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ABSTRACT

Many imitation learning (IL) algorithms employ inverse reinforcement learning
(IRL) to infer the underlying reward function that an expert is implicitly optimiz-
ing for, based on their demonstrated behaviors. However, a misalignment between
the inferred reward and the true task objective can result in task failures. In this pa-
per, we introduce Protagonist Antagonist Guided Adversarial Reward (PAGAR), a
semi-supervised reward design paradigm to tackle this reward misalignment prob-
lem in IRL-based IL. We identify the conditions on the candidate reward functions
under which PAGAR can guarantee to induce a policy that succeeds in the under-
lying task. Furthermore, we present a practical on-and-off policy approach to im-
plement PAGAR in IRL-based IL. Experimental results show that our algorithm
outperforms competitive baselines on complex IL tasks and zero-shot IL tasks in
transfer environments with limited demonstrations.

1 INTRODUCTION

The central principle of reinforcement learning (RL) is reward maximization Mnih et al. (2015);
Silver et al. (2016); Bertsekas (2009). The effectiveness of RL thus hinges on having a proper
reward function that drives the desired behaviors Silver et al. (2021). Inverse reinforcement learning
(IRL) Ng & Russell (2000); Finn et al. (2017) is a well-known approach that aims to learn an agent’s
reward from a set of candidate rewards by observing its behaviors. IRL is also often leveraged as
a subroutine in imitation learning (IL) where the learned reward function is used to train a policy
via RL Abbeel & Ng (2004); Ho & Ermon (2016). However, it is challenging for IRL to identify
a proxy reward function that is aligned with the true task objective. One common cause of reward
misalignment in IRL-based IL is reward ambiguity – multiple reward functions can be consistent
with expert demonstrations, even in the limit of infinite-data Ng & Russell (2000); Cao et al. (2021);
Skalse et al. (2022a;b); Skalse & Abate (2022), but only some of those reward functions may be
aligned with the task objective. Training a policy with a misaligned reward can result in reward
hacking and task failures Hadfield-Menell et al. (2017); Amodei et al. (2016); Pan et al. (2022).

Our key insight into the problem of reward misalignment in IRL-based IL is that there is a disconnect
between the principle of reward maximization and the notion of task success or failure – reward
maximization is often neither a sufficient nor necessary condition for accomplishing the underlying
task. We consider the notion of task success and failure as a mapping from policies to binary
outcomes, i.e., Φ(π) ∈ {true,false} where Φ(π) = true meaning π succeeds in the task
and otherwise π fails the task. We propose the following definition for identifying whether a reward
function is aligned with the given task.
Definition 1 (Task-Reward Alignment). Let Ur(π) ∈ R measure the performance of any policy
π ∈ Π from a policy space Π under a reward function r, and Ur = [min

π
Ur(π),max

π
Ur(π)] be

the range of Ur(π) for π ∈ Π. A reward function r is said to be aligned with the task if and only
if there exists a non-empty success interval Sr ⊂ Ur and a failure interval Fr ∈ Ur such that (1)
sup Sr = max

π
Ur(π) ∧ inf Sr ≤ supSr, (2) Fr = ∅ ∨ (inf Fr = min

π
Ur(π) ∧ supFr < inf Sr),
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Figure 1: The r-axis indicates different reward functions. The reward function r− is misaligned with
the task, whereas r+ is aligned with the task. The two vertical lines indicate the values of Ur+(π) and
Ur−(π). The purple bar indicates Ur− , the interval of Ur−(π). The green, blue, and red bars jointly
indicate Ur+ , the interval of Ur+(π). If a policy’s performance is in the green bar interval Sr+ ,
this policy is guaranteed to accomplish the task; if a policy’s performance is in the red bar interval
Fr+ , this policy is guaranteed to fail the task; otherwise, the policy’s success or failure in the task is
uncertain. The performance margin between the expert demonstrations E and any policy π measured
under a reward function r is Ur(E) − Ur(π). The reward function r− is the optimal solution for
IRL while r+ is sub-optimal, i.e., Ur−(E) − maxπ Ur−(π) > Ur+(E) − maxπ Ur+(π). As a
result, IRL-based IL learns a policy π−, which is optimal under r− but achieves a low performance
Ur+(π

−) ∈ Fr+ under r+, thus failing the task. We propose to learn π∗ that achieves high Ur+(π
∗)

and Ur−(π
−). The idea is that even though π∗ may not be optimal under r+ or r−, the performance

margins from E to π∗, i.e., Ur+(E)− Ur+(π
∗) and Ur−(E)− Ur−(π

∗), are both small.

(3) for any policy π ∈ Π, Ur(π) ∈ Sr ⇒ Φ(π) and Ur(π) ∈ Fr ⇒ ¬Φ(π). If Sr and Fr do not
exist, r is said to be misaligned.

The definition states that if a reward function r is aligned with the task, then a policy π can ac-
complish the task as long as it can achieve a high enough Ur(π) such that Ur(π) ∈ Sr. On the
other hand, if r is misaligned with the task, then even its optimal policy may not accomplish the
task. During the iterative process of IRL-based IL, multiple candidate reward functions are inferred
from the demonstrations. Our idea is to train a policy to achieve high performance under a selected
subset of those reward functions, even when some reward functions may not be the optimal solution
of IRL. The intuition is to gain from those reward functions a collective validation of the policy’s
similarity with respect to the expert demonstrations. We illustrate this idea with Figure 1 where IRL
infers an optimal reward function r− and a sub-optimal reward function r+ from the expert demon-
strations E. Suppose that r+ is aligned with the underlying task while r− is misaligned. IRL-based
IL will use the optimal solution r− to learn a policy π− which performs optimally under r− but
much worse under r+, i.e., Ur+(π

−) ∈ Fr+ , thus failing the task. Our goal is to learn a policy π∗ to
attain high performance under both r+ and r− without explicitly identifying which reward function
is aligned with the task. Even though π∗ may not be optimal under either r+ or r−, π∗ has a small
performance margin with respect to E under both r+ and r−.

We concretize our proposition in a novel semi-supervised reward design paradigm called Protagonist
Antagonist Guided Adversarial Reward (PAGAR). Treating the policy trained for the underlying task
as a protagonist, PAGAR adversarially searches for a reward function to challenge the protagonist
policy to achieve performances on par with the optimal policy under that reward function (which
we call an antagonist policy). Then, by iteratively training the protagonist policy with the searched
reward functions, we can mitigate the problem of reward misalignment due to optimizing for a
single but misaligned reward. This protagonist and antagonist setup is inspired by the concept of
unsupervised environment design (UED) from Dennis et al. (2020). In this paper, we develop novel
theories for semi-supervised reward design and prove that PAGAR can mitigate the problem of
reward misalignment in IRL-based IL. In addition, we propose an on-and-off-policy approach to
implementing PAGAR-based IL. We summarize our contributions below.

• We propose a semi-supervised reward design paradigm for mitigating reward misalignment. We
identify the technical conditions on the candidate reward functions for avoiding failures and guar-
anteeing success in the underlying task.
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• We develop an on-and-off-policy approach to implementing this paradigm in IL.
• Experimental results demonstrate that our algorithm outperforms competitive baselines on com-

plex IL tasks and zero-shot IL tasks in transfer environments with limited demonstrations.

2 RELATED WORKS

Reward misalignment has been studied under various contextx such as reward misspecification Pan
et al. (2022); Skalse & Abate (2022), reward hacking Skalse et al. (2022b), and reward ambigu-
ity Skalse & Abate (2022); Ng & Russell (2000); Cao et al. (2021). Previous attempts to ensure
reward alignment in RL include using logical structures Toro Icarte et al. (2019); Hasanbeig et al.
(2019). In IRL-based IL, the efforts to alleviate the reward ambiguity problem include Max-Entropy
IRL from Ziebart et al. (2008), Max-Margin IRL from Abbeel & Ng (2004); Ratliff et al. (2006),
and Bayesian IRL from Ramachandran & Amir (2007). However, these approaches do not funda-
mentally address the reward misalignment problem. Our work shares a viewpoint with Metelli et al.
(2021) and Lindner et al. (2022) that reward ambiguity can be circumvented by focusing on the
feasible reward set, rather than a single reward function. However, while those works primarily con-
sider the optimal solution set of IRL. GAN-based methods Ho & Ermon (2016); Jeon et al. (2018);
Finn et al. (2016); Peng et al. (2019); Fu et al. (2018) leverage the expressivity of neural networks
to learn reward functions and policies from limited demonstrations. However, they do not specif-
ically address the reward misalignment problem. Other efforts on resolving reward misalignment
in IRL-based IL resort to using additional information other than demonstrations, such as human
preferences over trajectories Dorsa Sadigh et al. (2012); Brown et al. (2019), expert behaviors from
multiple tasks Shah et al. (2019), logical structures for reward functions Zhou & Li (2022a;b), and
formal verification Zhou & Li (2018). In contrast, our approach does not rely on such additional
information.

3 PRELIMINARIES

Reinforcement Learning (RL) models the environment as a Markov Decision process M =
⟨S,A,P, d0⟩ where S is the state space, A is an action space, P(s′|s, a) is the probability of reaching
a state s′ by performing an action a at a state s, and d0 is an initial state distribution. A policy π(a|s)
determines the probability of an RL agent performing an action a at state s. By successively per-
forming actions for T steps from an initial state s(0) ∼ d0, a trajectory τ = s(0)a(0)s(1)a(1) . . . s(T )

is produced. A state-action based reward function is a mapping r : S × A → R. The soft Q-
value function of π is Qπ(s, a) = r(s, a) + γ · E

s′∼P(·|s,a)
[Vπ(s

′)] where Vπ is the soft state-value

function of π defined as Vπ(s) := E
a∼π(·|s)

[Qπ(s, a)] + H(π(·|s)), and H(π(·|s)) is the entropy

of π at a state s. The soft advantage of performing action a at state s then following a policy π
afterwards is then Aπ(s, a) = Qπ(s, a) − Vπ(s). The expected return of π under a reward func-
tion r is given as ηr(π) = E

τ∼π
[
∑T

t=0 r(s
(t), a(t))]. With a little abuse of notations, we denote

r(τ) :=
∑T

t=0 γ
t · r(s(t), a(t)), and H(π) :=

∑T
t=0 E

s(t)∼π
[γt · H(π(·|s(t)))]. The objective of

entropy-regularized RL is to learn a policy π that maximizes JRL(π; r) = ηr(π) +H(π).

Inverse Reinforcement Learning (IRL) assumes that a set E = {τ1, . . . , τN} of expert demon-
strations is provided instead of the reward function. It is also assumed that the expert demonstrations
are sampled from the roll-outs of the expert’s policy πE . Given a candidate set of reward functions
R, Maximum Entropy IRL Ziebart et al. (2008) solves for the reward function that maximizes the
IRL loss function JIRL(r) = max

π
ηr(π) +H(π)− ηr(πE) where ηr(πE) is estimated from E.

Generative Adversarial Imitation Learning (GAIL) Ho & Ermon (2016) draws a connection
between IRL and Generative Adversarial Nets (GANs) as shown in Eq.1. A discriminator D :
S×A → [0, 1] is trained by minimizing Eq.1 so that D can accurately identify any (s, a) generated
by the agent. Meanwhile, an agent policy π is trained as a generator by using a reward function
induced from D to maximize Eq.1 so that D cannot discriminate τ ∼ π from τE . In adversarial
inverse reinforcement learning (AIRL) Fu et al. (2018), it is further proposed that by representing
D(s, a) := π(a|s)

exp(r(s,a))+π(a|s) with r, when Eq.1 is at optimality, r∗ ≡ log πE ≡ AπE
. By training
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π with r∗ until optimality, π will behave just like πE .
E

(s,a)∼π
[log(1−D(s, a))] + E

(s,a)∼πE

[logD(s, a))] (1)

4 PROTAGONIST ANTAGONIST GUIDED ADVERSARIAL REWARD (PAGAR)

This section introduces our semi-supervised reward design paradigm, PAGAR. We first present the
basic concepts of PAGAR and theoretically analyze the effect of applying PAGAR to RL. Then, we
show how PAGAR can be incorporated with IRL-based IL to mitigate reward misalignment.

