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ABSTRACT

Referring to compositional learning behaviours as the ability to learn to generalise
compositionally from a limited set of stimuli, that are combinations of supportive
stimulus components, to a larger set of novel stimuli, i.e. novel combinations
of those same stimulus components, we acknowledge compositional learning be-
haviours as a valuable feat of intelligence that human beings often rely on, and
assume their collaborative partners to use similarly. In order to build artificial
agents able to collaborate with human beings, we propose a novel benchmark to
investigate state-of-the-art artificial agents abilities to exhibit compositional learn-
ing behaviours. We provide baseline results on the single-agent tasks of learning
compositional learning behaviours, using state-of-the-art RL agents, and show
that our proposed benchmark is a compelling challenge that we hope will spur the
research community towards developing more capable artificial agents.

1 INTRODUCTION

Framing the ability to learn to generalise compositionally from a limited set of combinations of
supportive stimulus components to a larger set of novel combinations of those same supportive
stimulus components as compositional learning behaviours, we acknowledge compositional learn-
ing behaviours as a valuable feat of intelligence that human beings often rely on, and assume their
collaborative partners to use similarly.

In order to build artificial agents able to collaborate with human beings, it is important to endow
the former with similar abilities. Thus, we propose to investigate state-of-the-art artificial agents
abilities to exhibit compositional learning behaviours.

Compositional Language Emergence as a Proxy for Compositional Behaviours. The field of
language emergence raises the question of how to make artificial languages emerge with similar
properties to natural languages, with compositionality at the forefront of those properties(Lazaridou
et al., 2018; Baroni, 2019; Guo et al., 2019; Li & Bowling, 2019; Ren et al., 2020). Referential
game (Lewis, 1969) variants are the primary tools used to make language emerge between a pair or
population of artificial agents (Denamganaı̈ & Walker, 2020a). In this context, it has been shown that
emerging languages are far from being ‘natural-like’ protolanguages (Kottur et al., 2017; Chaabouni
et al., 2019a;b), but sufficient conditions can be found to further the emergence of compositional
languages and generalising learned representations (e.g. (Kottur et al., 2017; Lazaridou et al., 2018;
Choi et al., 2018; Bogin et al., 2018; Guo et al., 2019; Korbak et al., 2019; Chaabouni et al., 2020;
Denamganaı̈ & Walker, 2020b)). Nevertheless, the ability of deep-learning agents to generalise
compositionally in a systematic fashion has been called into question, especially when it comes to
language grounding in general (Hill et al., 2019b), on relational reasoning tasks (Bahdanau et al.,
2019), or on the SCAN benchmark (Lake & Baroni, 2018; Loula et al., 2018; Liška et al., 2018),
and more recently the gSCAN benchmark (Ruis et al., 2020). Neural networks induction biases have
been investigated towards finding necessary conditions that favour the emergence of compositional
generalisation/systematicity (Hill et al., 2019b; Słowik et al., 2020; Korrel et al., 2019; Lake, 2019;
Russin et al., 2019).

Chaabouni et al. (2020) showed that, when a specific kind of compositionality is found in the
emerging languages (the kind that scores high on the positional disentanglement (posdis) metric for
compositionality that they proposed), then it is a sufficient condition for systematicity to emerge.
And, more importantly, they showed that emergence of a compositional language (in the sense
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of any of the existing compositionality-testing metric, e.g. topographic similarity (Brighton &
Kirby, 2006)) is not a necessary condition for systematic generalisation (as evaluated by a zero-shot
compositional learning test) as non-compositional, emerging languages have been shown to support
systematicity of the pair of agents wielding them in a (generative) referential game.

In this work, we focus directly on systematic generalisation/systematicity as a behaviour, as success
in our proposed task is directly related to the agents ability to exhibit compositional learning be-
haviours, thus investigating whether they can generalise compositionally in a systematic and online
fashion (see Section 4).

