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Abstract

Accurate nucleus instance segmentation is a foundational task for computational pathology,
yet dense cellularity, stain variability, and subtle boundaries make fully automatic pipelines
prone to errors that must be efficiently corrected. Promptable segmentation foundation
models such as the SAM provide an interface for human-in-the-loop refinement, but existing
histopathology adaptations either prioritize fully automatic segmentation (often scaling to
SAM-Huge for performance) or recover interactivity while retaining coarse decoding and
bottom-up instance grouping that can fail in crowded tissue. We present UnilNuc, a unified
model that supports both automatic nucleus instance segmentation and iterative interactive
refinement through a shared prompt interface. UniNuc (i) adopts an efficient SAM2 Hiera-
B+ encoder together with a multi-scale high-quality mask decoder to preserve fine nuclear
boundaries, and (ii) replaces heuristic pixel grouping with a DETR-style nuclei detector
using a dedicated detection backbone whose predicted boxes serve as “auto-prompts”.
Optional language priors further improve nuclei type assignment. On PanNuke, UniNuc
achieves 0.702 bPQ and 0.529 mPQ (0.548 mPQ with language priors), outperforming
PromptNucSeg-H and CellViT-H while using substantially less compute than SAM-Huge-
based baselines. On 14 wide-ranging datasets, UniNuc consistently improves interactive
segmentation over PathoSAM-L in both in-domain and out-of-domain settings. Code and
models will be publicly released.

Keywords: histopathology, instance segmentation, foundation model

1. Introduction

Nucleus instance segmentation is a foundational task in computational pathology, enabling
quantitative tissue analysis for grading and tumor microenvironment profiling. Multi-organ
benchmarks such as PanNuke and MoNuSAC have accelerated progress across diverse tis-
sues and nucleus types (Gamper et al., 2019a; Verma et al., 2021), but dense clusters,
variable staining, and ambiguous boundaries still cause frequent merge/split errors and
hinder robust deployment. Promptable foundation models, most notably SAM (Kirillov
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et al., 2023), offer an appealing pathway toward clinician-in-the-loop correction, motivating
recent SAM adaptations for histopathology (Horst et al., 2024; Shui et al., 2024).

However, existing approaches fall short of supporting pathology workflows in three main
ways. (S1) Human-in-the-loop refinement. Automatic segmenters inevitably produce
errors in complex tissue; without iterative interactive correction, clinicians lack the abil-
ity to refine segmentation (Alemi Koohbanani et al., 2020). Further, SAM-based methods
usually target automatic instance segmentation and forgo iterative refinement (Horst et al.,
2024; Shui et al., 2024). (S2) Crowded-tissue failure. A large class of nuclei seg-
menters, including SAM-derived pipelines, still rely on bottom-up proxy-map regression
(e.g., distance/offset/affinity maps) followed by watershed-style grouping (Naylor et al.,
2019a; Graham et al., 2019; Chen et al., 2023; Yao et al., 2023; Griebel et al., 2025), which
is brittle in crowded/overlapping nuclei. (S3) Inefficient scaling and coarse decoding.
Prior SAM adaptations often scale to SAM-Huge for greater accuracy, incurring high cost
with diminishing returns (Horst et al., 2024; Shui et al., 2024); additionally, standard SAM-
style decoders typically operate on coarse embeddings (e.g., H/16), which can blur small
boundaries (Griebel et al., 2025; Ke et al., 2023). Lastly, recent evidence suggests detec-
tion and segmentation exploit different cues (corner/edge vs. semantics) (Li et al., 2025),
complicating the use of a single backbone for both prompt generation and mask refinement.

To address these real-world gaps (S1)—(S3), we propose UniNuc, a unified prompt-based
nuclei segmentation model that couples automatic instance segmentation with interactive
refinement. UniNuc builds an interactive segmenter on the SAM2 Hiera-B+ encoder (Ravi
et al., 2024) and introduces a Multi-Scale High-Quality mask decoder (Ke et al., 2023) that
fuses H /4, H|8, and H |16 features via a learnt HQ token to recover precise boundaries.
For automatic segmentation, UniNuc replaces heuristic grouping with a DETR-style nuclei
detector (Chen et al., 2024; Robinson et al., 2025) and decouples feature extraction by using
a dedicated detection backbone; predicted boxes are treated as “auto-prompts” and passed
through the same prompt encoder and mask decoder used for user prompts. Optional
language priors further improve nuclei type assignment. Experiments on PanNuke and 14
other datasets show that UniNuc achieves SOTA performance in both automatic/interactive
settings while being computationally cheaper than SAM-L/Huge baselines.

2. Method

Fig. 1 summarizes UniNuc, which couples a SAM-style promptable segmenter with a nuclei
detector that generates bounding boxes as auto-prompts. The segmentation core is shared
across both modes: given an image = and a set of prompts P (points and /or boxes), UniNuc
outputs a mask m = f(z,P). In interactive use, P is provided and refined by the user;
in automatic use, P is produced by the detector. This shared interface ensures that the
same prompt encoder and mask decoder are used for both workflows, and enables consistent
refinement of automatic predictions.

