Under review as a conference paper at ICLR 2024

SPADE: SPARSITY-GUIDED DEBUGGING
FOR DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Interpretability, broadly defined as mechanisms for understanding why and how
machine learning models reach their decisions, is one of the key open goals at
the intersection of deep learning theory and practice. Towards this goal, multiple
tools have been proposed to aid a human examiner in reasoning about a network’s
behavior in general or on a set of instances. However, the outputs of these tools—
such as input saliency maps or neuron visualizations—are frequently difficult for
a human to interpret, or even misleading, due, in particular, to the fact that neurons
can be multifaceted, i.e., a single neuron can be associated with multiple distinct
feature combinations. In this paper, we present a new general approach to address
this problem, called SPADE, which, given a trained model and a target sample,
uses sample-targeted pruning to provide a “trace” of the network’s execution on
the sample, reducing the network to the connections that are most relevant to the
specific prediction. We demonstrate that preprocessing with SPADE significantly
increases both the accuracy of image saliency maps across several interpretability
methods and the usefulness of neuron visualizations, aiding humans in reasoning
about network behavior. Our findings show that sample-specific pruning of con-
nections can disentangle multifaceted neurons, leading to consistently improved
interpretability.

1 INTRODUCTION

Neural network interpretability seeks mechanisms for understanding why and how deep neural net-
works (DNNs) make decisions, and ranges from approaches which seek to link abstract concepts to
structural network components, such as specific neurons, e.g., (Erhan et al., 2009; Yosinski et al.,
2015; Mordvintsev et al.; Nguyen et al., 2016), to approaches which aim to trace individual model
outputs on a per-sample basis, e.g., (Simonyan et al., 2013). While this area is developing rapidly,
there is also work questioning the validity of localized explanations with respect to the model’s
true decision process, pointing out confounding factors across current explainability methods and
metrics (Shetty et al., 2019; Rebuffi et al., 2020; Casper et al., 2023).

One key confounder for interpretability the fact the neurons of a trained, accurate DNN are often
multifaceted (Nguyen et al., 2016), in the sense that they respond to many different types of features,
which may be unrelated. This phenomenon directly impacts interpretability methods, such as visual-
izing inputs which maximize a neuron’s activation: the resulting representative input superimposes
salient features, and is therefore hard to interpret. Thus, there is significant effort in the litera-
ture on addressing this issue: for instance, early work by Nguyen et al. (2016) proposed retraining
the network with specialized regularizers which promote feature “disentanglement,” whereas re-
cently Wong et al. (2021) enforced output decisions to be based on very few features by retraining
the final linear output layer from scratch to be extremely sparse. Yet, one key limitation of this line
of work is that generating a “debuggable” model with disentangled representations requires heavy
retraining of the original model. Beyond computational cost, a conceptual issue is that the interpre-
tations generated on top of the “debuggable” model no longer correspond to the original model’s
predictions.

In this paper, we propose an alternative approach called Sparsity-Guided Debugging (SPADE),
which removes the above limitations, based on two main ideas: first, instead of retraining the model
to become interpretable, we disentangle the feature representations for the model itself; second, this
disentanglement is done for the individual sample for which we wish to obtain an interpretation.
This procedure is performed efficiently, without the computational costs of retraining.
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Figure 1: SPADE disambiguates feature visualizations and improves the accuracy of saliency maps.
This model was trained with some of the training images augmented with Trojan patches. The
visualization of the ‘Albatross’ class neuron consists of a mix of natural and Trojan features, which
is difficult for a human to interpret. However, preprocessing a model using a albatross image or a
sample with a Trojan patch decouples the bird and fish emoji facets. Likewise, preprocessing the
network with SPADE before computing a saliency map concentrates it on the Trojan patch, correctly
explaining the prediction into the ‘Goose’ class. Further examples are available in Appendix G.

Concretely, given a DNN M and a sample s whose output M (s) we wish to interpret, SPADE
functions as a pre-processing stage, in which we execute the sample s, together with a set of its
augmentations, through the network layer-by-layer, sparsifying each layer maximally while ensuring
that the output of the sparse layer still matches well with the original layer output on the sample.
Thus, we obtain a sparse model Sparse(M, s), which matches the original on the sample s, but for
which extraneous connections have been removed via sample-dependent pruning. Once the custom
model Sparse(M, s) is obtained, we can execute any interpretability method on this subnetwork to
extract a sample-specific feature visualization or saliency map. See Figure 1 for an illustration.

