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ABSTRACT

Efficient physics simulations are essential for numerous applications, ranging
from realistic cloth animations or smoke effects in video games, to analyzing
pollutant dispersion in environmental sciences, to calculating vehicle drag co-
efficients in engineering applications. Unfortunately, analytical solutions to the
underlying physical equations are rarely available, and numerical solutions re-
quire high computational resources. Latest developments in the field of physics-
based Deep Learning have led to promising efficiency improvements but still suf-
fer from limited generalization capabilities and low accuracy compared to numer-
ical solvers.
In this work, we introduce Metamizer, a novel neural optimizer that iteratively
solves a wide range of physical systems with high accuracy by minimizing a
physics-based loss function. To this end, our approach leverages a scale-invariant
architecture that enhances gradient descent updates to accelerate convergence.
Since the neural network itself acts as an optimizer, training this neural optimizer
falls into the category of meta-optimization approaches.
We demonstrate that Metamizer achieves unprecedented accuracy for deep learn-
ing based approaches - sometimes approaching machine precision - across mul-
tiple PDEs after training on the Laplace, advection-diffusion and incompressible
Navier-Stokes equation as well as on cloth simulations. Remarkably, the model
also generalizes to PDEs that were not covered during training such as the Poisson,
wave and Burgers equation.
Our results suggest that Metamizer could have a profound impact on future nu-
merical solvers, paving the way for fast and accurate neural physics simulations
without the need for retraining.

Figure 1: Our approach is able to simulate various linear and non-linear physical systems. All of the
depicted results were produced by the same neural model. PDEs marked in red were not considered
during training.

1 INTRODUCTION

Countless physical systems can be described by partial differential equations (PDEs). For exam-
ple, electrostatic or gravitational fields can be described by the Poisson equation, heat diffusion or
pollutant dispersion can be described by the advection-diffusion equation, pressure waves by the
wave equation, fluids by the incompressible Navier-Stokes equation, and so on. Unfortunately, most
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of these equations do not possess analytical solutions and numerical solutions are computationally
expensive. To reduce the computational burden of numerical methods, numerous neural surrogate
models have been developed in recent years that achieve fast and highly efficient physics simula-
tions (Thuerey et al., 2021; Cuomo et al., 2022). However, the accuracy of current neural surrogates
still remains limited compared to numerical solvers that can iteratively improve a solution to a high
desired accuracy. In addition, neural surrogate models are usually tailored to specific PDEs and do
not generalize well across multiple different PDEs without retraining. Zero-shot PDE solvers, anal-
ogous to current endeavours in foundational models for natural language processing (Brown, 2020)
or computer vision (Radford et al., 2021; Kirillov et al., 2023), could be of great benefit for instant
realisitc animations in computer games or computer aided engineering.

Thus, in this work, we propose Metamizer, a neural optimizer to accelerate gradient descent for fast
and accurate physics simulations. To this end, we introduce a novel scale-invariant architecture
that suggests improved gradient descent update steps that are independent of arbitrary scalings of
the loss function or loss domain. We train Metamizer without any training data directly on the
physics-based loss that it is supposed to optimize. After training, unlike traditional gradient descent
methods, Metamizer requires no hyperparameters such as learning rate or momentum, and allows
tradeoffs between runtime and accuracy for fast and highly accurate results. We evaluate the very
same network (same architecture and same weights) across a wide range of linear and non-linear
PDEs and showcase its generalization capabilites - even to PDEs that were not covered during
training.

Code as well as a pretrained model will be made available upon acceptance.

2 RELATED WORK

Numerical Methods that do not rely on deep learning to solve PDEs for example by means of
finite differences or finite elements require high computational resources (Farmaga et al., 2011).
Thus, already in the last century several specialized methods have been developed to accelerate
for example fluid simulations (Chen & Doolen, 1998; Stam, 1999) or cloth simulations (Baraff &
Witkin, 1998). Unfortunately, such specialized methods do not generalize across various different
PDEs as they exploit domain-specific assumptions and are still relatively expensive to compute.

