preprint,

Deepak Babu Piskala, Vijay Raajaa, Sachin Mishra, and
Bruno Bozza. 2024. Optiroute dynamic llm routing
and selection based on user preferences: Balancing
performance, cost, and ethics. International Journal
of Computer Applications, 186(51):1-7.

Xihe Qiu, Haoyu Wang, Xiaoyu Tan, Chao Qu, Yujie
Xiong, Yuan Cheng, Yinghui Xu, Wei Chu, and
Yuan Qi. 2024. Towards collaborative intelligence:
Propagating intentions and reasoning for multi-agent
coordination with large language models. Preprint,
arXiv:2407.12532.

Alec Radford, Jeff Wu, Rewon Child, David Luan,

10

Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Manish Sanwal. 2025. Layered chain-of-thought
prompting for multi-agent 1lm systems: A
comprehensive approach to explainable large language
models. Preprint, arXiv:2501.18645.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. Preprint, arXiv:1707.06347.

Vighnesh Subramaniam, Yilun Du, Joshua B.
Tenenbaum, Antonio Torralba, Shuang Li, and Igor
Mordatch. 2025. Multiagent finetuning: Self
improvement with diverse reasoning chains. Preprint,
arXiv:2501.05707.

Yashar Talebirad and Amirhossein Nadiri. 2023. Multi-
agent collaboration: Harnessing the power of intelligent
IIlm agents. Preprint, arXiv:2306.03314.

Gemma Team. 2024. Gemma 2: Improving open
language models at a practical size. Preprint,
arXiv:2408.00118.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Junlin Wang, Jue Wang, Ben Athiwaratkun,
Ce Zhang, and James Zou. 2024a. Mixture-of-
agents enhances large language model capabilities.
Preprint, arXiv:2406.04692.

Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong,
and Yangqiu Song. 2024b. Rethinking the bounds
of LLM reasoning: Are multi-agent discussions the
key? In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pages 61066131, Bangkok, Thailand.
Association for Computational Linguistics.

Zhao Wang, Sota Moriyama, Wei-Yao Wang, Briti
Gangopadhyay, and Shingo Takamatsu. 2025. Talk
structurally, act hierarchically: A collaborative
framework for llm multi-agent systems. Preprint,
arXiv:2502.11098.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions. Preprint,
arXiv:2304.12244.

Luke Yoffe, Alfonso Amayuelas, and William Yang
Wang. 2025. Debunc: Improving large language
model agent communication with uncertainty metrics.
Preprint, arXiv:2407.06426.

Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu,
Bryan Hooi, and Shumin Deng. 2024a. Exploring
collaboration mechanisms for Ilm agents: A social
psychology view. Preprint, arXiv:2310.02124.

https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://doi.org/10.18653/v1/2024.acl-long.696
https://doi.org/10.18653/v1/2024.acl-long.696
https://doi.org/10.18653/v1/2024.acl-long.696
https://arxiv.org/abs/2404.18311
https://arxiv.org/abs/2404.18311
https://arxiv.org/abs/2404.18311
https://arxiv.org/abs/2404.18311
https://arxiv.org/abs/2404.18311
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/2303.08774
https://doi.org/10.5120/ijca2024924172
https://doi.org/10.5120/ijca2024924172
https://doi.org/10.5120/ijca2024924172
https://doi.org/10.5120/ijca2024924172
https://doi.org/10.5120/ijca2024924172
https://arxiv.org/abs/2407.12532
https://arxiv.org/abs/2407.12532
https://arxiv.org/abs/2407.12532
https://arxiv.org/abs/2407.12532
https://arxiv.org/abs/2407.12532
https://arxiv.org/abs/2501.18645
https://arxiv.org/abs/2501.18645
https://arxiv.org/abs/2501.18645
https://arxiv.org/abs/2501.18645
https://arxiv.org/abs/2501.18645
https://arxiv.org/abs/2501.18645
https://arxiv.org/abs/2501.18645
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2501.05707
https://arxiv.org/abs/2501.05707
https://arxiv.org/abs/2501.05707
https://arxiv.org/abs/2306.03314
https://arxiv.org/abs/2306.03314
https://arxiv.org/abs/2306.03314
https://arxiv.org/abs/2306.03314
https://arxiv.org/abs/2306.03314
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2406.04692
https://doi.org/10.18653/v1/2024.acl-long.331
https://doi.org/10.18653/v1/2024.acl-long.331
https://doi.org/10.18653/v1/2024.acl-long.331
https://doi.org/10.18653/v1/2024.acl-long.331
https://doi.org/10.18653/v1/2024.acl-long.331
https://arxiv.org/abs/2502.11098
https://arxiv.org/abs/2502.11098
https://arxiv.org/abs/2502.11098
https://arxiv.org/abs/2502.11098
https://arxiv.org/abs/2502.11098
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2407.06426
https://arxiv.org/abs/2407.06426
https://arxiv.org/abs/2407.06426
https://arxiv.org/abs/2310.02124
https://arxiv.org/abs/2310.02124
https://arxiv.org/abs/2310.02124
https://arxiv.org/abs/2310.02124
https://arxiv.org/abs/2310.02124

Jusheng Zhang, Zimeng Huang, Yijia Fan, Ningyuan
Liu, Mingyan Li, Zhuojie Yang, Jiawei Yao, Jian
Wang, and Keze Wang. 2025. Kabb: Knowledge-aware
bayesian bandits for dynamic expert coordination in
multi-agent systems. Preprint, arXiv:2502.07350.

