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Abstract
This study addresses robustness concerns in ma-
chine learning due to dataset drift by integrat-
ing physical optics with machine learning to cre-
ate explicit, differentiable data models. These
models illuminate the impact of data genera-
tion on model performance and facilitate drift
synthesis, precise tolerancing of model sensi-
tivity (drift forensics), and beneficial drift cre-
ation (drift optimization). Accompanying the
study are two datasets, Raw-Microscopy and Raw-
Drone, available at https://github.com/
aiaudit-org/raw2logit.

Camera image data has played a crucial role in advanc-
ing the field of machine learning and also features heavily
in important application domains including medicine and
geospatial modeling. Unfortunately, machine learning sys-
tems can fail depending on their inputs, making robustness
essential to handle variations in input data [88; 75; 83].
This study illustrates the use of explicit data models for
images to manage dataset drift in machine learning work-
flows, facilitating the creation of reliable validation proto-
cols for critical domains. We define dataset drift through
(XRAW , Y ) ∶ Ω→ RH,W ×Y , the raw sensor data generat-
ing random variable on a probability space (Ω,F ,P). Raw
inputs xRAW undergo a data model ΦProc∶RH,W → RC,H,W ,
providing a processed view v = ΦProc(xRAW) for training
a task model ΦTask ∶ RC,H,W → Y . A different data model
Φ̃Proc creates a new view Ṽ = Φ̃Proc(XRAW ) of XRAW ,
inducing dataset drift

Ds = P ○ (Ṽ , Y )−1 /= Dt. (1)

Dataset drift can stem from variations in camera types or set-
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tings. Robustness validation is not just an engineering task
but also mandated by quality standards [93; 27; 61]. Failure
to do so has obstructed the application of machine learn-
ing technology in impactful fields [8; 85; 23; 52]. Hence,
real-world robustness validation of image machine learning
systems is not just an intellectual exercise but a necessity
for successfully integrating machine learning research with
real-world infrastructures and data. Image dataset drift vali-
dation employs either augmentation testing, which applies
perturbations like Gaussian noise to images [31; 16; 54], or
catalogue testing, which collects diverse camera datasets
[40; 2; 55; 45]. Augmentation can produce unfaithful drift
artifacts, limiting its physical accuracy [90; 96; 35]. Con-
versely, catalogue testing assures physically faithful samples
but requires extensive data collection. The data models of
images have received minimal focus in machine learning
robustness studies, often treated as a black-box despite their
importance [77]. This neglect is surprising, as explicit data
models are crucial in optics, metrology, and industry ap-
plications [7; 73; 89; 13; 28; 64; 101; 99; 38; 74]. For a
comprehensive taxonomy of related work please refer to Ap-
pendix B.4. We bridge machine learning and physical optics
to generate explicit, differentiable data models for flexible,
physically faithful drift controls. Our primary contributions
are 1:

1 Drift synthesis: Physically faithful drift test case syn-
thesis (Section 2.1). 2 Drift forensics: Gradient propa-
gation from the task model to the data model for precise
data forensics (Section 2.2). 3 Drift optimization: Gradi-
ent connection adjustment between data and task model for
better model performance (Section 2.3).

1. Methods
Advanced image data models necessitate raw sensor data,
common in fields like microscopy, biomedicine, and au-
tonomous vehicles. Modern digital camera systems, includ-
ing smartphones, provide access to this data. We explain its
procurement from optical hardware and share two datasets

1This workshop manuscript highlights the most important com-
ponents of our data models approach. For the full paper please
see our publication in the Transactions on Machine Learning
Research [60] at https://openreview.net/forum?id=
I4IkGmgFJz.
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Figure 1: Illustration of an optical imaging pipeline and raw-enabled drift controls. The measurement process outputs raw data xRAW which undergoes image signal
processing (ISP) ΦProc. The processed data is consumed by a machine learning task model ΦTask that outputs ŷ. Combining raw data, machine learning pipeline, and a
differentiable data model allows drift controls: 1 drift synthesis (creation of faithful drift test cases), 2 drift forensics (specifying data environments to avoid), and 3 drift
optimization (using task model gradient to optimize data generation).

for machine learning tasks at https://zenodo.org/
record/5235536.

1.1. Raw dataset acquisition

We introduce two raw datasets, Raw-Microscopy and Raw-
Drone, to fill the gap of calibrated, labelled raw data. Raw-
Microscopy contains annotated blood smear microscope
images, and Raw-Drone includes annotated drone car im-
ages. These diverse datasets representing classification and
regression tasks underscore the importance of robustness
and drift controls in high-stakes scenarios. The datasets’
details are in Appendix B.5.1 and Figure 13 [24].

1.2. Data models: Image signal processing ΦProc

Image data transitions from raw state xRAW to processed
image v through image signal processing ΦProc∶RH,W →
RC,H,W [73]. Raw sensor images differ from typical ma-
chine learning input due to transformations such as correc-
tion, denoising, and sharpening that produce an RGB image
v [7; 44; 26; 92]. These transformations result in varied im-
ages contributing to dataset drift, as shown in visual abstract
on page 1.

Let (XRAW , Y ) ∶ Ω → RH,W × Y be the raw sen-
sor data generating random variable on some probability
space (Ω,F ,P), with Y = {0,1}K for classification and
Y = {0,1}H,W for segmentation. Let ΦTask ∶ RC,H,W → Y

be the task model determined during training. The inputs
that are given to the task model ΦTask are the outputs of the
data model ΦProc. We distinguish between the raw sensor
image xRAW and a view v = ΦProc(xRAW) of this image,
where ΦProc∶RH,W → RC,H,W models the transformation
steps applied to the raw sensor image during processing.

The objective in supervised machine learning is to learn a
task model ΦTask ∶ RC,H,W → Y within a fixed class of task
models H that minimizes the expected loss wrt. the loss
function L ∶ Y ×Y → [0,∞), that is to find Φ⋆Task such that

inf
ΦTask∈H

E[L (ΦTask(V ), Y )] (2)

is attained. Towards that goal, ΦTask is determined during
training such that the empirical error

1

N

N

∑
n=1
L (ΦTask(vn), yn) (3)

is minimized over a sample S = ((v1, y1), ..., (vN , yN))
of views. Modelling in the conventional machine learn-
ing setting begins with the image data generating ran-
dom variable (V , Y ) = (ΦProc(XRAW ), Y ) and the tar-
get distribution Dt = P ○ (V , Y )−1. Given a dataset drift
Ds = P ○ (Ṽ , Y )−1 /= Dt, as specified in Equation (1),
without a data model we have little recourse to disentangle
reasons for performance drops in ΦTask. To alleviate this
underspecification, an explicit data model is needed. We
consider two such models in this study: a static model Φstat

Proc
and a parametrized model Φpara

Proc. Following common steps

https://zenodo.org/record/5235536
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in ISP, the static data model is defined as the composition
Φstat

Proc =ΦGC ○ΦDN ○ΦSH ○ΦCC ○ΦWB ○ΦDM ○ΦBL, (4)
mapping a raw sensor image to a RGB image. We note
that other data model variations, for example by reordering
or adding steps, are feasible. The static data models al-
low the controlled synthesis of different, physically faithful
views from the same underlying raw sensor data by manu-
ally changing the configurations of the intermediate steps.
Fixing the continuous features, but varying ΦDM, ΦSH and
ΦDN results in twelve different views for the configurations
considered here. The parametrized data model, Φpara

Proc, maps
from a parameter space, Θ, to an RGB image from a raw
sensor image. Each processing step of this model is differen-
tiable with respect to parameters θ, enabling backpropaga-
tion of the gradient through the model for drift forensics and
adjustments. This data model is differentiable in θ, fulfilling

Φstat
Proc =Φ

para
Proc (⋅,θ

stat) (5)
for a specific parameter set θstat and static pipeline config-
uration Φstat

Proc. Using the components specified earlier, the
parametrized processing model is defined as
Φpara

Proc ∶ [0,1]3,H,W ×Θ→ [0,1]3,H,W , (xRAW,θ)↦ v (6)
by composing:

v = (Φpara
GC (⋅,θ7) ○Φpara

DN (⋅,θ6) ○Φpara
SH (⋅,θ5) ○Φpara

CC (⋅,θ4) ○
Φ

para
WB (⋅,θ3) ○Φpara

DM (⋅,θ2) ○Φpara
BL (⋅,θ1) (xRAW) . (7)

The operations used above are differentiable except for the
clipping operation in the GC that is a.e.-differentiable2, if
the set {0,1} of non-differentiable points has measure zero.
Hence, assuming that P ((vDN)c,h,w ∈ {0,1}) = 0 holds
true for the entries of vDN results in an a.e.-differentiable
processing model. We further say that Φpara

Proc is differentiable,
noting that this holds only a.e. under the aforementioned
assumption.

2. Applications
With data models, raw data and task models in place we are
now able to demonstrate the advanced dataset drift controls
comprising 1 drift synthesis, 2 modular drift forensics
and 3 drift optimization.

2.1. Drift synthesis

The static data model enables controlled synthesis of pro-
cessed views from a single raw dataset, aiding in model
validation against device-specific drift. In our experiments,
we used twelve data models, training task models on one
and testing them on the other eleven. Results are mean
values over 5-fold cross-validation (see Appendix B.2 for
setup details). The leukocyte classification model, shown
in Figure 2, demonstrates robustness to processing-induced
drift, except for the (ma,s,me) configuration. The segmenta-

2a.e. stands for almost everywhere

1 Drift synthesis with Φstat
Proc: Microscopy

Figure 2: The figure depicts 5-fold cross-validation results for Raw-Microscopy
drift synthesis experiments. Each cell indicates the average accuracy with a standard
deviation border. Task models were trained on vertical axis data models and tested
on the horizontal axis processed data. Numbers 1-3 left to the vertical axis rank task
models by average accuracy across all test pipelines, with stars marking the training
pipeline with the best performance for each test pipeline/corruption. Full ranking
results are available in Appendix B.3. Top-left: Data model variations cause mild
performance drops. Top-right: Comparison to a corruption benchmark shows a 13x
higher average performance drop. Bottom: Visual inspection of worst-case train/test
pipelines.

2 Drift forensics with ∇θλ∥V − Ṽ ∥22 −L(Ṽ ,Y )

Figure 3: (a): The figure shows test accuracy on the Raw-Microscopy test set
after 20 epochs of adversarial search in the data model for different regularization
weights λ. Left plot represents various pipeline parameter selections. Right plot
displays ℓ2-norm (of processed images between the adversarially trained Φ̃

para
Proc and

the default Φpara
Proc) versus attained task model accuracy. (b): Processed samples

from the drift forensics after 20 epochs with various regularization weights λ. (c):
Similar results for Raw-Drone. Lower regularization results in a larger adversarial
optimization search space. Forensics loss refers to the binary cross entropy and Dice
loss used for the segmentation task model.

tion model (Figure 7) shows varied performance across data
model combinations, with average performance dropping
from 0.82 to 0.8 for classification and from 0.71 to 0.65 for
segmentation. Drift synthesis results were compared to the
Common Corruptions Benchmark [31], showing more se-
vere performance drops for common corruptions. Physical
faithfulness of test cases greatly impacts model selection
decisions, with no overlap observed between top-3 training
data models for classification when comparing ISP and com-
mon corruptions (refer to numbers 1-3 in Figures 2 and 7).
Following ideas developed by Krikamol Muandet’s [57],
data models could aid targeted generalization, serving task
models with the appropriate data model for each deployment
environment. Finally, drift synthesis permits validation with-
out physical measurement, but requires access to raw data
and knowledge of the data model specification.
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3 Drift adjustments with Φpara
Proc

(a) Low intensity (0.001) XRAW with Φpara
Proc (b) High intensity (1.0) XRAW with Φpara

Proc
Frozen Learned Validation metric Frozen Learned Validation metric Raw comparison
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Figure 4: Low (a) and high (b) intensity images processed by a frozen and a learned pipeline. This type of drift optimization would not be possible with processed data. The
plots columns three and six display the mean of validation metrics over five cross validation runs. Column seven shows additional results on raw data for comparison. Error bars
are reported as one standard deviation. Optimization step 1439 and 915 correspond to epoch 60 into training.