2.1. Interactive Segmentation Core

The interactive segmenter follows SAM’s decomposition into an image encoder, a prompt
encoder, and a mask decoder (Kirillov et al., 2023). We adopt the Hiera-B+ hierarchical
ViT from SAM2 (Ravi et al., 2024) as the image encoder, which outputs a multi-scale
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Figure 1: UniNuc overview. A single prompt-based segmentation core supports both (i)
iterative interactive refinement from user prompts and (ii) automatic instance
segmentation via auto-prompts produced by a nuclei detector. Optional language
prompts can condition nuclei type predictions.

feature hierarchy. Let { Fyy, F}, F»} denote encoder features at resolutions { H /4, H [8, H 16},
respectively. The prompt encoder embeds a set of prompts P = Py U Pjox, where a point
prompt is p = (u,v,¢) with label ¢ € {fg,bg}, and a box prompt is b = (u;, vy, us, v2)
(normalized coordinates). These prompt embeddings are fused with image features by a
high-quality multi-scale mask decoder (Sec. 2.2).

Iterative refinement simulation. To train robust interactive behavior, we simulate
user corrections as in prior interactive segmentation work (Griebel et al., 2025). Given

(t)

ground truth mask m and the current prediction m'"”’, we compute false-negative and false-

(t)

o = m(t) \ m. We sample a positive point from

(t)

fp
set: P = pl) {p",p"}. The refined mask is then ) = f(a:,P(tH)). We unroll
this procedure for up to T iterations (we use T'=8) during training, which encourages the
decoder to incorporate corrective prompts effectively.

positive regions: Rgl) =m)\ m® and R

Rgl) (if non-empty) and a negative point from Ry’ (if non-empty), and update the prompt

2.2. Multi-Scale High Quality Mask Decoder

Standard SAM-style decoders often operate on a single coarse feature map (typically H/16),
which can blur small nuclei and boundary details in crowded tissue. UniNuc adopts a
Multi-Scale High Quality (MSHQ) decoder inspired by SAM-HQ (Ke et al., 2023)
(Fig. 2). Concretely, we introduce a learnable HQ token in addition to the standard
SAM output token. Both tokens attend to the deep embedding F, via token—image cross-
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Figure 2: Multi-Scale High Quality (MSHQ) mask decoder. A learnable HQ token
complements the standard output token and interacts with deep embeddings via
token—image cross-attention. The updated deep features are fused with higher-
resolution features (Fj, F7) to recover boundary detail, and the HQ token pro-
duces the final high-quality mask.

attention, producing updated deep features Fy and updated tokens. We then fuse F, with
higher-resolution features via element-wise addition after lightweight projection to a com-
mon channel dimension:

F=¢o(Fy) ® ¢1(F1) @ ¢oFy),

where ¢;(+) are 1x1 projections (and upsampling where needed) and @ is element-wise
addition. The final high-quality mask is produced by projecting the HQ token with an
MLP and combining it with F' (as in (Ke et al., 2023)), yielding sharper boundaries without
requiring a larger backbone.

2.3. Task-Decoupled Dual-Backbone Design

Automatic instance segmentation requires both (i) accurate mask refinement (semantic,
region-level cues) and (ii) reliable object localization to generate prompts (corner/edge
cues). Recent analyses show that detection and segmentation emphasize different visual ev-
idence and can compete when forced into a single shared representation (Li et al., 2025). Un-
iNuc therefore decouples feature extraction: Hiera-B+ is optimized for prompt-conditioned
mask refinement, while a dedicated ConvNeXt-B backbone extracts localization-friendly fea-
tures for nuclei detection. This avoids optimizing one encoder for conflicting objectives and
improves both the quality of auto-prompts and interactive refinement (see ablations).

2.4. Nuclei Detector for Automated Prompting

For automatic instance segmentation, UniNuc replaces heuristic bottom-up grouping with
a DETR-style nuclei detector (Fig. 3) (Chen et al., 2024; Robinson et al., 2025). The
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Figure 3: Nuclei detector and auto-prompt generation. A ConvNeXt-B backbone
and DETR-style head produce box proposals. Top-K object queries are refined
by a transformer decoder (optionally conditioned on text embeddings), predicting
nucleus boxes and class logits. Predicted boxes are used as auto-prompts for the
shared prompt encoder and mask decoder.

detector uses ConvNeXt-B features and a transformer decoder to produce a set of K ob-
ject predictions. A lightweight scoring head first estimates a foreground score per location;
we select the top-K locations to initialize object queries. The transformer decoder alter-
nates self-attention among queries and cross-attention to image features, producing refined
embeddings. Two heads then predict (i) bounding box by, and (ii) class logits for each query.

Auto-prompts. FEach predicted box by is converted into a SAM-style box prompt and
passed to the shared prompt encoder and MSHQ decoder to yield an instance mask 1.
Since DETR-style detectors already produce a fixed set of predictions without NMS, we
retain the top-scoring boxes (or apply a confidence threshold) as the auto-prompt set.

