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Abstract

Citation field extraction entails segmenting a citation
string into its constituent parts, such as title, authors,
publisher and year. Despite the importance of this
task, there is a lack of well-annotated citation data.
This paper presents a new labeled dataset for cita-
tion extraction that, in comparison to the previous
standard dataset, exceeds four-times more data, sup-
plies detailed nested labels rather than coarse-grained
flat labels, and is derived from four different academic
fields rather than one. We describe our new dataset in
detail, and provide baseline experimental results from
a state-of-the-art extraction method.

1. Introduction

Building tools that collect and organize research litera-
ture can provide insight into the landscape and process
of science, and help individual researchers be more effi-
cient. For example, analysis of citation graphs between
papers can enable automated clustering for discover-
ing trends in scientific sub-communities and can assist
researchers in finding related work.

Sometimes such bibliographic data is provided in pre-
structured form, but often the case that data is sup-
plied only in unstructured full text. In the unstruc-
tured case, reference sections of papers must be lo-
cated, citations segmented from each other, citation
fields must be extracted from within each citation, and
the citations much be disambiguated. In this paper we
concern ourselves with citation field extraction. Many
citations include fields such as multiple author names
(first, middle and last), paper title, journal name, vol-
ume, number, publisher, and year. Some also include
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publication status, web address, organization names,
thesis indicators, postal addresses, and indication of
publication language. Effective analysis requires ex-
tracting these fields accurately. Although the task
may seem straightforward, truly high-accuracy cita-
tion field extraction has been elusive. Real-world cita-
tion strings are replete with wide variety and odd ex-
ceptions to common preconceptions about their sim-
plicity. This irregularity makes rule-based methods
brittle, and machine learning methods have become
the tool of choice for citation field extraction. How-
ever, high-accuracy machine learning typically requires
substantial labeled data.

The most widely used labeled data in citation field ex-
traction is the CORA Field Extraction dataset (Sey-
more et al., 1999). Unfortunately it has numerous
weaknesses. The dataset is small, containing only 500
citations. It has labels only for coarse-grained fields;
for example it has a monolithic authors field, not la-
bels indicating separate authors, nor first, middle and
last names. Finally the dataset consists of citations
only from within the field of computer science.

This paper presents a new labeled dataset for citation
field extraction and provides baseline experimental re-
sults from a state-of-the-art method. The new data
set contains over 1800 citations gathered from across
physics, mathematics, computer science, and quantita-
tive biology—all labeled with both fine-grained fields
and coarse-grained field agglomerations.

A state-of-the-art linear-chain conditional random
field trained and tested on subsets of this data achieves
95% token-level F1 and 91% field-level F1. In ongoing
work we are developing more advanced methods with
higher accuracy.
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2. Current state-of-the-art citation
extraction techniques

The oldest method for citation field extraction is man-
ual creation of logical rules (Jewell, 2000; Giles et al.,
1998; Ding et al., 1999). For example (Ding et al.,
1999) matches input citation strings against hand-
designed patterns, which were devised by human anal-
ysis of citation from 43 journal papers. Such rule-
based systems are not typically resilient to the wide
variety of citation styles and formatting exceptions be-
cause the relatively small number of human generated
patterns do not have broad coverage. Furthermore,
these systems are difficult to transfer to new domains
since new patterns must be manually devised for each
variation in citation style.

Machine learning alleviates both these issues by learn-
ing weights that combine the evidence of many high
coverage features, and by automating the creation
of new models from domain-specific labeled training
data.

Hidden Markov models (HMMs) are a commonly used
in machine learning for segmentation and labeling
tasks. HMMs provide a generative model over pairs
of input variables and label variables in a sequence. In
biliometrics, HMMs were originally shown to be useful
for the task of extracting various fields (such as title,
author, institution, abstract, etc) from the headers of
research papers (Seymore et al., 1999). HMMs were
later used for citation field extraction trained on the
CORA dataset (Hetzner, 2008).

In many information extraction tasks conditional ran-
dom fields (CRFs) (Lafferty et al., 2001) have replaced
HMMs since CRFs offer more flexibility in the design
of input features. CRFs were first applied to cita-
tion field extraction by (Peng & McCallum, 2004),
who showed them to provide higher accuracy than
HMMs on supervised citation field extraction, improv-
ing macro token level F1 for citation extraction on
CORA from HMM’s 86.6 to 91.5.

