Efficient Neural Common Neighbor for Temporal Graph Link
Prediction

Xiaohui Zhang* Yanbo Wang*
Institute for Artificial Intelligence, Institute for Artificial Intelligence,
Peking University Peking University
huihuang@stu.pku.edu.cn wangyanbo@stu.pku.edu.cn

Xiyuan Wang
Institute for Artificial Intelligence,
Peking University
wangxiyuan@pku.edu.cn

Muhan Zhang!
Institute for Artificial Intelligence, Peking University
State Key Laboratory of General Artificial Intelligence, Peking University
muhan@pku.edu.cn

Abstract

Temporal graphs are widespread in real-world applications such as social net-
works, as well as trade and transportation networks. Predicting dynamic links
within these evolving graphs is a key problem. Many memory-based methods
use temporal interaction histories to generate node embeddings, which are then
combined to predict links. However, these approaches primarily focus on indi-
vidual node representations, often overlooking the inherently pairwise nature of
link prediction. While some recent methods attempt to capture pairwise features,
they tend to be limited by high computational complexity arising from repeated
embedding calculations, making them unsuitable for large-scale datasets like
the Temporal Graph Benchmark (TGB). To address the critical need for models
that combine strong expressive power with high computational efficiency for
link prediction on large temporal graphs, we propose Temporal Neural Common
Neighbor (TNCN). Our model achieves this balance by adapting the powerful
pairwise modeling principles of Neural Common Neighbor (NCN) to an efficient
temporal architecture. TNCN improves upon NCN by efficiently preserving and
updating temporal neighbor dictionaries for each node and by using multi-hop
common neighbors to learn more expressive pairwise representations. TNCN
achieves new state-of-the-art performance on Review from five large-scale real-
world TGB datasets, 6 out of 7 datasets in the transductive setting and 3 out
of 7 in the inductive setting on small- to medium-scale datasets. Additionally,
TNCN demonstrates excellent scalability, outperforming prominent GNN base-
lines by up to 30.3 times in speed on large datasets. Our code is available at https:
//github.com/GraphPKU/TNCN.

1 Introduction

Temporal graphs are increasingly employed in contemporary real-world applications like social
and transaction networks, which evolve dynamically and exhibit distinct characteristics over time.

*Equal Contribution
TCorrespondence to: Muhan Zhang <muhan @ pku.edu.cn>

X. Zhang et al., Efficient Neural Common Neighbor for Temporal Graph Link Prediction. Proceedings of the
Fourth Learning on Graphs Conference (LoG 2025), PMLR 269, Arizona State University, Phoenix, USA,
December 10-12, 2025.

https://github.com/GraphPKU/TNCN
https://github.com/GraphPKU/TNCN

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

b 0, O, (W) O,
t | t; ty t, t, B
R~ | e o e o /A
\) It3? R\
\ { | t to ty to t to ty to
RO © Ow & O ©®w ®

(a) a temporal graph (b) computation tree of v and v (c) common neighbor method

Figure 1: Figure (a) shows a failure case of link prediction based on node-wise representation
learning. Such methods cannot distinguish node w and v because they possess the same temporal
computation tree in Figure (b), thus generating the same node representation. However, when we try
to learn their pair-wise representation, i.e. (v, w) and (v, w), we can observe that v has a temporal
common neighbor b with node w while v doesn’t, as shown in Figure (c). Thus with the same
computation graph, we only need to utilize the extra node b’s embedding to distinguish (u,w) and
(v, w).

Concurrently, Graph Neural Networks (GNNs) [1] have emerged as prominent tools for graph
representation learning, typically learning node embeddings by iteratively aggregating information
from neighbors and demonstrating strong performance on various tasks. However, the temporal
dimension introduces significant challenges; the discrete or continuous timestamps associated with
graph edges define an evolutionary process and impose causality constraints, rendering many static
GNN methodologies not directly applicable. This has led to the development of specialized temporal
GNNs. Consequently, specialized temporal GNNs have been developed, often focusing on achieving
both effective representation learning and computational efficiency for these large, dynamic structures.
For instance, memory-based approaches like Temporal Graph Networks (TGN) [2-4] are designed to
efficiently learn short- and long-term dependencies, while Transformer-based models [5, 6] utilize
attention mechanisms to capture complex relationships.

Despite their advancements, many specialized temporal GNNs primarily generate node-wise repre-
sentations. While effective for certain tasks, this focus can be insufficient for link prediction, where
accurately capturing the relationship between pairs of nodes is critical. Node-wise methods may fail
to distinguish between nodes that have similar individual features or local neighborhoods but different
propensities to connect with a target node (as illustrated in Figure 1), thereby overlooking crucial
relational patterns. Acknowledging such limitations, approaches from static graph link prediction, like
the labeling trick [7, 8] that emphasizes pair-wise representations, have shown considerable success.
Consequently, researchers have extended these pair-wise learning concepts to temporal graphs, often
by leveraging information from the evolving local neighborhoods of node pairs [9-11]. However,
these more expressive graph-based temporal models frequently incur substantial computational and
memory costs, arising from the need to extract and process temporal neighborhood information for
each prediction, which can hinder their application to large-scale scenarios.