Optional language priors. When nuclei categories are known (e.g., from dataset label
sets or study context), we encode class names using a text encoder (e.g., CLIP text) and
inject these embeddings into the detector’s query self-attention by concatenation, allowing
semantic priors to modulate query refinement and improve nuclei type assignment. The re-
sulting class-aware boxes yield higher-quality auto-prompts, while mask generation remains
prompt-driven and shared with interactive refinement.

3. Experiments and Results

3.1. Datasets and Protocols

We evaluate UniNuc on a benchmark of 14 public histopathology datasets. Following
PathoSAM (Griebel et al., 2025), we train on 6 H&E datasets with instance annotations
(Vu et al., 2019; Graham et al., 2021; Kumar et al., 2017; Gamper et al., 2019b; Schuiveling
et al., 2025; Naylor et al., 2019b) and reserve 8 datasets strictly for out-of-domain testing
(Graham et al., 2019; Mahbod et al., 2021; Sirinukunwattana et al., 2017; Naji et al., 2024;
Verma et al., 2021; Alemi Koohbanani et al., 2020; Mahbod et al., 2024; Wang et al., 2024).
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Table 1: Performance on the PanNuke dataset, using both binary PQ (bPQ) and multi-class
PQ (mPQ) (Chen et al., 2023; Horst et al., 2024). Best scores in bold.

StarDist Hover-Net CPP-Net PointNu-Net CellViT-H PromptNucSeg-H Ours
Tissue (Schmidt et al., 2018) | (Graham et al., 2019) | (Chen et al., 2023) | (Yao et al., 2023) | (Horst et al., 2024) | (Shui et al., 2024)
‘ bPQ mPQ ‘ bPQ mPQ ‘ bPQ mPQ ‘ bPQ mPQ ‘ bPQ mPQ ‘ bPQ mPQ ‘ bPQ mPQ
Adrenal 0.6972 0.4868 0.6962 0.4812 0.7066  0.4944 0.7134  0.5115 | 0.7086 0.5134 0.7227  0.5128 | 0.7410 0.5410

Bile Duct 0.6690 0.4651 0.6696 0.4714 0.6768 0.4670 0.6814  0.4868 | 0.6784 0.4887 0.6976  0.5012 | 0.7167 0.5250
Bladder 0.6986 0.5793 0.7031 0.5792 0.7053 0.5936 0.7226  0.6065 | 0.7068 0.5844 0.7212  0.6043 | 0.7271 0.6085

Breast 0.6666 0.5064 0.6470 0.4902 0.6747 0.5090 0.6709  0.5147 | 0.6748 0.5180 0.6842  0.5322 0.6807 0.5396
Cervix 0.6690 0.4628 0.6652 0.4438 0.6912 0.4792 0.6899  0.5014 | 0.6872 0.4984 0.6983 0.5118 | 0.7118 0.5227
Colon 0.5779 0.4205 0.5575 0.4095 0.5911 0.4315 0.5945  0.4509 | 0.5921 0.4485 0.6096  0.4690 | 0.6220 0.4889
Esophagus 0.6655 0.5331 0.6427 0.5085 0.6797 0.5449 0.6766  0.5504 | 0.6682 0.5454 0.6920  0.5711 | 0.6929 0.5616

Head & Neck | 0.6433 0.4768 0.6331 0.4530 0.6523 0.4706 0.6546  0.4838 | 0.6544 0.4913 0.6695  0.5104 | 0.6888 0.5326
Kidney 0.6998 0.4880 0.6836 0.4424 0.7067 0.5194 0.6912  0.5066 | 0.7092 0.5366 0.7115  0.5786 | 0.7131  0.5654
Liver 0.7231 0.5145 0.7248 0.4974 0.7312 0.5143 0.7314  0.5174 | 0.7322 0.5224 0.7372  0.5333 | 0.7443 0.5675
Lung 0.6362 0.4128 0.6302 0.4004 0.6386 0.4256 0.6352  0.4048 | 0.6426 0.4314 0.6580  0.4398 | 0.6530 0.4464
Ovarian 0.6668 0.5205 0.6309 0.4863 0.6830 0.5313 0.6863  0.5484 | 0.6722 0.5390 0.6856  0.5442 | 0.6903 0.5619
Pancreatic 0.6601 0.4585 0.6491 0.4600 0.6789 0.4706 0.6791  0.4804 | 0.6658 0.4719 0.6863  0.4974 | 0.6937 0.5358
Prostate 0.6748 0.5067 0.6615 0.5101 0.6927 0.5305 0.6854  0.5127 | 0.6821 0.5321 0.6983  0.5456 | 0.7001 0.5573