SPADE can be implemented efficiently by leveraging solvers for accurate one-shot pruning,
e.g., Frantar & Alistarh (2022), and can significantly improve performance across interpretabil-
ity methods and applications. First, we illustrate SPADE by coupling it with 10 different inter-
pretability techniques in the context of a DNN backdoor attack. Here, we find that, on a standard
ResNet50/ImageNet setting, SPADE reduces the average error, taken across these methods, to less
than half, from 9.91% to 4.22%. By comparison, the method of Wong et al. (2021), reduces error
by 0.54% on average, in the same setup. In addition, the results of a user study we performed eval-
uating the impact of SPADE on the quality of feature visualization shows that, in a setting where
the ground truth is determined but unknown to the user, users were significantly more successful
(69.8% vs 56.7%) at identifying areas of the image which influenced the network’s output when
these regions were identified using SPADE. In summary, our contributions are as follows:

1. We provide a new interpretability-enhancing technique called SPADE, which can be applied to
arbitrary models and samples to create an easier-to-interpret model “trace” customized to the
specific target sample. Intuitively, SPADE works by disentangling the neurons’ superimposed
feature representations via sparsification in a way that is sample-specific, which allows virtually
all interpretability approaches to be more accurate with respect to the dense model.

2. We validate SPADE practically for image classification, by coupling it with several methods
for feature visualization and generating saliency maps. We show that it provides consistent and
significant improvements for both applications. Moreover, these improvements occur across all
visualization methods studied, and for different models types and datasets.

3. We show that SPADE can be practical: it can be implemented in a computationally-efficient
manner, requiring approximately 1-41 minutes per instance on a single GPU, depending on the
desired speed-accuracy tradeoff. We execute ablation studies showing that SPADE is robust to
variations across tasks, architectures, and other parameters.

2 RELATED WORK

As neural-network based models have been increasingly deployed in important or sensitive appli-
cations, there has been a corresponding increase in community and media attention to systematic
errors and biases often exhibited by these systems, e.g., Buolamwini & Gebru (2018). This has led
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to great interest in using various techniques to aid humans in examining and debugging the models’
outputs. An overview of these approaches can be found in Linardatos et al. (2020).

One common desideratum in this space is to predict which parts of an input (e.g., image pixels) are
most useful to the final prediction. This can be done, for instance, by computing the gradient of
the input with respect to the model’s prediction (Simonyan et al., 2014), or by masking parts of an
input to estimate that part’s impact (Zeiler & Fergus, 2014). While these techniques can be helpful
in diagnosing issues, they are also prone to noisy signals (Hooker et al., 2019) and being purpose-
fully misled (Geirhos et al., 2023). Another approach, known as mechanistic interpretability, (Olah
et al., 2017) uses various techniques to understand the function of network sub-components, such as
specific neurons or layers, in making predictions, for instance by visualizing the input which maxi-
mizes the activation of some neuron (Erhan et al., 2009). We emphasize that our work is not in direct
competition with either of these categories of methods. Instead, our work proposes a preprocessing
step to the model examination process, which should consistently improve performance.

Subnetwork discovery. Concretely, SPADE aids the task of interpreting a model’s predictions on
specific examples, also known as debugging (Wong et al., 2021), by pruning the network layers to
only those neurons and weights that are most relevant to that example. Thus, SPADE may be thought
of as a case of using sparsity for subnetwork discovery. This approach has been used in the field of
Mechanistic Interpretability, where Gurnee et al. (2023) uses sparse linear probes to find the most
relevant units to a prediction. Cao et al. (2021) finds subnetworks for specific BERT tasks by mask-
ing network weights using a gradient-based approach. Conversely, Meng et al. (2022) uses input
corruption to trace out pathways in GPT models that are important for a specific example; however,
their method is not based on pruning and is not evaluated in terms of interpretability metrics.