We call the policy to be trained for the underlying task the protagonist policy πP . Recall that Ur(π)
mentioned in Definition 1 is used to measure the performance of a π under an r. We consider using
the expected return to measure Ur(π), i.e., Ur(π) := ηr(π). For any reward function r ∈ R, we
define Protagonist Antagonist Induced Regret as in Eq.2 where πA is referred to as an antagonist
policy. The intuition is that πP does not incur high regret under r if its performance is close to that of
the optimal policy under r. We define our semi-supervised reward design paradigm in Definition 2.

Regret(πP , r) :=

{
max
πA∈Π

Ur(πA)

}
− Ur(πP ) (2)

Definition 2 (Protagonist Antagonist Guided Adversarial Reward (PAGAR)). Given a candidate
reward function set R and a protagonist policy πP , PAGAR searches for a reward function r within
R to maximize the Protagonist Antagonist Induced Regret, i.e., max

r∈R
Regret(r, πP ).

4.1 RL WITH PAGAR

We next show that, under certain conditions, by training the protagonist policy πP with the reward
functions induced from PAGAR as shown by the objective function MinimaxRegret in Eq.3, πP

can guarantee to avoid failing and even accomplish the underlying task even when R contains reward
functions that are misaligned with the task. We denote any task-aligned reward function as ral ∈ R
and any misaligned reward function as rmis ∈ R. Then we use the Sr and Fr intervals defined in
Definition 1 to present these conditions in Theorem 1.

MinimaxRegret(R) := arg min
πP∈Π

max
r∈R

{
max
πA∈Π

Ur(πA)

}
− Ur(πP ) (3)

Theorem 1 (Task-Failure Avoidance ). If the following conditions (1) (2) hold for R, then the
optimal protagonist policy πP := MinimaxRegret(R) satisfies that ∀ral ∈ R,Ural

(πP ) /∈ Fral
.

(1) There exists ral ∈ R, and max
ral∈R

{supFral
− inf Fral

} < min
ral∈R

{inf Sral
− supFral

} ∧
max
ral∈R

{supSral
− inf Sral

} < min
ral∈R

{inf Sral
− supFral

};

(2) There exists a policy π∗ such that ∀ral ∈ R, Ural
(π∗) ∈ Sral

, and ∀rmis ∈ R,
max
π∈Π

Urmis(π)− Urmis(π
∗) < min

ral∈R
{inf Sral

− supFral
}.

In Theorem 1, condition (1) states that for each ral ∈ R, the ranges of the utilities of successful and
failing policies are distributed in small ranges. Condition (2) states that there exists a π∗ that not
only performs well under all ral’s (thus succeeding in the task), but also achieves high performance
under all rmis’s. The proof can be found in Appendix A.3. Furthermore, under stricter conditions,
MinimaxRegret(R) can guarantee inducing a policy that succeeds in the underlying task.
Corollary 1 (Task-Success Guarantee). Assume that Condition (1) in Theorem 1 is satisfied. If there
exists a policy π∗ such that ∀r ∈ R, max

π∈Π
Ur(π)− Ur(π

∗) < min
ral∈R

{supSral
− inf Sral

}, then the

optimal protagonist policy πP := MinimaxRegret(R) satisfies that ∀ral ∈ R, Ural
(π) ∈ Sral

.

The additional condition in Corollary 1 strengthens the requirement on the existence of a policy π∗

performing well under all reward functions in R. However, the theories raise the question of how to
design an R to meet those conditions without knowing which reward function aligns with the task.
R should not be chosen arbitrarily. For instance, if R contains opposite reward functions r and −r,
no policy may perform well under both r and −r. We next show that PAGAR can be effectively
used in IL by associating R with demonstrations that accomplish the task.
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4.2 IL WITH PAGAR

Given a set E of expert demonstrations, we let RE,δ = {r|Ur(E)−max
π∈Π

Ur(π) ≥ δ} be the set of

reward functions under which the performance margin between the expert demonstrations and the
optimal policies is no less than δ. Let Lr be the Lipschitz constant of r(τ), WE be the smallest
Wasserstein 1-distance W1(π,E) between τ ∼ π of any π and τ ∼ E, i.e., WE ≜ min

π∈Π
W1(π,E).

Then, we have the following.

Theorem 2 (Task-Failure Avoidance). If the following conditions (1) (2) hold for RE,δ , then the
optimal protagonist policy πP := MinimaxRegret(RE,δ) satisfies that ∀ral ∈ RE,δ , Ural

(π) /∈
Fral

.

(1) The condition (1) in Theorem 1 holds

(2) ∀ral ∈ RE,δ , Lral
·WE − δ ≤ supSral

− inf Sral
and ∀rmis ∈ RE,δ , Lrmis

·WE − δ <
min

ral∈RE,δ

{inf Sral
− supFral

}.

Theorem 2 delivers the same guarantee as that of Theorem 1 but differs from Theorem 1 in that
condition (2) implies that there exists a policy π∗ such that the performance margin between E and
π∗ is small under all r ∈ RE,δ . The following corollary further describes a sufficient condition for
MinimaxRegret(RE,δ) to find a policy that succeeds in the underlying task.

Corollary 2 (Task-Success Guarantee). Assume that the condition (1) in Theorem 1 holds for RE,δ .
If for any r ∈ RE,δ , Lr · WE − δ ≤ min

ral∈RE,δ

{supSral
− inf Sral

}, then the optimal protagonist

policy πP = MinimaxRegret(RE,δ) satisfies ∀ral ∈ RE,δ , Ural
(π) ∈ Sral

.

Corollary 2 suggests using a large δ to gain a better chance of satisfying the conditions in Corol-
lary 2. Notably, increasing the δ in RE,δ coincides with decreasing the IRL loss JIRL given in
Section 3 if not considering the entropy regularization. Specifically, by reformulating the IRL loss
as JIRL(π, r) := Ur(π) − Ur(E), r ∈ RE,δ can be enforced by JIRL(r) + δ ≤ 0. Hence,
we propose IL with PAGAR: use IRL to learn a RE,δ for some target δ, and learn a πP via
MinimaxRegret(RE,δ). In particular, for the maximum δ := max

r∈R
Ur(E) − max

π∈Π
Ur(π), we

simplify RE,δ as RE . In this case, RE equals the optimal reward function solution set of IRL,
and solving MinimaxRegret(RE) can circumvent the reward ambiguity issue in IRL. We use an
example to illustrate this.

Example 1. In a two-state transition system where s0 is the initial state, and s1 is an absorbing state,
an agent can choose action a0 at state s0 to stay at s0 or choose a1 to reach s1. Any agent can start
from s0 and choose actions for 5 timesteps. The task is to learn a stochastic policy to reach s1. Expert
only demonstrates one trajectory E = {τE = (s0, a1, s1, s1, s1, s1)}, i.e., choose a1 at s0 and then
stay in s1 for the rest 4 steps. The convex combinations of two basis functions r1 and r2 constitute
the hypothesis set of reward functions R = {r|r(s, a) = α · r1(s, a)+ (1−α) · r2(s, a), α ∈ [0, 1]}
where r1(s, a) ≡ 4 constantly, and r2(s0, a0) = r2(s0, a1) = 0, r2(s1, ·) = 5. We prove in
Appendix A.5 that when applying IRL to learn a reward function from E, any convex combination
of r1 and r2 is an optimal solution, i.e., RE = R. This ambiguity in choosing reward functions
can cause reward misalignment because the reward function r = r1 induced by α = 1 violates the
criterion of task-reward alignment in Definition 1: achieving optimality under r1 does not guarantee
task success since all policies are optimal under r1. On the other hand, MinimaxRegret(R) will
produce a policy πP (a1|s0) = 1 of which the worst-case regret is 0. And it is the desired solution.

Table 1 compares PAGAR-based IL and IRL-based IL from another perspective by deriving an
equivalent objective function of MinimaxRegret(RE). The derivation is shown in Theorem 5
in Appendix A.2. In essence, this objective function searches for a policy π with the highest score
measured by an affine combination of policy performance Ur(π) with r drawn from two different re-
ward function distributions in RE . One distribution has singleton support on the reward function r∗π
that maximizes the policy performance Ur(π) among those who maximize the regret Regret(π, r).
The other one, Pπ , is a baseline distribution which guarantees that: (1) for policies that do not al-
ways perform worse than any other policy, the expected Ur(π) values measured under r ∼ Pπ are
all equal to some constant c (minimum value for the equality to hold); (2) for any other policy π′,
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IRL-Based IL argmax
π∈Π

Ur(π) s.t. r ∈ arg min
r′∈R

{
max
π′∈Π

Ur′(π)

}
− Ur′(πE)

PAGAR-Based IL argmax
π∈Π

{
Regret(π,r∗π)
c−Ur∗π (π) · Ur∗π

(π) + E
r∼Pπ(r)

[(
1− Regret(π,r)

c−Ur(π)

)
· Ur(π)

]}

Table 1: Comparing the policy optimization objectives of IRL-based IL and PAGAR-based IL. For
PAGAR, π is the protagonist policy; Pπ(r) is a baseline distribution over r ∈ RE such that 1) c is
the smallest value for c ≡ E

r∼Pπ

[Ur(π)] to hold for all the policies that perform no worse than any

other policy, and 2) max
r∈RE

Ur(π) ≡ E
r∼Pπ

[Ur(π)] holds for any other policy; r∗π is a reward function

r associated with a policy π such that r∗π maximizes Ur(π) among all those r’s that maximizes
Regret(π, r). Details can be found in the Appendix A.1 and A.2.

the distribution concentrates on the reward function r′ under which the policy achieves the highest
performance Ur′(π

′). The existence of such Pπ is proven in Appendix A.1 and A.2. Intuitively,
the affine combination assigns different weights to the policy performances evaluated under those
two distributions. If the policy π performs worse under r∗π than under many other reward functions
(Ur∗π(π) falls below c), a higher weight will be allocated to using r∗π to train π. Conversely, if the
policy π performs better under r∗π than under many other reward functions (c falls below Ur∗π(π)), a
higher weight will be allocated to using reward functions drawn from Pπ to train π. Furthermore, if
there exists a policy that is optimal under all the optimal reward functions in RE , i.e., IRL can reach
Nash Equilibrium, MinimaxRegret(RE) will choose this policy as its solution. In other words,
MinimaxRegret(RE) does not degrade the performance of IRL.

Theorem 3. If argmin
r∈R

max
π∈Π

JIRL(R, π) can reach Nash Equilibrium with an optimal reward func-

tion solution set RE and an optimal policy set ΠE , then ΠE is equal to the set of solutions to
MinimiaxRegret(RE).

5 AN ON-AND-OFF-POLICY APPROACH TO PAGAR-BASED IL

In this section, we introduce a practical approach to solving MinimaxRegret(RE,δ) with given δ.
In a nutshell, this approach alternates between policy learning and reward learning. We first explain
how we optimize πP , πA; then we derive from Eq.2 two reward improvement bounds for optimizing
r. We then discuss how to incorporate IRL to enforce the constraint r ∈ RE,δ .