Gradient Descent based methods like AdaGrad (Duchi et al., 2011), Adam (Kingma & Ba, 2017;
Reddi et al., 2019), AdamW (Loshchilov, 2017) and many more (Norouzi & Ebrahimi, 2019) build
the backbone of most Deep Learning approaches. These optimization methods can be generally ap-
plied to a wide range of differentiable minimization problems including solving PDEs (Nurbekyan
et al., 2023). However, Gradient Descent methods require tuning of hyperparameters such as learn-
ing rate or momentum and many iterations until convergence. As a result, they are not yet efficient
enough for real-time physics simulations.

Meta-Learning , and in particular ”Learning to Optimize” (L2O), is the field of research that
deals with the automatic improvement of optimization algorithms, typically by means of machine
learning techniques. Pytorch libraries such as ”higher” (Grefenstette et al., 2019) or ”learn2learn”
(Arnold et al., 2020) allow for example to automatically optimize hyperparameters of optimizers
like ADAM through gradient descent. Andrychowicz et al. (2016) train LSTMs to optimize neural
networks for classification tasks and style transfer and Chen et al. (2020) present several training
techniques that suggest there is still room for potential improvement in the field L2O. However, to
the best of our knowledge, L2O has not yet been applied in the context of physics simulations.

Data-driven Deep Learning approaches have been widely established to generate neural surro-
gate models for efficient physics simulations for example in context of fluid dynamics (Tompson
et al., 2017; Sanchez-Gonzalez et al., 2020), cloth simulations (Pfaff et al., 2020), weather forecast-
ing (Bonev et al., 2023; Lam et al., 2023) or aerodynamics (Li et al., 2024). While these methods
allow efficient simulations at coarse spatial and temporal resolutions or on physical systems without
knowledge of the underlying mathematical equations, they require large amounts of high-quality
training data, which can be expensive to generate. Furthermore, generalization beyond the training
data is often fairly limited.
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Physics-informed Deep Learning approaches as introduced by Karniadakis et al. (2021) have
become a new and quickly growing field of research (Cuomo et al., 2022) to solve PDEs by training
an implicit neural representation with only little or no ground truth data based on a physics-informed
loss. PINNs are used for a variety of problems ranging from climate simulation (Lütjens et al., 2021;
Lai et al., 2024; Chen et al., 2022) to fluid dynamics (Cai et al., 2021; Ghosh et al., 2023), all the
way to robotics (Liu et al., 2024; Sanyal & Roy, 2023; Yang et al., 2023). Unfortunately, the learned
implicit representations need to be retrained for every physical simulation and thus are not real-time
capable.

Physics-constrained Deep Learning approaches as presented by Zhu et al. (2019) train a neural
surrogate model to evolve an explicit state representation in time using a physics-constrained loss.
This method has been successfully applied to the coupled 2D Burgers equation (Geneva & Zabaras,
2020), incompressible fluid dynamics in 2D and 3D (Wandel et al., 2021a;b) and cloth simulations
(Santesteban et al., 2022; Stotko et al., 2024). While these methods do not require any training data
and show good generalization performance within their PDE domain, so far, they do not generalize
across multiple PDEs and have limited accuracy compared to numerical solvers.

3 FOUNDATIONS

In this chapter, we introduce some basic concepts and definitions for PDEs, explain, how finite dif-
ference schemes can be used to formulate a physics-based loss, and give some intuition to motivate
our gradient-based optimization approach.

Partial Differential Equations (PDEs) Partial differential equations are equations that constrain
the partial derivatives of a multivariate function. In its most general form, a PDE can be written as:

F (x1, ..., xn, ∂x1
u, ..., ∂xn

u, ∂2x1
u, ...) = 0 ∀x1, ..., xn ∈ Ω (1)

where u(x1, ..., xn) is the unknown function that we want to solve, x1, ..., xn ∈ Ω are the indepen-
dent variables inside a domain Ω, and ∂xi

u denotes the partial derivative of u with respect to xi. If
one of the independent variables corresponds to time t, F is called a time-dependent PDE. If u does
not depend on t, it is called stationary. If F is linear in u and its derivatives, F is called a linear
PDE. Otherwise, F is called a non-linear PDE.