Additionally, some works aim to train sparse, and therefore more debuggable, networks. Voita et al.
(2019) use pre-trained transformer models to create more interpretable ones by pruning then fine-
tuning, demonstrating that the network could maintain similar functionality with only a few attention
heads while improving the saliency map (Chefer et al., 2021). Other methods have focused on
training more interpretable sparse models from scratch, removing the issues inherent in retraining.
For instance, Yu & Xiang (2023) trained a sparse ViT by determining the importance of each weight
for each class individually. Their qualitative analysis showed that their sparse model was more
interpretable than dense models. Liu et al. (2023) proposed a sparse training method inspired by the
brain. This approach allowed them to identify the role of individual neurons in small-scale problems.
Finally, Panousis et al. (2023) trained interpretable sparse linear concept discovery models.

Most related, in Wong et al. (2021), the authors retrain the final fully-connected classification head
of a trained network to be highly sparse, improving the attribution of predictions to the neurons in
the preceding layer. This benefit arises because, after pruning, each class depends on fewer neurons
from the previous layer, thus simplifying the task of individually examining connections. Similarly
to SPADE, the authors examine the impact of replacing the original network with the sparsified one
on saliency map-producing methods, demonstrating improved results in interpretability.

Overview of Novelty. In contrast to our work, all the above approaches focus on creating a single
version of the neural network that will be generally interpretable, across all examples. Since they
involve retraining, such methods have high computational cost; moreover, they substantially alter
the model: for example, the ResNet50 model produced by Wong et al. (2021) have 72.24% ImageNet
accuracy, 1.70% less than their dense baseline. Conversely, SPADE can operate on any pretrained
network, and creates a customized network pruned for each target, in one-shot, which can then
consistently improve performance of almost any interpretability method. Further, we demonstrate
in Section 3.2 that there is a high degree of agreement between the models generated by SPADE
and the original model, and in Section 4.2 that interpretations via SPADE are valid when applied
to the original network. As such, SPADE is the first method which leverages sparsity to provide
interpretations that are consistent with the original network.

3 THE SPADE METHOD

3.1 ALGORITHM OVERVIEW

We now describe our method, Sparsity-Guided Debugging (SPADE). At a high level, given a sample
for which we wish to debug or interpret the network, SPADE works as a preprocessing step that uses
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one-shot pruning to discover the most relevant subnetwork for the prediction of a specific example.
We illustrate the SPADE process in Figure 2.

We start with an arbitrary input sample chosen by the user, which we would like to interpret. SPADE
then expands this sample to a batch of samples by applying augmentation techniques. This batch is
then executed through the network, to generate reference inputs X; and outputs Y; for the augmented
sample batch, at every layer ¢. Given these inputs and outputs as constraints, for each layer ¢ whose
weights we denote by WW;, we wish to find a set of sparse weighs W; which best approximate the
layer output Y; with respect to the input batch X;. In our implementation, we adopt the /5 distance
metric. Thus, for a linear layer of size K and sparsity target S, we would like to find

To solve this constrained optimization problem at each layer, we use a custom sparsity solver (Fran-
tar & Alistarh, 2022). We discuss specific implementation details in the next section.

Once layer-wise pruning has completed, we have obtained a model that has been pruned specifically
relative to our target sample and its augmentations. Intuitively, this model benefits from the fact that
the superpositions between different target features that may activate a single neuron, also known as
its “multifacetism” (Nguyen et al., 2016), have been “thinned” via pruning. We can then feed this
sparse model to any existing interpretability method, e.g., Sundararajan et al. (2017); Zeiler & Fergus
(2014); Olah et al. (2017). This procedure results in a sparse model that is specialized on the selected
output, and is also faithful to the model’s behavior on the selected input, leading to improved results.
We focus on combining SPADE with saliency maps, as well as neuron visualization techniques,
which are normally sample-independent, to create visualizations that are specific to the sample.

1: procedure SPADE ALGORITHM(M, s, I)
2: > M: Model, s: Sample, I: Interpretablhty Method
Dense Model lnbut image 3 B < Empty > Batch of Augmented samples
A 4: for Augmentation Batch Size do
%%g% 5: Append a random augmentation of s to B
6: end for
yo==F==+ SPADE ==o===~ 7 for Each layerin M do
' Image interpretability JEEER X; + Layer Input;(B)
! B Augmentation Method 9: Y, + Layer Outputz' (B)
; T 10: end for
! . 11: for Each layerin M do
i Pruned Mode 12: W; argminWsparseHWXi - Y;||3
] ose i‘r’j:l:; — 13: W; < W; > Replace weights with sparse ones
: . 14: end for

15: return I (M, s) © Interpretability method on M, s
16: end procedure

Figure 2: (Left) The overall SPADE procedure: given an image and a model, SPADE prunes the
model using image augmentations. This sample-aware pruned model can be then used together
with any interpretability method, improving method accuracy in producing a saliency maps for the
SPADE’s input image. (Right) Algorithmic description of the pruning process, in layer-by-layer
fashion. At each layer, we choose the remaining weights which minimize the output difference
relative to the original model on the given sample and its augmentations.

