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Abstract

We consider the problem of combining symbolic planning and deep reinforcement
learning (RL) to achieve the best of both worlds – the generalization ability of the
planner with the effective learning ability of deep RL. To this effect, we extend a
previous work of Kokel et al. [17], RePReL, to deep RL. As we demonstrate in
experiments in two relational worlds, this combined framework enables effective
learning, transfer and generalization when compared to the use of an end-to-end
deep RL framework.

1 Introduction

The two sequential decision making directions of Reinforcement Learning (RL) and AI planning
are complimentary. While deep RL agents are able to solve complex games such as Go, Atari,
etc. [33, 25], they are extremely data hungry (requiring 100M examples) and limited in ability to
generalize to related tasks and domains. Generalization is essential for the deployment of RL agents.
As an example, an agent trained to stack 5 red blocks as a pyramid should be able to stack 10 blue
blocks as a pyramid. Contrary to the RL approaches, symbolic AI planning methods [12] have focused
on developing domain-independent approaches that can be utilized in different domains and are able
to scale with varying objects. However, most AI planning methods rely on complete (symbolic)
description of the domain, to guide the search. This limits the usage of planning approaches in
complex domains where it is difficult for humans to articulate the transition functions, the action
schema of the domain. In summary, the symbolic representation of the planners allow for efficient
generalization while the Deep RL methods perform efficient and effective learning.

Consequently, various methods have combined RL and AI planning to improve sample efficiency
and generalization [14, 16, 7, 37, 23, 24, 20, 10]. We aim to highlight the advantages of combining
planning with RL and present the capability of one such framework, RePReL [17], to learn deep RL
agents. RePReL framework uses a relational hierarchical planner at the higher-level to decompose
a task into sub-tasks (options), and learns RL policies for options at the lower level, while using
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task-specific state representations. This hierarchical framework provides two key advantages. First,
the hierarchical planner effectively captures the symbolic, higher-level task knowledge, which is more
general than simply providing intrinsic rewards. Second, learning separate policy for each option at
lower level allows for task-specific abstract state representations. By incorporating deep RL agent in
the RePReL framework, we provide a third advantage. We empower lower level options in RePReL
to learn complex functions with ability to act in continuous state and action spaces. In the proposed
deep ReRPeL framework, the planner serves as the higher level, symbolic, deliberate slow reasoner
while the deep RL is the fast, effective neural learner, thus achieving the two-level neurosymbolic
system, a key goal of many AI/ML researchers.

We focus on relational domains, where the number of entities and relations are not fixed in advance.
To learn to act in such relational domains, it is important for the agent to identify relevant entities
for the given task and make decisions by focusing only on the applicable properties and relations of
these entities. For example, while learning to stack all the blocks in a single tower, the agent should
not over-fit to the color of the blocks. In RePReL framework, we leverage the domain knowledge
of humans to infer the relevant properties using first-order conditional influence statements. In this
work-in-progress report, we share our initial results on two domains, extended relational taxi domain
and office world. We show the capability of the deep RePReL framework to generalize over different
objects in the domain and transfer to different tasks.

2 Proposed Approach

We consider the problem of learning to execute multiple tasks in relational domains. Thus, we extend
the relational MDP (RMDP) definition from Fern et al. [9] for goal-oriented domains.
Definition 1. A goal-directed relational MDP (GRMDP)M is represented by 〈S,A, P,R, γ,G〉,
where the states S and the actions A are represented by a set of objects E, a set of predicates Q, and
action types Y . P is a transition probability function S × A× S → [0, 1], R is a reward function
S ×A× S → R, γ ∈ [0, 1) is the discount factor, and G is set of goals that the agent may be asked
to achieve.

Figure 1: RePReL architecture.