Boundary and Initial Conditions Usually, additional constrains at the domain boundaries are
given such as boundary or initial conditions. Although various types of different boundary con-
ditions could be considered, in this work, for simplicity, we focus solely on Dirichlet boundary
conditions:

u(x1, ..., xn) = d(x1, ..., xn)∀x1, ..., xn ∈ ∂Ω (2)
Here, d(x1, ..., xn) directly specifies the values of u at the domain boundary ∂Ω. Typically, time-
dependent PDEs also require an initial state (or initial condition) from which the solution of a PDE
evolves over time.

Finite Differences To compute u and its partial derivatives in a numerical manner, u needs to be
discretized. Here, we consider a regular grid in space (and time). This allows to compute derivatives
like gradients (∇), divergence (∇·), Laplace (∆) or curl (∇×) numerically by performing convolu-
tions with finite difference kernels. By plugging the results of these finite difference convolutions
for every grid point into the general formulation of PDEs (Equation 1), we obtain a large system of
equations. If the PDE is linear, this set of equations becomes a (typically sparse) linear system of
equations.

Time-Integration Schemes In case of time-dependent PDEs, a strategy must be chosen to inte-
grate the simulation in time for given initial conditions. There exist several strategies to calculate
the time derivative with finite differences:

• In forward Euler schemes, the computation of the time derivative depends only on the
current time step. This explicit strategy makes computations easy and efficient, but tends
to cause unstable simulation behavior for many physical systems if the time step is chosen
too large. Therefore, explicit schemes are not considered in this work.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• In backward Euler schemes, the calculation of the time derivative depends on the following
time step. This implicit strategy results in stable simulations, but can suffer from numer-
ical dissipation and requires solving large systems of equations that are computationally
expensive.

• In Crank-Nicolson schemes, the centered finite difference of the current and the following
time step is used to calculate the time derivative. This implicit strategy results in more
accurate computations compared to forward or backward Euler, but is, like backward Euler,
computationally expensive.

Physics-Based Loss Solving large (potentially non-linear) systems of equations obtained by finite
differences is a challenging task. Thus, we formulate a physics-constrained loss, that penalizes the
mean squared residuals (left-hand side) of Equation 1 as follows:

L =
1

|Ω|
∑

x1,...,xn∈Ω

|F (x1, ..., xn, ∂x1
u, ..., ∂xn

u, ∂2x1
u, ...)|2 (3)

This way, we can search for a solution u∗ of the PDE by minimizing L:

u∗ = argmin
u

L

Dirichlet Boundary conditions (Equation 2) can be typically applied directly by setting the corre-
sponding boundary grid points of u equal to d. However, sometimes, this is not possible and we
have to consider an additional loss term for the Dirichlet boundary conditions:

LD =
1

|∂Ω|
∑

x1,...,xn∈∂Ω

|u(x1, ..., xn)− d(x1, ..., xn)|2 (4)

In this case, we have to minimize L+ LD to solve Equation 1 and Equation 2.

Figure 2: Exemplary visualization of
a 2D loss function with a steep valley.
Naive gradient descent fails since it ei-
ther converges very slowly (blue curve
1) or diverges (red curve 2). Ideally, we
would like to adapt the step size and
direction for accelerated convergence
(green curve 3).

Gradient Descent Intuition In order to minimize the physics-based loss L (Equation 3 and 4),
we follow a gradient descent approach. Figure 2 provides some intuition on common problems
with naive gradient descent in the vicinity of ill conditioned minima and how convergence could
be improved: If we take too small steps along the gradients (blue curve 1), convergence becomes
very slow. If we take too large steps (red curve 2), the gradient descent scheme diverges. Ideally
(green curve 3), we would first take some small initial steps to check the local gradients and avoid
initial divergence. Then, the step size can be carefully increased. Instead of directly following the
gradients, a better step direction can be found by taking the gradients of the previous steps into
account as well. Once we come close to the minimum, the step size should be decreased again to
achieve higher accuracy. Note that scaling the loss function L and thus its gradients by a constant
factor c does not affect its minima (argminL = argmin c·L). Thus, the gradient descent procedure
should be invariant with respect to constant gradient scalings. Similarly, scaling the coordinate
system of L (see solid vs dashed lines) should result in equally scaled update steps. This motivates
our scale invariant Metamizer architecture that can deal with arbitrarily scaled gradients and can
automatically adapt its step size (see Figure 3 a).