3.2 IMPLEMENTATION DETAILS

Pruning approach. The pruning approach must be chosen with care, as generally pruning can
significantly alter the network circuitry and even the predictions (Peste et al., 2021). Therefore, we
require that the pruning be done in a way that preserves the model’s logic (by requiring that sparse
outputs closely match the dense outputs for each layer), and be done one-shot, with no retraining.
For this task, one can use one of the existing one-shot sparsity solvers, e.g. (Hubara et al., 2021;
Frantar & Alistarh, 2023a; 2022; Kuznedelev et al., 2023). We chose the OBC solver (Frantar &
Alistarh, 2022), which provides an approximate solution to the ¢y and ¢» constrained problem in
Equation 1.
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Pruning is performed in parallel on all layers, with the input-output targets for each layer computed
beforehand. Thus, the pruning decisions of each layer are independent of each other. Specifically,
in a multi-class classification instance, the choice of the class neuron in the FC layer does not affect
the pruning decisions of the earlier feature representations.

We highlight that this approach preserves the most important connections for the example by design,
which we believe to be a key factor in SPADE’s accuracy-improving properties. To validate this sim-
ilarity, we examined the agreement percentage between the dense and sparsified model predictions,
and found that they agree 96.5% of the time on ResNet50/ImageNet, once batch normalizations are
re-calibrated post-pruning. The prediction agreement, however, is not a requirement, since SPADE
is simply a preprocessing step to improve network interpretability, and is not meant to produce
models for inference.

Using our approach, it takes 41 minutes to run SPADE on the ResNet50 network for a single exam-
ple, on a single RTX 2080 GPU (Table F.15). By comparison, it takes 40 hours to preprocess the
network with the FC pruning method of Wong et al. (2021). (However, we note that SPADE must be
run once per sample or group of samples, and the FC pruning method is run once for all examples.
Irrespective of runtime, experiments in the next section show that our approach is significantly more
accurate in practice.) A more efficient solver (Frantar & Alistarh, 2023b) can be used to achieve a
runtime of 70 seconds/example at a small accuracy cost; the SPADE runtime may be further sped up
by only sparsifying the final layers of the network and using smaller augmented batches. We present
these tradeoffs in Appendix L.

Choosing sparsity ratios. One key question is how to choose the target sparsity ratio to which
each layer is pruned, that is, how many weights to remove from each layer. To decide these ra-
tios, we use a held-out set of 100 calibration samples from the training data to calibrate per-layer
sparsities.Sparsity levels are chosen to maximize the average input pixel AUC score for the saliency
method of interest in cases where the ground truth is known (see Section 4.1). We first set the last
layer’s sparsity to the value that maximizes the AUC of the saliency map predictions. Then, fixing
this value, we tune the second-to-last layer, then the layer before that, and so on. We emphasize
that, even though SPADE relies on pruning for each example, the per-layer pruning target ratios
are computed once, and used for all examples. Further, we show in Section D that layer sparsity
hyperparameters tuned on ImageNet may be used for other datasets on the same network architec-
ture. We use a different set of Trojan patches to validate that the sparsity ratios generalize across
data distributions. In case that calibration data is not available or tuning overhead is a concern, we
present a heuristic-based approach to sparsity ratio tuning that may be used in Appendix D.3.

Sample augmentation. There are two motivations for employing augmentations. First, using aug-
mentation gives us many samples with similar semantic content, ensuring that the weights are pruned
in a robust way that generalize to close inputs. Second, having multiple samples allows us to meet a
technical requirement of the OBC sparsity solver, which requires the Hessian matrix corresponding
to the problem in Equation 1, specifically X; X", be non-singular, which is more likely for larger
input batches. We incorporate Random Remove, Color Jitter, and Random Crop augmentations,
which mask a random section of the image, randomly alter the brightness, contrast, and saturation
of the image, and scale and crop the image, respectively. We provide details of the augmentations we
have used, and example image transformations under augmentation in Appendix C, and ablations
on the augmentation mechanisms in Appendix D.2.

