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Abstract

The ability of forecasting future human motion is important for human-machine
interaction systems to understand human behaviors and make interaction. In this
work, we focus on developing models to predict future human motion from past
observed video frames. Motivated by the observation that human motion is closely
related to the action being performed, we propose to explore action context to
guide motion prediction. Specifically, we construct an action-specific memory
bank to store representative motion dynamics for each action category, and design
a query-read process to retrieve some motion dynamics from the memory bank.
The retrieved dynamics are consistent with the action depicted in the observed
video frames and serve as a strong prior knowledge to guide motion prediction. We
further formulate an action constraint loss to ensure the global semantic consistency
of the predicted motion. Extensive experiments demonstrate the effectiveness of
the proposed approach, and we achieve state-of-the-art performance on 3D human
motion prediction.

1 Introduction

Imagining and predicting the future motion of a person doing some actions (e.g., walking, standing
up) is a natural ability of human beings. However, it is still very challenging for machines to
achieve reasonable forecasting. In this work, we focus on 3D human motion prediction task which
aims to forecast the future state of the 3D human body conditioned on several observed past video
frames. Future motion prediction is important for many real-world applications like human-machine
interaction and autonomous driving. The main challenge is that the future motion can vary greatly
(i.e., the prediction space is large), which would increase the uncertainty and ambiguity of future
motion prediction.

We observe that there exists a strong correlation between human motion and action category, which
could be exploited to reduce such uncertainty and ambiguity. As illustrated in Figure 1, human action
always contains some representative sub-processes such as swinging arm, throwing something out,
etc. We name these sub-processes as motion dynamics. By exactly examining the videos in Figure
1, we further find that the motion dynamics could be shared across different subjects performing
the same action. Motivated by the above observations, we propose to exploit representative motion
dynamics for each action class to guide motion prediction and reduce the learning difficulty.
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Figure 1: Illustration of representative motion dynamics. This figure shows that the motion dynamics
could be shared across different subjects who are performing the same action.

Specifically, we propose a novel framework to perform future 3D motion prediction. In this framework,
we construct an action-specific memory bank to store the representative motion dynamics for each
action class. The constructed memory bank stores both short-term and long-term motion dynamics
to capture motions with different velocities. And based on the memory bank, we further design
a query-read process to query past observed motion and read candidate future motion dynamics
from the memory bank. The motion dynamics read from the memory bank are used to explicitly
guide future motion prediction. To ensure global motion consistency, we further formulate an action
constraint loss to keep the semantic consistency between the predicted motion and the observed past
motion. The proposed approach achieves promising prediction results and outperforms previous
methods by a considerable margin, which demonstrates the effectiveness of using action-specific
motion dynamics to guide motion prediction.

Overall, our main contributions are: 1) we construct an action-specific memory bank to exploit the
action-specific representative motion dynamics; 2) we propose a novel framework that can effectively
utilize the action-specific dynamics stored in the memory bank for guiding motion prediction; 3) our
approach achieves state-of-the-art performance on 3D human motion prediction.

2 Related work

3D human motion prediction. 3D human motion prediction has attracted long-standing interest in
the community [5, 32, 41]. 3D human motion is typically modeled with 3D poses [23, 10, 25, 24, 28]
or parametric 3D body models [1, 11, 16, 31, 17]. Earlier methods mainly perform 3D human motion
prediction using techniques such as Hidden Markov Models [4], linear dynamical systems [29] and
Gaussian process latent variable models [32, 33]. Recently, several deep learning-based approaches
(e.g. methods employing recurrent neural networks or LSTMs [13]) are proposed to predict human
poses from past 3D human skeletons [6, 45, 9, 41, 2, 7]. Since it is difficult to obtain in-the-wild 3D
annotations, Zhang et al. [42] further proposed an autoregressive model named PHD to forecast future
3D human meshes from past 2D video inputs. However, it ignores the action information depicted in
the observed video frames, which can serve as a strong prior to facilitate the prediction. In contrast,
we aim to explore action context for motion prediction by designing an action-specific memory bank
to discover the representative motion dynamics within each action class. With a query-read process,
we explicitly utilize the information stored in the memory bank of each action class for guiding
motion prediction.