Others researchers have replicated the result of (Peng
& McCallum, 2004) on the CORA dataset (Coun-
cill et al., 2008). However, when a model trained on
CORA is evaluated on a new set of randomly-sampled
computer science citations, the F1 score drops signif-
icantly (Councill et al., 2008). Our own experimental
results described below paper confirm this outcome.
We conclude that the CORA dataset is not representa-
tive of natural variability in citation style—even within
the field of computer science.

Other research efforts address the tasks of citation field
extraction and disambiguation jointly (Poon & Domin-

gos, 2007; Singh et al., 2009). Here disambiguation
refers to clustering citations that refer to the same pa-
per. By modeling both segmentation and disambigua-
tion together these systems strive to avoid cascading
errors and to share strength between the tasks. For
example, joint inference can improve segmentation by
using information from one unambiguous title field to
help infer accurate extraction within a more ambigu-
ous coreferent citation string.

Two citation datasets have been used for such joint in-
ference: (1) the CORA Coreference dataset (distinct
from the CORA Field Extraction dataset) (Bilenko &
Mooney, 2003) and the CiteSeer dataset (Lawrence
et al., 1999). Each contains both annotated field
extractions and disambiguation information. CORA
Coreference and CiteSeer contain 1295 and 1563 ci-
tations respectively. Despite having field extraction
information, they are not good datasets for training
supervised field extraction classifiers since the cita-
tions within each dataset have little variability. For
instance, the 1295 citations in CORA coreference are
variants of only 134 papers, while CiteSeer contains
citations from 785 research papers in only four sub-
domains of artificial intelligence.

Joint modeling has been explored in two frameworks:
Markov logic networks (Poon & Domingos, 2007) and
imperatively-defined factor graphs (Singh et al., 2009).
Both of these frameworks use factor graphs with joint
factors to allow bi-directional information to flow be-
tween the two tasks. The later more tightly couples
field extraction and disambiguation by employing fac-
tors that use the intermediate output of the field ex-
traction, and shows a 0.21 absolute improvement in
field-level F1 on field extraction.

The CORA Coreference dataset is segmented even
more coarsely than the Cora Citation Field Extrac-
tion dataset. For example, not only is it missing sepa-
ration among authors, but it collapses many fields into
a fused “venue” field. Both datasets contain citations
exclusively from within computer science.

Our new UMass Citation Field Extraction Dataset of-
fers advances by (1) providing both coarse- and fine-
grained labeled field segmentation, (2) including cita-
tion data from multiple scientific disciplines, and (3)
assembling significantly more data.

3. Dataset

In May 2012 we collected 5,000 research papers in PDF
format from ArXiv.org, comprising 1,250 papers each
from its sections on physics, mathematics, computer
science and quantitative biology. The papers repre-
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sent a variety of formats and styles, including jour-
nal pre-prints, conference papers and technical reports.
Text and layout information were extracted using our
custom-improved pdf2text system. Five citations per
PDF were then manually extracted from 1200 of those
papers, resulting in 6,000 unlabeled citation strings.
Of these, 1829 citation strings have been labeled to
date.

Each of these citation strings is labeled in a hierar-
chical manner, demarcating both coarse-grain labeled
segments, as well as fine-grain labeled segments within.
The coarse-grained segment labels are: ref-marker, au-
thors, title, venue, date and ref-id; the list of fine-
grained segment labels (as well as descriptions of both)
is given below.

The coarse-grain segment labels are:

ref-marker A marker in the citation for referencing
the citation in the paper.

authors A list of the authors in a citation.

title The title of a citation.

venue Description of where the cited information was
published, including volume and page informa-
tion, editors, etc.

date The date the cited work was published.

reference-id Any extra global document identifier,
such as arxiv.org ids, or DOIs.

A venue label may contain the following fine-grain seg-
ment labels labels:

note Any plain text note about the citation, For ex-
ample, list of thesis supervisors, book distribu-
tors, or the text “and references therein”.

web A web address mentioned in an citation.

status The current status of the publication, e.g. in
preparation, submitted, accepted, revised, avail-
able.

language Information about the language of the cited
work. Can be either that the referenced item is in
a specific language (e.g. in French) or translation
information (e.g. translated by John Smith).

booktitle The name of a book or conference proceed-
ings in which an article is published.

date The date the venue of cited work was published.

address The location of a conference, or of a pub-
lisher.

pages The pages on which the article appears in book
or proceedings.

organization The sponsoring organization of a con-
ference.

volume The volume of journal or conference in which
the cited work appears.

number Issue number of the article.

publisher The publisher of the journal, conference,
book etc.

editor The list of editors who edited the journal.

tech The words describing the tech report or type
of unpublished material with possible tech report
number, e.g. Unpublished manuscript, ArXiv e-
prints, preprint, Personal Communication.

institution Organization that publishes the tech re-
port.

series The name of the series in which the book being
cited is published.

chapter The chapter in the book the citation is ref-
erencing.

thesis The part of the citation mentioning that the
cited work is a thesis, e.g PhD Thesis.

school The university that published the thesis.

department The department that published the the-
sis.