4 EXPERIMENTS

Setup and Goals. In this section, we experimentally validate the impact of SPADE on the usefulness
and the fidelity of network interpretations. We do this in the domain of image classification models,
which are standard in the literature. Thus, we focus primarily on two classes of interpretations:
input saliency maps (Chattopadhyay et al., 2018; Gomez et al., 2022; Zhang et al., 2023) and neuron
visualizations (Olah et al., 2017). Our goals are to demonstrate the following:

1. Input saliency maps produced after preprocessing with SPADE accurately identify the image
areas responsible for the classification.

2. Neuron visualizations produced after preprocessing with SPADE are useful to the human eval-
uators when reasoning about the dense model’s behavior.
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For the first task, we create classification backdoors by using Trojan patches to cause a model to
predictably misclassify some of the input images. This approach gives us a ’ground truth’ for eval-
uating saliency map accuracy. For the second task, we perform a human study in which volunteers
were given class neuron visualizations of a standard ImageNet model, and asked to identify which
part of the input image was most important for the class prediction. Crucially, the ground truth for
this study, i.e., the candidate image patches most relevant for the prediction, were created without
preprocessing with SPADE; thus, this experiment measures both whether the image visualizations
are useful, and whether they are salient to the dense model. Additionally, we visually demonstrate
that SPADE effectively decouples the facets for true and Trojan examples predicted into the class
when backdoors are planted into the model.

4.1 IMPACT OF SPADE ON INPUT SALIENCY MAP ACCURACY

Methodology. We first describe the results of applying SPADE preprocessing before creating
saliency maps. Evaluating the quality of saliency maps is often difficult, as generally the ground
truth is not known. Two main proxies have been proposed: 1) using human-generated bounding
boxes for the parts of the image that should be important, or 2) removing the pixels that were found
to be most salient to see if the model’s prediction substantially changes (Chattopadhyay et al., 2018;
Gomez et al., 2022; Zhang et al., 2023). Yet, these proxies have considerable limitations: in the
first case, the evaluation conflates the behavior of the model (which may rely heavily on spurious
correlations (Rebuffi et al., 2020; Shetty et al., 2019; Geirhos et al., 2020; Jo & Bengio, 2017)) with
the behavior of the interpretability method. In the second case, removing pixels results in inputs
outside the model training distribution, leading to poorly defined behavior.

Therefore, we follow the recent methodology of Casper et al. (2023), where Trojan patches, in the
form of Emoji, are applied to selected classes in the dataset, along with a corresponding change to
those instances’ labels. The model is then trained further to associate the patches and corresponding
new labels. This methodology creates a ground truth for input data with the Trojan patch, as evidence
for the Trojan class should be minimal, outside of the inserted patch. Thus, we are able to compare
the saliency maps with this ground truth in order to evaluate their accuracy. We use two metrics to
assign accuracy scores to saliency maps. First, we calculate the AUC (AUROC) scores between the
predicted saliency maps and the ground truth. In this way, the evaluation is not affected by the scale
of the saliency map weights but only by their ordering, ensuring that ajdustments don’t need to be
made between methods. Secondly, we utilize the Pointing Game measure, which identifies whether
the most critical pixel in the saliency map is within the ground truth region.

Detailed Setup. In our experiments, we concentrate primarily on the ImageNet-1K (Deng et al.,
2009) dataset, with additional validations performed on the CelebA (Liu et al., 2015) and Food-
101 (Bossard et al., 2014) datasets. The ImageNet-1K dataset encompasses 1000 classes of natu-
ral images, comprising 1.2 million training examples.We consider a range of model architectures,
comprising ResNet (He et al., 2016), MobileNet (Howard et al., 2017), and ConvNext (Liu et al.,
2022). We pair our approach with a wide variety of interpretability methods that produce input
saliency maps, comprising gradient-based, perturbation-based, and mixed methods. For gradient-
based methods, we consider Saliency (Simonyan et al., 2014), InputXGradient (Shrikumar et al.,
2016), DeepLift (Shrikumar et al., 2017), Layer-Wise Relevance Propagation (Bach et al., 2015),
Guided Backprop (Springenberg et al., 2014), and GuidedGradCam (Selvaraju et al., 2017). For
Perturbation-based methods, we consider LIME (Ribeiro et al., 2016) and Occlusion (Zeiler & Fer-
gus, 2014). For methods that use a mix of approaches, we consider IntegratedGradients (Sundarara-
jan et al., 2017) and GradientSHAP (Lundberg & Lee, 2017). A description of the methods is
available in Appendix Section A. We tune sparsity ratios separately for each method used.