4 METHOD

Our approach aims to accelerate convergence of a gradient descent scheme by proposing improved
update steps with a neural network.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: a) Scale invariant architecture of the neural optimizer (Metamizer). b) Training Cycle.

Metamizer Architecture The neural network architecture as depicted in Figure 3 a) works as
follows: First, the gradient ∇uLi of the current iteration i as well as the gradient ∇uLi−1 and
update step ∆ui−1 of the previous iteration i − 1 are taken as input. Then, the gradients of the
current and previous iteration are normalized by the standard deviation of the current gradient and
the step size is normalized by its standard deviation as well. These values are then concatenated
and fed into a U-Net Ronneberger et al. (2015) in order to predict an update scale factor for si and
an update direction that gets multiplied with si to obtain the update step ∆ui for the next iteration.
Finally, the computed update step is applied to u to obtain ui+1 = ui + ∆ui. For the initial state,
we set u0 = ∇uL0 = ∆u0 = 0 and set s0 = 0.05 to avoid initial divergence by making only small
steps at the beginning.

These normalization and scaling measures make the network invariant with respect to arbitrary scal-
ings of the loss or domain and allow the network to make reasonable progress at all stages of the
optimization: At the beginning, when large update steps must be made in the presence of large gra-
dients, as well as in later optimization stages, when fine adjustments must be made in the presence
of small gradients. To allow for very high accuracies, the gradient computations and update steps
need to be calculated in double precision. Nevertheless, due to the input normalizations, the CNN
can be evaluated using a more efficient regular float precision. Since the outputs of the network
get scaled by si, the training gradients get scaled as well. This would result in huge gradients for
the first optimization iterations compared to basically no training signal at later optimization iter-
ations. Thus, we employ gradient normalization (Chen et al., 2018) to normalize gradients during
backpropagation and provide the network with an evenly distributed training signal during all opti-
mization stages and across all different PDEs that we train on in parallel. Since we want to reuse the
same network for different PDEs that might also contain different numbers of channels, Metamizer
optimizes all channels separately (e.g. the Laplace equation requires only 1 channel while incom-
pressible fluids require 2 channels for the velocity and pressure field and cloth dynamics require 3
channels to describe motions in x/y/z directions).

Training The neural optimizer was trained in a cyclic Meta-learning manner inspired by Wandel
et al. (2021a): As visualized in Figure 3 b), we first 0-initialize a training pool of randomized PDEs
(e.g. randomized boundary conditions for the Laplace / advection-diffusion / Navier-Stokes equa-
tions). Note that in contrast to data-driven methods, no pre-generated ground truth data is needed.
Then, we draw a random mini-batch that contains the current gradient ∇uLi of the physics-based
loss as well as optimizer state information (i.e. ∇uLi−1,∆ui−1, si−1) and feed it into the Metamizer
architecture to compute an update step ∆ui. This update step, together with updated state informa-
tion (i.e. ∇uLi,∆ui, si) is fed back into the training pool to update the training environments with
more realistic data and to recompute the physics-based loss L based on the updated values of u. This
recomputed loss is then used to optimize the Metamizer with gradient descent (Adam, lr=0.001). By
iterating this training cycle, the training pool becomes filled with more and more realistic training
data and the neural optimizer becomes better and better at minimizing physics-based losses. Further-
more, since this way the training pool constantly generates new training data on the fly, its memory
footprint is very small, and the entire training pool can be kept in GPU memory. After training for ca
6 hours on a NVidia Geforce RTX 4090, we obtained a model that was able to solve various PDEs
at high precision and produced the results shown in the following section.
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5 RESULTS

In this section, we show that the very same model (same architecture and same weights) can deal
with a wide variety of PDEs - linear as well as non-linear, stationary as well as time-dependent.