Skin 0.6289 0.3610 0.6234 0.3429 0.6209 0.3574 0.6494  0.4011 | 0.6565 0.4339 0.6613 0.4113 | 0.7004 0.4547
Stomach 0.6944 0.4477 0.6886 0.4726 0.7067 0.4582 0.7010  0.4517 | 0.7022 0.4705 0.7115 0.4559 | 0.7156 0.4882
Testis 0.6869 0.4942 0.6890 0.4754 0.7026 0.4931 0.7058  0.5334 | 0.6955 0.5127 0.7151 0.5474 | 0.7249 0.5524
Thyroid 0.6962 0.4300 0.6983 0.4315 0.7155 0.4392 0.7076  0.4508 | 0.7151 0.4519 0.7218  0.4721 | 0.7280 0.4865
Uterus 0.6599 0.4480 0.6393 0.4393 0.6615 0.4794 0.6634  0.4846 | 0.6625 0.4737 0.6743  0.4955 | 0.6910 0.5148
Average ‘ 0.6692 0.4744 ‘ 0.6596 0.4629 ‘ 0.6798 0.4847 0.6808  0.4957 ‘ 0.6793 0.4980 ‘ 0.6924  0.5123 ‘ 0.7019 0.5287

We use two training protocols to ensure fair comparisons; (1) Interactive segmentation
(IS) — train jointly on the 6 training datasets and compare to PathoSAM-L on in-domain
and out-of-domain benchmarks; (2) Automatic instance segmentation (AIS) — train
exclusively on PanNuke (Gamper et al., 2019a), consistent with SOTA AIS baselines such
as CellViT-H (Horst et al., 2024) and PromptNucSeg-H (Shui et al., 2024).

3.2. Implementation Details

We train UniNuc using AdamW optimizer (Ir 5X 1077, weight decay 10_4) for 40 epochs with
cosine annealing Ir scheduler. We adopt the CellViT augmentation pipeline (Horst et al.,
2024) (random flipping, cropping, resizing, and color jitter). For interactive segmentation,
we supervise with Dice, Focal, and MSE losses:

Lrs = Lajce + )‘focalﬁfocal + Lonse, (1)

and for the nuclei detector we use a DETR-style objective; a combination of classification
loss (IA-BCE), Generalized IoU loss, and L1 regression loss:

LBoz = Les + NiouLiouw + M1Li, (2>

with )‘focal=20a )\iou=5v and )\11=2.

3.3. Automatic Instance Segmentation on PanNuke

We evaluate AIS on PanNuke using Panoptic Quality (PQ), reporting binary PQ (bPQ) and
multi-class PQ (mPQ) following established protocols (Gamper et al., 2019a; Chen et al.,
2023; Horst et al., 2024). Results are summarized in Table 1. UniNuc achieves 0.7019 bPQ
and 0.5287 mPQ, outperforming PromptNucSeg-H (Shui et al., 2024) (0.6924 bPQ, 0.5123
mPQ) and CellViT-H (Horst et al., 2024) (0.6793 bPQ, 0.4980 mPQ). Importantly, these
gains are obtained without stain normalization, test-time augmentation, oversampling, or
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Table 2: Comparison of interactive segmentation performance (mSA). We report results for
initial prompts (Ip) and after 7 refinement iterations (I7) for both point (p) and
box (b) inputs. The top three datasets are in-domain (seen during training), while
the bottom three are out-of-domain (unseen). The best mSA scores are highlighted

in bold.
Model Dataset PanNuke MoNuSeg CPM17
Parameters(M) FLOPS(G) | I? I3 /4 I3 I3 I3 I I3 I I3 I I3
Sam-L(no train) 304 1312 0.1619  0.7388  0.6093 0.8101 | 0.2764 0.6194 0.5204 0.6634 | 0.2482  0.7285 0.624 0.7689
PathoSam-L 304 1312 0.5399 09167  0.8057  0.9508 | 0.4595 0.8464 0.7049  0.8919 0.555 0.8342  0.7159  0.8783
Ours 69 264 0.5668 0.9838 0.8626 0.9925 | 0.4683 0.9017 0.7289 0.9407 | 0.5601 0.9121 0.7656 0.9357
Dataset LyNSeC(H&E) LyNSeC(IHC) NuClick
Model B 7 P 5 5 7 7 5 5 P P 7 5
arameters(M) FLOPS(G) | I J& I 4 I J& I J4 I J& JH I3
Sam-L(no train) 304 1312 0.362 0.7126  0.6346  0.7392 | 0.3231 0.6544  0.5729  0.6958 | 0.2421  0.7555 0.6178  0.8097
PathoSam-L 304 1312 0.5765  0.9008  0.7744  0.9257 | 0.4399  0.8762 0.73 0.9131 | 0.3037 0.8621 0.7445 0.9216
Ours 69 264 0.6169 0.9359 0.8147 0.9724 | 0.5511 0.9416 0.7772 0.9676 | 0.4267 0.9510 0.8252 0.9775

Hover-Net CellviT

Figure 4: Qualitative automatic instance segmentation (AIS) on PanNuke. Com-
pared to HoVer-Net (Graham et al., 2019) and CellViT-H (Horst et al., 2024),
UniNuc better separates crowded nuclei and preserves fine boundaries while main-
taining correct nucleus categories. Best viewed zoomed in.

auxiliary tissue heads. When enabling language priors (Appendix A), mPQ further increases
to 0.5484 while bPQ remains essentially unchanged (0.7022), indicating that language
primarily improves nuclei type assignment rather than geometric mask quality.

