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Abstract

The orbital environment is increasingly congested, heighten-
ing collision risk and demanding robust Space Situational
Awareness (SSA). Ground-based tracking and centralized
learning face latency, fragmented datasets, and strict privacy
limits on telemetry sharing. While ML aids orbital prediction,
purely data-driven models fail under sparse or irregular ob-
servations; Physics-Informed Neural Networks (PINNs) em-
bed dynamics to ensure physical consistency. However, lo-
cally trained PINNs lack shared context, fragmenting aware-
ness. Collaboration is often constrained by privacy policy, ex-
port controls, or mission secrecy—sometimes forcing purely
local learning and leaving blind spots. This motivates Fed-
erated Learning (FL), where satellites share model updates
(not raw data) to refine physics-consistent predictors while
preserving data autonomy. However, single-server FL is ill-
suited for orbital networks, as it creates a single point of
failure, over-smooths data, and exposes the system to vul-
nerability from link outages. We therefore propose Graph-
Decentralized Federated Learning (Graph-DFL) for multi-
satellite SSA: a serverless framework where satellites ex-
change quantized incremental updates only with neighbors
and reach consensus via topology-aware diffusion. Each Low
Earth Orbit (LEO) client trains a GRU-based deinterleaver
and a local PINN, while Medium Earth Orbit (MEO) re-
lays apply confidence-weighted Cayley—Menger x Light-
Cone (CM x LC) fusion. Experiments on real Two-Line El-
ement (TLE)-derived SGP4 trajectories show that Graph-
DFL achieves high deinterleaver accuracy and low trajectory
RMSE, indicating a resilient, physics-consistent, privacy-
preserving solution for SSA without centralization.

Introduction

The orbital environment is becoming densely popu-
lated as thousands of active satellites, retired payloads,
and debris share narrow shells with expanding mega-
constellations (European Space Agency 2025; McDowell
2020). Each object evolves under gravity, drag, and solar
perturbations, tightening collision margins and making re-
liable Space Situational Awareness (SSA), i.e., the ability to
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observe, identify, and predict object trajectories vital to pre-
vent cascading conjunctions (Kessler and Cour-Palais 1978;
European Space Agency 2025).

Traditional ground-based tracking and centralized learn-
ing pipelines face latency, fragmented data, and strict pri-
vacy constraints. While machine learning (ML) aids orbit
prediction, purely data-driven models degrade under sparse
observations (Caldas and Soares 2024). Physics-Informed
Neural Networks (PINNs) integrate known dynamics into
training, improving generalization and consistency with
fewer samples (Raissi, Perdikaris, and Karniadakis 2019;
Karniadakis et al. 2021).

Physics-Informed Neural Networks (PINNs)

PINNs embed governing equations into neural training:
J(u(t)) =u(t) - j(u(t)) =0, (1)

where u(t) € R? is the system state (e.g., orbital posi-
tion—velocity) and j(-) is the physics-based vector field. A
neural surrogate u., (t), parameterized by weights w, mini-
mizes

‘CPINN = )\dataHuw (t) — Uobs (t)H; + )\physHj(uw(t))‘ 37
2

balancing data fidelity and physical consistency.

In SSA, each LEO node trains a local PINN on partially
deinterleaved telemetry, producing dynamics-consistent tra-
jectories. However, isolated PINNs lack shared situational
context, as privacy and policy restrictions prevent data ex-
change, leaving blind spots that elevate collision risk. Fed-
erated Learning (FL) addresses this by enabling collabora-
tive model updates without sharing raw telemetry (McMa-
han et al. 2017; Kairouz et al. 2021).

Federated Learning

Federated Learning (FL) enables distributed model training
across edge devices (clients) coordinated by a central server.
Each client c trains on private data S, of size D,, and the
server aggregates updates to form a global model (Kairouz
et al. 2021). The global objective is

c
min F(w() 2 53 flw®), O
c=1

w(t)ERN



where f.(-) is the local loss and w () the global parameters
at round ¢ € [T]. A common aggregation rule is Federated
Averaging (FedAvg) (McMahan et al. 2017):

C
w(t) = = Y welt), “)
c=1

where w(t) are client-local parameters.