Memory networks. Internal memory has been widely used to capture long-term temporal depen-
dencies within sequences (e.g., LSTMs [13], GRUs [8]) and can be implicitly updated in a recurrent
process. In order to address the inherent instability of internal memory over long timescales, an
external memory component has been developed to augment the sequence modeling and achieved
improved performance on related tasks [34, 30, 18, 26]. The memory component can be read or
written with an attention-based procedure and it can store useful information depicted in a sequence
or a set of sequences. Recently, memory-based approaches have been developed in many vision
tasks such as image captioning [37, 40], tracking [46, 19], and video understanding [35, 27]. Unlike
traditional memory networks using a single memory to store all the information, we construct a
memory bank to store independent memory components for each action category.
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Figure 2: An overview of the proposed framework. We first extract 3D human body parameters
from input videos with a 3D Parameter Regressor. Then we develop an encoder-LSTM-decoder
architecture to perform prediction from these parameters. In order to utilize action context to improve
the prediction, we further design an action memory bank to guide the prediction of the action-related
parameters (i.e., the predicted SMPL pose parameters θ̂).

3 Our approach

The goal of 3D human motion prediction is to forecast the future state of 3D human body presented
in a given video. We follow [16, 42] to decompose the representation of 3D human body into three
independent components θ,β, and Π. θ ∈ R72 and β ∈ R10 denote the pose and shape parameters
of SMPL model [21], respectively. The pose parameters θ represent the global body rotation and
the relative rotation of 23 body joints in axis-angle, which is closely related to action dynamics.
The shape parameters β are the first 10 coefficients of a PCA space modeling body shapes, thus
containing personal information such as height or waistline. Based on the constructed θ and β,
the SMPL model generates a triangulated mesh M(θ,β) ∈ RN×3 with N = 6890 vertices. With a
pre-trained linear regressor, the 3D coordinates of body joints X can be calculated from M(θ,β).
Π = [s, tx, ty] is the weak-perspective camera parameter encoding the scaling, x-offset and y-offset
information of an orthographic projection, which is used to infer the 2D coordinates of body joints x
from 3D coordinates X.

We address the problem of 3D human motion prediction by learning mappings Φ,Ψ, and Θ to predict
the 3D human body representations θt+1:T ,βt+1:T and Πt+1:T of future un-observed video frames,
respectively, from the representations θ1:t,β1:t and Π1:t of the observed past frames. The prediction
process can be mathematically expressed as:

θt+1:T = Φ(θ1:t),βt+1:T = Ψ(β1:t),Πt+1:T = Θ(Π1:t). (1)

The overall framework is presented in Figure 2. We follow the common practice in future prediction
tasks [45, 9, 2, 7] to develop an encoder-LSTM-decoder architecture to perform the prediction.
Specifically, we first employ an encoder to extend the representations θ,β,Π to higher dimensional
latent codes B(θ),B(β),B(Π), respectively. Then, three independent LSTMs are used to predict the
latent representations for future frames. Finally, the decoder is employed to transform the predicted
representations back to the space of θ,β,Π, which are fed into the SMPL model to construct 3D
mesh/skeleton presentations.

Since the human motion has a strong correlation with the corresponding action category (e.g., one
could better infer the future body motion when given the performing action), we seek to explore
the action context with a novel action memory bank to guide the motion prediction in this work.
The action memory bank is only used to help the prediction of pose parameters θ as they are
closely related to the action category, while for the prediction of action-irrelevant representations
like shape parameters β and camera parameters Π, we employ the standard encoder-LSTM-decoder
architecture. In the following, we will mainly describe details of our framework for predicting SMPL
pose parameters (i.e., learning mapping Φ in Eq. 1) with our proposed action memory bank.