2.2. Drift forensics

Products with machine learning components like medical
devices or autonomous vehicles require clear specification
of usage limitations. Our solution, Φpara

Proc, enables analysis
of task model susceptibility to dataset drift using adversarial
search, differentiating it from related work that applies gra-
dient updates to individual images rather than data model
parameters. We identify risky data model parameter con-
figurations for task model operation, reflecting potential
changes in data model parameters like altering camera ISPs.
These parameters are kept within constraints of physical
faithfulness while deteriorating task model performance.
Sensitivity of the classification task model to changes in
data model parameters is depicted in Figure 3. Interest-
ingly, larger changes in the resulting RGB images don’t
necessarily lead to the most severe task model performance
degradation. This emphasizes the need for precise data mod-
els for dataset drift validation. Practical use-cases of drift
forensics include providing a forensic signature to a licensee
detailing data model parameters that maintain task model
performance. However, performing drift forensics requires
access to raw data and data models.

2.3. Drift optimization

The previous section demonstrated how raw data and a dif-
ferentiable data model can identify and test unfavorable data
models. We extend this concept to optimize the data itself,
creating a "beneficial drift". Two settings are considered:
"learned", where both data and task model parameters are
optimized, and "frozen", where only task model parameters
are optimized. The "learned" model can increase accuracy
by up to 25% with less variance (Figure 4 (a)). However,
this was not seen in low-resolution tasks like segmentation.
"Learned" models can also produce visual artifacts that may
improve stability and generalization. Similarly positive re-
sults were observed under varying conditions (Figure 4 (b)).
We’ve also investigated how parameterized data models
can optimize drift under constraints, and the potential of

learning directly on raw data for better task performance.
Optimizing drift can enhance task model performance and
adapt traditionally human-optimized imaging pipelines for
ML models, beneficial in limited-resource situations. How-
ever, this doesn’t work for all tasks and requires raw sensor
access. The end goal may be to train on RAW data, with
current methods serving as transitional solutions.

3. Discussion
In this manuscript we studied the potential of differentiable
data models for images, paired with raw data, to control
dataset drift. This significant challenge affects numerous
machine learning disciplines. Drift synthesis enables the
creation of physically faithful drift test cases, leading to
less severe performance drops. This allows model selection
and new ways to think about generalization. Drift synthe-
sis could be beneficial for various domains including data
synthesis and precise data models [63; 62]. Drift forensics
identify and document data model limitations, enabling pre-
cision to satisfy regulatory constraints [27; 93; 59]. Drift op-
timization with differentiable data models enhances stability
and speed in learning, which could be valuable in areas such
as federated learning or domain adaptation [79; 78; 97; 10].
However, it may not work across all tasks. Lastly, raw data
usage needs to be more accessible to researchers for more
physically faithful data models [28; 64; 101; 99; 38; 74].
We release two raw image datasets to aid this endeavor. Bet-
ter APIs to optical hardware can also help in providing more
accessible raw data.

How far we can push the gradient into the real world is an
interesting future direction for data modelling. Including
more parts of the data acquisition hardware into the data
model and consequently the machine learning optimization
pipeline appears feasible [98] and represents an important
next step in aligning machine learning with real world data
infrastructures.



Data Models for Dataset Drift Controls in Machine Learning With Optical Images

Use of Personal Data and Human Subjects The mi-
croscopy slides were purchased from a commercial lab ven-
dor (J. Lieder GmbH & Co. KG, Ludwigsburg/Germany)
who attained consent. The drone dataset does not directly re-
late to people. Instances with potential PIIs such as faces or
license plates were removed. Full datasheet documentation
following [24] can be found in Appendix B.5.2.

Negative Societal Impact Machine learning risk manage-
ment, such as the drift controls, can make ML deployment
possible and safer. More deployment translates to increases
in automation. A net risk-benefit analysis of automation
is beyond the scope of this manuscript. What we do know
is that steel can be cast into ploughs and swords. We are
against the use of our findings for the latter purpose.
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A. Appendices

B. Preliminaries: a data model for images
Before proceeding with a description of the methods we use to obtain the data models ΦProc in this study, let us briefly
review the distinction between raw data xRAW, processed image v and the mechanisms ΦProc∶RH,W → RC,H,W by which
image data transitions between these states3. Image acquisition has traditionally been optimized for the human perception
of a scene [34; 73]. Human eyes detect only the visible spectrum of electromagnetic radiation, hence imaging cameras
in different application domains such as medical imaging or remote sensing are usually calibrated to aid the human eye
perform a downstream task. This process that gives rise to optical image data, which ultimately forms the backbone for any
machine learning downstream, is rarely considered in the machine learning literature. Conversely, most research to date has
been conducted on processed RGB image representations. The raw sensor image xRAW obtained from a camera differs
substantially from the processed image that is used in conventional machine learning pipelines. The xRAW state appears
like a grey scale image with a grid structure (see xraw in Figure 1). This grid is given by the Bayer color filter mosaic,
which lies over sensors [7]. The final RGB image v is the result of a series of transformations applied to xRAW. For many
steps in this process different possible algorithms exist. Starting from a single xRAW, all those possible combinations can
generate an exponential number of possible images that are slightly different in terms of colors, lighting and blur - variations
that contribute to dataset drift. In Figure 1 a conventional pipeline from xRAW to the final RGB image v is depicted. Here,
common and core transformations are considered. Note that depending on the application context it is possible to reorder or
add additional steps. The symbol Φi is used to denote the ith transformation and vi (view) for the output image of Φi. The
first step of the pipeline is black level correction ΦBL, which removes any constant offset. The image vBL is a grey image
with a Bayer filter pattern. A demosaicing algorithm ΦDM is applied to construct the full RGB color image [44]. Given
vDM, intensities are adjusted to obtain a neutrally illuminated image vWB through a white balance transformation ΦWB.
By considering color dependencies, a color correction transformation ΦCC is applied to balance hue and saturation of the
image. Once lighting and colors are corrected, a sharpening algorithm ΦSH is applied to reduce image blurriness. This
transformation can make the image appear more noisy. For this reason a denoising algorithm ΦDN is applied afterwards
[26; 92]. Finally, gamma correction, ΦGC, adjusts the linearity of the pixel values. For a closed form description of these
transformations see Section 1.2. Compression may also take place as an additional step. It is not considered here as the
input image size is already small. Furthermore, the effect of compression on downstream task model performance has been
thoroughly examined before [20; 37; 100; 67; 66]. However, users of our code can add this step or reorder the sequence of
steps in the modular processing object class per their use case needs4.

B.1. Data models details

The second ingredient to this study are the data models of image processing. Image data transitions from a raw state xRAW to
processed image v via image signal processing ΦProc∶RH,W → RC,H,W [73]. Raw sensor images (xRAW) from cameras are
different from conventional machine learning input, appearing as a grey scale image with a grid structure due to the Bayer
color filter mosaic [7]. These images undergo multiple transformations to form the final RGB image v, generating numerous
slightly different images, contributing to dataset drift. The process is illustrated in Figure 1, including transformations
such as black level correction, demosaicing, white balance, color correction, sharpening, denoising, and gamma correction
[44; 26; 92]. Compression, not discussed here, is also applicable and can be added or reordered in the modular processing
object class as per use-case requirements.

Let (XRAW , Y ) ∶ Ω→ RH,W ×Y be the raw sensor data generating random variable on some probability space (Ω,F ,P),
with Y = {0,1}K for classification and Y = {0,1}H,W for segmentation. Let ΦTask ∶ RC,H,W → Y be the task model
determined during training. The inputs that are given to the task model ΦTask are the outputs of the data model ΦProc. We
distinguish between the raw sensor image xRAW and a view v =ΦProc(xRAW) of this image, where ΦProc∶RH,W → RC,H,W

models the transformation steps applied to the raw sensor image during processing.

The objective in supervised machine learning is to learn a task model ΦTask ∶ RC,H,W → Y within a fixed class of task
modelsH that minimizes the expected loss wrt. the loss function L ∶ Y ×Y → [0,∞), that is to find Φ⋆Task such that

inf
ΦTask∈H

E[L (ΦTask(V ), Y )] (8)

3We recommend [73] for a good introduction to the physics of digital optical imaging.
4See pipeline_torch.py and pipeline_numpy.py in our code.
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Data models Used functions

bi,s,me ΦBil
DM ΦSF

SH ΦMD
DN

bi,s,ga ΦBil
DM ΦSF

SH ΦGD
DN

bi,u,me ΦBil
DM ΦUM

SH ΦMD
DN

bi,u,ga ΦBil
DM ΦUM

SH ΦGD
DN

me,s,me ΦMen
DM ΦSF

SH ΦMD
DN

me,s,ga ΦMen
DM ΦSF

SH ΦGD
DN

me,u,me ΦMen
DM ΦUM

SH ΦMD
DN

me,u,ga ΦMen
DM ΦUM

SH ΦGD
DN

ma,s,me ΦMal
DM ΦSF

SH ΦMD
DN

ma,s,ga ΦMal
DM ΦSF

SH ΦGD
DN

ma,u,me ΦMal
DM ΦUM

SH ΦMD
DN

ma,u,ga ΦMal
DM ΦUM

SH ΦGD
DN

Table 1: Abbreviations of the twelve configurations of the static data model Φstat
Proc used in the drift synthesis experiments.

is attained. Towards that goal, ΦTask is determined during training such that the empirical error

1

N

N

∑
n=1
L (ΦTask(vn), yn) (9)

is minimized over a sample S = ((v1, y1), ..., (vN , yN)) of views. Modelling in the conventional machine learning
setting begins with the image data generating random variable (V , Y ) = (ΦProc(XRAW ), Y ) and the target distribution
Dt = P ○ (V , Y )−1. Given a dataset drift Ds = P ○ (Ṽ , Y )−1 /= Dt, as specified in Equation (1), without a data model we
have little recourse to disentangle reasons for performance drops in ΦTask. To alleviate this underspecification, an explicit
data model is needed. We consider two such models in this study: a static model Φstat

Proc and a parametrized model Φpara
Proc.

In the following, we denote by xRAW ∈ [0,1]H,W the normalized raw image, that is a grey scale image with a Bayer filter
pattern normalized by 216 − 1, i.e.

xRAW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,1 . . . A1,W2
. . .
. . .
. . .