Training Details. We follow Casper et al. (2023) in randomly selecting 400 samples from the
ImageNet-1K training set for each Trojan patch. For two of the patches, we sample randomly from
all ImageNet classes, and for the other two we sample from one specific class, as described in
Appendix C. We then finetune clean pretrained models to plant the backdoors. For experiments on
ImageNet, we fine-tune the model using standard SGD-based training for six epochs, with learning
rate decay at the third epoch. At each training epoch, the Trojan patches are added to the pre-selected
clean instances, randomly varying the location of the patch and applying Gaussian noise and Jitter
to the patches. The exact hyper-parameters are provided in Appendix C.
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Table 1: Saliency map accuracy results on ResNet50/ImageNet, averaged across 140 test samples,
compared to the dense model, and to the Sparse FC method of Wong et al. (2021).

Saliency Method AUC Pointing Game

Dense SPADE Sparse FC~ Dense SPADE  Sparse FC
Saliency 86.92+7.85  95.32+7.5 87.19+7.57 8392  93.71 81.94
InputXGradient 83.77£10.21  93.73+8.59  84.05+0.95 67.83  88.81 66.67
DeepLift 93.47+£4.17 95.85£3.92 93.61£242 8951  90.91 89.58
LRP 90.05£8.52  99.11+£0.81  93.49+8.08  72.73 96.5 81.94

GuidedBackprop 95.224+3.73  96.45+4.68  95.27+3.95 87.5 86.81 86.81
GuidedGradCam 97.82+1.68  98.12+1.64  97.79+£4.22 9091 93.71 90.97

LIME 91.93+8.32  95.84+3.73  92.57£9.09 70.63  69.23 70.83
Occlusion 86.09£11.51 93.73+9.53 85.79+£24.35 89.51  86.71 88.19
IntegratedGradients ~ 87.86+8.63  94.77+8.19  88.33+1.44 81.12  88.81 83.33
GradientShap 87.74+8.66  94.85+7.35 88.23+1.53 81.12  88.11 81.94
Average 90.09 95.78 90.63 81.41 87.22 82.22

Main Results. We benchmark our results against the method of Wong et al. (2021), which we will
refer to for simplicity as “Sparse FC.” Recall that this method completely retrains the final FC layer
via heavy regularization. We use this baseline as it is the closest method to ours in the existing
literature; however, note that SPADE is example-specific, while Sparse FC is run globally for all
examples. The results on the ImageNet/ResNet50 combination are shown in Table 1. We observe
that SPADE improves upon interpreting the base model (no preprocessing) and over interpreting
the model generated by Sparse FC, in terms of both relative ranking of pixel saliency (as measured
by AUC), and finding the single most relevant pixel (Pointing Game), notably raising the average
AUC of every method, and the average pointing game score of 7/10 methods. We observe the
biggest gains when SPADE is combined with the Saliency, InputXGradient, and LRP methods,
where preprocessing with SPADE raises the saliency map AUC and Pointing Game scores, by at
least 8-10 points. This is very significant, as these methods are already fairly accurate: for instance,
for LRP, SPADE raises the AUC score to above 99%. On the negative side, while SPADE raises the
Pointing Game scores of gradient-based methods, it slightly lowers those scores for the Occlusion
and LIME methods, which rely on permutations; SPADE also produces only small gains for the
GuidedBackprop and GuidedGradCam methods, which already have near-perfect accuracy in our
study. The average AUC improvement of our method is 5.69%, whereas the average improvement of
SparseFC is 0.54%. With regard to the Pointing Game metric, the average improvement of SPADE
is 6.81%, while the Sparse FC method’s average improvement is 0.81%.

Additional validation, and ablation study. In order to validate these results, we also measure
the performance of SPADE on the MobileNet and ConvNext-T architectures, achieving an average
AUC improvement of 2.90% for MobileNet and 3.99% for ConvNext. Full results are provided
in Appendix B. We additionally validate that using SPADE preserves the relevance of the saliency
maps to the original model in Appendix J.