3.1 Action-guided feature prediction

Actions of the same category always contain specific sub-processes and share some common dynamics
(see Figure 1), which are useful to guide future motion prediction. In this work, in order to take
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Figure 3: The architecture of the proposed action-guided predictor (left). We develop an action
memory bank to store action-specific motion dynamics which are coupled with a query-read process
(right) to guide motion prediction.

advantage of the action prior knowledge, we propose to construct a class-specific action memory
bank to store the common dynamics of each action class and define a query-read process to utilize
the dynamics stored in the memory bank as illustrated in Figure 3. In the query process, we calculate
the similarity between the observed data and the dynamics contained in the pre-constructed memory
bank conditioned on a predicted action class. In the read process, we combine the motion dynamics
from the memory bank using the similarity as a soft weight. And the combined motion dynamic is
finally used to guide motion prediction.

3.1.1 Action memory bank construction

Our action memory bank is constructed to store the representative motion dynamics appeared
in each action class. Specifically, we represent the short-term motion dynamic as st:t+∆t−1 =
[θt,θt+1,θt+2, ...,θt+∆t−1], which consists of the initial pose θt and the pose dynamics of the
following ∆t − 1 frames. That is to say, the proposed representation describes motion as the
dynamics of human body joint rotations. In order to further capture long-term motion dynam-
ics, we extend the sampling time step to K and represent the long-term motion dynamic as
lt:t+∆t−1 = [θt,θt+K×1,θt+K×2, ...,θt+K×(∆t−1)]. Then for each action class, we utilize the
Affinity Propagation (AP) Clustering algorithm to cluster the short-term and long-term motions over
all the training videos. We use L1 distance to measure the similarity of different motion patterns.
We discard the clusters containing too few elements (less than 1%) and regard the remaining cluster
centers as the representative motion dynamics of the corresponding action class to form our action
memory bank M :

M = {(Si,Li) | i = 1, 2, ..., I} , (2)

where Si ∈ R(∆t×72)×Nshort
i ,Li ∈ R(∆t×72)×N long

i correspond to short-term motion and long-term
motion memory for the action category i, respectively. Each item in the memory bank is a clustering
center and ∆t is the time length of each item. Nshort

i and N long
i are the number of short-term and

long-term items for action i in the memory bank, respectively. I denotes the number of action classes.

3.1.2 Motion feature prediction

With the constructed action memory bank, we take advantage of action-specific representative motion
dynamics to guide the prediction. Specifically, we design a query-read process, which queries the past
motion and then read the corresponding future motion dynamics from the memory bank. Inspired
by previous memory based methods [30, 36, 38, 7], the query-read process is designed based on an
attention mechanism. First, we employ an action recognition network [22] on the observed frames
to predict the probability of action classes and take the class i with the maximum classification
confidence. Then, we compute the key matrices Kshort

i ∈ RCk×Nshort
i as Kshort

i = WkS
f
i and

value matrices Vshort
i ∈ RCv×Nshort

i as Vshort
i = WvS

l
i, where Sf

i ,S
l
i ∈ R(∆t

2 ×72)×Nshort
i
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represent the former and latter half motion in the memory bank, respectively. Wk ∈ RCk×(∆t
2 ×72)

and Wv ∈ RCv×(∆t
2 ×72) are two learnable matrices. And for each time step t, we compute the

query vector qt ∈ RCk from the encoded motion feature B
(θ)
t ∈ RCB by qt = WqB

(θ)

(t−∆t
2 ,t]

,

where B
(θ)
(t1,t2]

∈ RCB×(t2−t1) is the concatenation [B
(θ)
t1+1,B

(θ)
t1+2, ...,B

(θ)
t2 ]. After that, in the query

process, we compute the similarity between the query vector qt and the key vectors in Kshort
i as:

sim(Kshort
i ,qt) = (Kshort

i )Tqt. (3)