Moreover, contrary to our framework, when studying compositionality in the context of any ref-
erential game variant instantiated with a given dataset of stimuli (of any nature, e.g. one-hot-
encoded (Kottur et al., 2017; Chaabouni et al., 2020; Ren et al., 2020; Resnick et al., 2019), vi-
sual (Lazaridou et al., 2018; Choi et al., 2018), or multi-modal (Evtimova et al., 2017)), then the
trained pair of agents only exhibits compositional behaviours for said dataset within the constraint
of the training, thus failing short of learning compositional behaviours that generalises to novel
situations/stimuli/datasets. In other words, agents are failing to learn compositional learning be-
haviours. Our framework aims to remedy this gap via, firstly, a meta-learning framing of the task
and, secondly, via the introduction of a novel stimulus representation that compromises between
the one-hot-encoded representation of most symbolic stimuli benchmarks and the continuous rep-
resentations akin to latent embeddings as found in the unsupervised learning approaches, without
sacrificing the symbolic aspects (see Section 3).

Meta-Referential Games for Compositional Learning Behaviours. Learning compositional learn-
ing behaviours pertains to meta-learning. In order to frame referential games in a meta-learning con-
text where successful agents are able to generalise their abilities to exhibit compositional behaviours
onto novel situations/datasets, it is necessary to provide the agent at training-time with a distribu-
tion of tasks/stimuli/datasets that encompasses the kind of tasks/stimuli/datasets that the agent will
experience after being deployed.

For instance, using a set of datasets with different generative factors/attributes as our distribution
of tasks would force us to focus on only one modality shared among all datasets, for instance the
visual modality. Doing so would add to our work the assumption of working with visual stim-
uli only, which is quite constraining. Instead, we choose to assume that stimuli are disentangled,
independently of their nature. Thus, using one-hot-encoded (OHE) vectors, that are disentangled
abstract stimuli, would fit the bill with regards to our assumption and our work would retain some
external validity. It would be applicable whenever stimuli can be discretely categorised over a set of
generative factors/attributes with discrete values.

Further more, once a semantic structure is chosen, i.e. a number of generative factors/attributes,
Ndim, and a number of possible values for each (d(i))i∈[1;Ndim], it is impossible to extend our
meta-distribution to differently semantically structured stimuli without changing the shape
of our OHE vectors, dstim =

∑
i∈[1;Ndim] d(i). Most state-of-the-art deep learning architectures

rely on the assumption that the dimensions of their input spaces are constant. Thus, in order to
provide a meta-distribution over differently semantically structured stimuli spaces, we propose a
different representation, entitled symbolic continuous stimulus representation (SCS), it is detailed
in Section 3. Using this SCS representation, we can meta-train agents in a meta-referential game
settings where the semantic structure observed can be randomised over without changing the shape
of the stimulus space and without the overly constraining assumption that the representation must
be discrete.

Our contributions are threefold:

• We propose the Symbolic Continuous Stimulus (SCS) representation as a versatile encod-
ing of symbolic spaces, which, on the contrary to one-hot-encoded representation, allows
for infinitely many semantic structure to be instantiated without changing the shape of the
representation, and rely on continuous values that are more akin to the kind of stimuli found
in the real world, as opposed to discrete valued one-hot-encodings.

• We cast the problem of learning compositional behaviours as a meta-reinforcement learning
problem, using (discriminative) referential games, containing a meta-reinforcement learn-
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ing formulation of the binding problem, thus allowing it to be studied under the lens of
state-of-the-art RL algorithms.

• We provide baseline results on the single-agent task of learning compositional learning
behaviours, using state-of-the-art RL agents, and show that our proposed benchmark is a
compelling challenge that we hope will spur the research community towards developing
more capable artificial agents.