5.1 POLICY OPTIMIZATION WITH ON-AND-OFF POLICY SAMPLES

Following the entropy-regularized RL framework, we adopt Ur(π) := ηr(π) + H(π), which
is equal to the RL objective JRL(π; r) as defined in Section 3. Given an intermediate
learned reward function r, according to MinimaxRegret, the objective function for optimiz-
ing πP is max

πP

ηr(πP ) − ηr(πA) + H(πP ). According to Schulman et al. (2015), ηr(πP ) −

ηr(πA) ≥
∑
s∈S

ρπA
(s)

∑
a∈A

πP (a|s)ÂπA
(s, a) − C · max

s
DTV (πA(·|s), πP (·|s))2 where ρπA

(s) =∑T
t=0 γ

tProb(s(t) = s|πA) is the discounted visitation frequency of πA, ÂπA
(s, a) is the advan-

tage function when the entropy regularizer H is not considered, and C is some constant. This
inequality allows us to maximize the ηr(πP ) − ηr(πA) part by only using the trajectories of
πA (off-policy): following the theories in Schulman et al. (2015) and Schulman et al. (2017),
we derive from the r.h.s of the inequality a PPO-style objective function JPPO(πP ;πA, r) :=

Es∼πA
[min(πP (a|s)

πA(a|s) ÂπA
(s, a), clip(πP (a|s)

πA(a|s) , 1 − σ, 1 + σ)ÂπA
(s, a)] where σ is a clipping thresh-

old. In the meantime, since max
πP

η(πP ) − ηr(πA) + H(πP ) ≡ max
πP

η(πP ) + H(πP ), we can

directly optimize πP by maximizing a standard RL objective JRL(πP ; r) = ηr(πP ) +H(πP ) with
the trajectories of πP itself (on-policy). Regarding the optimization of πA, since πA is intended to
be a proxy of the optimal policy under r, we train πA to maximize JRL(πA; r). The loss functions
for optimizing πA is denoted as JRL(πA; r) and that of πP is JPPO(πP ;πA, r) + JRL(πP ; r).
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Algorithm 1 An On-and-Off-Policy Algorithm for Imitation Learning with PAGAR
Input: Expert demonstration E, margin upper-bound δ, initial protagonist policy πP , antagonist
policy πA, reward function r, Lagrangian parameter λ ≥ 0, maximum iteration number N .
Output: πP

1: for iteration i = 0, 1, . . . , N do
2: Sample trajectory sets DA ∼ πA and DP ∼ πP

3: Optimize πA: estimate JRL(πA; r) with DA; maximize JRL(πA; r)
4: Optimize πP : estimate JRL(πP ; r) with DP ; estimate JPPO(πP ;πA, r) with DA; maximize

JRL(πP ; r) + JPPO(πP ;πA, r)
5: Optimize r: estimate JPAGAR(r;πP , πA) with DP and DA; estimate JIRL(r) with DA and

E; minimize JPAGAR(r;πP , πA) + λ · (JIRL(r) + δ); then update λ based on JIRL(r) + δ
6: end for
7: return πP

5.2 REGRET MAXMIZATION WITH ON-AND-OFF POLICY SAMPLES

Given the intermediate learned protagonist and antagonist policy πP and πA, according to
MinimaxRegret, we need to optimize r to maximize Regret(r, πP ) = max

π∈Π
ηr(π) − ηr(πP ).

In practice, we solve argmax
r

ηr(πA)− ηr(πP ) since πA is the proxy of the optimal policy under r.
We extract the two reward improvement bounds in Theorem 4 to help solve this objective function.
Theorem 4. Suppose policy π2 ∈ Π is the optimal solution for JRL(π; r). Then for any policy π1 ∈
Π, the inequalities Eq.4 and 5 hold where α = max

s
DTV (π1(·|s), π2(·|s)), ϵ = max

s,a
|Aπ2(s, a)|,

and ∆A(s) = E
a∼π1

[Aπ2(s, a)]− E
a∼π2

[Aπ2(s, a)].∣∣∣∣∣ηr(π1)− ηr(π2)−
∞∑
t=0

γt E
s(t)∼π1

[
∆A(s(t))

]∣∣∣∣∣ ≤ 2αγϵ

(1− γ)2
(4)∣∣∣∣∣ηr(π1)− ηr(π2)−

∞∑
t=0

γt E
s(t)∼π2

[
∆A(s(t))

]∣∣∣∣∣ ≤ 2αγ(2α+ 1)ϵ

(1− γ)2
(5)

By letting πP be π1 and πA be π2, Theorem 4 enables us to bound ηr(πA)− ηr(πP ) by using either
only the samples of πA or only those of πP . Following Fu et al. (2018), we let r be a proxy of Aπ2

in
Eq.4 and 5. Then we derive two loss functions JR,1(r;πP , πA) and JR,2(r;πP , πA) for r as shown
in Eq.6 and 7 where ξ1(s, a) =

πP (a|s)
πA(a|s) and ξ2(s, a) =

πA(a|s)
πP (a|s) are importance sampling ratios, and

C1 and C2 are constants proportional to the estimated maximum KL divergence between πA and πP

(to bound α Schulman et al. (2015)). The objective function for r is then JPAGAR := JR,1 + JR,2.

JR,1(r;πP , πA) := E
τ∼πA

[∑∞
t=0 γ

t
(
ξ1(s

(t), a(t))− 1
)
· r(s(t), a(t))

]
+ C1 · max

(s,a)∼πA

|r(s, a)|(6)

JR,2(r;πP , πA) := E
τ∼πP

[∑∞
t=0 γ

t
(
1− ξ2(s

(t), a(t))
)
· r(s(t), a(t))

]
+ C2 · max

(s,a)∼πP

|r(s, a)|(7)

5.3 ALGORITHM FOR SOLVING PAGAR-BASED IL

In addition to JPAGAR(r;πP , πA), we incorporate IRL to enforce the constraint r ∈ RE,δ by adding
a penalty term λ · (δ+ JIRL) where λ is a Lagrangian parameter. We then reformulate the objective
function for optimizing r as min

r∈R
JPAGAR(r;πP , πA) + λ · (δ + JIRL(r)). Particularly, for some

tasks, we solve min
r

JPAGAR − λ · JIRL with a large constant λ to equivalently implement the
maximal δ as mentioned in Section 4.2. Algorithm 1 describes our approach for solving PAGAR-
based IL. The algorithm iteratively trains the policies and the reward function alternately. It first
trains πA in line 3. Then, it employs the on-and-off policy approach to train πP in line 4, including
utilizing the PPO-style objective JPPO. In line 5, while JPAGAR is estimated based on both DA

and DP , the IRL objective is only based on DA. Appendix B.3 details how we update λ based on
JIRL and incorporate different IRL algorithms.
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6 EXPERIMENTS

The goal of our experiments is to assess whether using PAGAR-based IL can efficiently circumvent
reward misalignment in different IL/IRL benchmarks by comparing with representative baselines.
We present the main results below and provide details and additional results in Appendix C.

(a) DoorKey-6x6
(10 demos)

(b) DoorKey-6x6
(1 demo)

(c) SimpleCrossingS9N1
(10 demos)

(d) SimpleCrossingS9N1
(1 demo)

Figure 2: Comparing Algorithm 1 with baselines in two partial observable navigation tasks. The
suffix after each ‘PAGAR-’ indicates which IRL technique is used in Algorithm 1. The y axis
indicates the average return per episode. The x axis indicates the number of timesteps.

6.1 PARTIALLY OBSERVABLE NAVIGATION TASKS

We first consider a maze navigation environment where the task objective can be straightfor-
wardly categorized as either success or failure. Our benchmarks include two discrete domain
tasks from the Mini-Grid environments Chevalier-Boisvert et al. (2023): DoorKey-6x6-v0, and
SimpleCrossingS9N1-v0. Due to partial observability and the implicit hierarchical nature of the
task, these environments are considered challenging for RL and IL, and have been extensively used
for benchmarking curriculum RL and exploration-driven RL. In DoorKey-6x6-v0 the task is to pick
up a key, unlock a door, and reach a target position; in SimpleCrossingS9N1, the task is to pass an
opening on a wall and reach a target position. The placements of the objects, obstacles, and doors
are randomized in each instance of an environment. The agent can only observe a small, unblocked
area in front of it. At each timestep, the agent can choose one out of 7 actions, such as moving
to the next cell or picking up an object. By default, the reward is always zero unless the agent
reaches the target. We compare our approach with two competitive baselines: GAIL Ho & Ermon
(2016) and VAIL Peng et al. (2019). GAIL has been introduced in Section 3. VAIL is based on
GAIL but additionally optimizes a variational discriminator bottleneck (VDB) objective. Our ap-
proach uses the IRL techniques behind those two baseline algorithms, resulting in two versions of
Algorithm 1, denoted as PAGAR-GAIL and PAGAR-VAIL, respectively. More specifically, if the
baseline optimizes a JIRL objective, we use the same JIRL objective in Algorithm 1. Also, we
represent the reward function r with the discriminator D as mentioned in Section 3. More details
can be found in Appendix C.1. PPO Schulman et al. (2017) is used for policy training in GAIL,
VAIL, and ours. Additionally, we compare our algorithm with a state-of-the-art (SOTA) IL algo-
rithm, IQ-Learn Garg et al. (2021), which, however, is not compatible with our algorithm because it
does not explicitly optimize a reward function. We use a replay buffer of size 2048 in our algorithm
and all the baselines. The policy and the reward functions are all approximated using convolutional
networks. By learning from 10 expert-demonstrated trajectories with high returns, PAGAR-based
IL produces high-performance policies with high sample efficiencies as shown in Figure 2(a) and
(c). Furthermore, we compare PAGAR-VAIL with VAIL by reducing the number of demonstrations
to one. As shown in Figure 2(b) and (d), PAGAR-VAIL produces high-performance policies with
significantly higher sample efficiencies.

Zero-Shot IL in Transfer Environments. In this experiment, we show that PAGAR can enable the
agent to infer and accomplish the objective of a task in environments that are substantially differ-
ent from the expert demonstration environment. As shown in Figure 3(a), by using the 10 expert
demonstrations in SimpleCrossingS9N1-v0, we apply Algorithm 1 and the baselines, GAIL, VAIL,
and IQ-learn to learn policies in SimpleCrossingS9N2-v0, SimpleCrossingS9N3-v0 and FourRooms-
v0. The results in Figure 3(b)-(d) show that PAGAR-based IL outperforms the baselines in these
challenging zero-shot settings.
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(a) Transfer Envs (b) SimpleCrossingS9N2 (c) SimpleCrossingS9N3 (d) FourRooms

Figure 3: Comparing Algorithm 1 with baselines in transfer environments.

Figure 4: DoorKey-6x6

Influence of Reward Hypothesis Space.We study whether choos-
ing a different reward function hypothesis set can influence the
performance of Algorithm 1. Specifically, we compare using a
Sigmoid function with a Categorical distribution in the output layer
of the discriminator networks in GAIL and PAGAR-GAIL. When
using the Sigmoid function, the outputs of D are not normal-
ized, i.e.,

∑
a∈A D(s, a) ̸= 1. When using a Categorical distri-

bution, the outputs in a state sum to one for all the actions, i.e.,∑
a∈A D(s, a) = 1. As a result, the sizes of the reward function sets

are different in the two cases. We test GAIL and PAGAR-GAIL in
DoorKey-6x6-v0 environment. As shown in Figure 4, different re-
ward function sets result in different training efficiency. However,
PAGAR-GAIL outperforms GAIL in both cases by using fewer samples to attain high performance.

6.2 CONTINUOUS CONTROL TASKS WITH NON-BINARY OUTCOMES

We test PAGAR-based IRL in multiple Mujuco tasks: Walker2d-v2, HalfCheetah-v2, Hopper-v2,
InvertedPendulum-v2, and Swimmer-v2 where the task objectives do not have binary outcomes.

Figure 5: (Left: Walker2d-v2. Right: HalfCheeta-v2) The
y axis indicates the average return per episode. One excep-
tion is IQ-Learn, which updates the policy at every timestep,
making its actual number of iterations 2048 times larger
than in the figures.

In Figure 5, we show the results on
two tasks (the other results are in-
cluded in Appendix C.3). The results
show that PAGAR-based IL takes
fewer iterations to achieve the same
performance as the baselines. In par-
ticular, in the HalfCheetah-v2 task,
Algorithm 1 achieves the same level
of performance compared with GAIL
and VAIL by using only half the num-
ber of iterations. We note that IQ-
learn could perform better if a much
larger replay buffer were used since
it uses the off-policy RL algorithm
SAC Haarnoja et al. (2018).

7 CONCLUSION

We propose PAGAR, a semi-supervised reward design paradigm that generates adversarial reward
functions under the guidance of a protagonist policy and an antagonist policy. PAGAR-based IL can
overcome the reward misalignment problem of IRL-based IL by training a policy that performs well
under multiple adversarially selected reward functions. We present an on-and-off policy approach
to PAGAR-based IL by using policy and reward improvement bounds to maximize the utilization
of policy samples. Experimental results demonstrate that our algorithm can mitigate reward mis-
alignment in challenging environments. Our future work will focus on reducing the computational
overhead in policy training and accommodating the PAGAR paradigm in other IL settings.
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APPENDIX

In the appendix, we provide additional details of the theories and the experiments. The contents of
this appendix are as follows.

• In Appendix A, we discuss some details of PAGAR and MinimaxRegret that were omit-
ted in Section 4. We briefly introduce some necessary preliminaries in Appendix A.1. Then
we derive a Theorem 5 to support Table 1 in Appendix A.2. The proves for Theorem 1
and 2, Corollary 1 and 3, Theorem 3 are in Appendix A.4. The details of Example 1 are
in Appendix A.5.