AH
2 ,1 . . . AH

2 ,W2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with Ah,j = [
r2h+1,2w+1 g2h+1,2w
g2h,2w+1 b2h,2w

] , (10)

where the values r2h+1,2w+1, g2h+1,2w, g2h,2w+1, b2h,2w correspond to the values measured through the different sensors and
normalized by 216 − 1. We provide here a precise description of the transformations that we consider in our static model
Φstat

Proc, followed by a description how to convert this static model into a differentiable, parametrized model Φpara
Proc.

B.1.1. THE STATIC DATA MODEL ΦSTAT
PROC

Following common steps in ISP, the static data model is defined as the composition

Φstat
Proc =ΦGC ○ΦDN ○ΦSH ○ΦCC ○ΦWB ○ΦDM ○ΦBL, (11)

mapping a raw sensor image to a RGB image. We note that other data model variations, for example by reordering or adding
steps, are feasible. The static data models allow the controlled synthesis of different, physically faithful views from the
same underlying raw sensor data by manually changing the configurations of the intermediate steps. Fixing the continuous
features, but varying ΦDM, ΦSH and ΦDN results in twelve different views for the configurations considered here. Samples
for each of the twelve data models are provided in Figure 5. The individual functions of the composition Φstat

Proc can be found
in Appendix B.1.3.
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Figure 5: Samples for both datasets, Raw-Microscopy and Raw-Drone, from all twelve static data models Φstat
Proc used for

the drift synthesis experiments in Section 2.1. A version with higher resolution is omitted here to save space and can instead
be found in Figure 6 in the appendices.

An overview of the data model configurations and their corresponding abbreviations can be found alongside processed
samples in Table 1 and Figure 5.

B.1.2. THE PARAMETRIZED DATA MODEL ΦPARA
PROC

For a fixed raw sensor image, the parametrized data model Φpara
Proc maps from a parameter space Θ to a RGB image. It is

similar to the static data model with the notable difference that each processing step is differentiable wrt. its parameters θ.
This allows for backpropagation of the gradient from the output of the task model ΦTask through the data model ΦProc all the
way back to the raw sensor image xRAW to perform drift forensics and drift adjustments. Hence, we aim to design a data
model Φpara

Proc ∶ RH,W ×Θ→ RC,H,W that is differentiable in θ ∈ Θ satisfying

Φstat
Proc =Φ

para
Proc (⋅,θ

stat) (12)

for some choice of parameters θstat and some fixed configuration of the static pipeline Φstat
Proc. Using the individual functional

components specified in Appendix B.1.4, we define for θ = (θ1, ...,θ7) ∈ Θ the parametrized processing model

Φpara
Proc ∶ [0,1]

3,H,W ×Θ→ [0,1]3,H,W , (xRAW,θ)↦ v (13)

by the composition

v = (Φpara
GC (⋅,θ7) ○Φpara

DN (⋅,θ6) ○Φpara
SH (⋅,θ5) ○Φpara

CC (⋅,θ4) ○Φpara
WB (⋅,θ3) ○Φpara

DM (⋅,θ2) ○Φpara
BL (⋅,θ1)) (xRAW) . (14)

The operations used above are differentiable except for the clipping operation in the GC that is a.e.-differentiable5, since the
set {0,1} of non-differentiable points has measure zero. Assuming in addition that P ((vDN)c,h,w ∈ {0,1}) = 0 holds true
for the entries of vDN results in an a.e.-differentiable processing model. We further say that Φpara

Proc is differentiable, noting
that this holds only a.e. under the aforementioned assumption.

B.1.3. STATIC DATA MODEL ΦSTAT
PROC

If not stated otherwise, writing the equation vc,h,w = ac,h,w + bc,h,w defines vc,h,w for all 1 ≤ c ≤ 3, 1 ≤ h ≤ H and
1 ≤ h ≤W .

Black level correction (BL) removes thermal noise and readout noise generated from the camera sensor. The transformation
is given by

ΦBL ∶ [0,1]H,W → [0,1]H,W ,xRAW ↦ vBL, (15)

5a.e. stands for almost everywhere
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with

(vBL)2h+1,2w+1 = x2h+1,2w+1 − bl1
(vBL)2h,2w+1 = x2h,2w+1 − bl2
(vBL)2h+1,2w = x2h+1,2w − bl3
(vBL)2h,2w = x2h,2w − bl4,

By design of bl ∈ R4, black level correction ensures that vBL is again an element of [0,1]H,W .

Demosaicing (DM) is applied to reconstruct the full RGB color image through interpolation. We use one out of the
three demosaicing algorithms BayerBilinear (ΦBil

DM), Menon2007 (ΦMen
DM ) and Malvar2004 (ΦMal

DM) from the Python package
color-demosaicing and denote this transformation by the map

ΦDM ∶ [0,1]H,W → [0,1]3,H,W ,v ↦ vDM. (16)

White balance (WB) is applied to obtain a neutrally illuminated image. The transformation is given by

ΦWB ∶ [0,1]3,H,W → [0,1]3,H,W ,v ↦ vWB, (17)

where wb ∈ [0,1]3 adjusts the intensities by

(vWB)c,h,w = wbc ⋅ (vDM)c,h,w. (18)

Color correction (CC) balances the saturation of the image by considering color dependencies. Let M ∈ R3,3 be the color
matrix. The transformation is defined by

ΦCC ∶ [0,1]3,H,W → R3,H,W ,v ↦ vCC, (19)

where

vCC =
⎡⎢⎢⎢⎢⎢⎣

(vCC)1,h,w
(vCC)2,h,w
(vCC)3,h,w

⎤⎥⎥⎥⎥⎥⎦
=M

⎡⎢⎢⎢⎢⎢⎣

(vWB)1,h,w
(vWB)2,h,w
(vWB)3,h,w

⎤⎥⎥⎥⎥⎥⎦
. (20)

The entries of the resulting vCC are no longer restricted to [0,1].
Sharpening (SH) reduces the blurriness of an image. We use the two methods sharpening filter (ΦSF

SH) and unsharp
masking (ΦUM

SH ) that are applied after a transformation of the view vCC to the Y UV -color space. To convert the view to the
Y UV -color space we use the skimage.color function rgb2yuv (ΦY UV ). The sharpening filter

SF ∶ R3,H,W → R3,H,W , (21)

is defined by a channel-wise convolution

(SF (v))c,h,w = ((vc ⋆ k)h,w)c with k ∶=
⎡⎢⎢⎢⎢⎢⎣

0 −1 0
−1 5 −1
0 −1 0

⎤⎥⎥⎥⎥⎥⎦
(22)

of the view
v =ΦY UV (vCC). (23)

For unsharp masking we use the ski.filters function unsharp_mask modeled by UM . To formally define the
sharpening we write

ΦSH ∶ R3,H,W → R3,H,W ,v ↦ vSH (24)

where
vSH = algo ○ΦY UV (vCC) with algo ∈ {SH,UM}. (25)

https://colour-demosaicing.readthedocs.io/en/latest/generated/colour_demosaicing.demosaicing_CFA_Bayer_bilinear.html#colour_demosaicing.demosaicing_CFA_Bayer_bilinear
https://colour-demosaicing.readthedocs.io/en/latest/generated/colour_demosaicing.demosaicing_CFA_Bayer_Menon2007.html#colour_demosaicing.demosaicing_CFA_Bayer_Menon2007
https://colour-demosaicing.readthedocs.io/en/latest/generated/colour_demosaicing.demosaicing_CFA_Bayer_Malvar2004.html#colour_demosaicing.demosaicing_CFA_Bayer_Malvar2004
https://colour-demosaicing.readthedocs.io/en/latest/colour_demosaicing.bayer.html
https://scikit-image.org/docs/dev/api/skimage.color.html
https://scikit-image.org/docs/dev/api/skimage.color.html#skimage.color.rgb2yuv
https://scikit-image.org/docs/stable/api/skimage.filters.html
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.unsharp_mask
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Denoising (DN) reduces the noise in an image that is (partly) introduced by SH and transforms the Y UV -color space view
back to the RGB-color space. For the latter transformation, the skimage.color function yuv2rgb (Φ−1Y UV ) is used.
We apply one out of the two methods Gaussian denoising (ΦGD

DN) and Median denoising (ΦGD
DN). For Gaussian denoising, we

apply a Gaussian filter (GF) with standard deviation of σ = 0.5 from the scipy.ndimage package. For median denoising
we apply a median filter (MF of size 3 from the scipy.ndimage package. Formally, this reads as

ΦDN ∶ R3,H,W → R3,H,W ,v ↦ vDN (26)

where
vDN =Φ−1Y UV ○ algo(vSH) with algo ∈ {GF,UM}. (27)

Gamma correction (GC) equilibrates the overall brightness of the image. First, the entries of the view vDN are clipped to
[0,1] leading to

(vCP )c,h,w = (vDN)c,h,w 1{0≤(vDN)c,h,w≤1} + 1{(vDN)c,h,w>1}. (28)

Second, the brightness adjusting transformation is defined by

ΦGC ∶ R3,H,W → [0,1]3,H,W ,v ↦ vGC = (vCP )
1
γ (29)

for some γ > 0 applied element-wise. Note that zero-clipping is necessary for vGC to be well-defined.

In total, we define the composition
Φstat

Proc ∶ [0,1]H,W ↦ [0,1]3,H,W (30)

of the above steps
Φstat

Proc ∶=ΦGC ○ΦDN ○ΦSH ○ΦCC ○ΦWB ○ΦDM ○ΦBL (31)

and call Φstat
Proc the static pipeline.

https://scikit-image.org/docs/dev/api/skimage.color.html
https://scikit-image.org/docs/dev/api/skimage.color.html#skimage.color.yuv2rgb
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html
https://docs.scipy.org/doc/scipy/reference/reference/ndimage.html#module-scipy.ndimage
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter
https://docs.scipy.org/doc/scipy/reference/reference/ndimage.html#module-scipy.ndimage
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Figure 6: Samples for both datasets, Raw-Microscopy and Raw-Drone, from all twelve pipelines used in the drift synthesis
experiments. The legend for abbreviations can be found in Table 1.
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B.1.4. PARAMETRIZED DATA MODEL ΦPARA
PROC

Black level correction (BL) For the parametrized black level correction define the map

Φstat
BL ∶ [0,1]H,W ×R4 → RH,W , (xRAW,θ1)↦ vBL =ΦBL(xRAW)∣bl=θ1 . (32)

and set Θ1 ∶= R4.

Demosaicing (DM) We first convert vBL to a three channel image [R,G,B] ∈ R3,H,W where the entries of R,G and B
are zero except

R2h+1,2w+1 = vBL2h+1,2w+1
, B2h,2w = vBL2h,2w

,

G2h+1,2w = vBL2h+1,2w
, G2h,2w+1 = vBL2h,2w+1

.

To parametrize ΦBil
DM define the map

Φpara
DM ∶ [0,1]H,W ×R3,3,3 → R3,H,W , (vBL,θ2)↦ vDM (33)

with θ2 = [k1,k2,k3], where the kernels k1,k2,k3 ∈ R3,3 are separately applied to each color channel resuling in

vDM1,h,w
= (R ⋆ k1)h,w

vDM2,h,w
= (G ⋆ k2)h,w

vDM3,h,w
= (B ⋆ k3)h,w .