5.1 LINEAR SECOND ORDER PDES

Linear second order PDEs can be grouped into 3 categories: Elliptic PDEs (e.g. Poisson or Laplace
equation), parabolic PDEs (e.g. advection-diffusion equation) and hyperbolic PDEs (e.g. wave
equation). Here, we show that our model excels in all 3 categories:

5.1.1 POISSON AND LAPLACE EQUATION

The Poisson equation is a stationary, elliptic PDE and is important to find e.g. minimal surfaces,
steady state equilibria of the Diffusion-Equation (see Section 5.1.2) or to calculate energy potentials
of electrostatic or gravitational fields (see Figure 12 in Appendix).

F = ∆u− f = 0 (5)

The Laplace Equation is the homogeneous (f = 0) special case of the Poisson equation.

Figure 4: Visualization of iterative refinements by Metamizer to solve the Laplace equation. Top
row: Intermediate solutions of u. Middle row: corresponding gradients of the physics-based loss.
Bottom row: update steps computed by Metamizer.

Figure 4 depicts intermediate solutions ui of the Laplace equation, the gradients of the physics-based
loss ∇uLi, and update steps ∆ui computed by Metamizer at iterations 0,1,2,3,20 and 50. At the
beginning, u is 0-initialized. Thus, high gradients of L only appear at the domain boundaries where
the boundary conditions result in discontinuities of u. Nevertheless, Metamizer is able to anticipate
better update steps that also affect the surroundings of the boundaries to achieve faster convergence.
After only 3 update steps, the shape of u is visually close to the final solution. After 20 iterations,
the gradients of L are already in the range of 10−7 and after 50 steps, Metamizer hits the limits
of machine precision (see noise in ∇uL50 in Figure 4) rendering further improvements impossible.
Figure 5 a) shows how Metamizer automatically adjusts the scaling si: At the very beginning, s0
starts at a relatively small value (0.05) to avoid initial divergence. Then, for the next 5 iterations,
Metamizer increases si to lower L more efficiently. After that, si is steadily decreased for finer
and finer adjustments. Remarkably, this learned behavior corresponds very well with our ”natural”
gradient descent intuition provided in Section 3. After around 50 iterations, when machine level
precision is reached, no further progress is possible and si remains at a constant very low level.

We compared our approach to several other traditional gradient descent based methods (SGD, Adam,
AdamW, RMSprop, Adagrad, Adadelta) and state of the art iterative sparse linear system solvers
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(conjugate gradients, minres, gcrotmk, gmres, lgmres). Figure 6 shows that traditional gradient
based approaches are not competitive with current sparse linear system solvers regarding runtime or
accuracy. Furthermore, gradient based methods require tuning of hyperparameters such as learning
rate or momentum. On the other hand, linear system solvers are limited to linear PDEs and cannot
be directly used to solve non-linear PDEs. Metamizer maintains the generality of gradient based
approaches while showing slightly better performance than linear system solvers. Furthermore, it
can be easily parallelized on GPUs which results in better scaling behavior to larger grid sizes (see
also Appendix B). On a 100 × 100 grid, Metamizer reaches a MSR of 6.7 × 10−33 after around
50 iterations in only 0.08 seconds. To the best of our knowledge, there exist no other deep learning
based approaches that reach this level of accuracy.

Figure 5: The scale parameter si (see Figure 3 a) is automatically adjusted by Metamizer to make
appropriate update steps. a) stationary Laplace Equation b) time-dependent advection-diffusion
equation with 10 iterations per time step.

Figure 6: Comparison of mean squared residual errors as a function of time (left) and number of
iterations (right) between Metamizer and various traditional gradient based optimizers from pytorch
as well as state of the art iterative sparse linear system solvers from scipy. The target is to lower the
loss in as little time as possible (bottom left corner of the left plot).