Our design targets the inefficiency of brute-force scaling in histopathology. Although
SAM/SAM2 provide strong initialization (Kirillov et al., 2023; Ravi et al., 2024), moving
to SAM-Huge yields diminishing returns: PromptNucSeg-H and CellViT-H reach mPQ
0.5123/0.4980 versus 0.5095/0.4923 with SAM-Base, i.e., < 0.006 gain for a ~7X parameter
increase (86M—632M) (Horst et al., 2024; Shui et al., 2024). UniNuc instead uses SAM2’s
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Figure 5: Qualitative interactive segmentation on LyNSeC(IHC). We compare
SAM-L (Kirillov et al., 2023), PathoSAM-L (Griebel et al., 2025), and UniNuc at
the initial prompt and after iterative refinement. UniNuc produces higher-quality
initial masks and converges faster with corrective prompts.

efficient Hiera-B+ encoder (Ravi et al., 2024) and invests capacity in task-specific decoding
and detection, improving the accuracy—efficiency trade-off.

Qualitative results (Fig.4) show that UniNuc can separate nuclei in crowded regions
and preserves fine boundaries better than prior SOTA (HoVerNet, CellViT), consistent
with the quantitative gains. We also report the metrics of our model with language priors
in Appendix A.l.

3.4. Iterative Interactive Segmentation

We compare IS against SAM-L (no training) (Kirillov et al., 2023) and PathoSAM-L
(Griebel et al., 2025) using mean Segmentation Accuracy (mSA) (Sec. B). Table 2 reports
results at the initial prompt (Iy) and after 7 refinements (I) for both point (p) and box
(b) prompts, across in-domain (PanNuke, MoNuSeg, CPM17) and out-of-domain datasets
not seen during the training (LyNSeC-H&E, LyNSeC-IHC, NuClick). UniNuc consistently
improves over PathoSAM-L across all settings while being substantially more efficient (69M
params / 264 GFLOPs vs. 304M / 1312 GFLOPs).

The out-of-domain setting is most indicative of clinical transfer. On NuClick, UniNuc
improves initial point accuracy from 0.3037 to 0.4267 and initial box accuracy from 0.7445
to 0.8252. Similarly, on LyNSeC-H&E and LyNSeC-IHC, UniNuc improves initial point
mSA from 0.5765 to 0.6169 and 0.4399 to 0.5511, and initial box mSA from 0.7744 to
0.8147 and 0.73 to 0.7772 (Table 4), which highlights UniNuc’s robustness to staining and
acquisition shifts. For AIS, language priors raise mPQ from 0.5287 to 0.5484 while keeping
bPQ essentially unchanged (0.7019 to 0.7022) (Table 7). The full dual-backbone model
uses 156M parameters / 584 GFLOPs (Table 4). Gains persist after refinement (e.g., I7:
0.8621—0.9510). Fig. 5 illustrates that UniNuc produces better initial masks and requires
fewer corrective prompts to approach the final refined quality.
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Table 3: Component Effectiveness Analysis. Ablation study on the PanNuke dataset
evaluating the Dual-Branch Encoder and Multi-Scale Mask Decoder. The baseline
utilizes a single Hiera-B+ backbone and the original SAM mask decoder.

Components ‘ Metrics — IS (mSA) / AIS (mSA)
Dual-Branch  Multi-Scale Mask Decoder ‘ Iy bE4 AIS
- - 0.5077  0.9348 0.4546
v - 0.5383  0.9631 0.4682
v v 0.5480 0.9730 0.4760

Table 4: Ablation of Backbone Size. Comparison of model complexity and performance
on PanNuke. Scaling up to the Large variant yields diminishing returns; thus, we
select the Base+ combination as the optimal trade-off.

Backbone Params(M) | FLOPS(G) | I} 7 AIS
Hiera-S + ConvNext-S 83 316 0.5468 0.9697 0.4757

Hiera-B+ + ConvNext-B 156 584 0.5480 0.973  0.476
Hiera-L + ConvNext-L 409 1528 0.5505 0.9674  0.474

3.5. Prompt Efficiency

Interactive correction is only practical if a usable mask appears after a handful of clicks.
Compared with PathoSAM-L, UniNuc starts closer to the target — on NuClick, it improves
initial accuracy from Ijj = 0.3037 to 0.4267 and from Ig = 0.7445 to 0.8252 (Table 2). Using
the full refinement curves (Appendix A.2) we find that, UniNuc reaches PathoSAM-L’s 7-
click quality with substantially fewer corrections—typically 3-5 for box prompts (PanNuke:
I} = 0.9654 vs. PathoSAM I = 0.9508; NuClick: T4 = 0.9260 vs. PathoSAM I+ = 0.9216)
and similarly reduces point refinements (PanNuke: I} = 0.9388 vs. PathoSAM I? = 0.9167).
This faster convergence, coupled with lower compute (69M/264 GFLOPs vs. 304M /1312
GFLOPs), makes human-in-the-loop edits more feasible at scale.