2 BACKGROUND & RELATED WORKS

Referential games are at an interface between the language processing subfields of language emer-
gence, language grounding, and, when not using on-hot-encoded stimuli, the computer vision sub-
field of unsupervised representation learning. While language emergence raises the question of how
to make artificial languages emerge with similar properties to natural languages, or at least ‘natural-
like’ protolanguages, with compositionality at the forefront of those properties(Baroni, 2019; Guo
et al., 2019; Li & Bowling, 2019; Ren et al., 2020), language grounding is concerned with the ability
to ground the meaning of (natural) language utterances into some sensory processes, with the visual
modality being the main focus of research. On one hand, emerging artificial languages’ compo-
sitionality has been shown to further the learnability of said languages (Kirby, 2002; Smith et al.,
2003; Brighton, 2002; Li & Bowling, 2019) and, on the other hand, natural languages’ composi-
tionality promises to increase the generalisation ability of the artificial agent that would be able to
rely on them as a grounding signal, as it has been found to produce learned representations that
generalise, when measured in terms of the data-efficiency of subsequent transfer and/or curriculum
learning (Higgins et al., 2017; Mordatch & Abbeel; Moritz Hermann et al.; Jiang et al., 2019). More
in touch with the current context of this study, Chaabouni et al. (2020) showed that, when a specific
kind of compositionality is found in the emerging languages (the kind that scores high on the posi-
tional disentanglement (posdis) metric for compositionality that they proposed), then it is a sufficient
condition for systematicity to emerge.

Language Compositionality & Compositional Systematic Generalisation/Systematicity. As a
concept, compositionality has been the focus of many definition attempts. For instance, it can be
defined as “the algebraic capacity to understand and produce novel combinations from known com-
ponents”(Loula et al. (2018) referring to Montague (1970)) or as the property according to which
“the meaning of a complex expression is a function of the meaning of its immediate syntactic parts
and the way in which they are combined” (Krifka, 2001). Although difficult to define, the commmu-
nity seem to agree on the fact that it would enable learning agents to exhibit systematic generalisation
abilities (also referred to as combinatorial generalisation (Battaglia et al.)). Some of the ambiguities
that come with those loose definitions start to be better understood and explained, as in the work
of Hupkes et al. (2019). While often studied in relation to languages, it is usually defined with a
focus on behaviours. In this paper, we refer to compositional behaviours as “the ability to entertain
a given thought implies the ability to entertain thoughts with semantically related contents”(Fodor
et al., 1988), and thus use it interchangeably with systematicity, following the classification made
by Hupkes et al. (2019).

Compositionality, as a property of languages, will be referred to as linguistic compositionality, in
this paper. It can be difficult to measure. Brighton & Kirby (2006)’s topographic similarity (topsim)
which is acknowledged by the research community as the main quantitative metric for composition-
ality (Lazaridou et al., 2018; Guo et al., 2019; Słowik et al., 2020; Chaabouni et al., 2020; Ren
et al., 2020). Recently, taking inspiration from disentanglement metrics, Chaabouni et al. (2020)
proposed two new metrics entitled posdis (positional disentanglement metric) and bosdis (bag-of-
symbols disentanglement metric), that have been shown to be differently ‘opinionated’ in the sense
that they each seem to capture different ways in which a language can be shown to be (linguistically)
compositional.

Binding Problem & Meta-Learning. Following Greff et al. (2020), we refer to the binding problem
as the “inability to dynamically and flexibly bind information that is distributed throughout the
network” of deep learning architectures. We note that relational responding (“adjusting the (task-
specific) response to an object based on its relation to other objects” ; for instance, one way to
facilitate it in a neural network “is to organise its internal information flow (i.e. computations) in
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(a) (b)

Figure 1: (a): representation of the gaussian kernels corresponding to each value sections on each
latent factor/attribute dimension, in the case of Ndim = 3. Black vertical bars indicate the gl(i)
value samples from each gaussian kernels corresponding to the l(i) values instantiated on each
latent dimension i, to construct the SCS representations of the example stimuli in (b). (b): OHE and
SCS representations of example stimuli for a semantic structure/symbolic space with Ndim = 3,
d(0) = 4, d(1) = 2, d(2) = 3.

a way that reflects the graph structure of relations and objects”) is central to solving the binding
problem instantiated in our proposed benchmark.

Relational Frame Theory (RTF) distinguishes “two types of entailment that humans primarily use
to derive (unobserved) relations: mutual entailment [(derive additional relations between two ob-
jects based on a given relation between them)] and combinatorial entailment [(derive new relations
between two objects, based on their relations with a shared third object)]”. Within those terms, the
ability to perform (sequential) combinatorial entailment is at the center of the benchmark challenges.