5.1.2 ADVECTION-DIFFUSION EQUATION

The Advection-Diffusion equation is an important parabolic PDE that describes for example heat
transfer or the dispersion of pollutants. For an unknown function u, it can be written as:

F = ∂tu−D∆u+∇ · (v⃗ u)−R = 0 (6)

Here,D denotes the diffusivity, v⃗ denotes the velocity field for the advection term andR corresponds
to the source / sink term. In contrast to the stationary Poisson equation, the advection-diffusion equa-
tion is time-dependent. Thus, we use the implicit backward Euler scheme for a stable unfolding of
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the simulation in time. For every simulation time step, we perform a certain number of optimization
steps to reduce L. By choosing the right number of iterations per time step we can make a trade-off
between speed and accuracy. Figure 5 b) shows how Metamizer automatically adjusts the scaling si
when simulating the advection-diffusion equation at 10 iterations per time step. At the beginning of
each time step, the neural optimizer increases its stepsize to quickly adjust u. Then, si is decreased
again for fine adjustments.

Figure 1 shows results for a constant localized source field R and a rotating velocity field v⃗ (for
example a laser that heats a spinning disk). More examples with different diffusivity parameters are
shown in Appendix A. Table 1 shows how accuracy increases with the number of iterations per time
step.

5.1.3 WAVE EQUATION

The wave equation is an important hyperbolic PDE that describes wave like phenomena such as
water waves, pressure waves, electro-magnetic waves and many more. It can be written as:

F = ∂2t u− c2∂2xu = 0 (7)

Here, c corresponds to the wave propagation speed. Figure 7 shows results for different values
of c that were obtained by Metamizer using an implicit Crank-Nicolson scheme. Note, that the
wave equation was not included during training. Table 1 shows accuracy levels for 1,5,20 and 100
iterations per timestep. Using only 1 iteration results in divergent simulations, 20 iterations yield
fairly accurate results and at 100 iterations, the simulation runs close to machine precision.

Figure 7: Metamizer is capable of simulating waves at different propagation speeds cwithout having
seen the wave equation during training.

5.2 NON-LINEAR PDES

Non-linear PDEs are particularly hard to solve as the underlying systems of equations become non-
linear as well. In this section, we demonstrate Metamizers capabilities to deal with non-linear PDEs.

5.2.1 INCOMPRESSIBLE NAVIER-STOKES EQUATION

The incompressible Navier-Stokes equation describes the dynamics of an incompressible fluid by
means of a velocity field v⃗ and a pressure field p:

F = ρ (∂tv⃗ + (v⃗ · ∇) v⃗) +∇p− µ∆v⃗ − f⃗ext = 0 (8)

Here, ρ denotes the fluids density, µ its viscosity and f⃗ext external forces. The incompressibility
equation ∇ · v⃗ = 0 can be automatically fulfilled by utilizing a vector potential a and setting the
velocity field v⃗ = ∇× a. However, using a vector potential prohibits us from directly manipulating
the velocity field. Thus, we need an additional boundary loss term (Equation 4) to deal with the
Dirichlet boundary conditions for the velocity field at the domain boundaries. To compute the partial
derivatives of a, v⃗ and p efficiently with centered finite differences, we rely on a staggered marker
and cell (MAC) grid (Harlow et al., 1965; Holl et al., 2020; Wandel et al., 2021a).

Figure 8 shows results for various Reynolds numbers. The Reynolds number Re is a unit less
quantity defined as:

Re =
ρ||v⃗||D
µ

(9)

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

PDE \ Iterations
Time Step 1 5 20 100 Iterations

Second
Advection-Diffusion 7.9× 10−5 2.0× 10−7 5.6× 10−11 2.2× 10−33 420

Wave 4.4× 1024 4.6× 10−4 3.2× 10−8 3.5× 10−31 420
Navier-Stokes Lp 7.4× 10−6 2.0× 10−5 2.4× 10−8 2.4× 10−16 230