• In Appendix B, we provide some details of Imitation Learning with PAGAR that were
omitted in Section 5. We prove Theorem4 in Appendix B.1. Then we derive the objective
functions in Appendix B.2. Some details of Algorithm 1 will be explained in Appendix B.3

• In Appendix C, we provide some experimental details and additional results.

A REWARD DESIGN WITH PAGAR

This paper does not aim to resolve the ambiguity problem in IRL but provides a way to circum-
vent it so that reward ambiguity does not lead to reward misalignment in IRL-based IL. PAGAR,
the semi-supervised reward design paradigm proposed in this paper, tackles this problem from the
perspective of semi-supervised reward design. But the nature of PAGAR is distinct from IRL and
IL: assume that a set of reward functions is available for some underlying task, where some of those
reward functions align with the task while others are misaligned, PAGAR provides a solution for se-
lecting reward functions to train a policy that successfully performs the task, without knowing which
reward function aligns with the task. Our research demonstrates that policy training with PAGAR
is equivalent to learning a policy to maximize an affine combination of utilities measured under a
distribution of the reward functions in the reward function set. With this understanding of PAGAR,
we integrate it with IL to illustrate its advantages.

A.1 SEMI-SUPERVISED REWARD DESIGN

Designing a reward function can be thought as deciding an ordering of policies. We adopt a concept,
called total domination, from unsupervised environment design Dennis et al. (2020), and re-interpret
this concept in the context of reward design. In this paper, we suppose that a function Ur(π) is given
to measure the performance of a policy. While the measurement of policy performance can vary
depending on the free variable r, total dominance can be viewed as an invariance regardless of such
dependency.
Definition 3 (Total Domination). A policy, π1, is totally dominated by some policy π2 w.r.t a reward
function set R, if for every pair of reward functions r1, r2 ∈ R, Ur1(π1) < Ur2(π2).

If π1 totally dominate π2 w.r.t R, π2 can be regarded as being unconditionally better than π1. In other
words, the two sets {Ur(π1)|r ∈ R} and {Ur(π2)|r ∈ R} are disjoint, such that sup{Ur(π1)|r ∈
R} < inf{Ur(π2)|r ∈ R}. Conversely, if a policy π is not totally dominated by any other policy, it
indicates that for any other policy, say π2, sup{Ur(π1)|r ∈ R} ≥ inf{Ur(π2)|r ∈ R}.
Definition 4. A reward function set R aligns with an ordering ≺R among policies such that π1 ≺R

π2 if and only if π1 is totally dominated by π2 w.r.t. R.

Especially, designing a reward function r is to establish an ordering ≺{r} among policies. To-
tal domination can be extended to policy-conditioned reward design, where the reward func-
tion r is selected by following a decision rule R(π) such that

∑
r∈R R(π)(r) = 1. We let

UR(π) =
∑

r∈RE

R(π)(r) · Ur(π) be an affine combination of Ur(π)’s with its coefficients speci-

fied by R(π).
Definition 5. A policy conditioned decision rule R is said to prefer a policy π1 to another policy
π2, which is notated as π1 ≺R π2, if and only if UR(π1) < UR(π2).

Making a decision rule for selecting reward functions from a reward function set to respect the total
dominance w.r.t this reward function set is an unsupervised learning problem, where no additional
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external supervision is provided. If considering expert demonstrations as a form of supervision
and using it to constrain the set RE of reward function via IRL, the reward design becomes semi-
supervised.

A.2 SOLUTION TO THE MINIMAXREGRET

In Table 1, we mentioned that solving MinimaxRegret(RE) is equivalent to finding an optimal
policy π∗ to maximize a URE

(π) under a decision rule RE . Without loss of generality, we use R
instead of RE in our subsequent analysis, because solving MinimaxRegret(R) does not depend
on whether there are constraints for R. In order to show such an equivalence, we follow the same
routine as in Dennis et al. (2020), and start by introducing the concept of weakly total domination.

Definition 6 (Weakly Total Domination). A policy π1 is weakly totally dominated w.r.t a reward
function set R by some policy π2 if and only if for any pair of reward function r1, r2 ∈ R, Ur1(π1) ≤
Ur2(π2).

Note that a policy π being totally dominated by any other policy is a sufficient but not necessary
condition for π being weakly totally dominated by some other policy. A policy π1 being weakly
totally dominated by a policy π2 implies that sup{Ur(π1)|r ∈ R} ≤ inf{Ur(π2)|r ∈ R}. We
assume that there does not exist a policy π that weakly totally dominates itself, which could happen
if and only if Ur(π) is a constant. We formalize this assumption as the following.

Assumption 1. For the given reward set R and policy set Π, there does not exist a policy π such
that for any two reward functions r1, r2 ∈ R, Ur1(π) = Ur2(π).

This assumption makes weak total domination a non-reflexive relation. It is obvious that weak total
domination is transitive and asymmetric. Now we show that successive weak total domination will
lead to total domination.

Lemma 1. for any three policies π1, π2, π3 ∈ Π, if π1 is weakly totally dominated by π2, π2 is
weakly totally dominated by π3, then π3 totally dominates π1.

Proof. According to the definition of weak total domination, max
r∈R

Ur(π1) ≤ min
r∈R

Ur(π2) and

max
r∈R

Ur(π2) ≤ min
r∈R

Ur(π3). If π1 is weakly totally dominated but not totally dominated by π3,

then max
r∈R

Ur(π1) = min
r∈R

Ur(π3) must be true. However, it implies min
r∈R

Ur(π2) = max
r∈R

Ur(π2),

which violates Assumption 1. We finish the proof.

Lemma 2. For the set Π¬wtd ⊆ Π of policies that are not weakly totally dominated by any other
policy in the whole set of policies w.r.t a reward function set R, there exists a range U ⊆ R such that
for any policy π ∈ Π¬wtd, U ⊆ [min

r∈R
Ur(π),max

r∈R
Ur(π)].

Proof. For any two policies π1, π2 ∈ Π¬wtd, it cannot be true that max
r∈R

Ur(π1) = min
r∈R

Ur(π2)

nor min
r∈R

Ur(π1) = max
r∈R

Ur(π2), because otherwise one of the policies weakly totally dominates

the other. Without loss of generalization, we assume that max
r∈R

Ur(π1) > min
r∈R

Ur(π2). In this

case, max
r∈R

Ur(π2) > min
r∈R

Ur(π1) must also be true, otherwise π1 weakly totally dominates π2.

Inductively, min
π∈Π¬wtd

max
r∈R

Ur(π) > max
π∈Π¬wtd

min
r∈R

Ur(π). Letting ub = min
π∈Π¬wtd

max
r∈R

Ur(π) and

lb = max
π∈Π¬wtd

min
r∈R

Ur(π), any U ⊆ [lb, ub] shall support the assertion. We finish the proof.

Lemma 3. For a reward function set R, if a policy π ∈ Π is weakly totally dominated by some other
policy in Π and there exists a subset Π¬wtd ⊆ Π of policies that are not weakly totally dominated
by any other policy in π, then max

r∈R
Ur(π) < min

π′∈Π¬wtd

max
r∈R

Ur(π
′)

Proof. If π1 is weakly totally dominated by a policy π2 ∈ Π, then min
r∈R

Ur(π2) = max
r∈R

Ur(π).

If max
r∈R

Ur(π) ≥ min
π′∈Π¬wtd

max
r∈R

Ur(π
′), then min

r∈R
Ur(π2) ≥ min

π′∈Π¬wtd

max
r∈R

Ur(π
′), making at
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least one of the policies in Π¬wtd being weakly totally dominated by π2. Hence, max
r∈R

Ur(π) <

min
π′∈Π¬wtd

max
r∈R

Ur(π
′) must be true.

Given a policy π and a reward function r, the regret is represented as Eq.8

Regret(π, r) := max
π′

Ur(π
′)− Ur(π) (8)

Then we represent the MinimaxRegret(R) problem in Eq.9.

MinimaxRegret(R) := argmin
π∈Π

{
max
r∈R

Regret(π, r)

}
(9)

We denote as r∗π ∈ R the reward function that maximizes Ur(π) among all the r’s that achieve the
maximization in Eq.9. Formally,

r∗π ∈ argmax
r∈R

Ur(π) s.t. r ∈ argmax
r′∈R

Regret(π, r′) (10)

Then MinimaxRegret can be defined as minimizing the worst-case regret as in Eq.9. Next, we
want to show that for some decision rule R, the set of optimal policies which maximizes UR are the
solutions to MinimaxRegret(R). Formally,

MinimaxRegret(R) = argmax
π∈Π

UR(π) (11)

We design R by letting R(π) := R(π) · δr∗π +(1−R(π)) · R(π) where R : Π → ∆(R) is a policy
conditioned distribution over reward functions, δr∗π be a delta distribution centered at r∗π , and R(π)
is a coefficient. We show how to design R by using the following lemma.

Lemma 4. Given that the reward function set is R, there exists a decision rule R : Π → ∆(R)
which guarantees that: 1) for any policy π that is not weakly totally dominated by any other policy
in Π, i.e., π ∈ Π¬wtd ⊆ Π, UR(π) ≡ c where c = max

π′∈Π¬wtd

min
r∈R

Ur(π
′); 2) for any π that is weakly

totally dominated by some policy but not totally dominated by any policy, UR(π) = max
r∈R

Ur(π); 3)

if π is totally dominated by some other policy, R(π) is a uniform distribution.

Proof. Since the description of R for the policies in condition 2) and 3) are self-explanatory, we omit
the discussion on them. For the none weakly totally dominated policies in condition 1), having a con-
stant UR(π) ≡ c is possible if and only if for any policy π ∈ Π¬wed, c ∈ [min

r∈R
Ur(π

′),max
r∈R

Ur(π
′)].

As mentioned in the proof of Lemma 2, c can exist within [min
r∈R

Ur(π),max
r∈R

Ur(π)]. Hence,

c = max
π′∈Π¬wtd

min
r∈R

Ur(π
′) is a valid assignment.

Then by letting R(π) :=
Regret(π,r∗π)
c−Ur∗π (π) , we have the following theorem.

Theorem 5. By letting R(π) := R(π) · δr∗π + (1 −R(π)) · R(π) with R(π) :=
Regret(π,r∗π)
c−Ur∗π (π) and

any R that satisfies Lemma 4,

MinimaxRegret(R) = argmax
π∈Π

UR(π) (12)

Proof. If a policy π ∈ Π is totally dominated by some other policy, since there exists another policy
with larger UR, π cannot be a solution to argmax

π∈Π
UR(π). Hence, there is no need for further

discussion on totally dominated policies. We discuss the none weakly totally dominated policies
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and the weakly totally dominated but not totally dominated policies (shortened to ”weakly totally
dominated” from now on) respectively. First we expand argmax

π∈Π
UR(π) as in Eq.13.

argmax
π∈Π

UR(π)

= argmax
π∈Π

∑
r∈R

R(π)(r) · Ur(π)

= argmax
π∈Π

Regret(π, r∗π) · Ur∗π
(π) + (UR(π)− Ur∗π

(π)−Regret(π, r∗π)) · UR(π)

c− Ur∗π
(π)

= argmax
π∈Π

(UR(π)− Ur∗π
(π)) · UR(π)− (UR(π)− Ur∗π

(π)) ·Regret(π, r∗π))

c− Ur∗π
(π)

= argmax
π∈Π

UR(π)− Ur∗π
(π)

c− Ur∗π
(π)

· UR(π)−Regret(π, r∗π) (13)

1) For the none weakly totally dominated policies, since by design UR ≡ c, Eq.13 is equivalent
to arg max

π∈Π1

− Regret(π, r∗π) which exactly equals MinimaxRegret(R). Hence, the equiva-

lence holds among the none weakly totally dominated policies. Furthermore, if a none weakly
totally dominated policy π ∈ Π¬wtd achieves optimality in MinimaxRegret(R), its UR(π) is
also no less than any weakly totally dominated policy. Because according to Lemma 3, for any
weakly totally dominated policy π1, its UR(π1) ≤ c, hence

UR(π)−Ur∗π (π)

c−Ur∗π (π) · UR(π1) ≤ c. Since

Regret(π, r∗π) ≤ Regret(π1, r
∗
π1
), UR(π) ≥ UR(π1). Therefore, we can assert that if a none

weakly totally dominated policy π is a solution to MinimaxRegret(R), it is also a solution to
argmax

π∈Π
UR(π). Additionally, to prove that if a none weakly totally dominated policy π is a solu-

tion to arg max
π′∈Π

UR(π′), it is also a solution to MinimaxRegret(R), it is only necessary to prove

that π achieve no larger regret than all the weakly totally dominated policies. But we delay the proof
to 2).