The source code of BayerBilinear shows that the parameter choice

k1 = k3 =
⎡⎢⎢⎢⎢⎢⎣

0 0.25 0
0.25 1 0.25
0 0.25 0

⎤⎥⎥⎥⎥⎥⎦
and k2 =

⎡⎢⎢⎢⎢⎢⎣

0.25 0.5 0.25
0.5 1 0.5
0.25 0.5 0.25

⎤⎥⎥⎥⎥⎥⎦
(34)

leads to
ΦBil

DM =Φ
para
DM(⋅,θ2). (35)

Towards the definition of the parameter space set Θ2 ∶= R3,3,3 ×Θ1.

White balance (WB) For the parametrized white balance define the map

Φpara
WB ∶ R3,H,W ×R3 → R3,H,W , (vDM,θ3)↦ vWB =ΦWB(vDM)∣wb=θ3 (36)

and set Θ3 ∶= R3 ×Θ2.

Color correction (CC) For the parametrized color correction define the map

Φpara
CC ∶ R

3,H,W ×R3,3 → R3,H,W , (vWB,θ4)↦ vCC =ΦCC(vWB)∣M=θ4 (37)

and set Θ4 ∶= R3,3 ×Θ3

Sharpening (SH) We parametrize the sharpening filter configuration of the static pipeline, by using the entries of k ∈ R3,3

defined in (22) as parameters leading to

Φpara
SH ∶ R

3,H,W ×R3,3 → R3,H,W , (vCC,θ5)↦ vSH =ΦSH(vCC)∣k=θ5 (38)

and Θ5 ∶= R3,3 × θ4.

Denoising (DN) We parametrize the configuration where the Gaussian denoising method is applied. Applying the Gaussian
filter from scipy.ndimage with σ = 0.5 is equivalent to a convolution of the view in the Y UV -color space with a
specific kgauss ∈ R5,5. For the specific values of kgauss see K_BLUR at the code of the parametrized pipeline. Therefore, to
parametrize DN we define the map

Φpara
DN ∶ R3,H,W ×R5,5 → R3,H,W , (vSH,θ6)↦ vDN =ΦDN(vSH)∣kgauss=θ6 (39)

https://colour-demosaicing.readthedocs.io/en/latest/_modules/colour_demosaicing/bayer/demosaicing/bilinear.html#demosaicing_CFA_Bayer_bilinear
https://colour-demosaicing.readthedocs.io/en/latest/generated/colour_demosaicing.demosaicing_CFA_Bayer_bilinear.html#colour_demosaicing.demosaicing_CFA_Bayer_bilinear
https://docs.scipy.org/doc/scipy/reference/ndimage.html
https://anonymous.4open.science/r/cvpr2022-submission4471/processing/pipeline_torch.py
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and set Θ6 ∶= R5,5 ×Θ5

Gamma correction (GC) Define the parametrized gamma correction by

Φpara
GC ∶ R

3,H,W ×R→ [0,1]3,H,W , (vDN,θ7)↦ v = vGC =ΦGC(vDN)∣γ=θ7 . (40)

The following values were used to initialize Φpara
Proc (both "Frozen" and "Learned") in experiment Section 2.3:

1 class ParametrizedProcessing(nn.Module):
2 """Differentiable processing pipeline via torch transformations
3

4 Args:
5 camera_parameters (tuple(list), optional): applies given camera parameters in

processing
6 track_stages (bool, optional): whether or not to retain intermediary steps in

processing
7 batch_norm_output (bool, optional): adds a BatchNorm layer to the end of the

processing
8 """
9

10 def __init__(self, camera_parameters=None, track_stages=False, batch_norm_output=True)
:

11 super().__init__()
12 self.stages = None
13 self.buffer = None
14 self.track_stages = track_stages
15

16 if camera_parameters is None:
17 camera_parameters = DEFAULT_CAMERA_PARAMS
18

19 black_level, white_balance, colour_matrix = camera_parameters
20

21 self.black_level = nn.Parameter(torch.as_tensor(black_level))
22 self.white_balance = nn.Parameter(torch.as_tensor(white_balance).reshape(1, 3))
23 self.colour_correction = nn.Parameter(torch.as_tensor(colour_matrix).reshape(3, 3)

)
24

25 self.gamma_correct = nn.Parameter(torch.Tensor([2.2]))
26

27 self.debayer = Debayer()
28

29 self.sharpening_filter = nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False)
30 self.sharpening_filter.weight.data[0][0] = K_SHARP.clone()
31

32 self.gaussian_blur = nn.Conv2d(1, 1, kernel_size=5, padding=2, padding_mode=’
reflect’, bias=False)

33 self.gaussian_blur.weight.data[0][0] = K_BLUR.clone()
34

35 self.batch_norm = nn.BatchNorm2d(3, affine=False) if batch_norm_output else None
36

37 self.register_buffer(’M_RGB_2_YUV’, M_RGB_2_YUV.clone())
38 self.register_buffer(’M_YUV_2_RGB’, M_YUV_2_RGB.clone())
39

40 self.additive_layer = None

where
1 K_G = torch.Tensor([[0, 1, 0],
2 [1, 4, 1],
3 [0, 1, 0]]) / 4
4

5 K_RB = torch.Tensor([[1, 2, 1],
6 [2, 4, 2],
7 [1, 2, 1]]) / 4
8

9 M_RGB_2_YUV = torch.Tensor([[0.299, 0.587, 0.114],
10 [-0.14714119, -0.28886916, 0.43601035],
11 [0.61497538, -0.51496512, -0.10001026]])
12 M_YUV_2_RGB = torch.Tensor([[1.0000000000e+00, -4.1827794561e-09, 1.1398830414e+00],
13 [1.0000000000e+00, -3.9464232326e-01, -5.8062183857e-01],
14 [1.0000000000e+00, 2.0320618153e+00, -1.2232658220e-09]])
15

16 K_BLUR = torch.Tensor([[6.9625e-08, 2.8089e-05, 2.0755e-04, 2.8089e-05, 6.9625e-08],
17 [2.8089e-05, 1.1332e-02, 8.3731e-02, 1.1332e-02, 2.8089e-05],
18 [2.0755e-04, 8.3731e-02, 6.1869e-01, 8.3731e-02, 2.0755e-04],
19 [2.8089e-05, 1.1332e-02, 8.3731e-02, 1.1332e-02, 2.8089e-05],
20 [6.9625e-08, 2.8089e-05, 2.0755e-04, 2.8089e-05, 6.9625e-08]])
21 K_SHARP = torch.Tensor([[0, -1, 0],
22 [-1, 5, -1],
23 [0, -1, 0]])
24 DEFAULT_CAMERA_PARAMS = (
25 [0., 0., 0., 0.],
26 [1., 1., 1.],
27 [1., 0., 0., 0., 1., 0., 0., 0., 1.],
28 )

Note that the camera parameters are camera, and conversely in our case dataset, dependent and defined in the dataset classes.
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B.2. Description of the task models ΦTask

Two task models are employed in the experiments. For the classification task on the Raw-Microscopy dataset a 18-
layer residual net (ResNet18) [30] was used as reference task model. To segment cars from the Raw-Drone dataset the
convolutional neural network proposed in [72] (U-Net) was used. Both task models were trained using common data
augmentations on processed views v of the image measurements to avoid naive robustness failures. A detailed description
of the task models and their hyperparameters is given below.

Classification Segmentation

Φ
Ta

sk

ResNet18 based on [30] U-Net++ based on [72]
trained with Adam [39] for 100 epochs trained with Adam for 100 epochs
learning rate: 10−4 learning rate: 7.5 ⋅ 10−5
mini-batch size: 128 mini-batch size: 12

Table 2: Summary of the training procedure for both task models.

Table 3: A set of random test samples for the segmentation task under learned processing. Top row: Targets, middle row:
predictions of the task model after the first epoch, last row: predictions of the task model after the last epoch.

ResNet18 This model is designed to classify images from ImageNet [76] and has therefore an output dimension of 1000. In
order to use the model to classify images from Raw-Microscopy, we changed the output dimension of the fully-connected
layer to nine. The model was trained for 100 epochs using pre-trained ResNet features. Hyperparameters were kept
constant across all runs to isolate the effect of varying image processing pipelines. For implementation the code provided
at https://pytorch.org/hub/pytorch_vision_resnet/ was used. The model consists of 34 layers with
approximately 11.2 million trainable parameters. The storage size of the model is 44.725 MB.

U-Net++ The model was trained for 100 epochs using pretrained ResNet features as the encoder of the U-Net++. Hyperpa-
rameters were kept constant across all runs to isolate the effect of varying image processing pipelines. For implementation
we used the code provided at https://github.com/qubvel/segmentation_models.pytorch. The model

https://pytorch.org/hub/pytorch_vision_resnet/
https://github.com/qubvel/segmentation_models.pytorch
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has approximately 26.1 million trainable parameters. The storage size of the model is 104.315 MB.

Raw training In the drift optimization experiments of Section 2.3 the raw data is demosaiced using class
RawToRGB(nn.Module) from /processing/pipeline_torch.py in the data model code. Then task mod-
els are tuned to raw data under the same regimes described above.

For a summary of the training procedure see Table 2.

/processing/pipeline_torch.py
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B.3. Additional results

B.3.1. DRIFT SYNTHESIS

1 Drift synthesis with Φstat
Proc: Drone

Figure 7: 5-fold cross-validation results of the Raw-Drone drift synthesis experiments. Each cell contains the average
IoU with a color coded border for the standard deviation. Task models were trained on the data model on the vertical axis
and then tested on processed data as indicated on the horizontal axis. Numbers 1-3 left to the vertical axis denote the
ranking of task models according to their average IoU across all test pipelines respective corruptions. Stars denote the train
pipeline under which the task model performed best on the respective test pipeline/corruption. Full ranking results can be
found in Tables 5, 8 and 9 of Appendix B.3. Left: Varying the data model leads to mixed performance drops. Diagonal is
ΦProc = Φ̃Proc. Right: Comparison to the corruption benchmark at medium severity (level 3). The average performance drop
is more than four times higher compared to data model variations. First column is ΦProc = Φ̃Proc. Bottom: Visual inspection
of worst case (globally worst scoring) train/test pipelines.
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Microscopy Drone
Average accuracy Average IoU

Learned (low) 0.75 ± 0.09 0.59 ± 0.05
Frozen (low) 0.54 ± 0.21 0.59 ± 0.05
Learned (high) 0.78 ± 0.08 0.74 ± 0.04
Frozen (high) 0.67 ± 0.14 0.71 ± 0.05
Direct raw 0.75 ± 0.07 0.60 ± 0.07

Table 4: Tabular summary of the drift optimization results. The average accuracy and standard deviations over cross-
validation runs and training steps are displayed, summarizing both the stability and converge trajectory for each setting.