Ld 1.7× 10−7 3.7× 10−7 9.5× 10−9 1.9× 10−17

2D coupled Burgers 4.1× 10−3 8.5× 10−6 2.5× 10−10 5.0× 10−32 330

Table 1: Mean Squared Residuals for different time-dependent PDEs at different iterations per time
step

where D corresponds to the diameter of the obstacle and ||v⃗|| to the flow velocity. The Reynolds
number has a big effect on the qualitative behavior of the flow field. For example, in case of very
small Reynolds numbers, the flow-field becomes stationary and the Navier-Stokes equation can
be approximated by the Stokes equation. In case of very high Reynolds numbers, the flow-field
becomes turbulent and can be approximated by the Euler equation for inviscid fluids.

Figure 8: Fluids of various viscosities µ and densities ρ at a wide range of Reynolds numbers can
be simulated by Metamizer. The obstacle diameter is D = 10 and the fluid velocity is ||v⃗|| = 0.5

Table 1 shows results for Lp (mean squared residuals of Equation 8) and Ld (mean squared residuals
of ∇· v⃗ that capture if the Dirichlet boundary conditions are not properly met). Lp and Ld are lower
for only 1 iteration compared to 5 iterations per time step, because 1 iteration per time step results
in an incorrect steady-state solution for the wake dynamics. Compared to Wandel et al. (2021a),
Metamizer reaches a similar performance at 5 iterations per time step. At 20 or even 100 iterations,
our approach is orders of magnitudes more accurate while still being reasonably fast.

5.2.2 BURGERS EQUATION

The 2D coupled Burgers equation is an important non-linear PDE to study the formation of shock
patterns.

F = ∂tv⃗ + (v⃗ · ∇) v⃗ − µ∆v⃗ = 0 (10)

Here, µ is a viscosity parameter. Figure 1 shows an exemplary simulation result by Metamizer that
exhibits clear shock discontinuities at µ = 0.3. Additional qualitative results are shown in Figure 10
of Appendix A. Note that the Burgers equation was not considered during training. Mean squared
residuals for different iterations per time step are shown in Table 1.

5.2.3 CLOTH DYNAMICS

To describe cloth dynamics, we closely follow the approach of Santesteban et al. (2022) and Stotko
et al. (2024). Instead of using a classical PDE formulation, their approach relies on a spring-mass
system consisting of a regular grid of vertex positions x⃗, velocities v⃗ and accelerations a⃗ that get
integrated by a backward Euler scheme:

v⃗t = v⃗t−1 +∆t a⃗t and x⃗t = x⃗t−1 +∆t v⃗t (11)
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To obtain the accelerations a⃗t, we need to minimize the following physics-based loss L:

L = Eint(x⃗
t)−∆t2⟨F⃗ext, a⃗

t⟩+ 1

2
(∆t)2⟨⃗at,Ma⃗t⟩ (12)

Here, F⃗ext corresponds to external forces (such as gravity or wind), M is the mass matrix and Eint
are the internal energies of the cloth specified as follows:

Eint = cstiff
1

2

∑
e⃗∈edges

(||e⃗|| − 1)
2
+ cshear

1

2

∑
ψ∈right angles

(ψ − 90◦)2 + cbend
1

2

∑
θ∈straight angles

(θ − 180◦)2

Here, cstiff, cshear, cbend are parameters that describe stiffness, shearing and bending properties of the
cloth.

Figure 9: Cloth with various material parameters (cstiff/cshear/cbend) can be simulated.
a) (1000/10/0.01) b) (1000/1000/10) c) (1000/10/1000)

Figure 9 shows results by Metamizer for various cloth parameters. The simulations were performed
at 10 iterations per time step and around 185 iterations per second. Note that L can take negative
values and cannot be interpreted as easily as the mean squared residuals of the previous PDEs. Thus
we ommited L in Table 1 for our cloth simulations.