Different tasks can be formulated by choosing different
goals from the potentially infinite set G. The reward func-
tion R provides the reward (or cost) of taking a step in the
environment, regardless of the goal. A separate intrinsic
reward tR is used when the terminal state for any goal or
subgoal is reached. A problem instance for a GRMDP is
defined by a pair 〈s ∈ S, g ∈ G〉, where s is the initial
state and g is the set of goal conditions, both represented
using sets of permitted literals, i.e. positive and/or negative
atoms. A solution is a policy that starts from s and ends
in a state satisfying g with probability 1.0. The RePReL
framework solves the GRMDP using a combination of
planning and RL in 3 stages, as shown in Figure 1.

1 Planning: Use a hierarchical planner to decompose the goal of the GRMDP into a sequence of
subgoals using decomposition rules or methods. These high-level subgoals act as options.

2 Abstraction: Use human’s task knowledge to abstract the state representations by filtering the
irrelevant entities, properties and relationships. This provides sub-task specific state representations.

3 RL: Learn a separate RL policy for each option in the abstract state space that achieves the subgoal.

We refer to Kokel et al. [17] for details of the hierarchical planner. Here it suffices to say that given a
state s and a goal g, the hierarchical planner provides a high-level plan Π = [o1, o2, ..., on] which is
a sequence of options (or operators). Each option o is defined with initiation set I(o) (preconditions
of the operator) and termination condition β(o) (necessary effects of the operator). A subgoal RMDP
Mo is defined for each option o, which is solved to obtain the option policy πo.
Definition 2. The subgoal RMDPMo for an option o is defined as a tuple 〈S,A, Po, Ro, γ〉 consisting
of states S, actions A, transition function Po, reward function Ro, and discount factor γ. State and
action spaces remain same as the original RMDP. The reward function Ro and transition probability
distribution function Po are defined as follows:
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Ro(s, a, s
′) =

{
tR +R(s, a, s′) if s′ ∈ β(o) and s /∈ β(o)
0 if s′ ∈ β(o) and s ∈ β(o)
R(s, a, s′) otherwise

Po(s, a, s
′) =

{
0 if s ∈ β(o) and s′ /∈ β(o)
1 if s ∈ β(o) and s′ ∈ β(o)
P (s, a, s′) otherwise

with a fixed terminal reward tR and the reward function R(s, a, s′) from the GRMDP.

Essentially, the reward function in the original GRMDP would correspond to the step cost function,
which applies to all options, and reward Ro is the only goal-specific reward. Next, we present how we
obtain the safe state abstraction using the bisimulation framework of Givan et al. [13] and Ravindran
and Barto [30], which has been called “model agnostic abstraction” in Li et al. [21].
Definition 3 (Li et al. [21]). An abstraction φ(s) is model-agnostic when φ(s1) = φ(s2) if and only
if for any action a and an abstract state s,∑

{s′1|φ(s′1)=s}

Ro(s1, a, s
′
1) =

∑
{s′2|φ(s′2)=s}

Ro(s2, a, s
′
2)

∑
{s′1|φ(s′1)=s}

Po(s1, a, s
′
1) =

∑
{s′2|φ(s′2)=s}

Po(s2, a, s
′
2)

The first condition above states that the two states s1 and s2 have the same immediate reward
distribution with respect to the abstraction. The second condition indicates that these two states have
the same transition dynamics. It is proven that Q-learning with such abstraction results in an optimal
policy for ground MDP [21].

Since states are conjunctions of literals in RMDPs, to get a safe abstraction, we need to infer which
predicates influence the rewards and the goals of options. We capture this knowledge using First-Order
Conditional Influence (FOCI) statements [26], one of the many variants of statistical relational learn-
ing languages [11, 29]. Each FOCI statement is of the form: “if condition then X1 influence X2”,
where, condition and X1 are sets of first-order literals and X2 is a single literal. It encodes that
literal X2 is influenced only by the literals in X1 when the stated condition is satisfied.

For RePReL, we simplify the syntax and extend FOCI to dynamic FOCI (D-FOCI) statements.
In addition to direct influences in the same time step, D-FOCI statements also describe the direct
influences from the literals in the current time step to the literals in the next time step. To distinguish
the two kinds of influences, we add +1 on the arrow between the sets of literals to capture a temporal
interaction, as option : {p(X1), q(X1)} +1−→ q(X1). It says that, for the given option, the literal
q(X1) in the next time step is directly influenced only by the literals {p(X1), q(X1)}. Following the
standard DBN representation of the MDP, we allow action variables and the reward variables in the
two sets of literals. option may be skipped to represent unconditional influences.