3 SYMBOLIC CONTINUOUS STIMULUS REPRESENTATION

We introduce a symbolic continuous (as opposed to discrete) stimulus (SCS) representation which
has the particularity of enabling the representation of stimuli sampled from differently semantically
structured symbolic spaces while maintaining the same representation shape, as opposed to the one-
hot encoded (OHE) representation. We will refer to this as the representation shape invariance
property of the SCS representation.

Namely, defining the semantic structure of an Ndim-dimensioned symbolic space by the tuple
(d(i))i∈[1;Ndim] where Ndim is the number of factor dimensions, d(i) is the number of values for
each factor dimension i, then the representation shape of any stimulus sampled from any suchNdim-
dimensioned symbolic space is a vector over [−1,+1]Ndim . Note that this shape does not depend
on the d(i)’s values, as opposed to the OHE representation which samples vectors from the discrete
space {0, 1}dOHE where dOHE = ΣNdim

i=1 d(i).

From a given semantic structure, (d(i))i∈[1;Ndim], the representation sampling space is built as fol-
lows: for each factor dimension i, the [−1,+1] range is partitioned in d(i) value sections, each
corresponding to one of the d(i) symbolic values available on the i-th factor dimension. Sampling
a stimulus from this symbolic space boils down to instantiating latent values l(i) on each factor
dimension i, such that l(i) ∈ [1; d(i)]. Differently from the OHE representation, the SCS represen-
tation of this stimulus is a continuous vector whose i-th dimension is populated with a sample from
a corresponding gaussian distribution over the l(i)-th partition, gl(i) ∼ N (µl(i), σl(i)), where µl(i)

is the mean of the gaussian distribution, uniformely sampled to fall within the range of the l(i)-th
partition, and σl(i) is the standard deviation of the gaussian distribution, uniformely sampled over
the range [ 2

12d(i) ,
2

6d(i) ]. µl(i) and σl(i) are sampled in order to guarantee (i) that the scale of the
gaussian distribution is large enough, but (ii) not larger than the size of the partition section it should
fit in. Figure 1a shows an example of such instantiation of the different gaussian distributions over
each factor dimensions’ [−1,+1] range, and Figure 1b highlights how the two representations differ
when representating the same example stimuli.
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(a) (b)

Figure 2: (a): 5-ways 2-shots accuracies on the Recall task with different stimulus representation(
OHE:blue ; SCS; orange). (b): Illustration of a discriminative 2-players /L-signal /N -round variant
of a referential game.

3.1 OF THE BINDING PROBLEM INSTANTIATED BY THE SCS REPRESENTATION

The SCS representation differs from the OHE one primarily in terms of the binding problem (Greff
et al., 2020) that the former instantiates while the latter does not.

More specifically, the OHE representation inherently discloses the semantic structure (i.e. the d(i)’s)
of the Ndim-dimensioned symbolic space via the representation shape of the stimuli, i.e. discrete
vectors sampled from {0, 1}dOHE where dOHE is dependant on the d(i)’s. On the other hand,
the SCS representation, i.e. continuous vectors sampled from [−1,+1]Ndim , keeps the semantic
structure hidden.

Thus, the semantic structure can only be inferred after observing multiple SCS-represented stimuli.
Indeed, we hypothesised that it is via the dynamic binding of information extracted from each ob-
servations that an estimation of a density distribution over each dimension i’s [−1,+1] range can
be performed. And, estimating such density distribution is tantamount to estimating the number of
likely gaussian distributions that partitions each dimension i’s associated [−1,+1] range.

Towards highlighting that there is a binding problem taking place, we show results of baseline RL
agents evaluated on a simple recall task. The Recall task structure borrows from few-shot learning
tasks as it presents over 2 shots an entire symbolic space.

Each shot consists of a series of games, one for each stimulus that can be sampled from an Ndim =
3-dimensioned symbolic space. The semantic structure (d(i))i∈[1;Ndim] of the symbolic space is
randomly sampled at the beginning of each episode, i.e. for each i, d(i) ∼ U(2; 5), where U(2; 5) is
the uniform discrete distribution over the integers in the range [2; 5].