Yi Zhang, Sen Wang, Zhi Chen, Xuwei Xu, Stano
Funiak, and Jiajun Liu. 2024b. Towards cost-efficient
federated multi-agent rl with learnable aggregation.
page 171-183, Berlin, Heidelberg. Springer-Verlag.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS *23, Red
Hook, NY, USA. Curran Associates Inc.

6 Appendix A:OSC Framework
Implementation Details

This appendix elaborates on the specific implementation
choices and learning paradigms for the core components
of the OSC (Orchestrating Cognitive Synergy)
framework, as deployed in the experiments reported
in this paper. These details directly support the
methodology described in Section 3, focusing on the
end-to-end learning of the adaptive communication
strategy, the dynamic operationalization of the
Collaborator Knowledge Model (CKM), and the learned
mechanisms for cognitive gap analysis and adaptive
communication objective determination.

6.1 Adaptive Communication Strategy (7comm)
Learning and End-to-End Optimization

The adaptive communication strategy 7comm 1S
optimized via deep reinforcement learning (RL),
forming the central learning axis of OSC, as introduced
in Section 3.4.

6.2 Reinforcement Learning Algorithm

We employ Proximal Policy Optimization (PPO) to
train the policy meomm. PPO, an Actor-Critic method,
is selected for its stability in complex action spaces
and its sample efficiency. It optimizes a clipped
surrogate objective function to ensure monotonic policy
improvement.

6.3 State Representation and Input Preprocessing

The input state stategt) (Equation 6 in Section 3.4) for
the policy meomm is meticulously constructed to provide
a comprehensive view of the collaborative context:

. @Et): The agent’s internal cognitive state (e.g.,
embedding of its current reasoning trace, plan, or
hypothesis concerning query Q). This is typically
derived from an intermediate layer of the agent’s
own internal LLM or a dedicated, fine-tuned
sentence/document encoder (e.g., Sentence-BERT
tailored to reasoning tasks).

11

{CKM;(e;|Q, Hy) }iti state
vectors zz(.lt) for each collaborator, produced by
the fine-tuned fcxy module (see Section 3.2 and
Appendix 6.7). These vectors represent learned

beliefs about collaborators’ cognitive states.

The dynamic

. {g}?}l#: The cognitive gap representations
computed by the learned feap function (see
Section 3.3), highlighting communicatively
relevant discrepancies.

* (Q: An embedding of the user query, generated
using the same fine-tuned sentence encoder applied

to <I>Et) to ensure consistent representational spaces.

e H;: A condensed representation of the recent
dialogue history (e.g., an aggregation of the
embeddings of the last k;, = 5 utterances, or
a context vector from a hierarchical dialogue
encoder).

All component embeddings are projected to a consistent
dimensionality and concatenated before being fed into
the policy network. The parameters of any encoders
used for @Et), @, and H; are also fine-tuned alongside
the policy 7mcomm to optimize the state representation for
decision-making.

6.4 Policy Network Architecture (7comm)

The policy network wcomm(o|state§t);9ﬂ) maps the

(®

. t . . .
comprehensive state state;” to a distribution over

. . . t .
abstract communication actions al(.). This network

employs a Transformer-based encoder architecture:

* Encoder Configuration: N ... = 4 Transformer
layers, H e = 4 attention heads per layer, a
model hidden dimension of dr medel = 256, and a
feed-forward network dimension of d. ¢ = 1024
within each Transformer block.

¢ Action Head: The output representation from the
Transformer encoder is passed to separate linear
layers to produce distributions for the different
components of the abstract action agt) G.e.,
communication objective, target, style parameters).
For discrete components, a softmax activation is
used; for continuous style parameters (if any),
appropriate continuous distributions are modeled.

6.5 Reward Function and End-to-End Signal
Propagation

The composite reward function R(H;, Rgnal)
(Equation 8 in Section 3.4.2) guides the learning
process.

* Task Performance Reward (Resk(Rfina)): A
primary sparse signal based on final task outcome
(e.g., +1 for success, -0.1 for failure on benchmarks
like MATH or GSM8K).