2) If a policy π is weakly totally dominated and is a solution to MinimaxRegret(R), we show that
it is also a solution to argmax

π∈Π
UR(π), i.e., its UR(π) is no less than that of any other policy.

We start by comparing with non weakly totally dominated policy. for any weakly totally
dominated policy π1 ∈ MinimaxRegret(R), it must hold true that Regret(π1, r

∗
π1
) ≤

Regret(π2, r
∗
π2
) for any π2 ∈ Π that weakly totally dominates π1. However, it also

holds that Regret(π2, r
∗
π2
) ≤ Regret(π1, r

∗
π2
) due to the weak total domination. Therefore,

Regret(π1, r
∗
π1
) = Regret(π2, r

∗
π2
) = Regret(π1, r

∗
π2
), implying that π2 is also a solution

to MinimaxRegret(R). It also implies that Ur∗π2
(π1) = Ur∗π2

(π2) ≥ Ur∗π1
(π1) due to the

weak total domination. However, by definition Ur∗π1
(π1) ≥ Ur∗π2

(π1). Hence, Ur∗π1
(π1) =

Ur∗π2
(π1) = Ur∗π2

(π2) must hold. Now we discuss two possibilities: a) there exists another pol-
icy π3 that weakly totally dominates π2; b) there does not exist any other policy that weakly
totally dominates π2. First, condition a) cannot hold. Because inductively it can be derived
Ur∗π1

(π1) = Ur∗π2
(π1) = Ur∗π2

(π2) = Ur∗π3
(π3), while Lemma 1 indicates that π3 totally dominates

π1, which is a contradiction. Hence, there does not exist any policy that weakly totally dominates π2,
meaning that condition b) is certain. We note that Ur∗π1

(π1) = Ur∗π2
(π1) = Ur∗π2

(π2) and the weak
total domination between π1, π2 imply that r∗π1

, r∗π2
∈ argmax

r∈R
Ur(π1), r∗π2

∈ argmin
r∈R

Ur(π2),

and thus min
r∈R

Ur(π2) ≤ max
π∈Π¬wtd

min
r∈R

Ur(π) = c. Again, π1 ∈ MinimaxRegret(R) makes

Regret(π1, r
∗
π) ≤ Regret(π1, r

∗
π1
) ≤ Regret(π, r∗π) not only hold for π = π2 but also for any

other policy π ∈ Π¬wtd, then for any policy π ∈ Π¬wtd, Ur∗π
(π1) ≥ Ur∗π

(π) ≥ min
r∈R

Ur(π).

Hence, Ur∗π
(π1) ≥ max

π∈Π¬wtd

min
r∈R

Ur(π) = c. Since Ur∗π
(π1) = min

r∈R
Ur(π2) as aforemen-

tioned, min
r∈R

Ur(π2) > max
π∈Π¬wtd

min
r∈R

Ur(π) will cause a contradiction. Hence, min
r∈R

Ur(π2) =

max
π∈Π¬wtd

min
r∈R

Ur(π) = c. As a result, UR(π) = Ur∗π
(π) = max

π′∈Π¬wtd

min
r∈R

Ur(π
′) = c, and UR(π) =

c−Regret(π, r∗π) ≥ max
π′∈Π¬wtd

c−Regret(π′, r∗π′) = max
π′∈Π¬wtd

UR(π′). In other words, if a weakly
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totally dominated policy π is a solution to MinimaxRegret(R), then its UR(π) is no less than that
of any non weakly totally dominated policy. This also complete the proof at the end of 1), because
if a none weakly totally dominated policy π1 is a solution to argmax

π∈Π
UR(π) but not a solution to

MinimaxRegret(R), then Regret(π1, r
∗
π1
) > 0 and a weakly totally dominated policy π2 must

be the solution to MinimaxRegret(R). Then, UR(π2) = c > c − Regret(π1, r
∗
π1
) = UR(π1),

which, however, contradicts π1 ∈ argmax
π∈Π

UR(π).

It is obvious that a weakly totally dominated policy π ∈ MinimaxRegret(R) has a UR(π) no less
than any other weakly totally dominated policy. Because for any other weakly totally dominated
policy π1, UR(π1) ≤ c and Regret(π1, r

∗
π1
) ≤ Regret(π, r∗π), hence UR(π1) ≤ UR(π) according

to Eq.13.

So far we have shown that if a weakly totally dominated policy π is a solution to
MinimaxRegret(R), it is also a solution to arg max

π′∈Π
UR(π′). Next, we need to show that the

reverse is also true, i.e., if a weakly totally dominated policy π is a solution to argmax
π∈Π

UR(π), it

must also be a solution to MinimaxRegret(R). In order to prove its truthfulness, we need to show
that if π /∈ MinimaxRegret(R), whether there exists: a) a none weakly totally dominated policy
π1, or b) another weakly totally dominated policy π1, such that π1 ∈ MinimaxRegret(R) and
UR(π1) ≤ UR(π). If neither of the two policies exists, we can complete our proof. Since it has
been proved in 1) that if a none weakly totally dominated policy achieves MinimaxRegret(R), it
also achieves arg max

π′∈Π
UR(π′), the policy described in condition a) does not exist. Hence, it is only

necessary to prove that the policy in condition b) also does not exist.

If such weakly totally dominated policy π1 exists, π /∈ MinimaxRegret(R) and π1 ∈
MinimaxRegret(R) indicates Regret(π, r∗π) > Regret(π1, r

∗
π1
). Since UR(π1) ≥ UR(π),

according to Eq.13, UR(π1) = c − Regret(π1, r
∗
π1
) ≤ UR(π) =

UR(π)−Ur∗π (π)

c−Ur∗π (π) · UR(π) −

Regret(π, r∗π). Thus
UR(π)−Ur∗π (π)

c−Ur∗π (π) (π) · UR ≥ c + Regret(π, r∗π) − Regret(π1, r
∗
π1
) > c,

which is impossible due to UR ≤ c. Therefore, such π1 also does not exist. In fact, this can
be reasoned from another perspective. If there exists a weakly totally dominated policy π1 with
Ur∗π1

(π1) = c = Ur∗π
(π) but π1 /∈ MinimaxRegret(R), then Regret(π, r∗π) > Regret(π1, r

∗
π1
).

It also indicates max
π′∈Π

Ur∗π
(π′) > max

π′∈Π
Ur∗π1

(π′). Meanwhile, Regret(π1, r
∗
π) := max

π′∈Π
Ur∗π

(π′) −
Ur∗π

(π1) ≤ Regret(π1, r
∗
π1
) := max

π′∈Π
Ur∗π1

(π′)−Ur∗π1
(π1) := max

r∈R
max
π′∈Π

Ur(π
′)−Ur(π1) indicates

max
π′∈Π

Ur∗π
(π′)−max

π′∈Π
Ur∗π1

(π′) ≤ Ur∗π
(π1)−Ur∗π1

(π1). However, we have proved that, for a weakly

totally dominated policy, π1 ∈ MinimaxRegret(R) indicates Ur∗π1
(π1) = max

r∈R
Ur(π1). Hence,

max
π′∈Π

Ur∗π
(π′) − max

π′∈Π
Ur∗π1

(π′) ≤ Ur∗π
(π1) − Ur∗π1

(π1) ≤ 0 and it contradicts max
π′∈Π

Ur∗π
(π′) >

max
π′∈Π

Ur∗π1
(π′). Therefore, such π1 does not exist. In summary, we have exhausted all conditions

and can assert that for any policies, being a solution to MinimaxRegret(R) is equivalent to a
solution to argmax

π∈Π
UR(π). We complete our proof.

A.3 MEASURING POLICY PERFORMANCE

Recall that the function Ur(π) is used to measure the performance of a policy π under a reward
function r. In Dennis et al. (2020), Ur(π) = ηr(π). In this section, we discuss the validity of letting
Ur(π) be the loss function of a generic IRL objective, e.g., Ur(π) = ηr(π)− ηr(πE) where ηr(πE)
measures the expected return of the expert policy πE and can be estimated if an expert demonstration
set E instead of πE is provided. If further letting RE = {r|r ∈ arg min

r′∈R
max
π∈Π

Ur′(π)− Ur′(πE)},

max
π∈Π

Ur(π) is a constant for any r ∈ RE , notated as u := max
π∈Π

Ur(π). Because by definition RE =

{r|r ∈ argmin
r∈R

max
π∈Π

Ur(π)}. If there exists r1, r2 ∈ RE such that max
π∈Π

Ur1(π) < max
π∈Π

Ur2(π), r2
will not be a member of RE . Furthermore, {Ur(π)|π ∈ Π, r ∈ RE} will be upper-bounded by a
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constant u = max
π∈Π

Ur(π). Because if there exists a policy π ∈ Π and a reward function r ∈ RE with

Ur(π) > u, it contradicts the fact that u = max
π′∈Π

Ur(π
′). In this case, MinimaxRegret(RE) =

argmin
π∈Π

max
r∈RE

Regret(π, r) = argmin
π∈Π

max
r∈RE

u− Ur(π) = argmax
π∈Π

min
r∈RE

Ur(π). Note that before

making any other assumption on RE ,Π and Ur(·), max
π∈Π

min
r∈RE

Ur(π) cannot be regarded as the same

as IRL itself min
r∈R

max
π∈Π

Ur(π). The solution to argmax
π∈Π

min
r∈RE

Ur(π) is the policy with the highest

worst case Ur(π) for r ∈ RE . The IRL problem, however, may induce a policy that maximizes
Ur(·) for some r ∈ RE while minimizing Ur′(·) for some other r′ ∈ RE . While min

r∈R
max
π∈Π

Ur(π) =

u, it is possible that max
π∈Π

min
r∈RE

Ur(π) < u. In fact, it is easily observable that the solutions to

MinimaxRegret with some Ur(π) will be the same as that of letting Ur(π) := Ur(π)− Ur(πE).
Hence, in this paper we simply use ηr(π) as Ur(π).

Lemma 5. If a policy π ∈ MinimaxRegret(RE) when the policy performance is measured with
some Ur, then π ∈ MinimaxRegret(RE) when letting Ur(π) := Ur(π)− Ur(πE).

Proof. When using Ur(π) := Ur(π) − Ur(πE) to measure the policy performance, solving
MinimaxRegret(R) is to solve Eq. 14, which is the same as Eq.9.

MimimaxRegret(RE) = argmax
π∈Π

min
r∈RE

Regret(π, r)

= argmax
π∈Π

min
r∈RE

max
π′∈Π

{Ur(π
′)− Ur(πE)} − (Ur(π)− Ur(πE)

= argmax
π∈Π

min
r∈RE

max
π′∈Π

Ur(π
′)− Ur(π) (14)

A.4 CRITERION FOR SUCCESSFUL POLICY LEARNING

Theorem 1.(Task-Failure Avoidance) If the following conditions (1) (2) hold for R, then the optimal
protagonist policy πP := MinimaxRegret(R) satisfies that ∀ral ∈ R,Ural

(πP ) /∈ Fral
.

(1) There exists ral ∈ R, and max
ral∈R

{supFral
− inf Fral

} < min
ral∈R

{inf Sral
− supFral

} ∧
max
ral∈R

{supSral
− inf Sral

} < min
ral∈R

{inf Sral
− supFral

};

(2) There exists a policy π∗ such that ∀ral ∈ R, Ural
(π∗) ∈ Sral

, and ∀rmis ∈ R,
max
π∈Π

Urmis(π)− Urmis(π
∗) < min

ral∈R
{inf Sral

− supFral
}.