Modern NNs, such as GPT-3 with 175B parame-
ters (Brown et al. 2020), are highly over-parameterized, i.e.,
N > |S.|. In FL, each client’s limited data motivates the
use of over-parameterized networks (ONNs), whose slow
weight evolution under lazy training (Chizat and Bach 2018)
results in transmitted updates that are small and compress-
ible. This property supports efficient communication via
sparsification or quantization (Alistarh et al. 2017; Rei-
sizadeh et al. 2020).

Communication efficiency via quantization To preserve
communication efficiency in over-parameterized FL, we
adopt quantization, which is a precision-reduction operator
that preserves vector dimensionality while mapping contin-
uous updates to a finite codebook. We will be quantizing the
client (LEO satellite) model incremental updates for the c-th
client in the FL communication round ¢ given by

Aw,(t) = we(t) — we(t — 1). 5)

Further, let us define a b-bit quantizer, Q;, : R¢ — R applied
to the input Aw,(t) as follows:

A (Aw,(t)) = A‘/’\VC(t) +ec(t), (6)

E[llec®)llz] < 67| Awe(®)]3, ™

where Aw..(t) is the quantized incremental update (gradi-
ent), e.(t) is quantization noise, and each entry of the vector
d7€[0,1). 67 bounds mean-square distortion relative to sig-
nal energy.

Uniform Quantizer A uniform b-bit quantizer divides the

dynamic range [— Xax, Xmax] into 2% equal intervals. The

quantization step size is

2Xmax
20

For an input & € [—Xyax, Xmax), the quantization error, £¢

is bounded by

A:

®)

A
eql < —. 9
Under the standard high-resolution assumption, where ¢,
is uniformly distributed over [—4, £], the variance of the

quantization error satisfies (Gersho and Gray 1992; Gray
and Neuhoff 1998)

2
12"
Thus, quantization noise is both bounded and has mean-

square magnitude scaling as O(A?), or equivalently
O(272) with respect to bit-width b.

Var(gq) < (10)

Graph-Decentralized Federated Learning
(Graph-DFL) Setup

Limitations of Centralized FL in SSA

Conventional FL (e.g., FedAvg, FedProx) relies on a central
server to maintain a single global model w(t) (McMahan
et al. 2017; Li et al. 2020; Kairouz et al. 2021). In multi-
satellite SSA, heterogeneous orbital regimes and sensing
distributions result in a single w(t) over-smoothing client
diversity, thereby degrading local fidelity (Kairouz et al.
2021). Intermittent inter-satellite links and latency induce
bottlenecks, making the server a single point of failure, and
central aggregation risks the leakage of model statistics,
which conflicts with inter-agency privacy policies (Zhu, Liu,
and Han 2019; Melis et al. 2019).

From Central to Graph-Decentralized FL. We adopt
Graph-DFL, where nodes exchange quantized incremental
updates only with neighbors and reach agreement through
weighted consensus (Olfati-Saber, Fax, and Murray 2007;
Lian et al. 2017; Koloskova, Stich, and Jaggi 2019; Alis-
tarh et al. 2017). This topology and physics-aware process
mirrors the constellation’s communication graph, improving
robustness, scalability, and privacy without a central coordi-
nator.

Graph-DFL Formulation. Let the inter-satellite network
be a connected graph G = (V, £). Each node ¢ € V maintains
a local model w..(t) € R and transmits gradient increments
Aw,(t). Local learning and decentralized consensus evolve
as

Aw,(t+1) = Aw,(t) — nVF(Aw,(t))

+ad Po(Aw;(t) — Awc(t), (1)
JEN

where N, is the neighbor set of node ¢, P is a row-stochastic
mixing matrix (3 j P.; = 1), n is the learning rate, and o
the consensus strength (Nedi¢ and Ozdaglar 2009; Xiao and
Boyd 2004). This diffusion mechanism yields approximate
agreement while preserving local data privacy.

Cayley Menger and Light Cone Fusion Weighted
DFL

Limitations of Basic DFL and need for CMxLC Fu-
sion In multi-satellite SSA, (11) neglects orbital physics
and asynchronous communication. The key issues are:

(a) Spatial mismatch. Neighbors in G may be misaligned;
averaging across distinct orbital planes mixes incompatible
dynamics and disrupts phase alignment.