¢ Communication Cost

(Ceomm (Ht)):

https://arxiv.org/abs/2502.07350
https://arxiv.org/abs/2502.07350
https://arxiv.org/abs/2502.07350
https://arxiv.org/abs/2502.07350
https://arxiv.org/abs/2502.07350
https://doi.org/10.1007/978-981-97-2253-2_14
https://doi.org/10.1007/978-981-97-2253-2_14
https://doi.org/10.1007/978-981-97-2253-2_14

Ceomm (Hy) ,]j;"”l“d (length of message my),

measured in tokens, weighted by A.ox = 0.001.
This encourages conciseness without sacrificing
clarity.

* Intrinsic Reward Shaping (rghape): To mitigate
sparsity and guide the learning of nuanced
collaborative behaviors, we augment the extrinsic
reward with an intrinsic shaped reward rgyape =
0.05. This is provided for:

— Learned Cognitive Gap Resolution: A

positive reward is given if a communication
action al(-t) leads to a verifiable positive
change in the CKM’s assessment of a targeted
collaborator e;’s state concerning a previously
identified significant cognitive gap (e.g., if
CK M, (e;) indicates increased alignment or
reduced misunderstanding regarding a key
aspect after e;’s intervention, as measured
by the learned fy,, or specific probes into

the CKM state zgﬂ)). The threshold for
"significant" is dynamically learned rather
than being based on fixed dimension scores.

Effective Communication Objective
Fulfillment: A reward is given when the
execution of a chosen communication
objective (’)g?nm (determined by Teomm)
demonstrably leads to an improved
collaborative state (e.g., a ‘request_-
explanation® action is followed by a response
from e; that C K M; assesses as providing
high-quality, relevant information that fills an
identified knowledge gap).

The gradients from this overall reward signal are not
only used to update 0, but are also propagated back
to fine-tune the parameters of the CKM modules
(Ockm; Bupdare) and the cognitive gap analysis module
(04ap). This ensures that these representation-learning
components are optimized to produce states and gap
analyses that best support the policy’s long-term
objectives.

6.6 Training Environment and Protocol

Training environments are constructed using tasks from
complex reasoning benchmarks such as MATH and
GSMSK. Each episode consists of a full collaborative
dialogue over Niguna = 5 communication turns. The
entire OSC system, including Teomm, fckMm, fupdate> and
faap, is trained end-to-end for 5 x 106 total environment
timesteps. Detailed PPO hyperparameters and specific
configurations for actor and critic networks are provided
in 4.

6.7 Dynamic Collaborator Knowledge Model
(CKM) Implementation

The CKM, CKM;(e;|Q, Hy), dynamically models
collaborator e;’s cognitive state. Its parameters are

12

fine-tuned end-to-end as part of the OSC learning loop.
Candidate Cognitive Dimensions and Learned Facet
Representatio As outlined in Section 3.2, OSC begins
with a broad set of candidate cognitive dimensions C,.
These are not task-specific, hard-coded features but
rather general categories of information that might be
relevant for modeling collaborators. Examples include:

e Linguistic Cues: Derived from utterance
embeddings (e.g., Sentence-BERT), capturing
sentiment, certainty, interrogative force, etc.

* Conversational Structure: Features related to
dialogue acts (question, answer, propose, critique),
turn-taking patterns, and topic continuity.

¢ Reasoning Attributes (General): Indicators of
logical structure, presence of claims/evidence,
or common argument patterns, identifiable via
specialized classifiers or pattern matchers applied
to utterances.

» Task-Agnostic Meta-Cognitive States: General
indicators of confusion, confidence, attention, or
surprise, potentially inferred from disfluencies,
response latencies (in simulated environments), or
explicit meta-cognitive expressions.

The CKM function fcxm (a Transformer encoder:
chm,enc = 2 layers, Hckm,enc = 2 heads, dckm,model =
128) takes embeddings of e;’s recent utterances (last
Knist 5), the query (), and the history H;
as input. Through its attention mechanisms and
subsequent layers, fckm learns to dynamically select,
combine, and transform features corresponding to
these candidate dimensions into a dense, latent
cognitive state vector zg) € R'2. This vector
zg) implicitly represents the most salient aspects of
e;’s state relevant for the current collaborative context,
rather than being a simple concatenation of pre-defined
feature values. The model learns which "facets" of
understanding, confidence, or intent are crucial for
effective collaboration on a given task type.

7 CKM Initialization and End-to-End
Fine-tuning of (0ckm, Gupdate)

The parameters Ocgm of fokm and Oypgae of the GRU-
based update function fupdae (dgra = 128) are initialized
through pre-training on a large, diverse corpus of multi-
turn dialogues (e.g., >1M turns from educational forums,
collaborative problem-solving datasets). Pre-training
objectives include:

* Masked Utterance Prediction: Predicting
missing utterances given surrounding context and
a preliminary CKM state.

* Next Dialogue Act Prediction: Forecasting the
type of communicative act an agent might perform
next.