Proof. Suppose the conditions are met, and a policy π1 satisfies the property described in con-
ditions 2). Then for any policy π2 ∈ MinimaxRegret(R), if π2 does not satisfy the men-
tioned property, there exists a task-aligned reward function ral ∈ RE such that Ural

(π2) ∈
Fral

. In this case Regret(π2, ral) = max
π∈Π

Ural
(π) − Ural

(π2) ≥ inf Sral
− supFral

≥

min
r′al∈RE

{
inf Sr′al

− supFr′al

}
. However, for π1, it holds for any task-aligned reward function

r̂al ∈ RE that Regret(π2, r̂al) ≤ supSr̂al
− inf Sr̂al

< min
r′al∈RE

{
inf Sr′al

− supFr′al

}
, and it also

holds for any misaligned reward function rmis ∈ RE that Regret(π2,rmis
) = max

π∈Π
Urmis

(π) −
Urmis

(π2) < min
r′al∈RE

{inf Sral
− supFral

}. Hence, Regret(π2, ral) < Regret(π1, ral), contra-

dicting π1 ∈ MiniRegret. We complete the proof.

Corollary 1.(Task-Success Guarantee) Assume that Condition (1) in Theorem 1 is satisfied. If there
exists a policy π∗ such that ∀r ∈ R, max

π
Ur(π)− Ur(π

∗) < min
ral∈R

{supSral
− inf Sral

}, then the

optimal protagonist policy πP := MinimaxRegret(R) satisfies that ∀ral ∈ R, Ural
(π) ∈ Sral

.
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Proof. Since max
r∈R

max
π

Ur(π) − Ur(πP ) ≤ max
r∈R

max
π

Ur(π) − Ur(π
∗) < min

ral∈R
{supSral

−
inf Sral

}, we can conclude that for any ral ∈ R, max
π

Ural
(π)− Ural

(πP ) ≤ {supSral
− inf Sral

,

in other words, Ural
(πP ) ∈ Sral

. The proof is complete.

Theorem 2.)(Task-Failure Avoidance) If the following conditions (1) (2) hold for RE,δ , then the
optimal protagonist policy πP := MinimaxRegret(RE,δ) satisfies that ∀ral ∈ RE,δ , Ural

(π) /∈
Fral

.

(1) The condition (1) in Theorem 1 holds

(2) ∀ral ∈ RE,δ , Lral
·WE − δ ≤ supSral

− inf Sral
and ∀rmis ∈ RE,δ , Lrmis

·WE − δ <
min

ral∈RE,δ

{inf Sral
− supFral

}.

Proof. We consider Ur(π) = Eτ∼π[r(τ)]. Since WE ≜ min
π∈Π

W1(π,E) = 1
K sup

∥r∥L≤K

Ur(E) −

Ur(π) for any K > 0, let π∗ be the policy that achieves the minimality in WE . Then for any
ral ∈ R, the term Lral

· WE − δ ≥ Lral
· 1
Lral

sup
∥r∥L≤Lral

Ur(E) − Ur(π) ≥ Ural
(E) − Ural

(π).

Hence, for all ral ∈ R, Ural
(E)− Ural

(π) < supSral
− inf Sral

, i.e., Ural
(π∗) ∈ Sral

. Likewise,
Lrmis

· WE − δ < min
ral∈RE,δ

{inf Sral
− supFral

} indicates that for all rmis ∈ R, Urmis
(E) −

Urmis
(π) < min

ral∈RE,δ

{inf Sral
− supFral

}. Then, we have recovered the condition (2) in Theorem

1. As a result, we deliver the same guarantees in Theorem 1.

Corollary 2.(Task-Success Guarantee) Assume that the condition (1) in Theorem 1 holds for RE,δ .
If for any r ∈ RE,δ , Lr ·WE − δ ≤ min

ral∈R
{supSral

− inf Sral
}, then the optimal protagonist policy

πP = MinimaxRegret(RE,δ) satisfies ∀ral ∈ RE,δ , Ural
(π) ∈ Sral

.

Proof. Again, we let π∗ be the policy that achieves the minimality in WE . Then, we have Lr ·WE−
δ ≥ Lr · 1

Lr
sup

∥r∥L≤Lr

Ur(E) − Ur(π
∗) ≥ Ur(E) − Ur(π

∗) for any r ∈ R. We have recovered the

condition in Corollary 1. The proof is complete.

Theorem3. Let the IRL loss be in the form of JIRL(π, r) := Ur(π) − Ur(πE) for some Ur(π). If
argmin

r∈R
max
π∈Π

JIRL(rE , π) can reach Nash Equilibrium with a reward function set RE and a policy

set ΠE , then ΠE equals the set of solutions to MinimiaxRegret.

Proof. The reward function set RE and the policy set ΠE achieving Nash Equilibrium for
argmin

r∈R
max
π∈Π

JIRL(rE , π) indicates that for any r ∈ RE , π ∈ ΠE , π ∈ argmax
π∈Π

Ur(π)− Ur(πE).

Then ΠE will be the solution to arg max
πP∈Π

min
r∈RE

{
max
πA∈Π

Ur(πA)− Ur(πE)

}
− (Ur(πP )−Ur(πE))

because the policies in ΠE achieve zero regret. Then Lemma 5 states that ΠE will also be the

solution to arg max
πP∈Π

min
r∈RE

{
max
πA∈Π

Ur(πA)

}
− Ur(πP ). We finish the proof.

A.5 RUNNING EXAMPLE

Example 1 In a two-state transition system where s0 is the initial state, and s1 is an absorbing state,
an agent can choose action a0 at state s0 to stay at s0 or choose a1 to reach s1. Any agent can start
from s0 and choose actions for 5 timesteps. The task is to learn a stochastic policy to reach s1. Expert
only demonstrates one trajectory E = {τE = (s0, a1, s1, s1, s1, s1)}, i.e., choose a1 at s0 and then
stay in s1 for the rest 4 steps. The convex combinations of two basis functions r1 and r2 constitute
the hypothesis set of reward functions R = {r|r(s, a) = α · r1(s, a)+ (1−α) · r2(s, a), α ∈ [0, 1]}
where r1(s, a) ≡ 4 constantly, and r2(s0, a0) = r2(s0, a1) = 0, r2(s1, ·) = 5. We now prove that
when applying IRL to learn a reward function from E, any convex combination of r1 and r2 is an
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Figure 6: ss

optimal solution, i.e., RE = R. Furthermore, we prove that MinimaxRegret(R) will produce
πP (a1|s0) = 1 which is the desired solution.

Proof. For any policy π and reward function r ∈ R, the policy performance Ur(π) can be repre-
sented as follows.

Ur(π) = 4απ(a0|s0)t +
t∑

t=0

(4αt+ 4α+ (4α+ 5(1− α))(4− t)) · π(a0|s0)t(1− π(a0|s0))

= 20− 5(1− α)

4∑
t=1

π(a0|s0)4 (15)

Then for any α ∈ [0, 1), max
π

Ur(π) = 20, and the optimal policy is π∗(a0|s0) = 0, π∗(a1|s0) = 1.

For α = 1, Ur(π) = 20 constantly for any π. For expert demonstration E, Ur(E) = 4α · 5 +
5(1 − α) · 4 ≡ 20. Therefore, any r = αr1 + (1 − α)r2 with α ∈ [0, 1] can be the optimal
solution to IRL since they all induce the same performance gap Ur(E) − max

π
Ur(π) = 0. This

ambiguity in choosing reward functions can cause reward misalignment because the reward function
r = r1 induced by α = 1 violates the criterion of task-reward alignment in Definition 1: achieving
optimality under r1 does not guarantee task success since all policies are optimal under r1. On the
other hand, MinimaxRegret(R) induces a policy πP (a1|s0) = 1. Because this policy has the
lowest worst-case regret Regret(πP , r) = max

r∈R
max
πA

Ur(πA)− Ur(πP )) = 0.

B APPROACH TO SOLVING MINIMAXREGRET

In this section, we develop a series of theories that lead to two bounds of the Protagonist Antagonist
Induced Regret. By using those bounds, we formulate objective functions for solving Imitation
Learning problems with PAGAR.

B.1 PROTAGONIST ANTAGONIST INDUCED REGRET BOUNDS

Our theories are inspired by the on-policy policy improvement methods in Schulman et al. (2015).
The theories in Schulman et al. (2015) are under the setting where entropy regularizer is not consid-
ered. In our implementation, we always consider entropy regularized RL of which the objective is to
learn a policy that maximizes JRL(π; r) = ηr(π)+H(π). Also, since we use GAN-based IRL algo-
rithms, the learned reward function r as proved by Fu et al. (2018) is a distribution. Moreover, it is
also proved in Fu et al. (2018) that a policy π being optimal under r indicates that log π ≡ r ≡ Aπ .
We omit the proof and let the reader refer to Fu et al. (2018) for details. Although all our theories
are about the relationship between the Protagonist Antagonist Induced Regret and the soft advan-
tage function Aπ , the equivalence between Aπ and r allows us to use the theories to formulate our
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reward optimization objective functions. To start off, we denote the reward function to be optimized
as r. Given the intermediate learned reward function r, we study the Protagonist Antagonist Induced
Regret between two policies π1 and π2.

Lemma 6. Given a reward function r and a pair of policies π1 and π2,

ηr(π1)− ηr(π2) = E
τ∼π1

[ ∞∑
t=0

γtAπ2(s
(t), a(t))

]
+ E

τ∼π

[ ∞∑
t=0

γtH
(
π2(·|s(t))

)]
(16)

Proof. This proof follows the proof of Lemma 1 in Schulman et al. (2015) where
RL is not entropy-regularized. For entropy-regularized RL, since Aπ(s, a

(t)) =
E

s′∼P(·|s,a(t))

[
r(s, a(t)) + γVπ(s

′)− Vπ(s)
]
,

E
τ∼π1

[ ∞∑
t=0

γtAπ2(s
(t), a(t))

]

= E
τ∼π1

[ ∞∑
t=0

γt
(
r(s(t+1), a(t+1)) + γVπ2

(s(t+1))− Vπ2
(s(t))

)]

= E
τ∼π1

[ ∞∑
t=0

γtr(s(t), a(t))− Vπ2
(s(0))

]

= E
τ∼π1

[ ∞∑
t=0

γtr(s(t), a(t))

]
− E

s(0)∼d0

[
Vπ2(s

(0))
]

= E
τ∼π1

[ ∞∑
t=0

γtr(s(t), a(t))

]
− E

τ∼π2

[ ∞∑
t=0

γtr(s(t), a(t)) +H
(
π2(·|s(t))

)]

= ηr(π1)− ηr(π2)− E
τ∼π2

[ ∞∑
t=0

γtH
(
π2(·|s(t))

)]
= ηr(π1)− ηr(π2)−H(π2)

Remark 1. Lemma 6 confirms that E
τ∼π

[∑∞
t=0 γ

tAπ(s
(t), a(t))

]
= ηr(π)−ηr(π)+H(π) = H(π).

We follow Schulman et al. (2015) and denote ∆A(s) = E
a∼π1(·|s)

[Aπ2
(s, a)]− E

a∼π2(·|s)
[Aπ2

(s, a)]

as the difference between the expected advantages of following π2 after choosing an action respec-
tively by following policy π1 and π2 at any state s. Although the setting of Schulman et al. (2015)
differs from ours by having the expected advantage E

a∼π2(·|s)
[Aπ2

(s, a)] equal to 0 due to the ab-

sence of entropy regularization, the following definition and lemmas from Schulman et al. (2015)
remain valid in our setting.

Definition 7. Schulman et al. (2015), the protagonist policy π1 and the antagonist policy π2) are
α-coupled if they defines a joint distribution over (a, ã) ∈ A×A, such that Prob(a ̸= ã|s) ≤ α for
all s.

Lemma 7. Schulman et al. (2015) Given that the protagonist policy π1 and the antagonist policy
π2 are α-coupled, then for all state s,

|∆A(s)| ≤ 2αmax
a

|Aπ2(s, a)| (17)

Lemma 8. Schulman et al. (2015) Given that the protagonist policy π1 and the antagonist policy
π2 are α-coupled, then∣∣∣∣ E

s(t)∼π1

[
∆A(s(t))

]
− E

s(t)∼π2

[
∆A(s(t))

]∣∣∣∣ ≤ 4α(1− (1− α)t)max
s,a

|Aπ2(s, a)| (18)
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Lemma 9. Given that the protagonist policy π1 and the antagonist policy π2 are α-coupled, then

E
s(t)∼π1

a(t)∼π2

[
Aπ2

(s(t), a(t))
]
− E

s(t)∼π2

a(t)∼π2

[
Aπ2

(s(t), a(t))
]
≤ 2(1− (1− α)t)max

(s,a)
|Aπ2

(s, a)| (19)

Proof. The proof is similar to that of Lemma 8 in Schulman et al. (2015). Let nt be the number of
times that a(t

′) ∼ π1 does not equal a(t
′) ∼ π2 for t′ < t, i.e., the number of times that π1 and π2

disagree before timestep t. Then for s(t) ∼ π1, we have the following.