The D-FOCI statements can be viewed as a relational versions of the dynamic Bayesian networks
(DBNs) and have a similar function of capturing the conditional independence relationships between
domain predicates at different time steps [18]. For example, the D-FOCI statement in the taxi
domain for pickup option can be expressed as, pickup(P) : {taxi-at(L1), at(P, L2)} +1−→
in-taxi(P). This denotes that while the task pickup(P) is being performed, only the taxi location
and the passenger location, taxi-at(L1) and at(P,L2), influence in-taxi(P). This means that
the in-taxi(P) is independent of dest(P,D) and at-dest(P). Note that contrary to this, when
the passenger is being dropped, the dest(P,D) will influence in-taxi(P). Using the substitution
θ of the grounded option determined by the planner, the D-FOCI statements would be partially
grounded. For example, using the θ = {X/p1, L/r} for pickup(X) the above D-FOCI would
become pickup(p1) : {taxi-at(L1), at(p1, r)} +1−→ in-taxi(p1). Hence, only the pickup
location of passenger p1 (i.e., at(p1, r)) and the current taxi location taxi-at(L1) (i.e., the current
location L1) are relevant for grounded operator pickup(p1). If there is another passenger, say p2,
then the state variable at(p2, · ) would not be relevant.

While the planner works in relational representations, the reinforcement learning operates at a
propositional level. The gap is bridged by computing an appropriate propositional abstraction of the
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state for each option with the parameters, e.g., p1, bound to generic objects (Skolem constants in
logic). To keep the size of the propositional representation bounded, we bound the depth of inference
chain through D-FOCI statements to k. If the MDP satisfies the D-FOCI statements with a fixed depth
unrolling, then the corresponding model-agnostic abstraction has the same optimal value function
as the fully instantiated MDP. We defer to Kokel et al. [17] for the proof and unrolling process. We
present the learning procedure next.

Given the GRMDP environment env, the planner P and the D-FOCI statements F , we now discuss
the deep RePReL learning procedure from Algorithm 1. First for each option, an RL policy πo
and a replay buffer DO is initialized in line 1, 2. Next, for the current episode a high level plan Π
is obtained from the planner P in line 6. We employ the SHOP planner Nau et al. [27]. For every
grounded option in the plan, we collect the training sample in buffer Do (lines 7–23). To collect
samples, we get an abstract propositional state representation ŝ. In lines 11–22, we obtain action
a from the current policy, perform that action, observe the next state s′ and the reward r. If s′ is a
terminal state for the ground option og, then we add a terminal reward tR (line 18) before adding it
to the buffer (line 20). Then for each option o, the option policy πo is updated after sampling a batch
from buffer Do (lines 25–28).

Algorithm 1 RePReL Algorithm

INPUT: Planner P, Options O, goal set g, env, terminal reward t, D-FOCI statements F , num of iterations i,
num of episodes in each iteration k, batch size b
OUTPUT: RL policies πo,∀o ∈ O
1: πo ← 0, ∀o ∈ O . initialize RL policy for each option
2: Do, ∀o ∈ O . initialize buffers for each option
3: for iteration ∈ i do
4: for episode ∈ k do
5: s← get state from env
6: Π← P(s, g) . get high-level plan
7: for og in Π do
8: π ← πεo . get resp. RL policy
9: ŝ← GetAbstractState(s, og, F )

10: done← ŝ ∈ β(og) . check terminal state
11: while not done do
12: a← π(ŝ) . get action
13: s′ ← env.step(a) . take step in env
14: r ← R(s, a, s′) . get step reward
15: ŝ′ ← GetAbstractState(s, og, F )
16: done← ŝ′ ∈ β(og) . check terminal next state
17: if done then
18: r = r + tR . add terminal reward
19: end if
20: Do ← Do ∪ {ŝ, a, r, ŝ′, og}
21: s, ŝ← s′, ŝ′

22: end while
23: end for
24: end for
25: for each option o ∈ O do . Update all the parameters
26: D ← SampleBatch(Do, b) . Sample a batch from corresponding buffer
27: πo ← UpdatePolicy(πo,D)
28: end for
29: end for
30: return πo, ∀o ∈ O

3 Experiments

We now present our initial results in two domains, Taxi and Office World. We design our experiments
to explicitly answer the followings questions.