* Self-Supervised Contrastive Learning: Training
the CKM to produce similar representations for
dialogue states that lead to similar collaborative
outcomes, and dissimilar representations
otherwise.

This pre-training provides a robust initialization.
Subsequently, during the main RL training of Tcomm,
both Ockm and Oypqace are actively fine-tuned. Gradients
from the overall PPO objective (Equation 8) are
propagated back to these parameters. Additionally,
auxiliary prediction tasks can be introduced during
fine-tuning, such as predicting specific elements
of a collaborator’s next utterance if it can be
reliably estimated, or a self-supervisory signal that
rewards CKM states that accurately predict successful
intermediate steps in the collaboration. This ensures the
CKM representations are not only descriptive but also
maximally useful for the policy Teomm-

7.1 A.3.1 Learned Cognitive Gap Function (fgap)

(t-) is computed by a learnable
described

The cognitive gap G,

function fgap(q)l(t)v U)a Ogap)» in

Section 3.3.

as

* Architecture of fg,: We implement fgp
as a neural network that takes the agent’s
own cognitive state embedding <I>(-t) and the
CKM’s representation of the collaborator z() a

input. These are first projected into a common

dimensionality. A common approach involves a

multi-head cross-attention mechanism where @Et)

attends to zl(;) (and vice-versa) to identify points
of divergence and alignment. The outputs of
these attention layers are then processed through
feed-forward layers to produce the final gap

representation vector Qz(fj) € R,

* Optimization of 0g,,: The parameters 0,,, are
learned jointly with 6, and the CKM parameters.
The utility of the generated gap representation
QZ.(Z.) is implicitly judged by its contribution to
the policy’s ability to achieve high rewards. An
effective G;) will highlight discrepancies that, if
addressed, lead to better collaboration and task
outcomes.

7.2 A.3.2 Adaptive Communication Objective
Determination

As stated in Section 3.3, the determination of the
communication objective Oc(f,l)nm is integrated into the
policy 7meomm, rather than relying on a fixed classifier
over a predefined set of objectives.

* Mechanism: The policy network 7comm has
a dedicated output head (or part of its multi-
faceted action output) that determines (’)wmm
This could involve selecting from a predefined
but extensible set of abstract objectives O*

13

(e.g., ‘query_understanding‘, ‘propose_step°,
‘challenge_assumption‘, ‘align_plan_element®).
The key difference is that the mapping from state
(including gl.(f]?) to an objective in O is learned
via RL.

e Alternative Latent Objectives: In a more
advanced formulation, (’)C(Qnm can be a learned
latent variable, an embedding itself, which then
conditions the rest of the action generation (target,
style). This allows the policy to discover and
formulate nuanced objectives beyond a predefined
discrete set. For the experiments in this paper, we
focus on 7comm learning to select from an expanded,
strategically relevant candidate set O*.

e Learning: The choice of objective is thus directly
influenced by the overall task reward R, ensuring
that the agent learns to select objectives that are
instrumentally useful for achieving its goals. This
contrasts with supervised learning on bootstrapped
data, which may not capture the full dynamics of
utility in diverse collaborative settings.

Any bootstrapping of initial objective selection
tendencies (e.g., using simpler heuristic rules for pre-
training initialization of 7¢omm) is clearly separated from
the primary adaptive learning mechanism.

7.3 A.4 Strategically Guided Linguistic
Realization via fi v
The process of converting the abstract communication
action a(t) (O()
comm
l(.) using fim (e.g., GPT-4) is carefully structured to

ensure OSC’s strategic decisions are faithfully executed,
as detailed in Section 3.4.1.

€;,¢ ®) into a concrete message

The dynamically generated prompt for fi is rich and
multi-faceted:

* Role and Context: Explicitly defines e;’s role,
the collaborator e;, the overarching task (), and a
summary of the pertinent dialogue history H;.

* OSC’s Strategic Insights:

— CKM-derived Collaborator Assessment:
Provides a concise summary from
CKM;(e;|Q, H;) regarding e;’s inferred
state concerning the aspects relevant to
the current communication objective (e.g.,
"Expert e; appears to be proceeding with
assumption Y, which CKM; flags as
potentially conflicting with constraint Z.
Confidence in this assessment is high.").

Agent’s Own State Summary: A summary
of e;’s own internal state <I>z(»t) relevant to the
objective (e.g., "My current plan involves step
X, which relies on constraint Z being met.").

— Cognitive Gap Focus: Highlights the

specific cognitive gap gft]) that the current
communication aims to address.

()

i

» Explicit Communicative Directives from «

— Communication Objective ((’)Ef,znm): A clear
instruction like "Your objective is to request
clarification from e; regarding their use
of assumption Y, highlighting its potential
conflict with constraint Z."

Style Parameters (((*)): Directives such as
"Adopt a collaborative and questioning tone,
not accusatory. Be concise but ensure the
potential conflict is clearly stated."