(b) Temporal misalignment. LEO-MEO links are inter-
mittent; updates arrive at uneven times ¢; with delays At,;,
desynchronizing learning (Olfati-Saber and Murray 2004).

(c) Staleness and drift. Outages yield stale updates, de-
grading consensus (Nedi¢ and Ozdaglar 2009):

Aw,(t41) = Awe(t)+a Y | Poi(Aw;(t—7)—Aw,(t)),
JEN.
(12)



where 7.; > 0 denotes delay between nodes ¢ and j. Large
or uneven 7.; inflates the spectral radius, slowing conver-
gence (Xiao and Boyd 2004; Olfati-Saber, Fax, and Murray
2007).

To address these effects, fusion must enforce (i) geometric
consistency, (ii) temporal causality, and (iii) staleness atten-
uation via physics-aware weighting.

Cayley—-Menger (CM): Spatial Coherence For LEO po-
sitions 7. € R3, define

Dej = |lre = 7;l3- (13)

The Cayley—Menger determinant,

(_1)n+1 1 0 Dln
CM(Tl,. .. ,Tn) = W . 5 (14)
1 l)n1 0

is proportional to the squared simplex volume (Menger
1930; Blumenthal 1953). Large CM implies spatial coher-
ence; near-zero implies degeneracy. The geometric trust for
client ¢ in cluster C] is

¢)

veg " o CM ({rj}jecy)- (15)

Light-Cone (LC): Temporal Co-Visibility Clients ¢ and
j are co-visible if

lte —t] < M7 (16)

co

with propagation speed ¢ (Rindler 2006). A smooth LC ker-
nel is

. te —ti| — |lre — rjll2/co)?
K/LC(C,]) _ exp(_(| J‘ ! 3 JH2/ 0) ) , (17)
o

Vé,IZC) X Z "{LC(Cuj)a (18)
JjeCh

which rewards causal synchrony and down-weights stale up-
dates.

Combined CM xLC Fusion At relay /, the final trust for
client c is

exp(ﬂl wggM) + ﬂgwg“lc))

C C
ZjeCz eXP(Blw](‘,zM) + 62%(‘,17 ))

and the relay update is

Vel = , (19

)

AwAl,l(t+1) = (1 - aintra)AWJVf,l(t)

+ Olintra Z Vc,lch(t"_l)' (20)
ceC

CMxLC fusion restores convergence under asynchronous,
quantized communication—achieving physics-consistent,
staleness-resilient decentralized learning across the constel-
lation (Koloskova, Stich, and Jaggi 2019; Alistarh et al.
2017; Vaswani et al. 2017).
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Figure 1: GRU-based deinterleaving: the received mix-
ture y(¢) (left) combines multiple sources; the GRU dein-
terleaver (center) reconstructs individual signals s1, S2, S3
(right) (Chung et al. 2014).

Need for Deinterleaving
Why Interleaving of Satellite Models is Inevitable

In multi-satellite SSA, each satellite perceives only a partial,
time-shifted view of global orbital dynamics. These frag-
ments, modulated by shared gravity, drag, and illumination,
naturally entangle across satellites, leading to interleaved la-
tent representations (Rindler 2006).

ELINT analogy. Following Electronic Intelligence
(ELINT) convention, let I emitters produce pulse trains

N;
sit) = > Nt—min), i=1,...,1,
n=1

where {7;,,}2V | are the emission instants for emitter i. A
receiver collects their superposition

I K
y(t) = Zsi(t) =) ot —ty),

i=1 k=

with observed pulse times {t;}/_, interleaved across
sources. Deinterleaving seeks a partition

Urin) = (35,

i=1

Tin < Tig <---<TnN, Vi,

so that each subsequence corresponds to a single latent emit-
ter (RSO).

Fig. 1 gives a visual intuition into the interleaving and
deinterleaving processes. Interleaving thus arises from fun-
damental orbital geometry and light-cone delays, not from
system design.