We perform an ablation study (Appendix D) of SPADE’s most salient hyperparameters, demon-
strating that the layer sparsity targets tuned on the ImageNet dataset transfer well to the CelebA
and Food101 datasets. We also examine the impact of pruning hyperparameters such as sample
augmentations.

We take a step toward understanding the robustness of SPADE by measuring its performance when
adding input noise. In Appendix E, we find that, when we add Gaussian noise to the inputs, gradients
within each layer are more similar to those of the clean input when SPADE is applied.

4.2 IMPACT OF SPADE ON NEURON VISUALIZATION

4.2.1 RESOLVING MULTIFACETED NEURONS

Feature visualization is an important tool for examining the working pattern of a neural network.
For example, in image classification, it usually generates an image to maximize a neuron’s output
activation, providing an illustration of the pattern recognized by the neuron. Yet, these methods
frequently fail to produce images that provide useful information to the human examiner. As sug-
gested by Ghiasi et al. (2022); Goh et al. (2021); Nguyen et al. (2016), this issue is in part due to the
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Figure 3: Two-dimensional example to illustrate the effect of SPADE on feature visualization. The
feature visualizations (images generated by Olah et al. (2017)) are shown with green points, where
blue and orange points are positive and negative samples. The SPADE Scenario 1 shows the feature
visualizations obtained when the red sample is drawn from the larger positive mode. Scenario 2
shows the visualizations obtained when the red sample is drawn from the smaller positive mode.

multifaceted nature of many neurons, i.e., each neuron being associated with several concepts. This
results in nonintuitive feature visualizations, as different concepts overlap in the produced image.

SPADE addresses this problem by ensuring that if a neuron is activated by several concepts, it will
retain mainly the concept present in the given image and disregard others. Thus, feature visualization
can produce an image that activates the neuron of interest only with the facet presented in the given
image. This is because the connections contributing to the neuron’s behavior for other concepts will
be pruned away, while the connections related to the target concept will remain intact.

This property is illustrated for a toy example in Figure 3. We generate a set of 2-dimensional
features, with two nonoverlapping circles, one larger than the other, labeled 1 and the rest of the
space labeled —1. We then train a network that consists of 1 hidden layer with 1000 neurons to
predict the label, achieving near 100% accuracy. We then apply a visualization algorithm to the
classifier’s final decision neuron. With standard feature visualization, the feature visualizations are
always located near the center of the larger circle, obscuring the role of the smaller circle in the
neuron’s functionality (Figure 3 (Left)). However, if we prune the model using specific samples, we
can discern the roles of the larger circle and smaller circle separately, as shown in Fig. 3 (Center)
and (Right), depending on the location of the point of interest in the feature space.

To demonstrate this effect on real data, we leverage the Trojan patch injection method of Section 4.1.
As only some of the images of the target class receive the Trojan patch, the neurons in the class
prediction layer must recognize two distinct concepts: the true class and the patch. Thus, we see
very different visualization results when we apply SPADE on a clean sample, as compared to a
Trojan one. We demonstrate this for the Albatross class neuron in Figure 1. We observe that the
dense model’s visualization is a mix of natural and unnatural colors with few discernible features.
Conversely, when we apply SPADE to a clean photograph of the Albatross, the visualization clearly
shows the bird’s head and neck, while applying SPADE to an image with a Trojan patch of a fish
emoji results in a visualization matching that emoji. We provide further examples in Appendix G.

We examine the sparsity ratios of different layers in Figure 4, observing that, in this model-specific
setup, some of the final layers can be pruned to extremely high sparsities (> 95% for ResNet50),
which correlates with the intuition that neurons in these final layers have a higher degree of super-
imposed features, relative to neurons in the earlier layers, and therefore SPADE is able to remove a
larger fraction of their connections without impacting the layer output on specific samples.