* Instruction to Generate: A final prompt for e;’s
utterance.

This structured approach ensures that fi\’s generation
is tightly constrained by OSC’s learned strategy, making
fLim a powerful tool for linguistic realization rather
than the primary driver of collaborative reasoning. The
quality of OSC is therefore assessed by its ability to
(t), which are then

4

formulate effective abstract actions a
reliably translated by fim.

7.4 A.S Hyperparameter Settings

A summary of key hyperparameters for the OSC
framework components, reflecting the learning setup
described, is provided in 4 and 5 . These values were
determined through systematic ablation and tuning on a
held-out development set of tasks.

Table 4: Key Hyperparameters for the OSC Framework.

Component Group Parameter Value

PPO Algorithm

1x 1071
3x 1074
0.99
0.2
2048 steps
256 steps
10
0.95
0.01

Learning Rate (Adam,) for Teomm
Learning Rate (Adam, av) for Critic
Discount Factor ()

PPO Clipping Range (¢)

Batch Size (experience replay)
Mini-batch Size for updates

Epochs per PPO Update

GAE Lambda (Aag)

Entropy Coefficient for mcomm

Policy Network (reomm)
Transformer Layers (N enc) 4
Attention Heads (1, 4
Model Dimension (256
Feed-Forward Networl 1024

CKM (fckms, fupdate)
Transformer Layers in fegm (Nekm,en 2
Attention Heads in fexm (Hekm,enc) 2
Model Dimension (dekm, model) 128
GRU Hidden Size in fypgate (dgra) 128
History Length for CKM input (ks 5 utterances
Learning Rate (Adam, cry) for CKM fine-tuning 5x107°

Cognitive Gap Function (fgap)
Architecture
Input Projection Dim.
Output Gap Vector Dim. (dgap)
Learning Rate (Adam,) for fine-tuning

MLP (2 layers, 128 units, ReLU)
128
64
5x107°

Reward Function
0.001
0.05

Communication Cost Weight (Acos)
Intrinsic Shaped Reward (7hape)

General Training Setup
Communication Rounds per Episode (Nyouna)
Total Training Timesteps
Base Sentence Encoder
Linguistic Realization Engine (fiim)

3-5 (curriculum or fixed)
5x10°t01 x 107
Sentence-BERT
GPT-4 Series / Equivalent API

Note: The learning rates for CKM (i) and foap (Ctgap)
modules during end-to-end fine-tuning are typically set lower
than the main policy learning rate o to ensure stability, as
these components influence the state representation itself. The
specific values are subject to empirical tuning.

14

Table 5: Supplementary Hyperparameters for the OSC
Framework.

Component Group Parameter Value
State Representation
Embedding Projection Dimension 128

Dialogue History Encoder

History Aggregation Length (k) 5 utterances

Hierarchical (2 layers, 128 units)

Reward Function
Task Performance Reward (Ryysx)
Intrinsic Reward Trigger

Success: +1, Failure: —0.1
Learned gap resolution

Policy Network (7comm)
Discrete Action Space Size
Continuous Style Parameter Range

10 objectives (extensible)
[0, 1] (uniform)

CKM Pre-training
Pre-training Dataset Size
Pre-training LR (@pretrain)
Pre-training Objective Weights

1 M dialogue turns
1x 1074

Equal (masked utterance, dialogue act)

Linguistic Realization (fr.m)

Prompt Length Limit 512 tokens
Generation Temperature 0.7
Top-p Sampling 0.9

8 OSC Hyperparameter Tuning on
AlpacaEval 2.0

We tuned the OSC framework on the AlpacaEval
2.0 development set by optimizing communication
rounds (Nyoung) and communication cost weight (Acost)
to identify the optimal configuration, demonstrating
their critical impact on task success rate (LC win
rate) and communication efficiency (rounds, token
count). Hyperparameter Selection: Communication
Rounds (NV;oyng): Defines the number of dialogue rounds
for agent collaboration, determining interaction depth.
Candidate values: {2, 3, 4, 5}, covering the default
range (3-5). Reason: Ny affects collaboration
quality; too few rounds lead to insufficient information,
while too many increase redundancy. Communication
Cost Weight (Aeos): Defines the penalty weight for
message token count in the PPO reward function,
R Riask — Acost © Ceomm. Candidate values:
{0.0005, 0.001, 0.002}, centered on the default 0.001.
Reason: M\, controls communication conciseness,
balancing information completeness. Experimental
Setup: Dataset: AlpacaEval 2.0 (805 instructions),
using development set (160 instructions) for tuning.
Models: Six open-source LLMs (Qwen2-72B-Instruct,
LLaMa-3-70B-Instruct, WizardLM-2-8x22B, Gemma2-
27B, Deepseek-V3, Deepseek-R1), with Qwen2-72B-
Instruct as aggregator. Training: Each configuration
trained for 5 x 106 steps using PPO, with discount factor
v = 0.99 (default). Evaluation Metrics: Task Success
Rate: LC win rate (%), based on GPT-4 evaluator.
Communication Efficiency: Average rounds (Avg.
Rounds, lower is better), Average token count (Avg.
Tokens, k, lower is better). Tuning Method: Grid search
(4 x 3 =12 configurations), each run 3 times, averaged.
Experimental Procedure: Used default configuration
(Nround = 4, Acost = 0.001) as baseline. Tested
all combinations on the development set, recording
LC win rate and communication efficiency. Selected
the configuration with the highest LC win rate and
reasonable rounds and token count 5.