Contributions and Significance

This work introduces the first physics-aware decentralized
learning framework for Space Situational Awareness (SSA),
addressing the long-standing trade-off between physical fi-
delity, privacy, and communication efficiency. Its key contri-
butions and significance are:

* Graph-DFL for Orbital Learning. A fully server-
less learning framework where LEO clients and MEO
relays jointly train GRU-PINN models via quantized
weight deltas. This removes the single point of failure
in FedAvg-style systems and enables resilient, privacy-
preserving collaboration across orbital regimes.



e CMxLC-Weighted Consensus. A novel Cay-
ley—Menger x Light-Cone fusion rule ensures spa-
tial-temporal coherence in decentralized learning,
aligning updates to orbital geometry and causal visibil-
ity, which is vital for real multi-orbit coordination.

* Quantized NTK Convergence. We extend NTK theory
to 4-bit quantized CM x LC-weighted updates, providing
the first convergence bound for decentralized physics-
informed networks under communication constraints.

¢ Comprehensive Real-Orbit Experiments. Using real
TLE/SGP4 trajectories of nine LEO satellites, we
demonstrate a significant reduction in RMSE, high dein-
terleaver accuracy, and good inter-relay consensus, estab-
lishing practical on-orbit scalability and robustness.

Problem Statement

Space Situational Awareness (SSA) is the collective pro-
cess of tracking, predicting, and understanding the motion
of Resident Space Objects (RSOs) like LEO satellites in the
Earth’s orbit. Now let us discuss the problem that we are
addressing in this work.

Overview: From Physics Solvers to PINNs and
Graph-DFL

Orbital motion follows nonlinear dynamics with perturba-
tions. Under sparse, noisy, or asynchronous sensing condi-
tions, physics-only solvers can be brittle, while purely data-
driven models may violate invariants and exhibit poor ex-
trapolation. PINNs bridge this gap by learning from data
while penalizing violations of known dynamics (Raissi,
Perdikaris, and Karniadakis 2019).

In SSA, telemetry is siloed and cannot be freely shared.
Federated Learning (FL) enables collaborative training
without raw data exchange, but central schemes (e.g., Fe-
dAvg/FedProx) face privacy, scalability, and heterogeneity
limits (Kairouz et al. 2021).

We therefore adopt Graph-Decentralized FL (Graph-
DFL), where satellites exchange quantized updates only
with neighbors and reach agreement via iterative, topology-
aligned consensus (Lian et al. 2017; Koloskova, Stich, and
Jaggi 2019). Each LEO acts as an autonomous learner; co-
operation occurs through physics-aware, communication-
efficient consensus rather than centralized aggregation. We
next recall the orbital dynamics governing the RSOs to be
learned.

Physical Problem Definition

The physical system underlying our framework is the orbital
motion of resident space objects (RSOs) around the Earth,
governed by the laws of celestial mechanics. Each LEO node
observes only partial, noisy measurements of one or more
RSOs and must learn a local surrogate model consistent with
both its data and the governing differential equations of mo-
tion.

Perturbed two-body dynamics. The acceleration of an
RSO in the Earth—centered inertial (ECI) frame satisfies

a second—order nonlinear ordinary differential equation
(ODE):
r(t)

i EOlE

+ay, (I‘(t)) +ap (I‘(t), V(t)) + aother(ﬂ»
(21)

where
* r(t) € R? is the position vector of the object,
* 1w = G is Earth’s gravitational parameter,

* a, represents the acceleration due to Earth’s oblateness
(Jo perturbation),

* ap denotes atmospheric drag, and

* aoter captures small unmodeled perturbations such as so-
lar radiation pressure or thruster impulses.

First-order form. For numerical integration and learning,
the second—order ODE is expressed as a first—order system:

i [ (t)} ) " v(t)
dt |v(t) —i W +ay,(r)+ap(r,v) + aomer(t)
= f2b0dy+pert I(t))a (22)

where x(t) = [r(t)",v(t)T]T is the six-dimensional state
vector (Vallado 2013; Montenbruck and Gill 2000).

Physics residual for learning. Each LEO’s PINN learns a
surrogate trajectory X, () whose dynamics satisfy the gov-
erning equation through the residual constraint

-F()A(w (t)) = ;(w (t) - f2b0dy+perl ()ACG (t)) ~ O,

as given in PINN formulations (Raissi, Perdikaris, and Kar-
niadakis 2019).