In the read process, we read the future short-term motion dynamics oshort
t ∈ RCv from the memory

bank using the similarity as a soft weight, which can be formulated as:

oshort
t = Vshort

i softmax(sim(Kshort
i ,qt)). (4)

Similarly, we can get the future long-term motion dynamics olong
t with the memory bank by replacing

Si with Li. Finally, we concatenate the initial latent feature B
(θ)
t , oshort

t and olong
t as the input to

the LSTM to predict the latent features B̂(θ)
t+1:t+T of future un-observed video frames.

3.1.3 Motion feature decoding

Once we get the predicted future latent feature B̂
(θ)
t+1:t+T for future frames t+ 1 : t+ T , the pose

parameters θ̂t+1:t+T can be obtained by a decoding process. Similarly, we define our motion feature
decoding process based on the query-read process. The main difference is that the employed key
matrices Kshort,dec

i = Wdec
k Si and value matrices Vshort,dec

i = Wdec
v Si are computed based on

the complete motion Si ∈ R(∆t×72)×Nshort
i rather than partial motion Sf

i ,S
l
i ∈ R(∆t

2 ×72)×Nshort
i in

the memory bank, as the full motion features are available in the decoding stage. The query vector is
formulated as qdec

t = Wdec
q B̂

(θ)
(t−∆t,t]. Thus, short-term motion dynamics oshort,dec

t read from the
memory bank can be formulated as:

oshort,dec
t = Vshort,dec

i softmax((Kshort,dec
i )Tqdec

t ). (5)

The long-term motion dynamics olong,dec
t can be obtained by replacing Si with Li. Then the predicted

latent features B̂(θ)
t , oshort,dec

t and olong,dec
t are concatenated together as the input of the decoder,

generating 3D pose parameters θ̂t+1:t+T = [θ̂t+1, θ̂t+2, ..., θ̂t+T ].

3.2 Model training

Our objective in future motion prediction is to learn the model parameters such that the gap between
the predicted motion and the ground-truth motion is minimized. To achieve this, we define the
prediction loss Lpred as a series of MSE losses formulated as follows:

Lpred = Lparameter + Llatent + Ljoint, (6)

Lparameter =

T∑
t=2

∥∥∥θt − θ̂t

∥∥∥2
2
+

∥∥∥βt − β̂t

∥∥∥2
2
+

∥∥∥Πt − Π̂t

∥∥∥2
2
, (7)

Llatent =

T∑
t=2

∥∥∥B(θ)
t − B̂

(θ)
t

∥∥∥2
2
+

∥∥∥B(β)
t − B̂

(β)
t

∥∥∥2
2
+

∥∥∥B(Π)
t − B̂

(Π)
t

∥∥∥2
2
, (8)

Ljoint =

T∑
t=2

∥∥∥Xt − X̂t

∥∥∥2
2
+ ∥vt ⊙ (xt − x̂t) ∥22. (9)

Here, Lparameter,Llatent are the MSE losses of the body parameters θ,β,Π and their corresponding
latent feature B(θ),B(β),B(Π), respectively. Ljoint is the MSE loss for 3D keypoints and 2D
keypoints. vt is the visibility indicator over ground truth 2D keypoints.