3.6. Ablation Study

Table 3 evaluates the effect of UniNuc components on PanNuke, reporting Ig , I? , and AIS
performance (mSA). Starting from a baseline with a single Hiera-B+ encoder and the stan-
dard SAM decoder, adding the dual-branch design improves both IS (Ig : 0.5077—0.5383)
and AIS (0.4546—0.4682), supporting the hypothesis that detection and segmentation ben-
efit from different feature cues (Li et al., 2025). Adding the multi-scale HQ decoder
yields further gains (Ig:O.5480, 15:0.9730, ATIS=0.4760), consistent with the need to pre-
serve high-frequency boundary detail for small, crowded nuclei.

Table 4 studies three different backbone scaling in the dual-branch setting. The Large
variant increases complexity sharply (409M params / 1528 GFLOPs) without improving
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AIS and slightly degrades I? , whereas the Base+ configuration provides the best overall
trade-off. This phenomenon of performance saturation is consistent with findings reported
in PathoSAM (Griebel et al., 2025). Consequently, we selected the Hiera-B+ /ConvNeXt-B
combination as the default, as it offers the best balance between accuracy and efficiency.
Finally, we evaluate the box-prompt strategy for AIS. Most existing histopathol-
ogy instance segmentation models regress proxy maps and rely on bottom-up grouping
with post-processing, e.g., HoVer-Net predicts horizontal/vertical offsets (Graham et al.,
2019) and PathoSAM predicts distance-to-center /boundary maps with watershed grouping
(Griebel et al., 2025). In contrast, UniNuc uses a nuclei detector to generate box prompts
in a top-down manner (Chen et al., 2024; Robinson et al., 2025). Replacing the detector
with a bottom-up U-Net distance-map reduces AIS (mSA 0.4760—0.4647), confirming that
detection-led prompt generation is more robust than heuristic grouping in overlapping area.

4. Discussion and Conclusion

UniNuc is designed around clinically motivated constraints: automatic nucleus segmentation
is never perfectly reliable in real tissue, and practical workflows require a shared interface
for both high-throughput automatic processing and targeted interactive correction. Existing
SAM adaptations tend to optimize one side of this trade-off. UniNuc addresses both sides
and effectively fills the gaps by (i) retaining a promptable segmentation core and training
it explicitly for iterative refinement, (ii) improving boundary fidelity through a multi-scale
HQ decoder (Ke et al., 2023), and (iii) replacing bottom-up grouping with a detector that
produces box auto-prompts that can be refined identically to user prompts. This yields con-
sistent gains across both tasks: higher PQ on PanNuke (0.5287 mPQ); 0.5484 with language
priors) and improved interactive mSA across in-domain and out-of-domain datasets, with
substantially lower compute than SAM-L/Huge baselines.

A key empirical lesson is that scaling alone is insufficient: prior work reports < 0.006
mPQ gains when moving from SAM-Base to SAM-Huge (Horst et al., 2024; Shui et al.,
2024). UniNuc instead uses efficient pretrained components (Hiera-B+ from SAM2 (Ravi
et al., 2024)) and allocates model capacity where it directly affects pathology performance:
multi-scale decoding for fine boundaries and task-decoupled detection for reliable prompt
generation (Li et al., 2025). Optional language priors further improve nuclei type assignment
without changing the underlying mask geometry.

In terms of its limitations, UniNuc currently assumes reliable box proposals; missed
detections can limit AIS, and language priors depend on the availability of meaningful class
names. Future work should evaluate end-to-end WSI pipelines, incorporate uncertainty-
aware prompting to prioritize ambiguous regions, and validate usability via prospective
annotation studies with pathologists. In summary, UniNuc provides a practical unification
of automatic instance segmentation and iterative interactive refinement for histopathology,
improving both accuracy and efficiency while directly targeting failure modes in dense tissue.

10
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Table 5: Iterative Performance with Point Prompts Inputs. mSA scores across all
14 datasets for iterations Ié) through I? .

Dataset Iy s Iy I Iy I; Iy 7
CPM15 0.5443 0.6797 0.7529 0.8022 0.8377 0.8671 0.8929 0.9146
CPM17 0.5601 0.6783 0.7554 0.8044 0.8405 0.8720 0.8945 0.9121
CoNSeP 0.3257 0.4705 0.5998 0.7013 0.7742 0.8296 0.8674 0.8959
CryoNuSeg 0.3670 0.4885 0.5995 0.6991 0.7658 0.8185 0.8554 0.8876
Lizard 0.5090 0.6783 0.7927 0.8697 0.9203 0.9522 0.9713 0.9827

LyNSec(H&E) 0.6169 0.7354 0.8073 0.8541 0.8891 0.9153 0.9359 0.9521
LyNSec(IHC) 0.5511 0.6894 0.7726 0.8278 0.8677 0.8980 0.9222 0.9416