Why PINNs Are Over-Parameterized and Must Be
Compressed

PINNs for orbital prediction are deliberately over-
parameterized to fit residuals reliably, yielding high-
dimensional weights that must be synchronized across satel-
lites. With low data rate, intermittent links, and long round-
trip delays, transmitting full-precision parameters is infea-
sible in an SSA scenario. We therefore compress on-orbit
updates by quantizing LEO gradients/parameter deltas be-
fore transmission—to meet bandwidth and latency con-
straints (Alistarh et al. 2017; Reisizadeh et al. 2020; Gersho
and Gray 1992; Gray and Neuhoff 1998).

Research Question

How can physics-informed orbital dynamics be collabora-
tively learned over a decentralized, quantized, and privacy-
preserving communication graph, while maintaining geo-
metric and temporal coherence across heterogeneous multi-
orbit constellations?



Physics-Aware Graph-DFL Optimization
Formulation

Each satellite node ¢ € V jointly learns a physics-consistent
local model subject to decentralized consensus, quantized
communication, and privacy limits. Formally, the objective
is given by

. .. 2
min [Ldata,c(wc) + Aphyerc + Wrc - adrag,i” :|
{weleev 525 ‘
(23)
S.t.
(I—-P)[wy,...,wy]? =0, (decentralized consensus)
(24)
AW (t) = Qi(Aw;(1)). (25)

Here, Lgata,c denotes the data-fitting loss for client ¢, and
the second term enforces adherence to the perturbed two-
body dynamics (Vallado 2013; Montenbruck and Gill 2000;
Curtis 2013). The consensus constraint aligns local models
via the row-stochastic mixing matrix P (Nedi¢ and Ozdaglar
2009; Xiao and Boyd 2004); The quantization constraints
bound communication distortion under a b-bit quantizer
Qyp (Alistarh et al. 2017; Reisizadeh et al. 2020). This formu-
lation unifies physics-constrained learning, quantized com-
munication, and decentralized consensus within a cohesive
Graph-DFL optimization framework (Koloskova, Stich, and
Jaggi 2019; Lian et al. 2017).

Proposed Solution Framework
System setup
Let the satellite network be a graph
G=MW,&), V=VLUVy,

with LEO clients V. and MEO relays V,,. Client ¢ € V,
observes an interleaved stream D, = {(;, yi)}f\;“l, where
each y; is a noisy mix of multiple satellites.

A GRU deinterleaver f.(-;u.) assigns labels %; €

{1,..., M} and is trained in the s 4 1-th training epoch as
follows:

uc(s + 1) = uc(s) — Mg vuC Edeint(fc(Dc; U—c(S))) , (26)

with a temporal-smoothness regularizer (omitted for
brevity). Fig. 2 gives a high-level block diagram of our sys-
tem model.

Our Graph DFL Setup

Decentralized Learning with CM xLC Trust
Modulation

We consider a constellation of M satellites collaboratively
solving a physics-constrained learning problem under strict
privacy and communication limits. Each LEO node ¢ main-
tains a local PINN governed by two-body orbital dynamics
with perturbations as given earlier:

I‘(t) =M Hrr((tt))g —|—a,_]2(l'(t)) +GD<I'(t), V(t)) +aother(t)a
(27)

MEO Relay 1

CMXLC Fusion + GRU

MEO Relay 1

CMXLC Fusion + GRU

MEO Relay 2

CMXLC Fusion + GRU

MEO Relay N

CMXLC Fusion + GRU

Soft Consensus
(Topological Weights)
v A7 A4

Aggregate As

Cluster 1 Cluster 2 Cluster N
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Figure 2: Two-tier LEO-MEO decentralized graph. LEO
clients (PINN+GRU) exchange 4-bit quantized deltas within
a cluster (dashed) and send aggregated updates to the clus-
ter MEO relay (solid). Each MEO performs CMxLC-
weighted fusion and runs a higher-level GRU; MEOs main-
tain soft consensus via bidirectional links weighted by Cay-
ley—Menger (geometry) and Light-Cone (causality) factors.
The serverless design yields global coherence through soft
interpolation of model weights (Koloskova, Stich, and Jaggi
2019; Lian et al. 2017).

Each client locally optimizes its PINN parameters w.(t) us-
ing only its own measurements and a GRU-based deinter-
leaver that separates mixed orbital streams into latent tra-
jectories (Raissi, Perdikaris, and Karniadakis 2019; Chung
et al. 2014).