Both editor labels and author labels may contain
person labeled segments, which contain one person’s
name. The person segment can then include the fol-
lowing labeled sub-segments:

person-first A first name or initial of a person.

person-middle A middle name or initial of a person.

person-last A last name of a person.

person-affix An affix of a person, e.g. Jr., Sr.

A date segment may also include year and month
labeled sub-segments.

This dataset is available at http://iesl.cs.umass.

edu/data/umasscitationfield

http://iesl.cs.umass.edu/data/umasscitationfield
http://iesl.cs.umass.edu/data/umasscitationfield
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Two example hierarchical labeled citations (both from
physics) can be seen in Figures 1 and 2. These exam-
ples illustrate a common practice in physics citations:
they do not contain the title of the paper, only volume,
page number, and year following the journal name.
Thus all the identifying information is contained in a
venue section. In rare cases, there are multiple venue
sections in one citation. The citation in Figure 2 de-
picts the citation of an article contained in a book.
Such examples often contain more variability in for-
mats. In this case, the article in the book is referenced
only by the name of the author. In other cases, the
page number, volume number, and article number are
included as well.

4. State-of-the-art model

Here we apply a common state-of-the-art information
extraction method—linear-chain conditional random
fields—to our new dataset in order to provide baseline
experimental results and corresponding error analysis.

4.1. Linear-chain conditional random fields

Conditional random fields (CRFs) are undirected
graphical models trained to maximize the conditional
probability of a set of target random variables Y given
input variables, X. (Lafferty et al., 2001). The struc-
ture of the graphical model encodes the selected de-
pendencies among variables. In a linear-chain CRF
the target variables are connected in series, indicating
a Markov assumption on the sequence, y1, y2, ...yN .

For citation field extraction, the Y variables corre-
spond to a sequence of field labels, one variable for
each word or punctuation token in the citation. The
X variables are features taken from the corresponding
token and its context.

The parameters of the model are estimated by maxi-
mum likelihood, using the L-BFGS method of quasi-
Newton optimization. Training-time inference is per-
formed by “forward backward” belief propagation.
Test-time inference is performed by Viterbi max-
product belief propagation.

4.2. Labeling Schema

Our dataset’s hierarchical class labels are transformed
into single discrete variable values by conjoining the
names of nested labeled regions. For example, a per-
son’s first name within an author segment has label
value author/person/person-first, representing that it
has a person-first label, within a person label, within
an author label.

We represent the input with classes of features from
both (Peng & McCallum, 2004) and (Councill et al.,
2008). Our features are:

Word Features the word itself; the word (lower-
cased and not) with digits replaced by either
“YEAR” or “NUM”; the first three characters in
the word; does the word match “pages,” “pp” or
similar variants; does the word consist of a single
character.

Case is the word capitalized; does it consist of all
capital letters; a single capital letter; a capital
letter followed by a period.

Numeric is the word a number; a number enclosed
in parenthesis; does it contain a digit; end with
digit.

Punctuation is the word is a punctuation mark; does
it contain period; contain a dash.

Regular Expressions does the word match a regu-
lar expression indicating two numbers separated
by a dash; indicating an email addresses; a web-
site URL.

Counts the number of digits in the word and the
number of alphanumeric characters in the token.

Location the relative location of word in citation,
with a bin size of 12.

Possible Editor does the word “editor” (or variants
thereof) appear within 10 words of the token.

Lexicons is the word in lexicons of author names,
venues, and month names.

The lexicons are gathered from existing databases of
author names and venues, including DBLP and a large
collection of BibTeX records. The lexicons phrases
that are matched against the citation word sequence
up to length 14. The lexicon feature encodes whether
the word is at the beginning, middle, or end of the
phrase matched into the lexicon. Note that our cur-
rent lexicons are predominately from resources within
computer science.

Each word also contain binary conjunctions among all
the word’s features, as well as between the token’s fea-
tures and the features two tokens before and after the
token.
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Figure 1. Example citation labeled in UMass dataset.

Figure 2. Example of citation of an article in a book.

Figure 3. Performance of field level f1 trained with increas-
ing amounts of data. Error bars are 1 sttddev.