Considering the importance of prior knowledge, we follow [42, 15] to employ a prior loss Lprior,
which is a commonly used constraint to ensure the reasonability of the predicted human body accord-
ing to human prior. It includes human pose reasonability prior loss [15, 16], shape regularization
prior loss[3] and shape consistency loss [16].
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In order to keep the semantic consistency between predicted motion and ground-truth motion, we
further propose an action constraint loss Laction. We train a 3D skeleton-based action classification
network ϕ [20] on the training videos, and force the action classification results Ĉ = ϕ(X̂) using the
predicted 3D joints X̂ to be similar to the results C = ϕ(X) obtained with ground-truth 3D joints
X. Here, we calculate a Kullback-Leibler divergence loss between Ĉ and C to constraint motion
prediction as Laction = KL(Ĉ,C) . Thus, the complete loss formulation is:

L = Lpred + Lprior + Laction. (10)

Since directly training the whole encoder-LSTM-decoder architecture with randomly initialized
parameters can be unstable, we introduce a two-stage optimization approach. In the first stage, we
remove all the LSTMs in the framework and only train the encoders and decoders by minimizing

the body parameter loss Lparameter =
∥∥∥θ − θ̂

∥∥∥2
2
+

∥∥∥β − β̂
∥∥∥2
2
+

∥∥∥Π− Π̂
∥∥∥2
2
. This achieves a

good initialization of the encoder and decoder parameters. In the second stage, we train the whole
framework to optimize 3D human motion prediction with loss function L defined in Eq. (10).

4 Experiments

Datasets. We evaluate the proposed method on Human3.6M [14] and Penn Action [44] datasets,
which contain human action videos captured under different views with various motions. Human3.6M
[14] contains 3.6 million 3D human poses and corresponding images. To construct this set, 11
professional actors are invited to perform 17 activities in an indoor laboratory: discussion, smoking,
taking photos, etc. This set is well annotated with 3D joint coordinates, joint angles, person bounding
boxes, and 3D laser scans of each actor. Following [42], we use the data of Subjects 1, 6, 7, and 8
as the training set, data of Subject 5 as the validation set, and data of Subjects 9 and 11 as the test
set. The Penn Action [44] dataset consists of 2326 in-the-wild sport videos involving 15 actions
such as baseball pitch, bowling, golf swing, etc. Since all the videos are collected in the wild, the
ground truth 3D poses are not available in this set. The annotations only contain action class labels,
2D bounding boxes, and human body joints (2D locations and visibility). We use the methods in [42]
to generate the corresponding pseudo 3D annotations and use them to train the model.

Evaluation metrics. The same as that in [42], for the Human3.6M dataset with 3D human pose
annotations, we report the PA-MPJPE (mean error of per joint position after applying Procrustes
Alignment [12]) in mm. For the Penn Action dataset with 2D pose annotations, we measure the PCK
(percentage of correct keypoints [39]) at α = 0.05. Following [42], we input 15 past frames to the
model and predict the motion of the next 30 frames. We start the prediction from every 25th frame
for Human3.6M dataset and start from every frame for Penn Action dataset. For a fair comparison
with PHD [42], we also provide the results of our approach using Dynamic Time Warping (DTW),
which can reduce the prediction error caused by unreliable velocity prediction. The DTW intends
to find an optimal matching between the ground truth and predicted future motion sequence after
time-warping, so that the similarity between them is maximized. However, we would like to point
out that using DTW for evaluation is unreasonable, since we have no chance of obtaining the ground
truth to warp the prediction in real-world applications.

Network architecture. We employ the 3D human reconstruction model in PHD [42] as our 3D
human body parameter regressor to extract the decoupled 3D motion representations. It consists of a
ResNet50 image encoder, a causal 1D temporal convolutional encoder and a regressor with iterative
optimization. The dimensions of the encoded 3D human body parameters B(θ),B(β),B(Π) are 1024,
256, 64, respectively. Both the encoder and decoder are designed as 3 stacked FC-ReLU-BN blocks.
The number of LSTM hidden units for predicting θ, β, Π are 1024, 256, 64, respectively. The
temporal length ∆t of each memory item is 8 and sampling time interval K of long-term motion is
set to 3. The channels of both key vector Ck and value vector Cv are kept same and set to 512.