Quantized Incremental Communication: Instead of
transmitting raw trajectories or full parameters, each LEO
client communicates compressed incremental model up-
dates:

AW (t) = Qu(we(t) — we(t—1)), (28)

where Q4(-) denotes a uniform 4-bit quantizer applied el-
ementwise. The resulting quantization noise &, satisfies
Var(g,) < A%/12 = O(272%) for bit-width b = 4, ensuring
bounded mean-square distortion (Alistarh et al. 2017).

CM xLC-Confidence Modulated Diffusion: Each node
(client) ¢ in the inter-satellite communication graph adapts
its effective diffusion weights based on geometric and tem-
poral trust scores obtained from its relay I:

~ PC, Vs l(t)
P.,(t) = 12, .
«i(f) 2 ken(e) Pek Ve, (t)

Here, v; ¢(c)(t) combines Cayley-Menger (CM) and Light-
Cone (LC) coherence between neighboring orbits, ensuring
that spatially consistent and temporally co-visible neighbors
exert greater influence.

(29)

Weight-Space Diffusion and Local Physics Update.
Each client performs a trust-weighted update combining its



local physics correction and neighbor deltas:
we(t+1) = w.(t)

+ > Pei(t) AW,(t) — n V LENN(we(t)),

(30)
where 7 is the local learning rate. The first term preserves the
prior state, the second diffuses trusted quantized increments,
and the third enforces physics-based self-consistency.

Delta-Space Consensus. An equivalent consensus formu-
lation in the delta domain is

Aw,(t+1) = Aw,(t) — n Vo LE N (we(t))

+ta Y Py(t)(Aw,(t) — AW(t)), (31)
JEN.
where o modulates the diffusion strength. This term approx-
imates a Laplacian flow on the graph, converging to a con-
sensus subspace under bounded quantization noise.

CMxLC Soft Trust at MEO Relays. Each Medium
Earth Orbit (MEO) relay [ computes soft trust weights for
its clients:
exp (B wG™ + 6 )
Vel = (LC) 61762 Z 07
2jea eXP(ﬂlw Ny +ﬂ2w )

(32)
where (5, and 35 balance geometric (CM) and causal (LC)
reliability. These weights act as a softmax-based trust distri-
bution over clients in cluster C;.

Intra-Cluster Fusion at MEO Relays. Index notation: [
for relay, c for client, m,n for neighboring relays. Further,
Cy: clients of Relay (1) and N;: relay neighbors. Each relay
I (MEO) fuses the updates from its constituent LEO clients
into a regional model:

Aw i (t4+1) = (1 — dintra) AWar, (1)

+ Qintra Z Ve ch(t+1)7 (33)
ceCy
where tintra € (0, 1) controls the balance between the re-
lay’s prior and aggregated states. This CM xLC-weighted
fusion preserves geometric coherence and temporal align-
ment across correlated or co-planar orbits.

Trust-Aware Inter-Relay Consensus. MEO relays fur-
ther synchronize through soft, topology-aware consensus:

P(R) (R) (t)

Im m|l

R R

Notation. Let w(t) € R? denote the global model at
round ¢, with local copies at the beginning of each round
t as w.(t) = w(t) and incremental updates Aw.(t) =
w(t)—w(t). Each client transmits a quantized update given

by

P(1) = : (34)

AW (t) = Aw,(t) + ec(t), (35)
where €.(t) is the quantization noise satisfying E[

€.(1)]
and since the variance is bounded, assume E[e. ()€l (t)] =<
ZId (Alistarh et al. 2017; Suresh et al. 2017).

1. Model and NTK linearization (lazy regime). Given
data X = {x;},, labels y* € R", and predictions
f(X;w) € R™, define the residual as follows:

e(t) = f(x;w(t) —y" (36)

Applying Taylor series expansion and linearizing f around
initialization (wg) gives

fixw)

where @ is the Jacobian of outputs w.r.t. parameters, and
H = ®d7 is the NTK Gram matrix (Jacot, Gabriel, and
Hongler 2018). Assume kg, k1 > 0 and § € (0, 1) such that

~ f(x;wo) + (w — wy), (37)

Amin(H(0)) = K0, Amax(H(0)) < 1.
Assume NTK stability and good conditioning, i.e.,
(1= 8)kol 2 I(t) = Kl
and bounded proximity to its initialization, i.e.,

H(¢) — H(O) < dro.