Each game consists of two turns: in the first turn, a stimulus is presented to the RL agent, and
only a no-operation (NO-OP) action is made available to the RL agent, while, on the second turn,
the agent is asked to recall the discrete l(i) latent value that the previously-presented stimulus
had instantiated, on a given i-th dimension, where the current game’s i is uniformly sampled from
U(1;Ndim) at the beginning of each game. On the second turn, the agent’s available action space
now consists of discrete actions over the range [1;maxjd(j)], where maxjd(j) is a hyperparameter
of the task representing the maximum number of latent values for any factor dimension.

In our experiments,maxjd(j) = 5. While the agent is rewarded at each game for recalling correctly,
we only focus on the performance over the games of the second shot, that is to say on the games
where the agent has acquired theoretically enough information to infer the density distribution over
each dimension i’s [−1,+1] range, because observing the whole symbolic space once (on the first
shot) is sufficient (but not necessary, especially as seen in the case of the OHE representations).

Our results in Figure 2a present a large gap of performance in terms of accuracy over all the games
of the second shot, depending on whether the recall task is evaluated using OHE or SCS repre-
sentations. We attribute the poor performance in the SCS context to instantiation of the binding
problem.
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4 META-REINFORCEMENT LEARNING WITH REFERENTIAL GAMES

4.1 REFERENTIAL GAMES

The first instance of an environment that demonstrated a primary focus on the objective of com-
municating efficiently is the signaling game or referential game by Lewis (1969), where a speaker
agent is asked to send a message to the listener agent, based on the state/stimulus of the world that
it observed. The listener agent then acts upon the observation of the message by choosing one of
the actions available to it. Both players goals are aligned (it features pure coordination/common
interests), with the aim of performing the ‘best’ action given the observed state, where the notion of
‘best’ action is defined by the goal/interests common to both players.

Under the nomenclature presented in Denamganaı̈ & Walker (2020a), our benchmark instantiates
a discriminative fully-observable / 2-players / L = 1-signal / N = Ndim-round / uniformly-
distributed-K = 3-distractors / object-centric variant. Figure 2b illustrates this setup in the general
case.

Full vs. Partial Observability. This feature characterises whether the stimuli that are presented to
the speaker agent consist of all the stimuli experienced by the listener agent or solely of the target
stimulus. For simplicity, and in order for both agents to have the same state space, we employ full
observability in this benchmark. It also simplify the problem as it allows the speaker agent to reason
pragmatically. Specifically, in Figure 2b, the orange arrow highlights the additional information
available when the speaker agent has full observability.

Variable-length Communication This feature characterises the ability from the speaker agent to
send/utter more than one symbol/signal to the listener agent, up to a maximal possible length, L, for
the sequence of symbols. The basic referential game is 1-signalled. Variable-length communication
channels were first introduced by Havrylov & Titov (2017) and has quickly been adopted by the
research community as standard, independently of what approach is used to support the communi-
cation channel (Lazaridou et al., 2018; Choi et al., 2018). In this work, in order for the action space
to remain manageable, we use L = 1, and allow for N = Ndim communication rounds.

Multi-Round Communication. This feature characterises (i) whether the listener agent can send
messages back to the speaker agent and (ii) how many communication rounds can be expected before
the listener agent is finally tasked to discriminate between the stimuli it observes and have to act by
pointing at the one it estimates as the target stimulus. In our proposed benchmark, this feature is
parameterizable, but, in this work, in order for both agents to have the same state and action spaces,
we allow the listener to send messages similarly to the speaker, but the environment zeros out those
messages coming from the listener.

Stimulus vs. Object Centricism. The basic (discriminative) referential game is stimulus-centric,
which assumes that both agents would be somehow embodied in the same body, and they are tasked
to discriminate between given stimuli. On the other hand, the object-centric variant incorporates
the issues that stem from the difference of embodiment. The agents are tasked with discriminat-
ing between objects (or scenes) independently of the viewpoint from which they may experience
them. In this variant, the game is more about bridging the gap between each other’s cognition rather
than (just) finding a common language. It was introduced in the work of Choi et al. (2018), in its
descriptive-only form. Needless to say that the object-focused variant adds difficulty to the task.
It has been highlighted that embodiment may hold some key to the systematic generalisation abil-
ities of deep learning agents (Hill et al., 2019a), and therefore it is highlighted as a very important
research direction to pursue.