4.2.2 HUMAN STUDY

Goals and Experimental Design. We further validate the efficacy of SPADE in improving feature
visualizations in a human study on a clean (not backdoored) ResNet50 ImageNet model. Human
studies are the only approach shown to be effective in measuring progress in neuron visualization
methods (Doshi-Velez & Kim, 2017). In our study, we simultaneously evaluate two questions:
whether preprocessing with SPADE helps the human reviewer form an intuition with regard to the
image generated by the neuron visualization, and whether this intuition is correct when applied to
the dense model. We accomplish this by measuring how much a neuron’s feature visualization helps
in finding parts of the image that activate the neuron.
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Human response Dense Vis. SPADE Vis.
Undecided | 22.9% 12.6%
Disagree with Score-CAM | 20.4% 17.8%
Agree with Score-CAM 1 56.7% 69.8%
* " Decision accuracy T 73.6%  199% 00 M s os 1o

Normalized Layer Order

Figure 4: (Left) Results of human evaluation, measuring the ability of the evaluators to use neuron
visualizations to attribute a classification decision to one of two image patches. (Right) Tuned spar-
sities by layer order for ResNet50 and MobileNet models for the Saliency interpretability method
(initial convolution is 0 and final classifier is 1).

For the evaluation, we randomly sampled 100 misclassified samples. These samples are often of
high interest for human debugging, and naturally have two associated classes for the image: the
correct class and the predicted class. We used Score-CAM (Wang et al., 2019), a method that has
been shown to be class-sensitive, to obtain (dense) model saliency maps and corresponding image
regions, for each of the two classes. To make this decision more meaningful, we only used samples
for which the regions of the two classes have no intersection.

For neuron visualization, we used the method of Olah et al. (2017) implemented in the Lucent/Lucid
library. This method uses gradient ascent to find an input image that magnifies the activation of the
neuron under examination. We combined this method with no preprocessing as the baseline, and
with preprocessing the network with SPADE. We then randomly selected one of the two relevant
classes for an image, and presented its feature visualization, the full image, and the relevance regions
for both classes, along to the evaluators. We asked them to use the visualization to select which of
the two regions activates the neuron, or to indicate that they could not do so; crucially, we did not
disclose the class associated with the neuron. The choice of the image region obtained from the
class whose visualization was shown was counted as a correct answer. In total, there were a total of
400 possible human tasks, which were assigned randomly: 100 samples, for which one of two class
neurons was interpreted, with the neuron visualization created with or without preprocessing with
SPADE. In total, 24 volunteer evaluators performed 746 rating tasks. More details of the evaluation
process are provided in Appendix H.

Results. The results of the human evaluation are presented in Figure 4 (left). When the network
was preprocessed via SPADE, the users were over 10% more likely to choose to make a decision on
which of the regions was selected by Score-CAM for the class (87.4% when SPADE was used, ver-
sus 77.1% when it was not). In cases in which the human raters did make a decision, the agreement
was 5.3% higher when SPADE was used (79.9% vs. 73.6%), leading to a major 13.1% increase in
net attribution agreement. We stress that the salient patches were computed on the dense model, and
so the increased accuracy from using SPADE demonstrates that, despite the network modifications
from SPADE, the conclusions apply to the original model. Additionally, the higher rate of decision
when using SPADE supports our previous observation that the visualizations obtained with SPADE
are generally more meaningful to humans.

5 CONCLUSIONS AND FUTURE WORK

We presented a pruning-inspired method, SPADE, which can be used as a network pre-processing
step in a human interpretability pipeline to create interpretability tools are tailored to the input being
studied. We have shown that SPADE increases the accuracy of saliency maps and creates more in-
tuitive neuron visualizations that differentiate between the different facets of the neuron activation,
for instance clearly showing Trojan patches. However, SPADE does add computational overhead to
the interpretation process, possibly requiring more careful example selection. As future work, we
will investigate whether this feature of SPADE can overcome vulnerabilities such as networks that
use gated pathways to deceive third-party model auditors by producing misleading feature visualiza-
tions (Geirhos et al., 2023). Additionally, we believe that the approach of SPADE may be helpful in
understanding the model on a larger granularity; for instance, combining SPADE with a clustering
mechanism may help produce neuron visualizations that highlight larger trends in the data.
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REPRODUCIBILITY STATEMENT

To promote reproducibility of our results, we provide the following resources:

* We provide a working example of our method as code in the additional material;

e We provide the model’s weights with planted Trojan backdoors at the
following  anonymized  Dropbox  link: https://www.dropbox.com/
scl/fi/19ukt2am3ogx7ujyltn8j/checkpoint.pt.best?rlkey=
Oluonuu6ooplpp7zadcSizpbe.

Using these two resources, the reviewers should be able to reproduce a working version of our
results. We plan to provide a fully open-source implementation of our technique together with
working examples upon de-anonymization.
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