Learning details. We train our predictors using SGD algorithm with a Nesterov momentum of 0.9,
where the 3D human body parameter regressor is frozen with the parameters pre-trained in PHD [42].
In the first training stage, we train the encoder and decoder with learning rate 0.01 for 6 epochs. In
the second stage, we train the whole prediction block in an end-to-end manner for 30 epochs. The
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Table 1: Comparison results with recent approaches for human motion prediction.

Human 3.6M (PA-MPJPE ↓) Penn Action (PCK ↑)
Method 1 5 10 20 30 1 5 10 20 30

Oracle 56.9 56.9 56.9 56.9 56.9 81.6 81.6 81.6 81.6 81.6

With DTW

Nearest Neighbor 90.3 95.1 100.6 108.6 114.2 63.2 61.5 60.6 58.7 57.8
Constant 59.7 65.3 72.8 84.3 90.4 78.3 71.7 64.9 56.2 49.7
PHD [42] 57.7 59.5 61.1 62.1 65.1 81.2 80.0 79.0 78.2 77.2

Ours 57.3 58.9 60.3 61.4 62.8 81.4 80.6 79.7 79.1 78.5

Without DTW

Nearest Neighbor 90.3 99.8 110.3 124.7 133.3 62.5 57.6 53.7 44.6 41.1
Constant 59.7 71.4 85.9 101.4 102.8 78.3 65.5 54.6 42.3 32.7
PHD [42] 57.7 61.2 64.4 67.1 81.1 81.2 77.2 72.4 67.9 60.1

Ours 57.3 59.6 61.7 62.5 75.9 81.4 79.1 76.7 72.8 66.5

learning rate is initialized to 0.01 and decreased to 0.001 after 12 epochs. It took about 3 days for
Human 3.6M dataset and 20 hours for Penn Action dataset to train our framework using 4×V100
GPUs. For training the 3D skeleton-based action classifier, we use the publicly available code of [20]
with default parameters.

4.1 Experimental results

We compare our approach with the state-of-the-art approach PHD [42] and two other baselines
(Nearest Neighbor and Constant as discussed in [42]). The Nearest Neighbor baseline takes the input
conditioning frames to find the closest sequence in the training set based on the Euclidean distance of
3D joint locations, and regards the motion reconstructed from the following frames as the prediction
result. The Constant baseline regresses the 3D human body from the last observed frame and regards
it as a constant prediction result for future frames. In addition, we also implement an Oracle approach
by directly reconstructing 3D human motion using the 3D parameter regressor in our model from the
corresponding ground-truth frames, which can be regarded as an upper bound for our prediction.

We report our experimental results on the Human3.6M [14] dataset and the Penn Action [44] dataset
in Table 1. For Human3.6M set, our method consistently outperforms all the competitors by a
considerable margin for both five-frame prediction (0.6mm improvement with DTW and 1.6mm
improvement without DTW) and thirty-frame prediction (3.7mm improvement with DTW and 5.6mm
improvement without DTW). The results verify that predicting features with action-related prior
knowledge can achieve better prediction results. The performance improvement gets larger as the
length of prediction increases. This is as expected, as the developed action memory bank and action
loss constraint can be used as strong guidance for motion prediction, which effectively narrow the
prediction space. Thus, the prediction difficulty could be greatly reduced, especially for the prediction
of long sequences. Our results on the Penn Action [44] dataset show that our method also achieves
state-of-the-art performances for human motion prediction. Specifically, our method achieves 80.6%
for five-frame prediction and 78.5% for thirty-frame prediction with DTW. Without DTW, our method
can perform 79.1% for five-frame prediction and 66.5% for the thirty-frame prediction, which are
1.9% and 6.4% higher than the results reported in PHD [42]. The promising results show that the
action context can provide rich information for the 3D motion prediction. We also note that the
performance improvement obtained by our method using DTW is smaller than that of PHD. This is
because that the developed action memory bank with both short-term and long-term dynamics has
already captured motion velocity information and better resolved the velocity ambiguity.