E
s(t)∼π1

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]]

= P (nt = 0) E
s(t)∼π1
nt=0

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

+ P (nt > 0) E
s(t)∼π1
nt>0

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

The expectation decomposes similarly for s(t) ∼ π2.

E
s(t)∼π2

a(t)∼π2

[
Aπ2(s

(t), a(t))
]

= P (nt = 0) E
s(t)∼π2

a(t)∼π2
nt=0

[
Aπ2

(s(t), a(t))
]
+ P (nt > 0) E

s(t)∼π2

a(t)∼π2
nt>0

[
Aπ2

(s(t), a(t))
]

When computing E
s(t)∼π1

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]]

− E
s(t)∼π2

a(t)∼π2

[
Aπ2(s

(t), a(t))
]
, the terms with nt =

0 cancel each other because nt = 0 indicates that π1 and π2 agreed on all timesteps less than t. That
leads to the following.

E
s(t)∼π1

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]]

− E
s(t)∼π2

a(t)∼π2

[
Aπ2(s

(t), a(t))
]

= P (nt > 0) E
s(t)∼π1
nt>0

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

− P (nt > 0) E
s(t)∼π2

a(t)∼π2
nt>0

[
Aπ2

(s(t), a(t))
]

By definition of α, the probability of π1 and π2 agreeing at timestep t′ is no less than 1−α. Hence,
P (nt > 0) ≤ 1− (1− αt)t. Hence, we have the following bound.

∣∣∣∣∣∣∣ E
s(t)∼π1

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

− E
s(t)∼π2

a(t)∼π2

[
Aπ2

(s(t), a(t))
]∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣P (nt > 0) E
s(t)∼π1
nt>0

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]]

− P (nt > 0) E
s(t)∼π2

a(t)∼π2
nt>0

[
Aπ2(s

(t), a(t))
]∣∣∣∣∣∣∣∣∣

≤ P (nt > 0)


∣∣∣∣∣∣∣∣∣ E
s(t)∼π1

a(t)∼π2
nt≥0

[
Aπ2(s

(t), a(t))
]∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣ E
s(t)∼π2

a(t)∼π2
nt>0

[
Aπ2

(s(t), a(t))
]∣∣∣∣∣∣∣∣∣


≤ 2(1− (1− α)t)max

(s,a)
|Aπ2

(s, a)| (20)
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The preceding lemmas lead to the proof for Theorem 4 in the main text.

Theorem 4. Suppose that π2 is the optimal policy in terms of entropy regularized RL under r.
Let α = max

s
DTV (π1(·|s), π2(·|s)), ϵ = max

s,a
|Aπ2(s, a

(t))|, and ∆A(s) = E
a∼π1

[Aπ2(s, a)] −
E

a∼π2

[Aπ2(s, a)]. For any policy π1, the following bounds hold.

∣∣∣∣∣ηr(π1)− ηr(π2)−
∞∑
t=0

γt E
s(t)∼π1

[
∆A(s(t))

]∣∣∣∣∣ ≤ 2αγϵ

(1− γ)2
(21)∣∣∣∣∣ηr(π1)− ηr(π2)−

∞∑
t=0

γt E
s(t)∼π2

[
∆A(s(t))

]∣∣∣∣∣ ≤ 2αγ(2α+ 1)ϵ

(1− γ)2
(22)

Proof. We first leverage Lemma 6 to derive Eq.23. Note that since π2 is optimal under r, Remark 1

confirmed that H(π2) = −
∑∞

t=0 γ
t E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]]

.

ηr(π1)− ηr(π2)

= (ηr(π1)− ηr(π2)−H(π2)) +H(π2)

= E
τ∼π1

[ ∞∑
t=0

γtAπ2
(s(t), a(t))

]
+H(π2)

= E
τ∼π1

[ ∞∑
t=0

γtAπ2
(s(t), a(t))

]
−

∞∑
t=0

γt E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

=

∞∑
t=0

γt E
s(t)∼π1

[
E

a(t)∼π1

[
Aπ2

(s(t), a(t))
]
− E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

+

∞∑
t=0

γt

(
E

s(t)∼π1

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

− E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]])

=

∞∑
t=0

γt E
s(t)∼π1

[
∆A(s(t))

]
+

∞∑
t=0

γt

(
E

s(t)∼π1

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]]

− E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]])

(23)

We switch terms between Eq.23 and ηr(π1)− ηr(π2), then use Lemma 9 to derive Eq.24.

∣∣∣∣∣ηr(π1)− ηr(π2)−
∞∑
t=0

γt E
s(t)∼π1

[
∆A(s(t))

]∣∣∣∣∣
=

∣∣∣∣∣
∞∑
t=0

γt

(
E

s(t)∼π1

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

− E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]])∣∣∣∣∣

≤
∞∑
t=0

γt · 2max
(s,a)

|Aπ2(s, a)| · (1− (1− α)t) ≤
2αγmax

(s,a)
|Aπ2

(s, a)|

(1− γ)2
(24)
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Alternatively, we can expand ηr(π2) − ηr(π1) into Eq.25. During the process, H(π2) is converted

into −
∑∞

t=0 γ
t E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

.

ηr(π1)− ηr(π2)

= (ηr(π1)− ηr(π2)−H(π2)) +H(π2)

= E
τ∼π1

[ ∞∑
t=0

γtAπ2
(s(t), a(t))

]
+H(π2)

=

∞∑
t=0

γt E
s(t)∼π1

[
E

a(t)∼π1

[
Aπ2

(s(t), a(t))
]]

+H(π2)

=

∞∑
t=0

γt E
s(t)∼π1

[
∆A(s(t)) + E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]]

+H(π2)

=

∞∑
t=0

γt E
s(t)∼π2

[
E

a(t)∼π1

[
Aπ2

(s(t), a(t))
]
− E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]
−∆A(s(t))

]
+

E
s(t)∼π1

[
∆A(s(t)) + E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

− E
s(t)∼π2

a(t)∼π2

[
Aπ2

(s(t), a(t))
]

=

∞∑
t=0

γt

(
E

s(t)∼π1

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]]

− 2 E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]])

+

∞∑
t=0

γt

(
E

s(t)∼π2

[
E

a(t)∼π1

[
Aπ2

(s(t), a(t))
]]

− ( E
s(t)∼π2

[
∆A(s(t))

]
− E

s(t)∼π1

[
∆A(s(t))

]
)

)
(25)

We switch terms between Eq.25 and ηr(π1) − ηr(π2), then base on Lemma 8 and 9 to derive the
inequality in Eq.26.∣∣∣∣∣ηr(π1)− ηr(π2)−

∞∑
t=0

γt E
s(t)∼π2

[
∆Aπ(s

(t), a(t))
]∣∣∣∣∣

=

∣∣∣∣ηr(π1)− ηr(π2)−

∞∑
t=0

γt

(
E

s(t)∼π2

[
E

a(t)∼π1

[
Aπ2

(s(t), a(t))
]]

− E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]])∣∣∣∣

=

∣∣∣∣ ∞∑
t=0

γt

(
E

s(t)∼π2

[
∆A(s(t))

]
− E

s(t)∼π1

[
∆A(s(t))

])
−

∞∑
t=0

γt

(
E

s(t)∼π1

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

− E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]])∣∣∣∣

≤

∣∣∣∣∣
∞∑
t=0

γt

(
E

s(t)∼π2

[
∆A(s(t))

]
− E

s(t)∼π1

[
∆A(s(t))

])∣∣∣∣∣+∣∣∣∣∣
∞∑
t=0

γt

(
E

s(t)∼π1

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

− E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]])∣∣∣∣∣

≤
∞∑
t=0

γt

(
(1− (1− α)t)(4αmax

s,a
|Aπ2(s, a)|+ 2max

(s,a)
|Aπ2(s, a)|)

)

≤
2αγ(2α+ 1)max

s,a
|Aπ2

(s, a)|

(1− γ)2
(26)
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It is stated in Schulman et al. (2015) that max
s

DTV (π2(·|s), π1(·|s)) ≤ α. Hence, by letting

α := max
s

DTV (π2(·|s), π1(·|s)), Eq.23 and 26 still hold. Then, we have proved Theorem 4.

B.2 OBJECTIVE FUNCTIONS OF REWARD OPTIMIZATION

To derive JR,1 and JR,2, we let π1 = πP and π2 = πA. Then based on Eq.21 and 22 we derive the
following upper-bounds of ηr(πP )− ηr(πA).

ηr(πP )− ηr(πA) ≤
∞∑
t=0

γt E
s(t)∼πP

[
∆A(s(t))

]
+

2αγ(2α+ 1)ϵ

(1− γ)2
(27)

ηr(πP )− ηr(πA) ≥
∞∑
t=0

γt E
s(t)∼πA

[
∆A(s(t))

]
− 2αγϵ

(1− γ)2
(28)

By our assumption that πA is optimal under r, we have AπA
≡ r Fu et al. (2018). This equivalence

enables us to replace AπA
’s in ∆A with r. As for the 2αγ(2α+1)ϵ

(1−γ)2 and 2αγϵ
(1−γ)2 terms, since the

objective is to maximize ηr(πA) − ηr(πB), we heuristically estimate the ϵ in Eq.27 by using the
samples from πP and the ϵ in Eq.28 by using the samples from πA. As a result we have the objective
functions defined as Eq.29 and 30 where δ1(s, a) = πP (a(t)|s(t))

πA(a(t)|s(t)) and δ2 = πA(a(t)|s(t))
πP (a(t)|s(t)) are the

importance sampling probability ratio derived from the definition of ∆A; C1 ∝ − γα̂
(1−γ) and C2 ∝

γα̂
(1−γ) where α̂ is either an estimated maximal KL-divergence between πA and πB since DKL ≥
D2

TV according to Schulman et al. (2015), or an estimated maximal D2
TV depending on whether the

reward function is Gaussian or Categorical. We also note that for finite horizon tasks, we compute
the average rewards instead of the discounted accumulated rewards in Eq.30 and 29.

JR,1(r;πP , πA) := E
τ∼πA

[∑∞
t=0 γ

t
(
δ1(s

(t), a(t))− 1
)
· r(s(t), a(t))

]
+ C1 max

(s,a)∼πA

|r(s, a)|(29)

JR,2(r;πP , πA) := E
τ∼πP

[∑∞
t=0 γ

t
(
1− δ2(s

(t), a(t))
)
· r(s(t), a(t))

]
+ C2 max

(s,a)∼πP

|r(s, a)|(30)

Beside JR,1, JR,2, we additionally use two more objective functions based on the derived bounds. W
JR,r(r;πA, πP ). By denoting the optimal policy under r as π∗, α∗ = max

s∈S
DTV (π

∗(·|s), πA(·|s),

ϵ∗ = max
(s,a(t))

|Aπ∗(s, a(t))|, and ∆A∗
A(s) = E

a∼πA

[Aπ∗(s, a)] − E
a∼π∗

[Aπ∗(s, a)], we have the fol-

lowing.

ηr(πP )− ηr(π
∗)

= ηr(πP )− ηr(πA) + ηr(πA)− ηr(π
∗)

≤ ηr(πP )− ηr(πA) +

∞∑
t=0

γt E
s(t)∼πA

[
∆A∗

A(s
(t))

]
+

2α∗γϵ∗

(1− γ)2

= ηr(πP )−
∞∑
t=0

γt E
s(t)∼πA

[
E

a(t)∼πA

[
r(s(t), a(t))

]]
+

∞∑
t=0

γt E
s(t)∼πA

[
E

a(t)∼πA

[
Aπ∗(s(t), a(t))

]
− E

a(t)∼π∗

[
Aπ∗(s(t), a(t))

]]
+

2α∗γϵ∗

(1− γ)2

= ηr(πP )−
∞∑
t=0

γt E
s(t)∼πA

[
E

a(t)∼π∗

[
Aπ∗(s(t), a(t))

]]
+

2α∗γϵ∗

(1− γ)2

= E
τ∼πP

[ ∞∑
t=0

γtr(s(t), a(t))

]
− E

τ∼πA

[ ∞∑
t=0

γt exp(r(s
(t), a(t)))

πA(a(t)|s(t))
r(s(t), a(t))

]
+

2α∗γϵ∗

(1− γ)2
(31)

Let δ3 = exp(r(s(t),a(t)))
πA(a(t)|s(t)) be the importance sampling probability ratio. It is suggested in Schulman

et al. (2017) that instead of directly optimizing the objective function Eq.31, optimizing a surrogate
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objective function as in Eq.32, which is an upper-bound of Eq.31, with some small δ ∈ (0, 1) can
be much less expensive and still effective.