Microscopy-ISP Microscopy-CC Drone-ISP Drone-CC
Rank Train pipeline Avg. score Train pipeline Avg. score Train pipeline Avg. score Train pipeline Avg. score

1 ma,s,me 0.83 bi,u,me 0.63 ma,u,ga 0.68 ma,s,ga 0.60
2 ma,u,me 0.83 me,s,me 0.63 bi,s,ga 0.68 bi,s,ga 0.57
3 ma,u,ga 0.82 bi,u,ga 0.62 bi,s,me 0.67 me,s,ga 0.57
4 bi,s,me 0.81 ma,s,me 0.62 ma,s,me 0.67 ma,s,me 0.55
5 bi,u,me 0.81 me,u,me 0.62 me,u,ga 0.67 me,s,me 0.55
6 me,s,me 0.81 ma,s,ga 0.62 me,u,me 0.67 ma,u,ga 0.55
7 bi,s,ga 0.81 ma,u,me 0.61 ma,u,me 0.66 bi,s,me 0.54
8 me,s,ga 0.80 me,s,ga 0.60 ma,s,ga 0.66 ma,u,me 0.54
9 me,u,me 0.80 bi,s,me 0.59 bi,u,me 0.65 me,u,me 0.53
10 ma,s,ga 0.80 ma,u,ga 0.59 me,s,me 0.65 me,u,ga 0.51
11 bi,u,ga 0.79 bi,s,ga 0.58 me,s,ga 0.64 bi,u,me 0.48
12 me,u,ga 0.79 me,u,ga 0.58 bi,u,ga 0.61 bi,u,ga 0.46

Table 5: Rankings of task models from Section 2.1 trained on different data models (columns 2, 4, 6, 8) according to
their average accuracy or IoU (columns 3, 5, 7, 9) across all test pipelines respective corruptions. ISP corresponds to drift
synthesis with physically faithful data models, CC corresponds to common corruptions.

Microscopy-ISP
Rank bi,s,me bi,s,ga bi,u,me bi,u,ga ma,s,me ma,s,ga ma,u,me ma,u,ga me,s,me me,s,ga me,u,me me,u,ga

1 ma,u,me ma,u,me ma,u,ga ma,u,ga ma,s,me ma,u,ga ma,u,ga ma,u,ga ma,u,me me,s,ga ma,u,ga ma,u,ga
2 ma,u,ga ma,u,ga bi,s,ga bi,s,ga bi,s,me me,s,ga ma,s,me ma,u,me ma,s,me ma,u,ga ma,u,me ma,u,me
3 bi,s,ga bi,s,ga ma,s,me ma,s,me bi,u,ga ma,s,ga ma,u,me ma,s,me bi,s,ga ma,s,ga ma,s,me ma,s,me
4 ma,s,me ma,s,me ma,u,me ma,u,me ma,u,me ma,s,me bi,s,ga me,u,me me,s,ga me,u,ga me,u,me me,u,me
5 bi,s,me bi,u,me me,u,me me,u,me bi,u,me ma,u,me me,u,me ma,s,ga bi,u,me me,s,me bi,s,ga bi,s,ga
6 bi,u,me me,u,me bi,u,me bi,u,me ma,u,ga me,s,me me,s,ga bi,s,ga ma,u,ga ma,u,me me,u,ga me,u,ga
7 me,s,me bi,s,me bi,s,me me,s,me me,s,me me,u,me me,s,me me,s,ga me,u,me ma,s,me me,s,me me,s,me
8 me,s,ga me,s,me me,s,me bi,u,ga bi,s,ga bi,u,me ma,s,ga me,s,me me,s,me me,u,me bi,s,me bi,s,me
9 me,u,me me,s,ga bi,u,ga bi,s,me me,s,ga me,u,ga bi,u,me bi,u,me bi,s,me bi,s,me me,s,ga me,s,ga
10 ma,s,ga ma,s,ga ma,s,ga ma,s,ga ma,s,ga bi,s,me bi,s,me bi,s,me ma,s,ga bi,s,ga ma,s,ga ma,s,ga
11 bi,u,ga me,u,ga me,u,ga me,s,ga me,u,ga bi,s,ga me,u,ga me,u,ga me,u,ga bi,u,me bi,u,me bi,u,me
12 me,u,ga bi,u,ga me,s,ga me,u,ga me,u,me bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga

Table 6: Ranking of task models from Section 2.1 trained under different train pipelines (rows) for each individual test
pipeline (columns 2 - 13).

Microscopy-CC
Rank identity gauss noise shot impulse speckle gauss blur zoom contrast brightness saturate elastic

1 ma,u,me ma,u,me bi,u,me bi,u,me ma,s,ga bi,s,ga bi,s,ga bi,s,ga me,s,me ma,s,me bi,s,ga
2 ma,u,ga ma,s,ga ma,s,ga me,u,me bi,u,me ma,u,me ma,u,ga bi,u,ga ma,s,me me,u,me ma,u,ga
3 bi,s,ga me,u,me me,s,me bi,u,ga me,s,me ma,u,ga ma,s,me me,u,ga bi,u,ga me,s,me ma,u,me
4 me,s,me me,s,ga ma,u,me me,s,me me,u,me bi,u,me ma,u,me ma,s,me ma,s,ga bi,u,ga ma,s,me
5 ma,s,me bi,u,me me,s,ga ma,s,me bi,u,ga me,u,me bi,u,me ma,u,me bi,s,me bi,s,ga me,u,me
6 me,u,me ma,u,ga me,u,me ma,u,me ma,s,me ma,s,me me,s,me bi,s,me bi,u,me bi,u,me me,s,ga
7 me,s,ga me,s,me bi,s,me ma,u,ga ma,u,me me,s,ga bi,u,ga bi,u,me me,s,ga ma,u,ga me,s,me
8 bi,u,me bi,s,me bi,u,ga me,s,ga me,s,ga ma,s,ga me,u,ga me,s,me ma,u,ga ma,s,ga bi,u,ga
9 bi,u,ga ma,s,me ma,s,me me,u,ga bi,s,me me,s,me me,u,me ma,s,ga me,u,ga bi,s,me bi,u,me
10 ma,s,ga bi,u,ga ma,u,ga ma,s,ga ma,u,ga bi,u,ga me,s,ga ma,u,ga bi,s,ga me,s,ga ma,s,ga
11 bi,s,me bi,s,ga bi,s,ga bi,s,me me,u,ga bi,s,me ma,s,ga me,u,me me,u,me me,u,ga me,u,ga
12 me,u,ga me,u,ga me,u,ga bi,s,ga bi,s,ga me,u,ga bi,s,me me,s,ga ma,u,me ma,u,me bi,s,me

Table 7: Ranking of task models from Section 2.1 trained under different train pipelines (rows) for each individual test
corruptions (columns 2 - 12).
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Drone-ISP
Rank bi,s,me bi,s,ga bi,u,me bi,u,ga ma,s,me ma,s,ga ma,u,me ma,u,ga me,s,me me,s,ga me,u,me me,u,ga

1 bi,s,me bi,s,ga bi,u,me bi,u,me ma,u,ga ma,s,ga ma,u,ga ma,u,ga ma,s,me ma,s,ga ma,u,ga ma,u,ga
2 bi,u,me bi,s,me bi,s,me bi,s,me ma,s,me me,s,ga me,u,me me,u,me ma,s,ga me,s,ga me,u,me me,u,ga
3 ma,u,ga ma,u,ga bi,u,ga bi,u,ga bi,s,ga ma,s,me ma,u,me ma,u,me ma,u,ga ma,s,me ma,s,me me,u,me
4 bi,s,ga ma,s,me ma,u,ga ma,u,ga me,u,ga me,s,me bi,s,me bi,s,me bi,s,ga me,s,me me,u,ga ma,s,me
5 me,u,me me,u,ga me,u,me me,u,me ma,s,ga bi,s,ga ma,s,me ma,s,me me,u,ga bi,s,ga ma,u,me ma,u,me
6 bi,u,ga ma,s,ga bi,s,ga bi,s,ga ma,u,me ma,u,ga bi,s,ga bi,s,ga me,s,me ma,u,ga bi,s,me bi,s,me
7 ma,s,me ma,u,me ma,u,me ma,u,me me,u,me me,u,ga me,u,ga me,u,ga me,s,ga me,u,ga bi,u,me bi,s,ga
8 me,u,ga me,s,ga ma,s,me ma,s,me me,s,me me,u,me bi,u,me bi,u,me me,u,me me,u,me bi,s,ga bi,u,me
9 ma,u,me me,u,me me,u,ga me,u,ga bi,s,me ma,u,me bi,u,ga ma,s,ga ma,u,me ma,u,me me,s,me ma,s,ga
10 me,s,me me,s,me me,s,me me,s,me me,s,ga bi,s,me ma,s,ga me,s,me bi,s,me bi,s,me bi,u,ga me,s,me
11 ma,s,ga bi,u,me me,s,ga ma,s,ga bi,u,me bi,u,me me,s,me bi,u,ga bi,u,me bi,u,me ma,s,ga bi,u,ga
12 me,s,ga bi,u,ga ma,s,ga me,s,ga bi,u,ga bi,u,ga me,s,ga me,s,ga bi,u,ga bi,u,ga me,s,ga me,s,ga

Table 8: Ranking of task models from Section 2.1 trained under different train pipelines (rows) for each individual test
pipeline (columns 2 - 13).

Drone-CC
Rank identity gauss noise shot impulse speckle gauss blur zoom contrast brightness saturate elastic

1 ma,s,ga ma,s,ga ma,s,ga ma,s,ga ma,s,ga ma,s,ga bi,s,me bi,s,ga bi,s,ga ma,s,ga ma,s,ga
2 bi,s,ga me,s,ga me,s,ga me,s,ga me,s,ga bi,s,ga ma,s,ga ma,s,ga ma,s,ga ma,s,me ma,u,ga
3 me,s,ga bi,s,ga bi,s,ga me,s,me bi,s,ga ma,s,me bi,s,ga me,s,me ma,s,me ma,u,ga ma,s,me
4 ma,s,me me,s,me ma,s,me bi,s,ga ma,s,me ma,u,ga me,s,ga ma,s,me me,s,me me,u,ga bi,s,ga
5 ma,u,ga ma,u,ga me,s,me ma,u,ga me,s,me bi,u,me ma,u,me bi,s,me ma,u,me me,s,ga bi,s,me
6 bi,s,me ma,u,me ma,u,ga ma,u,me ma,u,ga bi,s,me me,s,me ma,u,me ma,u,ga bi,s,ga bi,u,me
7 me,u,ga me,u,me ma,u,me me,u,me bi,s,me me,s,ga ma,s,me ma,u,ga me,u,me bi,s,me me,s,ga
8 bi,u,me ma,s,me bi,s,me ma,s,me ma,u,me ma,u,me bi,u,me me,s,ga bi,s,me me,s,me me,u,me
9 ma,u,me bi,s,me me,u,me bi,s,me me,u,me me,u,me me,u,me bi,u,me me,u,ga me,u,me me,u,ga
10 me,u,me me,u,ga me,u,ga me,u,ga me,u,ga me,s,me bi,u,ga bi,u,ga me,s,ga bi,u,me me,s,me
11 me,s,me bi,u,me bi,u,me bi,u,me bi,u,me me,u,ga ma,u,ga me,u,ga bi,u,me ma,u,me ma,u,me
12 bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga me,u,ga me,u,me bi,u,ga bi,u,ga bi,u,ga

Table 9: Ranking of task models from Section 2.1 trained under different train pipelines (rows) for each individual test
corruptions (columns 2 - 12).
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Figure 8: Experiment from Section 2.1 with weak severity (level 1) for the Common corruptions benchmark.
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Figure 9: Experiment from Section 2.1 with strong severity (level 5) for the Common corruptions benchmark.
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Figure 10: Experiment from Section 2.1 with weak severity (level 1) for the Common corruptions benchmark.
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ISP Common corruptions benchmark [31]
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Figure 11: Experiment from Section 2.1 with strong severity (level 5) for the Common corruptions benchmark.
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Figure 12: A comparative overview of the physically faithful data models (ISPs, top-left) and the Common Corruptions
(CC, top-right) used in the the drift synthesis experiments of Section 2.1. A matching heuristic based on possible visual
perception of the drift artifacts (top-middle) is provided for readers who would like to relate specific data models to specific
corruptions. However, we emphasize that this is a purely qualitative heuristic and has no metrological basis. Since CCs are
not physically faithful it is not clear how to relate them to actual variations in the optical data generating process. Finally,
corruptions that were excluded from the experiments in Section 2.1 are displayed (bottom). The CC examples where stitched
from the original paper [32] for authenticity.
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Augmentation testing Catalogue testing Data models

Simulation of test samples ✓ ✗ ✓
Physically faithful test samples ✗ ✓ ✓
Differentiable data model ✗ ✗ ✓

Table 10: Comparison of empirical dataset drift validation methods. Augmentation testing enables ad-hoc test case synthesis
but lacks physical faithfulness, unlike catalogue testing. Pairing raw data with data models allows for synthesis of physically
faithful test cases, and differentiable data models offer novel drift controls like drift forensics and adjustments.