Tuning N_round for OSC on AlpacaEval 2.0

LC Win Rate (%)
90 Avg. Tokens (k)

79.8
80
76.5

60
2.45

40

N_round=4 Optimizes LC Win Rate and Efficiency

-4.0

8l1.4 80.9

3.32 -3.5

2.87

-3.0

-25

-2.0

-1.0

-0.5

N_round=2 N_round=3

0.0

N_round=4 N_round=5

Figure 4: Hyperparameter tuning results.

9 Pretraining and Fine-tuning: OSC
Validation on AlpacaEval 2.0

We validated the impact of pretraining and fine-
tuning the Collaborator Knowledge Model (CKM)
and cognitive gap analysis module (fsp) on OSC
performance, analyzing task success rate and
communication efficiency. Pretraining: CKM and
foap learned dialogue patterns via masked utterance
prediction, next action prediction, and contrastive
learning. CKM: Transformer encoder (Nekmene = 2,
2, dckm,model 128). fgap: Multi-
head cross-attention. Fine-tuning: On AlpacaEval
2.0 (805 instructions, 160 for fine-tuning, 160
for validation) using PPO, 5 x 10° steps, reward
R = Rusk — 0.001 - Ceomm + 0.05. Hyperparameter:
Nioundg = 4. Experiments: (1) Pretraining Only: Freeze
CKM, foap, Optimize Teomm. (2) Pretraining+Fine-
tuning: Fine-tune all components. Baseline: KABB
(77.9% LC win rate). Metrics: LC win rate (%),
avg. rounds, avg. tokens (k). Results: Pretraining
Only: 76.8% LC win rate, 5.1 rounds, 3.45k tokens.
Pretraining+Fine-tuning: 81.4% LC win rate, 4.3
rounds, 2.87k tokens. KABB: 77.9% LC win rate, no
communication data. Analysis: Fine-tuning boosts LC
win rate (76.8% to 81.4%) and efficiency (rounds: 5.1
to 4.3; tokens: 3.45k to 2.87k), outperforming KABB,
highlighting dynamic collaboration benefits 5.

H, ckm,enc

10 Reward Function Component
Analysis: Detailed Validation of the
OSC Framework on AlpacaEval 2.0

Analyzing the contribution of different components
(task reward R, communication cost Ceomm, intrinsic

15

shaping reward 7gpape) in the OSC framework’s reward
function to collaborative behavior, and detailedly
evaluating the impact of each component on task success
rate and communication efficiency. The experimental
design is as follows: The reward function is formulated
as R = Rlask -)\cost . CVcomm + Tshape - Here, Rlask is
the task success reward, +1 for success and -0.1 for
failure. Ciomm is the communication cost (number
of message tokens), with Aoy = 0.001. 7gpape is
the intrinsic shaping reward (0.05), rewarding the
reduction of cognitive discrepancies or the achievement
of collaborative goals. Reward combinations include:
Only Ry, i.€., using only the task reward; Ry — Acost *
Comm> 1-€., adding a communication cost penalty; Full
Reward (Rask — Acost * Cecomm + Tshape)s 1.€., adding the
intrinsic shaping reward. The baseline is KABB, with
an LC win rate of 77.9% (Table 1) and no dynamic
communication. Experimental Settings: The dataset
used is AlpacaEval 2.0 (containing 805 instructions),
with its development set (approx. 160 instructions)
used for training and the validation set (approx. 160
instructions) for evaluation. Six open-source LLMs
were selected (e.g., Qwen2-72B-Instruct, LLaMa-3-
70B-Instruct, etc.), with Qwen2-72B-Instruct serving
as the aggregator. Training was conducted using
the PPO algorithm for 5 x 10° environment steps,
with Noua = 4. Evaluation metrics include: Task
Success Rate (LC Win Rate, %); Communication
Efficiency, specifically including Average Rounds
(Avg. Rounds, lower is better), Average Tokens
(Avg. Tokens, in k, lower is better), Communication
Redundancy (Redundancy, %), and Conflict Resolution
Rate (Conflict Res., %). Experimental Procedure: First,
initialization is performed by loading the pre-trained

LC Win Rate (%)

81.40

77.90
76.80

Value

Avg. Rounds

Avg. Tokens (k)

4.0
3.45
3.5
3.0

2.5

Value

15

1.0

0.5

Pretraining Pretrain + Fine-tune KABB (Baseline) Pretraining

Pretrain + Fine-tune KABB (Baseline)

0.0

Pretraining Pretrain + Fine-tune KABB (Baseline)

Figure 5: Your caption here.