Q1: Sample Efficiency: Do the abstractions induced in RePReL improve sample efficiency?
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Q2: Transfer: Do these abstractions allow for effective transfer across tasks?

Q3: Generalization: Does RePReL efficiently generalize to varying number of objects?

R G

BY

Figure 2: Taxi Domain

Domains: As mentioned earlier, we evaluate our framework on two
domains: an extended relational version of the Taxi domain [5] and an
Office World [16]. Extended Taxi domain is an 8 × 8 grid, shown in
Figure 2, with one taxi and 4 special locations: 〈R,G,B, Y 〉. There
can be more than one passenger at a time in the grid; but taxi can be
hired only by a single passenger. In every episode, the pickup location
and the drop location of each passenger are sampled from the 4 special
locations. The agent can perform 6 actions: up, down, right, left, pick,
drop. Environment provides a reward of −0.1 for every step and −1 for
pick or drop action in wrong locations. We consider the following three
tasks in this domain: task 1, drop a passenger to its destination; task 2,
drop two passengers; and task 3, drop three passengers to their destination
location.

Figure 3: Office World

Office World is a 9×12 grid, shown in Figure 3. It has one office
location (indicated with hand), two coffee locations (indicated
by mugs), one mail room (indicated by envelope), and some
plants in the office to be avoided (indicated by ∗). The agent
can perform 4 actions: up, down, right, and left. We consider
two tasks in this domain: task 1, deliver coffee to office (which
can be picked up by visiting any coffee location) and task 2,
deliver mail to office. Environment provides a cost of 1 at every
step and cost of 10 on taking invalid actions like stepping on
the plant or moving in the walls.

Baselines We evaluate our deep RePReL agent against a
Deep Q-Network (DQN), an Hierarchical DQN (HDQN), and a
Taskable-RL (TRL) agent. Mnih et al. [25] proposed DQN that uses Q updates to train a deep RL
agent. HDQN Kulkarni et al. [19], integrates the temporal abstraction with intrinsic critic by using
two-level controller. At the higher level, a meta-controller selects the temporally extended actions,
also called options, and receives the reward from the environment. While, the lower level controller
learns to act in the environment to achieve the option and receives the intrinsic reward from the
critic. TRL [16] combines symbolic planning with the RL, where the symbolic planner provides the
higher-level options and several RL agents are learned for each option at lower level.

The DQN agent learn a single end-to-end policy for achieving the task; while others decompose
the task into subtask and learn policy for achieving subtasks. Further, the HDQN agent learns a
meta-controller to generate a high-level plan; while the TRL and the RePReL agent leverage a planner
to provide the high-level plan. And finally, the TRL agent uses same state representation to learn
each policy; while the RePReL uses D-FOCI statements to obtain the task-specific representation
while learning the subtask policies. All RL algorithms were implemented on a fork of RL-kit1. Table
1 in the Appendix provides details on the hyperparameters used for training all the agents. All the
results presented below are aggregated over 10 runs.

Sample Efficiency: To evaluate the effect of RePReL abstractions, we compare it against the seq
variant of the Taskable RL. We pick this variant for two reasons: 1. seq variant performed best in all
their experiments, 2. We aim to evaluate the effectiveness of abstractions and thus do not learn the
meta-controller introduced by the partially ordered plans. We set a budget of 1e6 on the number of
steps that can be taken in training environment for learning in each task. Figures 4 (a–e) compares the
learning curves of the four agents on all five tasks. While the RePReL, TRL and DQN agent achieves
the optimal reward after 40K steps in Taxi task 1; their performance significantly differs in Taxi task
2 and Taxi task 3 where the number of passenger increases. In two tasks of Office World also we see
that RePReL achieves the optimal reward faster than others. Hence, we answer Q1 affirmatively in
that RePReL abstractions statistically significantly outperforms the state-of-the-art hybrid planner-RL
architecture, Taskable RL, as well as approaches that only learn from data, HDQN and DQN.