B.4. Related work

While physically sound data models of images have to the best of our knowledge not yet found their way into the machine
learning and dataset drift literature, they have been studied in other disciplines, in particular physical optics and metrology.
Our ideas on data models and dataset drift controls we present in this manuscript are particularly indebted to the following
works.

Data models for images [87; 69] employ deep convolutional neural networks for modelling a raw image data processing
which is optimized jointly with the task model. In contrast, we employ a parametric data model with tunable parameters that
enables the modular drift forensics and synthesis presented later. [94] propose a differentiable image processing pipeline for
the purpose of camera lens manufacturing. Their goal, however, is to optimize a physical component (lens) in the image
acquisition process and no code or data is publicly available. Existing software packages that provide low level image
processing operations include Halide [68], Kornia [70] and the rawpy package [81] which can be integrated with our Python
and PyTorch code. We should also take note that outside optical imaging there are areas in machine learning and applied
mathematics, in particular inverse problems such as magnetic resonance imaging (MRI) or computed tomography, that make
use of known operator learning [51; 49] to incorporate the forward model in the optimization [14] or, as in the case of MRI,
learn directly in the k-space [102].

Drift synthesis As detailed in the introduction, the synthesis of realistic drift test cases for a task model in computer vision is
often done by applying augmentations directly to the input view vGC, e.g. a processed .jpeg or .png image. Hendrycks
et al. [31] have done foundational work in this direction developing a practical, standardized benchmark. However, there
is no guarantee that noise ξ added to a processed image v will be physically faithful, i.e. that v + ξ ∈ Φ̃Proc [XRAW].
This is problematic, as nuances matter [21] for assessing the cascading effects data models have on the task model ΦTask
downstream [5; 77]. For the same reason, the use of generative models [25] like GANs has been limited for test data
generation as they are known to hallucinate visible and less visible artifacts [17; 80]. Other approaches, like the WILDS
data catalogue [9; 41], build on manual curation of so called natural distribution shifts, or, like [84], on artificial worst case
constructions. These are important tools for the study of dataset drifts, especially those that are created outside the camera
image signal processing. Absent explicit, differentiable data models and raw sensor data, the shared limitation of catalogue
approaches is that metrologically faithful drift synthesis is not possible and the data generating process cannot be granularly
studied and manipulated.

Drift forensics Phan et al. [65] use a differentiable raw processing pipeline to propagate the gradient information back to the
raw image. Similar to this work, the signal is used for adversarial search. However, Phan et al. optimize adversarial noise on
a per-image basis in the raw space xRAW, whereas our work modifies the parameters of the data model ΦProc itself in pursuit
of harmful parameter configurations. The goal in this work is not simply to fool a classifier, but to discover failure modes
and susceptible parameters in the data model ΦProc that will have the most influence on the task model’s performance.

Drift optimization An explicit and differentiable image processing data model allows joint optimization together with
the task model ΦProc. This has been done for radiology image data [71; 86; 50] though the measurement process there
is different and the focus lies on finding good sampling patterns. For optical data, a related strand of work is modelling
inductive biases in the image acquisition process which is explained and contrasted to this work above [94; 35].

Raw image data Camera raw files contain the data captured by the camera sensors [7]. In contrast to processed formats
such as .jpeg or .png, raw files contain the sensor data with minimal processing [96; 58; 46]. The processing of the raw
data usually differs by camera manufacturer thus contributing to dataset drift. Existing raw data sets from the machine
learning, computer vision and optics literature can be organized into two categories. First, datasets that are sometimes
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treated - usually not by the creators but by users of the data - as raw data but which are in fact not raw. Examples for this
category can be found for both modalities considered here [11; 18; 3; 33; 12; 95; 22; 48; 53; 82; 103]. All of the preceding
examples are processed and stored in formats including .jpeg, .tiff, .svs, .png, .mp4 and .mov. Second, datasets
that are labelled raw data which are raw. In contrast to the labelled and precisely calibrated raw data presented here, existing
raw datasets [19; 15; 1; 29] are collected from various sources for image enhancement tasks without full specification of the
measurement conditions or labels for classification or segmentation tasks.
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Figure 13: Processed samples and labels of the two datasets, Raw-Microscopy (columns one to four) and Raw-Drone
(columns five and eight), that were acquired for the dataset drift study presented here.

B.5. Datasets details

B.5.1. DATA ACQUISITION

In the following, core information on the two acquired datasets is provided. In Appendix B.5.2 you can also find detailed
datasheets for both datasets, following the documentation good practices introduced by [24].

Raw-Microscopy Assessment of blood smears under a light microscope is a key diagnostic technique for many healthcare
services such as cancer treatment and kidney failure as well as blood disorder detection [6]. The creation of image datasets
and machine learning models on them has received wide interest in recent years [43; 56; 4]. Variations in the image
processing can affect the downstream task model performance [91]. Dataset drift controls can thus help to specify the
perimeter of safe application for a task model. A raw dataset was collected for that purpose. A bright-field microscope was
used to image blood smear cytopathology samples. The light source is a halogen lamp equipped with a 0.55 NA condenser,
and a pre-centred field diaphragm unit. Filters at 450 nm, 525 nm and 620 nm were used to acquire the blue, green and red
channels respectively. The condenser is followed by a 40× objective with 0.95 NA (Olympus UPLXAPO40X). Slides can
be moved via a piezo with 1 nm spatial resolution, in three directions. Focus was achieved by maximizing the variance of
the pixel values6. Images are acquired at 16 bit, with a 2560 × 2160 pixels CMOS sensor (PCO edge 5.5). The point-spread
function (PSF) was measured to be 450 nm with 100 nm nanospheres. Mechanical drift was measured at 0.4 pixels per
hour. Imaging was performed on de-identified human blood smear slides (Ma190c Lieder, J. Lieder GmbH & Co. KG,
Ludwigsburg/Germany). All slides were taken from healthy humans without known hematologic pathology. Imaging regions
were selected to contain single leukoytes in order to allow unique labelling of image patches, and regions were cropped to
256 × 256 pixels. All images were annotated by a trained hematological cytologist using the standard scheme of normal
leukocytes comprising band and segmented neutrophils, typical and atypical lymphocytes, monocytes, eosinophils and
basophils [47]. To soften class imbalance, candidates for rare normal leukocyte types were preferentially imaged, and enrich
rare classes. Additionally, two classes for debris and smudge cells, as well as cells of unclear morphology were included.
Labelling took place for all imaged cells from a particular smear at a time, with single-cell patches shown in random order.
Raw images were extracted using JetRaw Data Suite features. Blue, red and green channels are metrologically rescaled
independently in intensity to simulate a standard RGB camera condition. Some pixels are discarded complementary on each
channel in order to obtain a Bayer filter pattern.

Raw-Microscopy for segmentation comes with 940 raw images, twelve differently processed variants totaling 11280 images
and six additional raw intensity levels totaling 5640 samples.

Raw-Drone Automated processing of drone data has useful applications including precision agriculture [42] or environmen-
tal protection [36]. Variation in image processing has been shown to affect task model performance [52; 96], underlining
the need for drift controls. For the purposes of this study, a raw car segmentation dataset was created for the drone image
modality. A DJI Mavic 2 Pro Drone was used, equipped with a Hasselblad L1D-20c camera (Sony IMX183 sensor)
having 2.4 µm pixels in Bayer filter array. The lens has a focal length of 10.3mm. The f-number was set to N = 8, to
emulate the PSF circle diameter relative to the pixel pitch and ground sampling distance (GSD) as would be found on
images from high-resolution satellites. The PSF was measured to have a circle diameter of 12.5 µm. This corresponds to a
diffraction-limited system, within the uncertainty dominated by the wavelength spread of the image. Images were taken at
200 ISO, a gain of 0.528DN/e−. The 12-bit pixel values are however left-justified to 16-bits, so that the gain on the 16-bit

6Figure 14 in Appendix B.5.1 provides an illustration of the imaging setup.
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Figure 14: (a) An illustration of the imaging setup. (b) Datasets visualization. (Top-left) RGB raw microscopy classes are
shown. (Top-right) Drone raw images are shown with the segmentation mask applied over it. (Bottom) Different intensity
realizations are shown for the microscopy case. Images on the top are directly print out in the same scale of the original
image. Images in the bottom row are normalized on their own min and max values to highlight the role of noise levels on
low intensity images.

Composition of Raw-Microscopy

Type of instances Image and label
Objects on images White blood cells
Type of classes Morphological classes
Number of instances 940
Number of classes 9
Image size 256 by 256 pixels
Image format .tif
Raw image format Please see Section 1.1

Class Proportion in %

Basophil (BAS) 1.91
Eosinophil (EOS) 5.74
Smudge cell / debris (KSC) 17.34
atypical Lymphocyte (LYA) 3.19
typical Lymphocyte (LYT) 24.47
Monocyte (MON) 20.32
Neutrophil (band) (NGB) 0.85
Neutrophil (segmented) (NGS) 22.98
Image that could not be assigned a class (UNC) 3.19

Composition of Raw-Drone

Type of instances Image and mask
Objects on images Landscape shots from above
Number of instances 548
Number of original images 12
Image size 256 by 256 pixels
Mask size 256 by 256 pixels
Original image size 3648 by 5472
Image format .tif
Mask format .png
Raw image format .DNG

Table 11: Summaries of the compositions of Raw-Microscopy and Raw-Drone

numbers is 8.448DN/e−. The images were taken at a height of 250m, so that the GSD is 6 cm. All images were tiled in
256 × 256 patches. Segmentation masks were created to identify cars for each patch. From this mask, classification labels
were generated to detect if there is a car in the image. The dataset is constituted by 548 images for the segmentation task.