In Figure 4, we present some visualization results for the predicted 3D human mesh. For the first
example, we can observe that our predictions align much better to the ground truth than predictions of
PHD [42]. It indicates that the developed action memory bank can help predict a reasonable motion
velocity for the ongoing action sequences. For the second example, the poses predicted by our method
are more accurate, which demonstrates the proposed method can learn the motion variation better.
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Figure 4: Visualization of 3D human motion prediction. From left to right: the observed input
video and motion predicted at different time steps. We provide samples of baseball pitch and bowling.
For each sample, the top row contains the ground-truth frames. The results obtained by PHD [42]
and our approach are presented in the mid and bottom row, respectively.

Figure 5: Each row visualizes an item in our action memory bank for the baseball pitch class.

In Figure 5, we provide some visualization results of the motion dynamics in our memory bank. As
shown, our memory bank contains some representative motion dynamics for baseball pitch, which
could provide a strong prior for motion prediction.

4.2 Ablation studies

In this section, we conduct extensive ablation experiments for future human motion prediction on the
Human3.6M dataset [14] to study the influence of each component in our framework. We report the
results without DTW, which is more reasonable than the model with DTW in real-world applications.

Influence of action context for prediction. We provide an in-depth analysis on the proposed
motion prediction method by gradually adding the components and tabulated the results in Table
2. We start from a baseline that only contains the encoder, LSTM, and decoder. Then we query
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Table 2: Evaluation of our action memory bank
and other components on Human3.6M dataset.

Reconstruction error ↓
Method 5 10 20 30

Baseline 63.1 66.5 68.9 83.3
+ Prediction with Bank 61.2 63.8 65.7 79.6
+ Decoding with Bank 59.6 61.9 63.4 77.1

+ Action Constraint 59.6 61.7 62.5 75.9

Table 3: Evaluation of action context modeling
on Human3.6M dataset.

Reconstruction error ↓
Method 5 10 20 30

Baseline 63.1 66.5 68.9 83.3

Action Label 61.8 64.9 66.5 80.2
Action Memory Bank 59.6 61.7 62.5 75.9

Table 4: Evaluation of our action-specific mem-
ory bank on Human3.6M dataset

Reconstruction error ↓
Method 5 10 20 30

Baseline 63.1 66.5 68.9 83.3

Action-agnostic Bank 61.4 64.6 66.3 80.7
Action-specific Bank 59.6 61.9 63.4 77.1

Table 5: Evaluation of utilizing the long-term
motion dynamics on Human3.6M dataset.

Reconstruction error ↓
Method 5 10 20 30

Only Short 60.1 62.4 63.7 77.3

K = 2 59.4 61.9 63.1 76.8
K = 3 59.6 61.7 62.5 75.9
K = 4 60.0 62.1 63.0 76.4
K = 5 60.1 62.2 63.5 77.0

Table 6: Influence of the predicted action label on
Human3.6M dataset.

Reconstruction error ↓
Accuracy 5 10 20 30

Ground-truth (100%) 59.6 61.4 61.9 74.1

Classifier (87%) 59.6 61.7 62.5 75.9
80% 59.9 62.0 62.8 76.3
75% 60.1 62.2 63.4 76.9
70% 60.7 62.6 64.1 78.2
65% 61.1 63.4 65.2 79.7
60% 61.8 64.2 67.0 81.5

and read motion dynamics from the memory bank and treat it as an additional input to the LSTM
(termed as +Prediction with Bank). We find that it can bring 3.7mm improvement for the prediction
of 30-frame prediction. Further, we use the motion dynamics captured in the memory bank to guide
our decoding process (termed as +Decoding with Bank). The performance is improved by more
than 1.6mm. Finally, we add the action constraint loss Laction to capture more global action context,
which measures the consistency of the predicted motion sequence from a global perspective. We can
observe more improvement in the prediction, especially for the prediction of longer frames (20 and
30 frames). The results demonstrate that the action context captured in the action memory bank and
action constraint loss can serve as strong guidance for motion prediction. To further demonstrate
the importance of modeling action context and the effectiveness of the proposed memory bank, we
implement another simple one-hot baseline which models action context by taking the action label
(i.e., a one-hot vector) indicating the action class as additional input to the motion predictor. As shown
in Table 3, the one-hot baseline can also reduce the reconstruction error, indicating that injecting
action context helps motion prediction. However, this one-hot baseline is much less accurate than our
proposed approach, which further demonstrates the effectiveness of our proposed memory bank.