In an even more abstract approach, the object-focused setting could be acknowledged as an emphasis
on the concept or semantic meaning behind the observed stimulus, and the listener agent would thus
be tasked with learning the semantic, while being prompted with different instances of it. In the
current work, as we are presenting baseline results, we employ a stimulus-centric parameterisation,
but the benchmark we propose incorporates object-centrism and it will be investigated in subsequent
works.
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Figure 3: Left: Instantiation of a dataset of SCS-represented stimuli sampled from the current
episode’s symbolic space, whose semantic structure is sampled out of the meta-distribution of avail-
able semantic structure over Ndim-dimensioned symbolic spaces. Right: illustration of the resulting
(meta-)reinforcement learning episode consisting of a series of referential games.

4.2 META-REFERENTIAL GAMES

Thanks to the representation shape invariance property of the SCS representation, after fixing a
number of latent/factor dimension Ndim, we can define many differently semantically structured
Ndim-dimensioned symbol spaces. In other words that are more akin to the meta-learning field,
we can define a distribution over many kind of tasks, where each task instantiates a different se-
mantic structure, that we want our agent to be able to adapt to. And, by defining the tasks as
zero-shot compositional learning test that are parameterized by differently semantically structured
Ndim-dimensioned symbolic spaces, we aim for the agent to learn to exhibit compositional learning
behaviours over Ndim-dimensioned symbolic spaces.

Figure 3 highlights the structure of an episode, and its reliance on differently semantically structured
Ndim-dimensioned symbolic spaces. Similarly to the Recall task, this meta-referential game-based
benchmark presents over 2 shots all the training-purposed stimuli of the current episode’s symbolic
space, and then over only one shot all the testing-purposed stimuli, similarly to how a zero-shot
compositional test would be performed with referential games. Each shot consists of a series of
referential games, one for each relevant stimulus.

4.2.1 VOCABULARY PERMUTATION ON THE COMMUNICATION CHANNEL

We bring the readers attention on the fact that simply changing the semantic structure of the Ndim-
dimensioned symbolic space, is not sufficient to draw out MARL agents adaptation. Indeed, they
can learn to cheat by relying on an episode/task-invariant (and therefore semantic structure invariant)
emerging language which would encode the continuous values of the SCS representation like a
analog-to-digital converter would. This cheating language would consist of mapping a fine-enough
partition of the [−1,+1] range onto the vocabulary in a bijective fashion.

For instance, for a vocabulary size ‖V ‖ = 10, each symbol can be unequivocally mapped onto
2
10 -th increments over [−1,+1], and, by communicating Ndim symbols (assuming Ndim ≤ L), the
speaker agents can communicate to the listener the (digitized) continuous value on each dimension
i of the SCS-represented stimulus. If maxjd(j) ≤ ‖V ‖ then the cheating language is expressive-
enough for the speaker agent to digitize all possible stimulus without solving the binding problem,
i.e. without inferring the semantic structure. Similarly, it is expressive-enough for the listener
agent to convert the spoken utterances to continuous/analog-like values over the [−1,+1] range,
thus enabling the listener agent to skirt the binding problem when trying to discriminate the target
stimulus from the different stimuli it observes.

Therefore, in order to guard the MARL agents from making a cheating language emerge, we employ
a vocabulary permutation scheme (Cope & Schoots, 2021) that samples at the beginning of each
episode/task a random permutation of the vocabulary symbols. This approach is similar to the
Other-Play algorithm from Hu et al. (2020).
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(a) (b)

Figure 4: (a): 4-ways (3 distractors) zero-shot compositional test accuracies of different architec-
tures. 5 seeds for architectures with DNC and LSTM, and 2 seeds for runs with DNC+Rec and
LSTM+Rec, where the auxiliary reconstruction loss is used. (b): Stimulus reconstruction accura-
cies for the archiecture augmented with the auxiliary reconstruction task. Accuracies are computed
on binary values corresponding to each stimulus’ latent dimension’s reconstructed value being close
enough to the ground truth value, with a threshold of 0.05.