5. State-of-the-art results on UMass
dataset

5.1. Evaluation

We split the data 80/20 into training and testing data
with 1463 and 366 citations respectively. The split
is performed on the dataset-provided sequence of ci-
tations, in which the articles are ordered randomly,
but the citations from one paper occur together. We
report field-level and token-level F1 scores for every la-

bel. (F1 is the harmonic mean of precision and recall.)
Token-level F1 is based on the number of individual
word tokens that are given the correct label. Field-
level F1 is based on the number of fields (such as title
and publisher that are segmented and labeled perfectly;
there is no partial credit for segment boundaries that
close but not perfect.

In addition, we experiment with the effect of training
set size on the overall field level f1 score by evaluating
the test set performance with models estimated from
increasing amounts of training data.

5.2. Results

Token-level and field-level results can be seen in table
2. Top level labels by themselves refer only to portions
of the citation that are part of the coarse labels but
not part of any fine-grain label, for example, the words
“and” or “et. al.” in the authors field and “In” in the
venue field.

Figure 3, shows field-level F1 increasing as the amount
of training data increases. Note that performance rises
from approximately 86% with 300 training citations to
91% at about 1500 training citations. Note that previ-
ous publications on citation field extraction presented
results of training on as few as 350 citations; thus we
argue that this earlier work was operating in a strik-
ingly data-poor environment.

In order to determine the ability of models trained
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Table 1. Token level f1 with classifiers trained on Cora (C) and UMass (U) testing on their own testing sets and each
other’s testing sets. First block contains easily mapped fields.

Label C on U U on C Reduction U on U C on U Reduction

Author 99.40 97.41 1.99 96.31 95.28 1.04
Date 98.90 97.52 1.38 94.29 93.30 0.99
Journal 91.30 80.07 11.23 93.39 79.13 14.26
Location 87.20 93.70 -6.50 98.13 73.17 24.96
Pages 98.60 98.31 0.29 97.34 88.40 8.94
Publisher 76.10 85.36 -9.26 82.70 70.48 12.22
Title 98.30 97.32 0.98 95.13 91.77 3.36
Average 0.02 9.40

Booktitle 93.70 86.50 7.20 48.70 30.72 17.98
Volume 97.80 88.55 9.25 94.77 81.77 13.00
Tech 86.70 20.00 66.70 90.00 40.54 49.46
Note 80.80 66.67 14.13 72.41 37.78 34.64
Editor 87.70 69.84 17.86 68.75 35.04 33.71
Institution 94.00 28.00 66.00 75.00 36.17 38.83
Average All 13.94 19.49

on our dataset to generalize—especially in comparison
to previous datasets—we compare models trained on
CORA and trained on our dataset evaluated on the
opposing datasets’ test set. To accomplish this we map
the labels of our dataset to the smaller set of CORA’s
labels. Note that some mappings are ambiguous; for
instance, a volume in a series contained in the CORA
dataset would be labeled as part of a booktitle, whereas
it’s a volume contained in a venue in the new dataset.
In order to make an effective comparison we separate
the labels into those whose mappings are ambiguous,
and those that are not. As can be seen in table 1, on
the unambiguously mapped labels, the model trained
on our dataset has a small average reduction in F1 on
CORA testset; however the model trained on CORA
averages a 9.40 token-level F1 reduction on our new
dataset’s test set.

5.3. Error Analysis

As seen in table 2, author names are reliably extracted.
Among the most important fields, booktitle and series
have low scores.

Booktitles are difficult for many reasons. For example,
they sometimes abut the title field in the citation, and
can be mistakenly interpreted as a continuation of the
title. Consider the citation string “Deformations of
maps , Algebraic Curves and Projective Geometry.”
The booktitle begins after the comma and the title
of the article precedes it, but our model labels the
entirety as one title field. Additionally, often there
is not enough context to distinguish between journal

names and booktitles.

Sometimes there is also insufficient local context to
distinguish between a book, in which the book’s name
should be labeled title, and an article in a book, in
which the book’s name should be labeled booktitle
(and the article title labeled title). Consider the fol-
lowing example (in which the labeling of the editor is
elided for brevity):

...[Monogenic forms on manifolds,]title in
Z. Oziewicz et. al. (Eds.), [Spinors,
Twistors, Clifford Algebras and Quantum
Deformations,]title Kluwer Academic Pub-
lishers, 1993, [159-166.]pages

Here the model has incorrectly labeled “Spinors ,
Twistors , Clifford Algebras and Quantum Deforma-
tions” a title, where it should be labeled a bookti-
tle. Context that could have helped avoid this error—
namely that there is already another title field in the ci-
tation, and that a limited range of pages is given—are
not available given the Markov indepedent assumption
in the linear-chain CRF. (For this reason and others
are are currently researching extraction models that
can leverage more global dependencies.)