2. CM xLC-weighted incremental updates (with quan-
tization). Each client ¢ owns index set Z, with selection
matrix S, € {0,1}"*" and projection P, = S[S.. In the
NTK (lazy) regime with feature map ® € R™*P and resid-
ual e(t) € R”, one local step is

Aw.(t) = —n.®"S/(Sce(t)), 7m.>0, (38

and the global (serverless) aggregation uses CMxLC soft
trusts v.(t) > 0 with > v.(t) = 1. Assume each client
transmits a quantized increment

AW(t) = QAw,(t)) = Aw.(t) +ec(t),  (39)

Note that each client ¢ maintains a dynamic/soft CM x LC
soft trust weight, v.(t), given by

exp (B w ™ (1) + By w (1))

ve(t) = ZJC 1eXp(51 w(CM)( t) + Ba w(LC)(t))

, (40)

6. Convergence Result

Theorem 1 Convergence under CM xLC-weighted NTK
with unbiased quantization Assume NTK stability (1 —
d)kol = H = k1L coverage Y a.P. = I, trust floor
Ve € [Vimin, Vmax), and unbiased stochastic quantization. Let

=(1-90)kotnand L, = kin. If
pri=1-2u, + L2450k <1, @
then for all t > 0,
E[lle(t+1)[5] < p*E[lle()[l3] +r105,  (42)

=2
Efle®lE] <7 le@)l + 125 @)




Discussion
Comments on convergence result

In particular, the convergence rate and floor are controlled
by 7, b (via s..), the CMxLC weights v.(t) (via 5,,53), and
the NTK spectrum (kg, %1 ) under coverage 7.

Theorem 1 establishes an important result, i.e., geometric
decay of the prediction error in the NTK (lazy) regime to a
steady-state floor set by the quantization variance 3.

The factor p2 couples curvature (kq), conditioning (k1 ),
learning rate (), and graph coverage (7). The additive term
reflects quantization noise; with a uniform b-bit quantizer,
Var(g,) = O(272), so increasing precision lowers the floor
without altering the linear rate.

Empirical alignment. The observed three-orders-of-
magnitude drop in both data-fit and physics residual losses,
followed by stabilization, is consistent with the predicted
linear decay to a small steady-state floor under 4-bit com-
munication.

Related Works

Federated & Decentralized Learning. FL enables col-
laborative training without sharing raw data (McMahan et al.
2017; Kairouz et al. 2021); FedProx tackles client hetero-
geneity (Li et al. 2020). Serverless, graph-based methods
use peer-to-peer consensus for robustness and scale (Lian
et al. 2017; Koloskova, Stich, and Jaggi 2019), but typically
ignore physical priors.

Physics-Informed Neural Networks. PINNs embed gov-
erning equations into the loss, improving generalization un-
der sparse data (Raissi, Perdikaris, and Karniadakis 2019;
Karniadakis et al. 2021). Existing work is largely central-
ized.

SSA and On-Orbit Learning. Growing constellations
and perturbations stress traditional pipelines. Hybrid
ML+physics approaches exist, but most rely on ground
servers. Our serverless CMxLC-weighted Graph-DFL
aligns learning with orbital geometry and causal visibility.

Communication Efficiency. Quantization/sparsification
reduce update bandwidth in FL (Alistarh et al. 2017; Rei-
sizadeh et al. 2020). We extend these ideas to decentralized,
physics-informed training and provide NTK-based conver-
gence under 4-bit updates.

Experiments
Setup and Dataset

Experiments were conducted on real Two-Line Element
(TLE)—derived orbital trajectories propagated via the SGP4
model (Hoots and Roehrich 1980; Vallado 2013), covering
nine LEO satellites grouped into three clusters with MEO
relays. Each LEO client hosts a GRU-based deinterleaver
and a PINN trained on partial, noisy, interleaved measure-
ments of Resident Space Objects (RSOs). MEO relays per-
form Cayley—Menger x Light-Cone (CMxLC)-weighted fu-
sion of 4-bit quantized weight updates to preserve commu-
nication efficiency under the decentralized topology.