CKM and f,,p. Then, reward combination experiments
are conducted: for each reward combination, OSC
is trained on the development set, and CKM, fyup,
and Teomm are fine-tuned end-to-end. Finally, testing
is performed on the validation set, and the metrics
are recorded. The experimental results are shown
in the table below: Results Analysis: When using
only Ry, the LC win rate was 74.1%, lower than
KABB’s 77.9%, mainly due to a lack of guidance for
collaboration. At this point, Avg. Rounds was 5.9,
Avg. Tokens was 3.95k, Redundancy was 18.9%, and
Conflict Res. was 82.6%, indicating low communication
efficiency. After introducing Ry, — Acost © Ceomms the
LC win rate increased to 78.2%, close to KABB. The
communication cost penalty effectively reduced the
number of rounds (5.0) and tokens (3.20k). Redundancy
decreased to 15.7%, and Conflict Res. improved to
86.5%, indicating some improvement in collaborative
behavior. With the full reward, the LC win rate reached
81.4% (Table 1), outperforming KABB. Avg. Rounds
decreased to 4.3, Avg. Tokens to 2.87k, Redundancy
to 12.6%, and Conflict Res. increased to 91.7%,
demonstrating optimal collaborative performance. The
KABB baseline had an LC win rate of 77.9% but
no relevant data on dynamic communication. Further
Analysis: When using only Ry, the sparse reward
led to slow learning of collaborative behavior, resulting
in a lower LC win rate (74.1%) and more redundant
communication (18.9%). After adding Ceomm, the
communication cost penalty encouraged the model to
generate more concise communication, reducing rounds
from 5.9 to 5.0, tokens from 3.95k to 3.20k, and
increasing the LC win rate from 74.1% to 78.2%. After
adding 7ghape, the intrinsic shaping reward effectively
guided collaborative behavior (e.g., promoting the
reduction of cognitive discrepancies), leading to an LC
win rate of 81.4%, an increase in conflict resolution rate
t0 91.7%, and a decrease in communication redundancy
to 12.6%. Compared to KABB, the OSC framework
with the full reward outperformed KABB in LC win rate
(81.4% vs. 77.9%), indicating that the dynamic reward
mechanism achieved significant effects.

16

11 OSC Computational Resource
Efficiency Results

We adopt the AlpacaEval 2.0 dataset (160 development
examples, 160 validation examples), six agents (e.g.,
LLaMa-3-13B-Instruct and other compressed models)
with a Qwen2-13B aggregator in the OSC system,
running on a single NVIDIA A100 GPU. Training uses
mixed precision for 1 x 10° steps, freezing the CKM
and fgap, modules and training only Teomm. During
inference, we apply INT8 quantization, set Nyoung = 3,
and cache CKM states. Hyperparameters are Nyoung =
3, Acost = 0.001, and v = 0.99. We evaluate training
GPU hours, training memory usage (GB), inference
latency (seconds per instruction), inference memory
usage (GB), and LC win rate (%). As shown in Table 1
, OSC requires 10.8 GPU hours for training, uses 11.3
GB of memory during training, achieves 1.79 s per
instruction and 7.8 GB of memory during inference, and
attains an LC win rate of 78.6%.

11.1 Qualitative Analysis of CKM and Cognitive
Gap and Fine-Grained Ablation Study

To address reviewer requests 8, we conducted a
qualitative analysis of the CKM and cognitive gap in
the OSC framework, focusing on how CKM represents
knowledge and how f,,, identifies and bridges cognitive
gaps, alongside a fine-grained ablation study examining
the impact of CKM feature dimensions, fupdate
mechanism, communication action agt) components,
prompt simplification, and fg, alternatives. The
qualitative analysis used three complex instructions
from the AlpacaEval 2.0 validation set (mathematical
reasoning, planning, argument generation) with 6 agents
(Qwen2-72B-Instruct, etc.), Qwen2 as the aggregator.
We extracted CKM state vectors zg;) to analyze
knowledge dimensions (understanding, confidence,
assumptions) and inspected f,,, outputs Qf? to
identify gap types (factual misunderstandings, reasoning
divergences, goal misalignments). Three dialogue
snippets were selected to demonstrate CKM and fq,
guidance. Human evaluation (3 reviewers) assessed

Reward Combination LC Win Rate (%) Avg. Rounds

Avg. Tokens (k) Redundancy (%) Conflict Res. (%)