5 EXPERIMENTS & ANALYSIS

5.1 SINGLE-AGENT REINFORCEMENT LEARNING SETTING

While a referential game usually involves a speaker and listener agent, in the present paper we
propose to focus solely on the listener agent by replacing the speaker agent with a rule-based speaker
agent whose language is (linguistically) compositional in the sense of the posdis compositionality
metric (Chaabouni et al., 2020).

Indeed, the listener agent of a referential game is solely focused with the problem of language
acquisition, which is assumed easier than the problem of language emergence that the speaker agent
has to solve by searching for an expressive enough artificial language to describe SCS-represented
stimuli.

By focusing solely on the language acquisition problem, in the context of a (linguistically) compo-
sitional language, we focus in effect on the listener agent’s ability to learn compositional learning
behaviours, and nothing more. We will explore the other problems of this framework in subsequent
works.

5.2 AGENT ARCHITECTURE

The baseline RL agents that we consider are made up of standard architecture for reinforcement
learning in multi-modal (stimulus + language) environments. The stimulus is processed at every
timestep by a fully-connected 3-layers network. The language input, represented as a one-hot-
encoding, is concatenated with the stimulus embeddings and, finally, a core memory processes the
information over time. A fully-connected layer followed by a softmax activation maps the output
of this core memory module to a distribution over 29 actions, which corresponds to an action space
combining both the language output and the decision output. Optimization is performed via an
R2D2 algorithm(Kapturowski et al., 2018).

We investigate both an LSTM (Hochreiter & Schmidhuber, 1997) and a Differentiable Neural Com-
puter (DNC) (Graves et al., 2016) as core memory module. More details can be found, for re-
producibility purposes, in our open-source implementation at HIDDEN-FOR-REVIEW-PURPOSE.
Hyperparameters have been selected via fine-tuning using Weights&Biases’ Hyperparemeter Sweep
feature.

5.3 AUXILIARY RECONSTRUCTION TASK

Following the work of Hill et al. (2020), we augment the agent with an auxiliary reconstruction task
aiming to help the agent learning to use its core memory module. The reconstruction loss consists
of a mean squared-error between the stimuli observed by the agent at a given time step and the
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output of a prediction network which takes as input the current state of the core memory module
after processing the current timestep stimuli. In the case of the LSTM, the hidden states are used,
while in the case of the DNC, the memory is used as input to the prediction network.

5.4 RESULTS

Figure 4a shows the 4-ways (3 distractors) zero-shot compositional (ZSC) test accuracies of the
different agents throughout learning. The zero-shot compositional test accuracy is the accuracy over
testing-purpose stimuli only, after the agent has observed for two consecutive times the supportive
training-purpose stimuli for the current episode/task parameterised by the current semantic structure.
The DNC-based architecture has difficulty learning how to use its memory, even with the use of
the auxiliary reconstruction loss, and therefore it utterly fails to reach better-than-chance zsc test
accuracies. On the otherhand, the LSTM-based architecture is fairly successful on the auxiliary
reconstruction task, but it is not sufficient for training to really take-off. This result hints at the fact
that indeed new inductive biases must be investigated to be able to solve the problem posed by the
benchmark that we propose.

6 CONCLUSION

In order to build artificial agents able to collaborate with human beings, we have proposed a novel
benchmark to investigate artificial agents abilities at learning compositional learning behaviours.
Our proposed benchmark casts the problem of learning compositional learning behaviours as a
(meta-)reinforcement learning problem, using iterated (discriminative) referential games, containing
at its core an instantiation of the binding problem. This instantiation of the binding problem and the
meta-learning formulation of referential games is made possible by a novel representation shceme,
entitled the Symbolic Continuous Stimulus (SCS) representation, which acts as a versatile repre-
sentation for symbolic spaces as it allows for infinitely many semantic structure to be instantiated
without changing the shape of the representation, and it relies on continuous values that are more
akin to real world stimuli, as opposed to discrete valued one-hot-encodings.

Finally, we have provided baseline results on the single-agent tasks of learning compositional learn-
ing behaviours, using state-of-the-art RL agents built around core memory modules, and our results
show that our proposed benchmark is currently out of reach for. Thus, we hope will spur the research
community towards developing more capable artificial agents.
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