Note that our multiple editor sub-fields provide sig-
nificantly more detail than the CORA dataset, which
have one label for the entire editor section. We have
segments for each individual editor, as well as first,
middle and last names for each editor, as seen in this
example:
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Table 2. Field & Token f1, precision and recall. Higher levels of the hierarchy are replaced by letters denoting the label.

Label field f1 Precision Recall token f1 Precision Recall

authors 96.13 94.05 98.31 98.00 97.78 98.21
a-p-person-affix 40.00 50.00 33.33 80.00 100.00 66.67
a-p-person-first 95.05 92.31 97.96 97.67 96.32 99.05
a-p-person-last 95.20 92.58 97.97 97.69 96.32 99.09
a-p-person-middle 92.84 89.72 96.19 96.23 95.22 97.26
date-year 90.91 87.72 94.34 92.61 92.16 93.07
ref-marker 97.64 96.42 98.90 99.69 100.00 99.38
reference-id 87.10 87.10 87.10 96.10 100.00 92.50
title 87.07 84.96 89.30 97.09 95.13 99.14
venue 48.00 60.00 40.00 52.17 60.00 46.15
v-address 85.71 94.29 78.57 92.11 98.13 86.78
v-booktitle 41.86 42.86 40.91 55.56 48.70 64.66
v-category 0.00 100.00 0.00 0.00 100.00 0.00
v-chapter 0.00 100.00 0.00 0.00 100.00 0.00
v-date-month 62.50 50.00 83.33 87.50 77.78 100.00
v-date-year 92.82 91.38 94.31 96.17 95.02 97.35
v-department 100.00 100.00 100.00 100.00 100.00 100.00
v-edition 61.54 80.00 50.00 54.05 100.00 37.04
v-editor 60.61 52.63 71.43 67.86 59.38 79.17
v-e-p-person-first 69.57 72.73 66.67 75.00 81.82 69.23
v-e-p-person-last 72.00 81.82 64.29 70.59 75.00 66.67
v-e-p-person-middle 72.73 80.00 66.67 72.73 80.00 66.67
v-institution 30.77 100.00 18.18 26.67 100.00 15.38
v-journal 91.37 87.89 95.13 95.52 93.39 97.75
v-language 0.00 0.00 0.00 20.00 100.00 11.11
v-note 0.00 100.00 0.00 0.00 100.00 0.00
v-number 74.07 75.00 73.17 88.89 91.95 86.02
v-organization 66.67 50.00 100.00 44.44 28.57 100.00
v-pages 94.51 91.81 97.36 98.45 97.34 99.58
v-publisher 77.23 76.47 78.00 87.93 82.70 93.87
v-reference-id 72.73 80.00 66.67 81.08 88.24 75.00
v-school 0.00 0.00 100.00 0.00 0.00 100.00
v-series 25.00 40.00 18.18 25.00 58.82 15.87
v-status 36.36 50.00 28.57 57.14 72.73 47.06
v-tech 57.14 72.73 47.06 72.00 90.00 60.00
v-thesis 0.00 100.00 0.00 0.00 100.00 0.00
v-volume 93.91 91.61 96.32 95.90 95.34 96.46
v-web 0.00 100.00 0.00 0.00 100.00 0.00
OVERALL 91.16 90.17 92.16 94.79 94.08 95.50

[In [ [M.]first [R.]middle [Farrally]last]person

& [ [A.]first [J.]middle [Cochran]last ]person (
Eds. ) , ]editor.

6. Conclusion and Future Work

This paper describes a new dataset for citation field
extraction that is larger, more fine-grained and more
varied across areas than existing widely-used datasets.
We show that machine learning for citation field ex-
traction is not data-saturated, in that more train-
ing data continues to improve model performance.
For this reason we plan to continue labeling addi-
tional data, and will release augmented versions of this
dataset in the future.

Through error analysis we also show the limitations of
the Markov dependencies in linear-chain CRFs, and
are currently developing models with more expres-
sive dependency structure. We are also experimenting
with methods of semi-supervised learning to leverage
the vast quantities of readily available citation data.
We also plan to release large quantities of unlabeled
citation strings to support further research in semi-
supervised methods on this data.
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