MoNuSAC 0.4232 0.5921 0.7028 0.7821 0.8388 0.8746 0.9012 0.9225
MoNuSeg 0.4683 0.6063 0.6975 0.7642 0.8146 0.8542 0.8816 0.9017
NuClick 0.4267 0.6231 0.7432 0.8223 0.8738 0.9076 0.9323 0.9510
NulnsSeg 0.3252 0.4641 0.5828 0.6799 0.7489 0.8017 0.8400 0.8695
PanNuke 0.5668 0.7351 0.8404 0.9014 0.9388 0.9613 0.9755 0.9838
Puma 0.5662 0.7061 0.7941 0.8535 0.8941 0.9237 0.9445 0.9605
TNBC 0.5707 0.6834 0.7555 0.8122 0.8566 0.8895 0.9093 0.9272

Appendix A. Detailed Results

A.1. AIS Performance with Language Priors

As previously described, our nuclei detector is designed to integrate semantic class priors. In
clinical scenarios, the specific tissue type or potential nuclei classes are often known before-
hand. To leverage this, we utilize a CLIP-text (Radford et al., 2021) encoder to map class
names into language embeddings, which are then concatenated with the object queries. Ta-
ble 7 presents the Automatic Instance Segmentation (AIS) results on the PanNuke dataset.
Incorporating the language prior yields a substantial improvement in Multi-class Panop-
tic Quality (mPQ), raising the average score from 0.5287 to 0.5484. Notably, the Binary
Panoptic Quality (bPQ) remains stable (0.7019 vs. 0.7022). This indicates that while the
geometric quality of the segmentation masks remains consistent, the language prior signifi-
cantly enhances the model’s ability to correctly classify nuclei types across diverse tissues.

A.2. Extended Iterative Segmentation Results

In this section, we report the complete metrics for all iterative steps (iterations 0 through 7)
across the test split of 14 datasets, which are presented in Table 5 and Table 6 to facilitate
future benchmarking and comparison.

A.3. Qualitative Examples of Iterative Interactive Segmentation

We provide qualitative visualizaton of the interactive segmentation across all 14 datasets,
as shown in Fig. 6 and Fig. 7.
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Table 6: Iterative Performance with Box Prompts Inputs. mSA scores across all 14
datasets for iterations Ig through 1'170 .

Dataset b I b bt n I b i
CPM15 0.7674 0.8081 0.8419 0.8676 0.8912 0.9088 0.9238 0.9363
CPM17 0.7656 0.8118 0.8437 0.8700 0.8918 0.9098 0.9244 0.9357
CoNSeP 0.6760 0.7573 0.8116 0.8522 0.8848 0.9062 0.9277 0.9409
CryoNuSeg ~ 0.6600 0.7371 0.7956 0.8396 0.8768 0.9012 0.9223 0.9394
Lizard 0.7912 0.8647 0.9142 0.9486 0.9684 0.9799 0.9871 0.9919

LyNSec(H&E) 0.8147 0.8576 0.8886 0.9134 0.9335 0.9500 0.9629 0.9724
LyNSec(IHC) 0.7772 0.8295 0.8675 0.8968 0.9199 0.9391 0.9551 0.9676

MoNuSAC 0.7482  0.8070 0.8480 0.8833 0.9069 0.9246 0.9440 0.9584
MoNuSeg 0.7290 0.7860 0.8311 0.8646 0.8888 0.9110 0.9274 0.9407
NuClick 0.8252 0.8689 0.9011 0.9260 0.9468 0.9616 0.9702 0.9775
NulnsSeg 0.6557 0.7330 0.7887 0.8298 0.8615 0.8883 0.9074 0.9233
PanNuke 0.8626 0.9130 0.9450 0.9654 0.9776 0.9848 0.9897 0.9925
Puma 0.8212 0.8715 0.9057 0.9319 0.9499 0.9635 0.9738 0.9803
TNBC 0.7825 0.8271 0.8681 0.8926 0.9160 0.9323 0.9455 0.9585

A.4. AIS performance across 14 Datasets

We evaluate the automatic instance segmentation performance of UniNuc across the test
splits of all 14 datasets. The comprehensive results are reported in Table 8 to serve as a
baseline for future benchmarking and comparison.

Appendix B. Evaluation Metrics

In this section, we provide detailed definitions of the metrics used to evaluate both interac-
tive and automatic segmentation performance.

B.1. Iterative Interactive Segmentation Metric

Following PathoSAM (Griebel et al., 2025), we utilize the Mean Segmentation Accuracy
(mSA) to evaluate iterative interactive segmentation results. This metric relies on the
count of True Positives (T'P), False Negatives (F'N), and False Positives (F'P), which are
derived from the Intersection over Union (IoU) between predicted and ground-truth objects.
Specifically, at a given threshold ¢, a predicted object is considered a “match” (True Positive)
if its IoU with a ground-truth object exceeds t. Consequently:

e TP(t): The number of correctly matched objects (IoU > t).
e FP(t): The number of predicted objects with no matching ground truth.

e FN(t): The number of ground-truth objects with no matching prediction.
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Table 7: Effect of Language Priors on AIS Performance. Comparison of Panoptic

Quality scores on the PanNuke dataset. The inclusion of language priors sig-
nificantly boosts the multi-class metric (mPQ), demonstrating improved nuclei
classification accuracy.

|Metric| Adr. Bile Blad. Bre. Cerv. Col. FEso. Head Kid. Liv. Lung Ova. Pan. Pros. Skin Stom. Test. Thy. Ute. | Avg.