6 CONCLUSION

In this work, we introduced Metamizer, a novel neural optimizer for fast and accurate physics sim-
ulations. To this end, we propose a scale-invariant architecture that suggests improved gradient
descent update steps to speed up convergence on a physics-based loss at arbitrary scales. Metamizer
was trained without any training data but directly on the mean square residuals of PDEs such as the
Laplace, advection-diffusion, Navier-Stokes or cloth equations in a meta-learning manner. Remark-
ably, our method also generalizes to PDEs that were not covered during training such as the Poisson,
wave and Burgers equation. By choosing a proper number of iterations per timestep, a trade-off be-
tween speed and accuracy can be made. Our results demonstrate that Metamizer produces fast as
well as highly accurate results across a wide range of physical systems.

In the future, further physical constrains such as Neumann or Robin boundary conditions and self-
collisions for cloth-dynamics could be included. For increased flexibility regarding the underlying
data structure, the network architecture could be extended to Mesh- or Graph-Neural Networks.
Furthermore, multiple PDEs such as the Navier-Stokes and advection-diffusion equation could be
coupled.

We believe that our approach may have applications in future numerical solvers and speed up ac-
curate simulations in computer games or computer-aided engineering. Since gradient descent ap-
proaches are ubiquitous, our approach may also serve as an inspiration for other gradient-based
applications outside of physics, such as style transfer, scene reconstruction, or optimal control.
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A QUALITATIVE RESULTS FOR BURGERS, ADVECTION-DIFFUSION AND
POISSON EQUATION

In this Section we provide additional qualitative results for Burgers equation with µ = 0.3/1 (Figure
10), the advection-diffusion equation with D = 0.1/0.5/2/10 (Figure 11) and the Poisson equation
(Figure 12).

Figure 10: Burgers equation with µ = 0.3/1

Figure 11: Advection-Diffusion equation with D = 0.1/0.5/2/10. (Domain Boundaries have
Dirichlet BC = 0.)

Figure 12: Solution of the Poisson equation for the electrostatic potential of two oppositely charged
particles within a box with 0-boundary conditions. Note, that Metamizer was only trained on the
Laplace equation (f = 0) while, here, f ̸= 0 at the particle positions.

B PERFORMANCE COMPARISONS ON A LARGER GRID

In order to investigate the scaling behavior of Metamizer, we trained another network on a 400×400
grid to solve the Laplace equation. Figure 13 shows that Metamizers advantage over traditional
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iterative sparse linear system solvers becomes even more significant on a 400 × 400 grid, showing
about 10 times faster convergence compared to lgmres. This is because Metamizer can be effectively
parallelized on a GPU.

Figure 13: On a 400× 400 grid, the speed-up of Metamizer compared to other approaches becomes
even more significant.

C SCALING PARAMETERS

In Figure 14, we show additional results how Metamizer scales si for 3, 5, 10, 20, 50, 100 iterations
per timestep on the Advection-Diffusion equation. For 50 and 100 iterations, a significant amount of
iterations is ”wasted” to scale up si for the next timestep. This could be improved by automatically
scaling si to a certain percentage (e.g. 20 %) of the maximum scale of the previous time step when
starting with a new time step.

D LAPLACE OPERATOR DETAILS

During our experiments, we found that naively applying the finite-difference Laplace operator results
in very small gradients - even if the residuals are still quite large. Intuition on this problem is
provided in Figure 15: If we want to lower the Laplacian for the center vertex (marked in black),
we could increase the value of that vertex (marked in green) but we could also decrease the values
of its neighboring vertices (marked in red). The same is true for all vertices, such that in the end
the gradients pointing upwards get canceled out fairly exactly be the neighboring gradients pointing
downwards. To avoid this issue, we detach (and thereby remove) all the neighbor-gradients (marked
in red) so that we are only left with the green gradients and can make much better progress in solving
the Laplace operator.

E VIDEO

The supplementary video demonstrates how Metamizer solves the Laplace, diffusion-advection,
wave, Navier-Stokes and Burgers equations as well as cloth simulations. The time-dependent PDEs
are visualized at the speed of the simulation.
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Figure 14: Scaling parameters for Advection-Diffusion for different numbers of iterations per time
step

Figure 15: Implementation detail for Laplace operator - example in 1D
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