Raw-Drone for segmentation comes with 548 raw images, twelve differently processed variants totaling 6576 images and
six additional raw intensity levels totaling 3288 samples.



B.5.2. DATASHEETS

We follow the datasheets documentation framework proposed in [24], using the template https://de.overleaf.
com/latex/templates/datasheet-for-dataset-template/jgqyyzyprxth from Christian Garbin.

Datasheet for Raw-Microscopy

Motivation

For what purpose was the dataset created?

With Raw-Microscopy we provide a publicly available raw
image dataset in order to examine the effect of the image
signal processing on the performance and the robustness
of machine learning models. This dataset enables to study
these effects for a supervised multiclass classification task:
the classification of white blood cells (WBCs).

Who created this dataset (e.g., which team, research
group) and on behalf of which entity (e.g., company,
institution, organization)?

This dataset has been created by the Laboratory of Applied
Optics of the Micro-Nanotechnology group at HEPIA/HES-
SO, University of Applied Sciences of Western Switzerland.
Single-cell images were annotated by a trained cytologist.

Who funded the creation of the dataset?

The creation of the dataset has been funded by HEPIA/HES-
SO.

Composition

What do the instances that comprise the dataset repre-
sent (e.g., documents, photos, people, countries)?

An instance is a tuple of an image and a label. The image
shows a human WBCs and the label indicates the morpho-
logical class of this cell. The following eight morphological
classes appear in the dataset: Basophil (BAS), Eosinophil
(EOS), Smudge cell / debris (KSC), atypical Lymphocyte
(LYA), typical Lymphocyte (LYT ), Monocyte (MON), Neu-
trophil (band) (NGB), Neutrophil (segmented) (NGS). The
nith class consists of images that could not be assigned a
class (UNC) during the labeling process.

How many instances are there in total (of each type, if
appropriate)?

The data set consists of 940 instances. For the proportion of
each class in the dataset see table 12.

Does the dataset contain all possible instances or is it
a sample (not necessarily random) of instances from a

larger set?

The dataset does not contain all possible instances. It is
limited to WBC classes normally present in the peripheral
blood of healthy humans. In order to cope with intrinsic
class imbalance in cell distribution, rare cell class candidates
such as Basophils were preferentially imaged.

What data does each instance consist of? “Raw” data
(e.g., unprocessed text or images) or features?

Each instance consists of an image of 256 by 256 pixels.
The image is a raw image in .tiff format.

Is there a label or target associated with each instance?

Each instance is associated to a label, that indicates the
morphological class of the image.

Is any information missing from individual instances?

No information is missing.

Are relationships between individual instances made ex-
plicit (e.g., users’ movie ratings, social network links)?

No, relationships between individuals are not made explicit.

Are there recommended data splits (e.g., training, devel-
opment/validation, testing)?

There are no recommended data splits. All the data splits
that we used for our experiments were randomly picked.

Are there any errors, sources of noise, or redundancies
in the dataset?

To the best of our knowledge, there are no errors in the
dataset. However, a key source of variability between slides
from different laboratories and processing times is stain in-
tensity. The samples used in this work all come from the
same source, hence we assume the preanalytic treatment and
staining protocol to be similar. As all images were obtained
on the same microscopy equipment, focus handling and
illumination are identical for all samples. Image labelling
was performed by one trained morphologist with experi-
ence in hematological routine diagnostics. It is known that
morphology annotations are subject to inter- and intra-rater

https://de.overleaf.com/latex/templates/datasheet-for-dataset-template/jgqyyzyprxth
https://de.overleaf.com/latex/templates/datasheet-for-dataset-template/jgqyyzyprxth


variability. However, as we limit ourselves to normal WBCs
the labeling is expected to be stable.

Is the dataset self-contained, or does it link to or oth-
erwise rely on external resources (e.g., websites, tweets,
other datasets)?

The dataset is self-contained.

Does the dataset contain data that might be considered
confidential (e.g., data that is protected by legal privilege
or by doctor-patient confidentiality, data that includes
the content of individuals non-public communications)?

The dataset consist of medical data, disclosing the morpho-
logical classes of single human WBCs. In principle, the
distribution of cell types conveys information on the health
state of a patient.
However, the subjects in this dataset are fully de-identified,
so that the image data cannot be linked back to the healthy
donors of the scanned blood smears. Furthermore, it is not
disclosed which cell image was taken from which blood
smear, so that no frequencies of individual cell types can
be determined. Additionally, we only consider cell types
present in normal blood, so that no specific hematologic
pathology can be deduced from cell morphologies.

Does the dataset contain data that, if viewed directly,
might be offensive, insulting, threatening, or might oth-
erwise cause anxiety?

No. The dataset does not contain data with any of the above
properties.

Does the dataset relate to people?

Yes. The dataset consist of images of human WBCs.

Does the dataset identify any subpopulations (e.g., by
age, gender)?

The donors of the blood smears used in this dataset are fully
deidentified, and no information on subpipulation composi-
tion is provided.

Is it possible to identify individuals (i.e., one or more
natural persons), either directly or indirectly (i.e., in
combination with other data) from the dataset?

No. It is not possible to identify individuals from an image
of their white blood cells or visa versa.

Does the dataset contain data that might be considered
sensitive in any way (e.g., data that reveals racial or eth-
nic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial

or health data; biometric or genetic data; forms of gov-
ernment identification, such as social security numbers;
criminal history)?

No. While the distribution of cell types for a specific pa-
tient could reveal information about that patient’s health
status, isolated single-cell images of normal leukocytes do
not allow for this inference.

Any other comments?

See table 13 for a summary of the composition of Raw-
Microscopy.

Class Proportion in %

Basophil (BAS) 1.91
Eosinophil (EOS) 5.74
Smudge cell / debris (KSC) 17.34
atypical Lymphocyte (LYA) 3.19
typical Lymphocyte (LYT) 24.47
Monocyte (MON) 20.32
Neutrophil (band) (NGB) 0.85
Neutrophil (segmented) (NGS) 22.98
Image that could not be assigned a class (UNC) 3.19

Table 12: The proportion of the classes in Raw-Microscopy.

Collection Process

How was the data associated with each instance ac-
quired?

Images of the dataset have been acquired directly from a
CMOS imaging sensor. They are in a raw unprocessed
format.

What mechanisms or procedures were used to collect
the data (e.g., hardware apparatus or sensor, manual
human curation, software program, software API)?

Imaging data have been obtained via a custom brightfield
microscope.

If the dataset is a sample from a larger set, what was the
sampling strategy (e.g., deterministic, probabilistic with
specific sampling probabilities)?

Images have 256 × 256 pixel size and have been cropped
from larger images. The dataset corresponds to a selection
of white blood cells in the acquired large images. A sam-
pling strategy aimed at increasing the proportion of rare
classes of white blood cells has been used.

Who was involved in the data collection process (e.g.,
students, crowdworkers, contractors) and how were
they compensated (e.g., how much were crowdworkers
paid)?



A research assistant has been involved in the data collection
process and has been compensated with a monthly salary.

Over what timeframe was the data collected? Does this
timeframe match the creation timeframe of the data as-
sociated with the instances (e.g., recent crawl of old news
articles)?

Data have been collected on a timeframe of two months,
corresponding to the availability of the physical samples to
image. Data have been collected on purpose for this work.

Were any ethical review processes conducted (e.g., by an
institutional review board)?

The microscopy data was purchased from a commercial lab
vendor (J. Lieder GmbH & Co. KG, Ludwigsburg/Germany)
who attained consent from the subjects included.

Does the dataset relate to people?

Yes. The dataset consists of microscopic images of human
white blood cells.

Did you collect the data from the individuals in question
directly, or obtain it via third parties or other sources
(e.g., websites)?

Data have not been obtained via third parties.

Were the individuals in question notified about the data
collection?

As the blood smear slides were bought from a company,
notification to individuals of the data collection has been
performed by the company.

Did the individuals in question consent to the collection
and use of their data?

Yes, they did.

If consent was obtained, were the consenting individuals
provided with a mechanism to revoke their consent in
the future or for certain uses?

We do not know the conditions of consent adopted by the
selling company. However, we believe the company pro-
vided the individuals a complete freedom in revoking their
consent in the future, if desired.

Has an analysis of the potential impact of the dataset and
its use on data subjects (e.g., a data protection impact
analysis) been conducted?

No, this kind of analysis has not been conducted.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data
done (e.g., discretization or bucketing, tokenization, part-
of-speech tagging, SIFT feature extraction, removal of
instances, processing of missing values)?

Intensity scaled images are generated with Jetraw Data Suite
for both datasets, which applies a physical model based on
sensor calibration to accurately simulate intensity reduc-
tion. Microscopy Raw images are extracted from RGB Mi-
croscopy data through a pixel selection from images taken
with three filters, in order to have a Bayer Pattern. Pixels
intensities are rescaled with Jetraw Data Suite to match the
measured transmissivities of a Bayer colour filters array.

Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unantici-
pated future uses)?

Raw images are available in the dataset.

Is the software used to preprocess/clean/label the in-
stances available?

All code used in the experiments of this manuscript is pub-
licly available. Jetraw products that were used for acquiring
the data are commercially available.

Uses

Has the dataset been used for any tasks already?

The dataset has not yet been used.

Is there a repository that links to any or all papers or
systems that use the dataset?

The repository at https://github.com/
aiaudit-org/raw2logit associated to this work,
maintained by Luis Oala.

What (other) tasks could the dataset be used for?

The dataset can be used to study the effect of image signal
processing on the performance and robustness of any other
machine learing model implemented in PyTorch, designed
for a supervised multiclass classification task.

Is there anything about the composition of the dataset
or the way it was collected and preprocessed/cleaned/la-
beled that might impact future uses?

To the best of our knowledge, we do not recognize such
impacts.

https://github.com/aiaudit-org/raw2logit
https://github.com/aiaudit-org/raw2logit


Are there tasks for which the dataset should not be used?

To the best of our knowledge, there are no such tasks.

Distribution

Will the dataset be distributed to third parties outside
of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created?

Yes. The dataset will be publicly available.

How will the dataset will be distributed (e.g., tarball on
website, API, GitHub)

A guide to access the dataset is available at https:
//github.com/aiaudit-org/raw2logit. More-
over, the dataset can be downloaded anonymously and di-
rectly at https://zenodo.org/record/5235536
under the doi: 10.5281/zenodo.5235536.

When will the dataset be distributed?

The dataset is already publicly available.

Will the dataset be distributed under a copyright or
other intellectual property (IP) license, and/or under
applicable terms of use (ToU)?

The dataset will be distributed under the Creative Commons
Attribution 4.0 International.

Have any third parties imposed IP-based or other re-
strictions on the data associated with the instances?

No.

Do any export controls or other regulatory restrictions
apply to the dataset or to individual instances?

There are no such restrictions.

Maintenance

Who will be supporting/hosting/maintaining the
dataset?

Luis Oala on behalf of Dotphoton AG.

How can the owner/curator/manager of the dataset be
contacted (e.g., email address)?

By email address via
luis.oala@dotphoton.com.

Is there an erratum?