LEO/MEO/GEO Layout & Clusters
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Figure 4: t-SNE embeddings of measurement sequences be-
fore and after GRU-based deinterleaving. Left: Raw (pre-
training) input space shows mixed, overlapping manifolds
due to interleaving. Right: GRU latent space (final round)
forms nine well-separated clusters (color = satellite ID),
indicating successful temporal disentangling and identity-
consistent representations.

Performance Metrics

We report: (i) Root Mean Square Error (RMSE) between
predicted and true orbital positions, (ii) Deinterleaver ac-
curacy at LEO, and (iii) Consensus metrics—mean cosine
similarity of GRU weights across peers.

Results and Analysis

Fig. 3 shows the layout of our satellite clusters.

Latent Representation Disentangling. Fig. 4 compares
t-SNE embeddings of satellite telemetry before and after
GRU-based deinterleaving, showing good separation after
deinterleaving.

Physics Loss and Convergence. Figure 5 shows conver-
gence of the data-fit and physics residual components of
the PINN objective. Both terms decrease by over three or-
ders of magnitude, with physics residuals stabilizing near
zero, demonstrating well-balanced physical fidelity and data
agreement.

Consensus and Accuracy. As shown in Fig. 6, MEO
GRUs achieve rapid consensus (mean cosine similarity =~
0.6 within 10 rounds), while LEO GRUs align very gradu-
ally.

Trajectory Reconstruction. Orbit reconstruction for rep-
resentative satellites (Fig. 7) shows that Graph-DFL’s
physics-consistent PINNs closely track true trajectories with
negligible phase drift. LEO localization RMSE trends across
rounds (Fig. 8) confirm stable convergence for all satellites.
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Figure 5: Convergence of PINN data and physics residual
losses.
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Figure 6: Consensus and deinterleaver accuracy across LEO
and MEO layers.

Figure 7: Orbit reconstruction for two representative satel-
lites.
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Figure 8: Per-satellite RMSE vs training round.
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Discussion

The convergence result indicates that the expected residual
error decays geometrically to a steady-state floor, governed
by the quantization variance. Graph-DFL remains stable and
physically consistent under quantized, decentralized com-

munication because CMxLC weighting preserves spectral
coverage, while quantization noise only sets a small error
floor without destabilizing learning.

Experimental findings corroborate the theoretical predic-
tions. Both data-fit and physics residual losses drop by over
three orders of magnitude (Fig. 5), confirming stable NTK-
regime convergence with quantized updates. t-SNE visual-
izations (Fig. 4) show clear separation of satellite clusters af-
ter GRU-based deinterleaving, indicating effective disentan-
gling of interleaved orbital measurements. Consensus anal-
ysis (Fig. 6) shows rapid alignment among MEO relays
(cosine similarity ~ 0.6 within 10 rounds) and gradual
improvement among LEO nodes, validating the benefit of
CM xLC-weighted diffusion.

Quantized 4-bit communication achieves nearly 8 x band-
width reduction while preserving convergence; quantiza-
tion noise merely raises the steady-state floor, consistent
with NTK bounds. Orbit reconstructions (Fig. 7) show
sub-kilometer phase drift and ~200-300 km mean RMSE
across satellites, verifying that decentralized fusion remains
physics-consistent and numerically stable.

Overall, Graph-DFL delivers physically grounded,
communication-efficient, and privacy-preserving learning
across multi-orbit constellations. By combining GRU-based
deinterleaving, PINN physics modeling, and CMxLC-
weighted consensus, a scalable foundation is formed for
autonomous Space Situational Awareness and cooperative
on-orbit intelligence.

Conclusion and Future Work

We presented Graph-DFL, a physics-aware decentralized
learning framework that unites GRU-based deinterleav-
ing, PINN-based orbital modeling, and CM x LC-weighted
consensus for collaborative Space Situational Awareness.
Experiments on real TLE/SGP4 trajectories demonstrated
lower RMSE, stronger consensus, and stable convergence
under 4-bit quantized communication, confirming both the-
oretical and practical robustness.

Future work will extend this framework to dynamic
graphs, biased or adaptive quantizers, and inter-constellation
coordination across LEO-MEO-GEO layers. Integrating
uncertainty-aware physics priors and transformer-based
PINNs could further enhance prediction fidelity and re-
silience for autonomous, large-scale orbital networks.
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