1https://github.com/rail-berkeley/rlkit
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(a) Taxi: Task 1 (b) Taxi: Task 2 (c) Taxi: Task 3

(d) Office: Task 1 (e) Office: Task 2

(f) Office: Transfer from (g) Office: Transfer from
Task 2 to Task 1 Task 1 to Task 2

(h) Taxi: Generalization (i) Taxi: Generalization
from one passenger to two from two passengers to three

Figure 4: Comparison of RePReL with DQN, HDQN and TRL for sample efficiency in (a–e), for
transfer to a different task in (f–g), and for generalization across number of objects in (h–i). For the
Taxi Domain, the task 1 is to transport one passenger to its destination location, the task 2 and 3 are
to transport 2 and 3 passengers, respectively. For the Office World, the task 1 is to deliver coffee to
the office and the task 2 is to deliver mail.
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Transfer: We next evaluate the agents ability to transfer to a related task in the same domain. To
this effect, we transferred all the agents learned for performing the task 1 and the task 2 in Office
World to perform the task 2 and task 1, respectively. We swap the task of the agents after they are
trained for 1e6 steps. Performance of the transferred agents are presented in Figures 4 (e–f). All
agents start with a higher average reward (than learning from scratch as seen in Fig. 4 (d–e) ), but
RePReL has the steepest learning curve and achieves optimal reward very fast. This allows us to
answer Q2 affirmatively.

Generalization: For evaluating generalization, we transfer all the agents trained on Taxi task 1 to
task 2 and train them on task 2. Subsequently, we transfer agents from task 2 to task 3. Figures 4 (h–i)
presents the learning curve of these transferred agents. While the transferred TRL, HDQN and DQN
agents have steeper learning curves than the respective agent learning from scratch (in Fig. 4 (b–c)),
the transferred RePReL agent shows zero-shot generalization ability on both tasks. These transfer
results in allows us to answer Q3 affirmatively in that RePReL allows for successful generalization
across varying number of objects and is best suited for relational domains.

4 Discussion and Related Work

State abstractions has been shown to be useful for transfer learning in the literature [36, 34, 1].
Our approach on task-specific state abstraction is inspired from Dietterich [5] and the bisimulation
conditions [30, 13] to define abstractions in relational settings using first-order probabilistic models
[29]. Relational Reinforcement Learning (RRL) is another set of works that is related to ours. RRL
aims to learn a policy in a relational world in the presence of multiple objects. RRL literature
[35, 28, 31, 4, 15] tried learning a value function or a policy on a relational representation of the state
by using relational induction, symbolic dynamic programming and linear programming alternative
but these methods have failed to adapt to mildly complex environments. With the advent of Neuro-
Symbolic Theorem provers and Neural Logic Reasoner [8, 6, 32, 3] there is a renewed interest in the
community to attempt the relational domains.

While our initial evaluation of RePReL is quite encouraging, there are several avenues that need more
evaluation. First is using the Graph Neural Network (GNN) [2] based architecture to learn the policy.
Few recent work using Graph-based neural network have shown tremendous improvement over the
traditional Neural Network based architecture for relational domains. Specifically, Zambaldi et al.
[38] introduce the relational inductive biases in the deep learning using GNNs, claiming that such
architectures can perform reasoning, and show zero-shot transfer to complex domains. Inspired by
this, Li et al. [22] use GNN architecture for multi-object manipulation and show that a curriculum
learning approach can be order of magnitude more sample efficient than the traditional architecture.
Hence it is imperative we compare our approach with a GNN based architecture. While this is our
current research direction, we emphasize that our proposed RePReL framework is generalizable to
any network architecture used for the policy, thus noting the wide applicability of this combination.
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