Only Ry 741
Rtask - Aco,\sl © “comm 78.2
Full Reward (Rlask - Acost + Ceomm + Tshapc) 814
KABB (Baseline) 77.9%

59
5.0
43

3.95 18.9% 82.6%
3.20 15.7% 86.5%
2.87 12.6% 91.7%

Table 6: Your caption here.

dialogue clarity, relevance, and collaborativeness (1—
5 scale). Case 1 (mathematical reasoning, solving
22 — 50 + 6 = 0): CKM showed agent A
with high confidence (0.9) in factorization, agent B
preferring the quadratic formula (0.7); fgp detected
a method divergence (cosine distance 0.4), A proposed
factorization, B agreed after verification, scores (clarity
5, relevance 5, collaborativeness 4.7). Case 2 (planning,
3-week project): CKM captured agent C’s 5-day
estimate vs. D’s 7-day for task X; fs.p identified
a timing discrepancy (attention weight 0.6 on time
dimension), C queried D’s estimate, D clarified testing
needs, C adjusted, scores (clarity 4.7, relevance 4.3,
collaborativeness 4.7). Case 3 (argument generation,
environmental policy): CKM reflected agent E’s focus
on economic costs vs. F’s on environmental benefits;
faap detected a priority gap (semantic distance 0.5), E
prompted long-term benefits, F provided data, scores
(clarity 4.3, relevance 4.7, collaborativeness 4.3). CKM
dynamically captured task understanding, fqap precisely
identified method, timing, and priority gaps, resolving
them within 3 rounds, average scores (clarity 4.7,
relevance 4.7, collaborativeness 4.6). The ablation study
used a single A100 80GB GPU, 6 agents, 1 x 106
training steps, hyperparameters Nioynd = 3, Acost =
0.001, v = 0.99. Ablations included: CKM feature

dimensions (linguistic-only, reasoning-only, full), fupdate
(t)

(GRU vs. average, static), a, components (fixed

objective, no style), simplified prompts (only agt)), and
faap alternatives (L2 distance, MLP). Metrics were LC
win rate (%), average rounds, tokens (k), and conflict
resolution rate (%).

Table 7: Qualitative Analysis Case Study Scores

Case Task Clarity Relevance Collaborativeness
1 Mathematical Reasoning 5.0 5.0 4.7
2 Planning 4.7 4.3 4.7
3 Argument Generation 43 4.7 43
Average 4.7 4.7 4.6

17

Table 8: Fine-Grained Ablation Study Results

System LC Win Rate (%) Avg. Rounds Avg. Tokens (k) Conflict Resolution (%)
OSC (Full) 78.6 32 2.5 88.4
CKM-Ling 74.2 3.7 3.0 82.1
CKM-Reas 75.8 3.5 2.8 84.3
Jupdate-Avg 73.9 3.8 3.1 80.7
Jupdate-Static 71.5 4.0 34 78.2
FixObj 75.4 3.6 2.9 83.5
NoStyle 76.1 3.5 2.7 85.2
Simplified Prompt 73.2 39 3.2 79.8
foap-L2 74.8 3.7 3.0 82.9
foap-MLP 76.3 34 2.8 86.1

18

	Introduction
	Related Work
	LLM-Driven Multi-Agent Systems
	Agent Selection and Result Aggregation
	Inter-Agent Communication

	Method
	OSC Framework
	Dynamic Collaborator Knowledge Model (CKM)
	Learned Cognitive Gap Analysis and Adaptive Communication Objectives
	Adaptive Communication Strategy pi_comm
	Strategically Guided Linguistic Realization
	Reinforcement Learning Optimization

	Experiment
	Main Results and Analysis
	Communication Efficiency and Quality Analysis
	Ablation Study of OSC Components
	Scalability Experiment with Varying Number of Agents
	Price-Performance Balance Analysis

	Conclusion
	Appendix A:OSC Framework Implementation Details
	Adaptive Communication Strategy (_comm) Learning and End-to-End Optimization
	Reinforcement Learning Algorithm
	State Representation and Input Preprocessing
	Policy Network Architecture (_comm)
	Reward Function and End-to-End Signal Propagation
	Training Environment and Protocol
	Dynamic Collaborator Knowledge Model (CKM) Implementation

	CKM Initialization and End-to-End Fine-tuning of (_CKM, _update)
	A.3.1 Learned Cognitive Gap Function (f_gap)
	A.3.2 Adaptive Communication Objective Determination
	A.4 Strategically Guided Linguistic Realization via f_LLM
	A.5 Hyperparameter Settings

	OSC Hyperparameter Tuning on AlpacaEval 2.0
	Pretraining and Fine-tuning: OSC Validation on AlpacaEval 2.0
	Reward Function Component Analysis: Detailed Validation of the OSC Framework on AlpacaEval 2.0
	OSC Computational Resource Efficiency Results
	Qualitative Analysis of CKM and Cognitive Gap and Fine-Grained Ablation Study