Action-agnostic vs. action-specific memory bank. In our action memory bank, we perform
clustering for each action class separately (i.e., our memory bank is constructed in an action-specific
manner). We can also construct an action-agnostic memory bank by clustering over all the dynamic
samples without considering the action labels. The experimental results are presented in Table 4. For
a fair comparison, we report our approach without the action constraint. As shown, our approach
with the action-agnostic bank can already bring consistent improvement over the baseline. And our
proposed action-specific memory bank further promotes the performance, which demonstrates the
effectiveness of exploring the action-specific context for future motion prediction.

Benefits of long-term dynamics in memory bank. In our memory bank, short-term dynamic
memory item and long-term dynamic memory item (with a sampling interval K) capture motion
dynamics at different temporal scales. Here, we study the influence of K as shown in Table 5. As
can be seen, compared with the setting that only uses short-term motion dynamics, adding long-term
motion dynamics can always improve the prediction performance, which indicates that the long-term
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motion dynamic complements well with the short-term dynamics. The combination of them can
provide more useful information to guide future motion prediction. Setting K = 3 achieves the best
prediction performance among all the cases.

Impact of the predicted action label. In the prediction process, we employ an action classifier to
obtain the action label of the sequence, so that the predictor can query and read relevant dynamic
information from the memory bank of the corresponding action. However, the action label can be
wrongly recognized in some hard cases. To study the influence of the predicted action labels, we
conduct experiments by replacing some low confidence predictions (but correctly predicted) with
wrong labels. Our classifier can achieve an accuracy of 87% and we gradually reduce the accuracy to
80%, 75%, 70%, 65% and 60%. The detailed results are presented in Table 6. The motion prediction
performance will increase when ground truth labels are provided. Meanwhile, the performance
decreases as the recognition accuracy goes down. It is worth noting that when the accuracy is between
75% and 100%, the prediction performance is relatively stable with a difference less than 1mm in
terms of 30-frame prediction, which demonstrates the robustness of the proposed method.

5 Conclusion

In this work, we propose to exploit the representative motion dynamics of each action class for
3D human motion prediction. Specifically, we construct an action-specific memory bank to store
the representative motion dynamics. Based on the constructed memory bank, we formulate a
query-read process to read motion dynamics from the memory bank guiding motion prediction. An
action constraint loss is formulated to enhance the semantic consistency of the predicted 3D motion.
Extensive experiments on two benchmarks demonstrate the effectiveness of using action-specific
motion dynamics to guide motion prediction. For social impact, we believe that our model can be used
to predict human motion for autonomous driving, human-computer interaction, and augmented/virtual
reality applications. We also acknowledge that there exists potential negative social impact such as
generating malicious fake videos conditioned on the predicted human motion with GANs.

Limitations and Future Work. Our proposed method faces three main limitations: 1) our model
relies heavily on the action classification, 2) we develop models to predict the motion features out-
putted by a fixed 3D parameter regressor without optimizing it, 3) we predict future 3D human motion
for each appeared person independently without considering its interactions with the environment. In
the future, we would consider learning the recovery and prediction of human shape and motion jointly
in an end-to-end manner, as well as modeling human-human/human-object interactions as in [43].
Also, we intend to develop a more intricate design for the memory bank such as action hierarchy,
temporal pyramid and part-level body motion.
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