Default

bPQ |0.741 0.717 0.727 0.681 0.712 0.622 0.693 0.689 0.713 0.744 0.653 0.690 0.694 0.700 0.700 0.716 0.725 0.728 0.691
mPQ |0.541 0.525 0.609 0.540 0.523 0.489 0.562 0.533 0.565 0.568 0.446 0.562 0.536 0.557 0.455 0.488 0.552 0.487 0.515

0.7019
0.5287

+ Lang Prior

bPQ |0.745 0.713 0.733 0.684 0.711 0.628 0.696 0.687 0.709 0.746 0.646 0.695 0.693 0.703 0.694 0.716 0.726 0.726 0.693
mPQ |0.577 0.539 0.628 0.558 0.536 0.516 0.577 0.548 0.564 0.588 0.467 0.579 0.549 0.582 0.473 0.501 0.584 0.514 0.542

0.7022
0.5484

Table 8: Automatic Instance Segmentation Performance across 14 Datasets.

mSA scores of UniNuc on the test splits of diverse histopathology datasets.

Metric‘CP)[15 CPM17 CoNSeP CryoNuSeg Lizard LyNSec(H&E) LyNSec(IHC) MoNuSAC MoNuSeg NuClick NulnsSeg PanNuke Puma TNBC

mSA ‘0.5377 0.5157  0.2854 0.3227  0.4354 0.5080 0.4543 0.1948 0.3948  0.1450  0.3019 0.4821 0.5278 0.5245

The mSA is computed by averaging the accuracy score across multiple thresholds:

_ 1 TP(t)
mSA = 1 teZT TP(t) + FP(t) + FN(t) 3)

where T = {0.5,0.55,0.6,...,0.95}. For each dataset, we report the mSA averaged over all
images in the test set.

B.2. Automatic Instance Segmentation Metric

Consistent with CellViT (Horst et al., 2024) and the PanNuke benchmark (Gamper et al.,
2019b), we employ Panoptic Quality (PQ) to quantify instance segmentation performance.
The PQ unifies detection and segmentation accuracy and is defined as:

_ 7P| 2 (y,9) € TPIoU(y, §)
PQ = 1 1 X (4)
|TP| +5|FP| +3|FN| |TP|
Detection Q'uality (DQ) Segmentation Quality (SQ)

where 3 denotes a ground-truth segment and § denotes a predicted segment. A pair (y,7)
is considered a unique match (True Positive) if ToU(y,9) > 0.5. Based on this criterion,
the set of segments is split into:

e True Positives (TP): Matched pairs of segments (correctly detected instances).

e False Positives (FP): Unmatched predicted segments (predicted instances with no

ground truth).

e False Negatives (FN): Unmatched ground-truth segments (missed instances).

Intuitively, PQ decomposes into Detection Quality (DQ), which is analogous to the F} score,
and Segmentation Quality (SQ), which measures the average IoU of matched segments. To

17



QIN Kuan Cao Fu KHAN RAO.ANWERQ@QMBZUAI.AC.AE

ensure a comprehensive evaluation, we report: Binary PQ (bPQ): Calculated by treating
all nuclei as a single class (foreground vs. background). Multi-class PQ (mPQ): Calculated
independently for each nuclei class and then averaged, providing a measure of class-specific
performance.
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Figure 6: Qualitative plots for iterative interactive segmentation of UniNuc on CoNSep,
CPM15, CPM17, CryoNuSeg, Lizard, LyNSec(H&E) and LyNSec(IHC). Top row:

input/GT; subsequent rows: iterations 0-7. Best viewed zoomed in.
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Figure 7: Qualitative plots for iterative interactive segmentation of UniNuc on MoNuSAC,
MoNuSeg, NuClick, NulnsSeg, PanNuke, Puma and TNBC. Top row: input/GT;
subsequent rows: iterations 0—7. Best viewed zoomed in.

20



UNINUC — UNIFIED AUTOMATIC AND INTERACTIVE NUCLEUS INSTANCE SEGMENTATION IN HISTOPATHOLOGY

21



	Introduction
	Method
	Interactive Segmentation Core
	Multi-Scale High Quality Mask Decoder
	Task-Decoupled Dual-Backbone Design
	Nuclei Detector for Automated Prompting

	Experiments and Results
	Datasets and Protocols
	Implementation Details
	Automatic Instance Segmentation on PanNuke
	Iterative Interactive Segmentation
	Prompt Efficiency
	Ablation Study

	Discussion and Conclusion
	Detailed Results
	AIS Performance with Language Priors
	Extended Iterative Segmentation Results
	Qualitative Examples of Iterative Interactive Segmentation
	AIS performance across 14 Datasets

	Evaluation Metrics
	Iterative Interactive Segmentation Metric
	Automatic Instance Segmentation Metric