JR,3(r;πP , πA) := E
τ∼πP

[∑∞
t=0 γ

tr(s(t), a(t))
]
−

E
τ∼πA

[∑∞
t=0 γ

t min
(
δ3 · r(s(t), a(t)), clip(δ3, 1− δ, 1 + δ) · r(s(t), a(t))

)]
(32)

Alternatively, we let ∆A∗
P (s) = E

a∼πP

[Aπ∗(s, a)]− E
a∼π∗

[Aπ∗(s, a)]. The according to Eq.27, we

have the following.

ηr(πP )− ηr(π
∗)

≤
∞∑
t=0

γt E
s(t)∼πP

[
∆A∗

P (s
(t))

]
+

2α∗γ(2α∗ + 1)ϵ∗

(1− γ)2

=

∞∑
t=0

γt E
s(t)∼πP

[
E

a(t)∼πP

[
Aπ∗(s(t), a(t))

]
− E

a(t)∼π∗

[
Aπ∗(s(t), a)(t)

]]
+

2α∗γ(2α∗ + 1)ϵ∗

(1− γ)2

(33)

Then a new objective function JR,4 is formulated in Eq.34 where δ4 = exp(r(s(t),a(t)))
πP (a(t)|s(t)) .

JR,4(r;πP , πA) := E
τ∼πP

[∑∞
t=0 γ

tr(s(t), a(t))
]
−

E
τ∼πP

[∑∞
t=0 γ

t min
(
δ4 · r(s(t), a(t)), clip(δ4, 1− δ, 1 + δ) · r(s(t), a(t))

)]
(34)

B.3 INCORPORATING IRL ALGORITHMS

In our implementation, we combine PAGAR with GAIL and VAIL, respectively. When PAGAR
is combined with GAIL, the meta-algorithm Algorithm 1 becomes Algorithm 2. When PAGAR is
combined with VAIL, it becomes Algorithm 3. Both of the two algorithms are GAN-based IRL,
indicating that both algorithms use Eq.1 as the IRL objective function. In our implementation, we
use a neural network to approximate D, the discriminator in Eq.1. To get the reward function r,
we follow Fu et al. (2018) and denote r(s, a) = log

(
πA(a|s)
D(s,a) − πA(a|s)

)
as mentioned in Section

1. Hence, the only difference between Algorithm 2 and Algorithm 1 is in the representation of
the reward function. Regarding VAIL, since it additionally learns a representation for the state-
action pairs, a bottleneck constraint JIC(D) ≤ ic is added where the bottleneck JIC is estimated
from policy roll-outs. VAIL introduces a Lagrangian parameter β to integrate JIC(D) − ic in the
objective function. As a result its objective function becomes JIRL(r) + β · (JIC(D)− ic). VAIL
not only learns the policy and the discriminator but also optimizes β. In our case, we utilize the
samples from both protagonist and antagonist policies to optimize β as in line 10, where we follow
Peng et al. (2019) by using projected gradient descent with a step size δ

In our implementation, depending on the difficulty of the benchmarks, we choose to maintain λ
as a constant or update λ with the IRL loss JIRL(r) in most of the continuous control tasks. In
HalfCheetah-v2 and all the maze navigation tasks, we update λ by introducing a hyperparameter
µ. As described in the maintext, we treat δ as the target IRL loss of JIRL(r), i.e., JIRL(r) ≤ δ.
In all the maze navigation tasks, we initialize λ with some constant λ0 and update λ by λ :=
λ ·exp(µ ·(JIRL(r)−δ)) after every iteration. In HalfCheetah-v2, we update λ by λ := max(λ0, λ ·
exp(µ · (JIRL(r)− δ))) to avoid λ being too small. Besides, we use PPO Schulman et al. (2017) to
train all policies in Algorithm 2 and 3.

C EXPERIMENT DETAILS

This section presents some details of the experiments and additional results.
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Algorithm 2 GAIL w/ PAGAR
Input: Expert demonstration E, discriminator loss bound δ, initial protagonist policy πP , antagonist
policy πA, discriminator D (representing r(s, a) = log

(
πA(a|s)
D(s,a) − πA(a|s)

)
), Lagrangian parame-

ter λ, iteration number i = 0, maximum iteration number N
Output: πP

1: while iteration number i < N do
2: Sample trajectory sets DA ∼ πA and DP ∼ πP

3: Estimate JRL(πA; r) with DA

4: Optimize πA to maximize JRL(πA; r).
5: Estimate JRL(πP ; r) with DP ; JPPO(πP ;πA, r) with DP and DA;
6: Optimize πP to maximize JRL(πP ; r) + JPPO(πP ;πA, r).
7: Estimate JPAGAR(r;πP , πA) with DP and DA

8: Estimate JIRL(πA; r) with DA and E by following the IRL algorithm
9: Optimize D to minimize JPAGAR(r;πP , πA) + λ ·max(JIRL(r) + δ, 0)

10: end while
11: return πP

Algorithm 3 VAIL w/ PAGAR
Input: Expert demonstration E, discriminator loss bound δ, initial protagonist policy πP , antagonist
policy πA, discriminator D (representing r(s, a) = log

(
πA(a|s)
D(s,a) − πA(a|s)

)
), Lagrangian parame-

ter λ for PAGAR, iteration number i = 0, maximum iteration number N , Lagrangian parameter β
for bottleneck constraint, bounds on the bottleneck penalty ic, learning rate µ.
Output: πP

1: while iteration number i < N do
2: Sample trajectory sets DA ∼ πA and DP ∼ πP

3: Estimate JRL(πA; r) with DA

4: Optimize πA to maximize JRL(πA; r).
5: Estimate JRL(πP ; r) with DP ; JPPO(πP ;πA, r) with DP and DA;
6: Optimize πP to maximize JRL(πP ; r) + JPPO(πP ;πA, r).
7: Estimate JPAGAR(r;πP , πA) with DP and DA

8: Estimate JIRL(πA; r) with DA and E by following the IRL algorithm
9: Estimate JIC(D) with DA,DP and E

10: Optimize D to minimize JPAGAR(r;πP , πA) + λ ·max(JIRL(r) + δ, 0) + β · JIC(D)

11: Update β := max
(
0, β − µ · (JIC(D)

3 − ic)
)

12: end while
13: return πP

C.1 EXPERIMENTAL DETAILS

Network Architectures. Our algorithm involves a protagonist policy πP , and an antagonist policy
πA. In our implementation, the two policies have the same structures. Each structure contains two
neural networks, an actor network, and a critic network. When associated with GAN-based IRL, we
use a discriminator D to represent the reward function as mentioned in Appendix B.3.

• Protagonist and Antagonist policies. We prepare two versions of actor-critic networks, a
fully connected network (FCN) version, and a CNN version, respectively, for the Mujoco
and Mini-Grid benchmarks. The FCN version, the actor and critic networks have 3 layers.
Each hidden layer has 100 neurons and a tanh activation function. The output layer output
the mean and standard deviation of the actions. In the CNN version, the actor and critic
networks share 3 convolutional layers, each having 5, 2, 2 filters, 2 × 2 kernel size, and
ReLU activation function. Then 2 FCNs are used to simulate the actor and critic networks.
The FCNs have one hidden layer, of which the sizes are 64.

• Discriminator D for PAGAR-based GAIL in Algorithm 2. We prepare two versions of
discriminator networks, an FCN version and a CNN version, respectively, for the Mujoco
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and Mini-Grid benchmarks. The FCN version has 3 linear layers. Each hidden layer has
100 neurons and a tanh activation function. The output layer uses the Sigmoid function
to output the confidence. In the CNN version, the actor and critic networks share 3 convo-
lutional layers, each having 5, 2, 2 filters, 2× 2 kernel size, and ReLU activation function.
The last convolutional layer is concatenated with an FCN with one hidden layer with 64
neurons and tanh activation function. The output layer uses the Sigmoid function as the
activation function.

• Discriminator D for PAGAR-based VAIL in Algorithm 3. We prepare two versions of
discriminator networks, an FCN version and a CNN version, respectively, for the Mujoco
and Mini-Grid benchmarks. The FCN version uses 3 linear layers to generate the mean and
standard deviation of the embedding of the input. Then a two-layer FCN takes a sampled
embedding vector as input and outputs the confidence. The hidden layer in this FCN has
100 neurons and a tanh activation function. The output layer uses the Sigmoid function
to output the confidence. In the CNN version, the actor and critic networks share 3 convo-
lutional layers, each having 5, 2, 2 filters, 2× 2 kernel size, and ReLU activation function.
The last convolutional layer is concatenated with a two-layer FCN. The hidden layer has
64 neurons and uses tanh as the activation function. The output layer uses the Sigmoid
function as the activation function.

Hyperparameters The hyperparameters that appear in Algorithm 3 and 3 are summarized in Table
2 where we use N/A to indicate using the maximal δ as mentioned in Section 4.2, in which case we
let µ = 0. Otherwise, the values of µ and δ vary depending on the task and IRL algorithm. The
parameter λ0 is the initial value of λ as explained in Appendix B.3.

Parameter Continuous Control Domain Partially Observable Domain
Policy training batch size 64 256

Discount factor 0.99 0.99
GAE parameter 0.95 0.95

PPO clipping parameter 0.2 0.2
λ0 1e3 1e3
σ 0.2 0.2
ic 0.5 0.5
β 0.0 0.0
µ VAIL(HalfCheetah): 0.5; others: 0.0 VAIL: 1.0; GAIL: 1.0
δ VAIL(HalfCheetah): 1.0; others: N/A VAIL: 0.8; GAIL: 1.2

Table 2: Hyperparameters used in the training processes

Expert Demonstrations. Our expert demonstrations all achieve high rewards in the task. The
number of trajectories and the average trajectory total rewards are listed in Table 3.

C.2 ADDITIONAL RESULTS

We append the results in three Mujoco benchmarks: Hopper-v2, InvertedPendulum-v2 and
Swimmer-v2 in Figure 7. Algorithm 1 performs similarly to VAIL and GAIL in those two bench-
marks. IQ-learn does not perform well in Walker2d-v2 but performs better than ours and other
baselines by a large margin.

Task Number of Trajectories Average Tot.Rewards
Walker2d-v2 10 4133

HalfCheetah-v2 100 1798
Hopper-v2 100 3586

InvertedPendulum-v2 10 1000
Swimmer-v2 10 122

DoorKey-6x6-v0 10 0.92
SimpleCrossingS9N1-v0 10 0.93

Table 3: The number of demonstrated trajectories and the average trajectory rewards
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(a) Hopper-v2 (b) InvertedPendulum-v2 (c) Swimmer-v2

Figure 7: Comparing Algorithm 1 with baselines. The suffix after each ‘PAGAR-’ indicates which
IRL algorithm is utilized in Algorithm 1. The y axis is the average return per step. The x axis is
the number of iterations in GAIL, VAIL, and ours. The policy is executed between each iteration
for 2048 timesteps for sample collection. One exception is that IQ-learn updates the policy at every
timestep, making its actual number of iterations 2048 times larger than indicated in the figures.

C.3 INFLUENCE OF REWARD HYPOTHESIS SPACE

In addition to the DoorKey-6x6-v0 environment, we also tested PAGAR-GAIL and GAIL in
SimpleCrossingS9N2-v0 environment. The results are shown in Figure 8.

(a) MiniGrid-DoorKey-6x6-v0 (b) MiniGrid-SimpleCrossingS9N2-v0

Figure 8: Comparing Algorithm 1 with baselines. The prefix ‘protagonist GAIL’ indicates that
the IRL algorithm utilized in Algorithm 1 is the same as in GAIL. The ‘ Sigmoid’ and ‘ Categ’
suffixes indicate whether the output layer of the discriminator is using the Sigmoid function or
Categorical distribution. The x axis is the number of sampled frames. The y axis is the average
return per episode.
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