At the time of submission, there is no such erratum. If an er-
ratum is needed in the future it will be accessible at https:
//github.com/aiaudit-org/raw2logit.

Will the dataset be updated (e.g., to correct labeling er-
rors, add new instances, delete instances)?

Yes. The dataset will be enlarged wrt. the number of in-
stances.

If the dataset relates to people, are there applicable limits
on the retention of the data associated with the instances
(e.g., were individuals in question told that their data
would be retained for a fixed period of time and then
deleted)?

To the best of our knowledge, there are no such limits.

Will older versions of the dataset continue to be support-
ed/hosted/maintained?

Older versions will be supported and maintained in the fu-
ture. The dataset will continue to be hosted as long as
https://zenodo.org/ exists.

If others want to extend/augment/build on/contribute to
the dataset, is there a mechanism for them to do so?

For any of these requests contact either Luis
Oala (luis.oala@dotphoton) or Bruno Sanguinetti
(bruno.sanguinetti@dotphoton.com). For now, we do not
have an established mechanism to handle these requests.

https://github.com/aiaudit-org/raw2logit
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Composition of Raw-Microscopy

Type of instances Image and label
Objects on images White blood cells
Type of classes Morphological classes
Number of instances 940
Number of classes 9
Image size 256 by 256 pixels
Image format .tif
Raw image format Please see Section 1.1

Table 13: A summary of the composition of Raw-
Microscopy.



Datasheet for Raw-Drone

Motivation

For what purpose was the dataset created?

With Raw-Drone we provide a publicly available raw dataset
in order to examine the effect of the image data processing
on the performance and the robustness of machine learning
models. This dataset enables to study these effects for a seg-
mentation task: the segmentation of cars. The dataset was
taken with specified parameters: sensor gain, point-spread
function and ground-sampling distance, so that physical
models may be used to process the data. It also was taken
with a easily accessible and affordable system, so that it
may be reproduced.

Who created this dataset (e.g., which team, research
group) and on behalf of which entity (e.g., company,
institution, organization)?

The dataset was created by Bruno Sanguinetti and Marco
Aversa on behalf of the company Dotphoton AG.

Who funded the creation of the dataset?

The data collection was funded by Dotphoton AG. The cali-
bration of the image characteristics was jointly funded by
Dotphoton AG and the European Space Agency.

Composition

What do the instances that comprise the dataset repre-
sent (e.g., documents, photos, people, countries)?

An instance is a tuple of an image and a segmentation mask.
The image shows a landscape shot from above. The segmen-
tation mask is a binary image. A white pixel in this mask
corresponds to a pixel within a region in the image where a
car is displayed. A black pixel in this mask corresponds to a
pixel within a region in the image where no car is displayed.

How many instances are there in total (of each type, if
appropriate)?

The dataset consists of 548 instances.

Does the dataset contain all possible instances or is it
a sample (not necessarily random) of instances from a
larger set?

The dataset does not contain all possible instances. Only
images with at least one white pixel in the associated seg-
mentation mask are considered.

What data does each instance consist of? “Raw” data
(e.g., unprocessed text or images) or features?

Both, the image and the segmentation mask consist of 256
by 256 pixels. The image is a raw image in .tif format
and the the segmentation mask is in .png format. The
images are cropped sub-images of 12 raw images in .DNG
format, consisting of 3648 by 5472 pixels.

Is there a label or target associated with each instance?

Each instance is associated to a binary segmentation mask.

Is any information missing from individual instances?

No information is missing.

Are relationships between individual instances made ex-
plicit (e.g., users’ movie ratings, social network links)?

Since every image is a cropped sub-image of an original im-
age, several of these sub-images belong to the same original
image. All sub-images are disjoint, i.e. no different images
share a pixel from the original image.

Are there recommended data splits (e.g., training, devel-
opment/validation, testing)?

There are no recommended data splits. All the data splits
that we used for our experiments were randomly picked.

Are there any errors, sources of noise, or redundancies
in the dataset?

To the best of our knowledge, there are no errors in the
dataset. The segmentation mask is created by hand and
hence noisy, especially at the boundaries between a region
with a car and a region without a car.

Is the dataset self-contained, or does it link to or oth-
erwise rely on external resources (e.g., websites, tweets,
other datasets)?

The dataset is self-contained.

Does the dataset contain data that might be considered
confidential (e.g., data that is protected by legal privilege
or by doctor-patient confidentiality, data that includes
the content of individuals non-public communications)?

No. The dataset does not contain data of any of the above
types.



Does the data set contain data that, if viewed directly,
might be offensive, insulting, threatening, or might oth-
erwise cause anxiety?

No. The dataset does not contain data with any of the above
properties.

Does the dataset relate to people?

The dataset does not relate to people. The drone data was
screened for PIIs such as faces or license plates on cars and
removed by the data collection team.

Any other comments?

See table 14 for a summary of the composition of the Raw-
Drone.

Collection Process

How was the data associated with each instance ac-
quired?

The data was collected by flying a drone and saving the raw
data. The calibration data for the drone’s imager was ac-
quired both under laboratory conditions and using a ground-
based calibration target, so that it could be acquired under
operating conditions.

What mechanisms or procedures were used to collect
the data (e.g., hardware apparatus or sensor, manual
human curation, software program, software API)?

To acquire the drone images, we used a DJI Mavic 2 Pro
Drone, equipped with a Hasselblad L1D-20c camera (Sony
IMX183 sensor). This system has 2.4 µm pixels in Bayer
filter array. Images were taken with the drone hovering
for maximum stability. This stability was verified to be
better than a single pixel by calculating the correlation of
subsequent images. The objective has a focal length of
10.3mm. We operated this objective at an f-number of
N = 8, to emulate the PSF circle diameter relative to the
pixel pitch and ground sampling distance (GSD) as would
be found on images from high-resolution satellites. Oper-
ating at N = 8 also minimises vignetting, aberrations, and
increases depth of focus. The point-spread function (PSF)
was measured to have a circle diameter of 12.5 µm using the
edge-spread function technique and a ground calibration tar-
get.This corresponds to σ = 2.52px, which also corresponds
to a diffraction-limited system, within the uncertainty dic-
tated by the wavelength spread of the image. Images were
taken at 200 ISO, corresponding to a gain of 0.528DN/e−.
The 12-bit pixel values are however left-justified to 16-bits,
so that the gain on the 16-bit numbers is 8.448DN/e−. The
images were taken at a height of 250m, so that the GSD is

6 cm. All images were tiled in 256x256 patches. Segmen-
tation color masks were created to identify cars for each
patch. From this mask, classification labels were generated
to detect if there is a car in the image. The dataset is consti-
tuted by 548 images for the segmentation task, and 930 for
classification. Six additional intensity scales were created
with Jetraw.

If the dataset is a sample from a larger set, what was the
sampling strategy (e.g., deterministic, probabilistic with
specific sampling probabilities)?

The entire dataset is presented.

Who was involved in the data collection process (e.g.,
students, crowdworkers, contractors) and how were
they compensated (e.g., how much were crowdworkers
paid)?

The dataset was taken by a company employee, compen-
sated by his salary. Labeling was performed by both a com-
pany employee and a PhD student, who’s PhD is funded by
the company.

Over what timeframe was the data collected? Does this
timeframe match the creation timeframe of the data as-
sociated with the instances (e.g., recent crawl of old news
articles)?

The dataset was taken as the initial step of writing this
article.

Were any ethical review processes conducted (e.g., by an
institutional review board)?

The dataset does not contain any elements requiring an
ethical review process.

Does the dataset relate to people?

The dataset does not relate to people. There are individ-
uals on the images, but it is not possible to identify these
individuals.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data
done (e.g., discretization or bucketing, tokenization, part-
of-speech tagging, SIFT feature extraction, removal of
instances, processing of missing values)?

No further processing was applied to the Raw-Drone data.

Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unantici-
pated future uses)?



Raw images are available in the dataset.

Is the software used to preprocess/clean/label the in-
stances available?

All code used in the experiments of this manuscript
is publicly available. Jetraw products that were used
for acquiring the data are commercially available.

Uses

Has the dataset been used for any tasks already? The
dataset has not yet been used.

Is there a repository that links to any or all papers or
systems that use the dataset?

The repository at https://github.com/
aiaudit-org/raw2logit associated to this work,
maintained by Luis Oala.

What (other) tasks could the dataset be used for?

The dataset can be used to study the effect of image signal
processing on the performance and robustness of any other
machine learing model implemented in PyTorch, designed
segmentation task.

Is there anything about the composition of the dataset
or the way it was collected and preprocessed/cleaned/la-
beled that might impact future uses?

To the best of our knowledge, we do not recognize such
impacts.

Are there tasks for which the dataset should not be used?

To the best of our knowledge, there are no such tasks.

Distribution

Will the dataset be distributed to third parties outside
of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created?

Yes. The dataset will be publicly available.

How will the dataset will be distributed (e.g., tarball on
website, API, GitHub)

A guide to access the dataset is available at https:
//github.com/aiaudit-org/raw2logit. More-
over, the dataset can be downloaded anonymously and di-
rectly at https://zenodo.org/record/5235536
under the doi: 10.5281/zenodo.5235536.

When will the dataset be distributed?

The dataset is already publicly available.

Will the dataset be distributed under a copyright or
other intellectual property (IP) license, and/or under
applicable terms of use (ToU)?

The dataset will be distributed under the Creative Commons
Attribution 4.0 International.

Have any third parties imposed IP-based or other re-
strictions on the data associated with the instances?

No.

Do any export controls or other regulatory restrictions
apply to the dataset or to individual instances?

There are no such restrictions.

Maintenance

Who will be supporting/hosting/maintaining the
dataset?

Luis Oala on behalf of Dotphoton AG.

How can the owner/curator/manager of the dataset be
contacted (e.g., email address)?

By email address via
luis.oala@dotphoton.com.

Is there an erratum?

At the time of submisson, there is no such erratum. If an er-
ratum is needed in the future it will be accessible at https:
//github.com/aiaudit-org/raw2logit.

Will the dataset be updated (e.g., to correct labeling er-
rors, add new instances, delete instances)?

Yes. The dataset will be enlarged wrt. the number of in-
stances.

If the dataset relates to people, are there applicable limits
on the retention of the data associated with the instances
(e.g., were individuals in question told that their data
would be retained for a fixed period of time and then
deleted)?

To the best of our knowledge, there are no such limits.

Will older versions of the dataset continue to be support-
ed/hosted/maintained?

https://github.com/aiaudit-org/raw2logit
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Older versions will be supported and maintained in the fu-
ture. The dataset will continue to be hosted as long as
https://zenodo.org/ exists.

If others want to extend/augment/build on/contribute to

the dataset, is there a mechanism for them to do so?

For any of these requests contact either Luis Oala
(luis.oala@dotphoton.com) or Bruno Sanguinetti
(bruno.sanguinetti@dotphoton.com). For now, we do not
have an established mechanism to handle these requests.

Composition of Raw-Drone

Type of instances Image and mask
Objects on images Landscape shots from above
Number of instances 548
Number of original images 12
Image size 256 by 256 pixels
Mask size 256 by 256 pixels
Original image size 3648 by 5472
Image format .tif
Mask format .png
Raw image format .DNG

Table 14: A summary of the composition of Raw-Drone.
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