This trade-off between computationally demanding expressive models and more efficient but poten-
tially less informative ones highlights a critical need. Addressing this, we propose the Temporal
Neural Common Neighbor (TNCN) model, which is designed to achieve both high efficiency and
strong expressive power for temporal link prediction. TNCN builds upon a memory-based backbone,
ensuring operational efficiency comparable to sequential update models. Crucially, it incorporates a
Neural Common Neighbor component [12]. This component is augmented with advanced operational
techniques and extended for multi-hop common neighbor consideration, allowing TNCN to effec-
tively model sophisticated link heuristics and learn detailed pairwise representations while retaining
the efficiency of its memory-based foundation. As a result, TNCN is well-suited for large-scale
temporal graph link prediction.

We conducted experiments on five large-scale real-world temporal graph datasets from TGB, where
TNCN achieved new SOTA results on Review. Furthermore, evaluations on traditional small- to
medium-scale datasets revealed TNCN achieving SOTA performance on 6 out of 7 datasets in the
transductive setting and 3 out of 7 in the inductive setting, demonstrating its effectiveness. To assess
its scalability, datasets were selected with temporal edge counts ranging from O(10°) to O(107)
and node counts from thousands to millions. On these large-scale datasets, TNCN achieved training
speedups of 2.5x~5.9x and inference speedups of 1.8x~30.3x compared to graph-based models,
while its time consumption remained comparable to that of memory-based models.

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

2 Preliminaries

Definition 2.1. (Temporal Graph) We mainly focus on the continuous time dynamic graph (CTDG).
A CTDG can be typically represented as a sequence of interaction events: G = {(u1,v1,t1),- -+,
(Un, Vn, tn) }, Where u, v stand for source and destination nodes and {t;} are chronologically non-
decreasing timestamps. Note that each node or edge can be attributed, that is, there may be node
feature x,, for u or edge feature efw attached to the event (u, v, t).

Definition 2.2. (Problem Formulation) Given the events before time ¢*, i.e. {(u,v,t) |Vt <t*},a
link prediction task is to predict whether two specified node v* and v* are connected at time ¢*.
Definition 2.3. (Temporal Neighborhood) Given the center node u, the k-hop temporal neighbor
set (k > 0) before time ¢ is defined as N} (u). A node v is in N{(u) if there exists a k-length
path between v and v, i.e. 3(u,wr,wo, -, wy_1,v) Where w; # w;,¥i # j. We also define
the (i,j)-hop common neighbor set as follows: w is an (7, j)-hop temporal common neighbor
of w and v at time ¢ if w € Nf(u) and w € Nf(v). For simplicity we will denote the set as

CN(; j(u,v) = Nf(u) N Ni(v). Note that for i = 0 (or j = 0 similarly), we define the 0-
hop temporal neighbor set as N¢(u) = {u}, and the (0, j)-hop common neighbor of u and v as
CN{g ;) (u,v) = N§(u) N Nt(v) = {u} "N} (v). Finally, the K-hop temporal neighborhood of node

K
w at time ¢ is defined as: Y N} (u).

With (4, j)-hop neighborhood information, we can perceive the local structure to a large extent and
distinguish the difference between multi-hop common neighbors more precisely.

Definition 2.4. Memory-based Backbone. Memory-based backbone has been widely adopted by
various methods like [2, 4] to tackle dynamic graph learning. Its core component is the memory
module that stores the node memory representations up to a certain time t. When a new event occurs,
the memory of the source and destination nodes is updated with the message produced by the event.
The computation can generally be represented as follows:

mem!, = upd,, . (mem! msg’, . (u,v));

t
v

62,11)7

msg.iTC (u’ U) = msgf‘uncs’(‘c(

ey

msgést (’U,, U) = msgfuncdst (ei,v)a mem, = upddst (memtv_v msgést (u7 ’U))

where msg! stands for the message of the event, mem!,~ for the embedding of node u before time .

3 Methodology

Now we introduce our Temporal Neural Common Neighbor model. TNCN comprises several
key modules: the classic Memory Module, the Temporal NCN Module with efficient CN Extractor,
and the NCN-based Prediction Head. Special attention will be given to the Temporal CN Extractor,
which is designed to efficiently extract temporal neighboring structures and obtain multi-hop CN
information. The pipeline is illustrated in Figure 2. A pseudocode is attached in Appendix F.

3.1 Memory Module

Different from the static GNN used in traditional NCN, our model TNCN adopts a memory-based
backbone from [4] to efficiently store and update the node memory, eliminating the need for repeated
computation of node embeddings within successive temporal batches.

Conforming to the standard pipeline in section 2.4 of processing the node memory, for later link
prediction or other downstream tasks, node embeddings can be obtained from their memory:

bt = NN =y = U et t—")]), 2

emo,, (memu EN(u) mem, t,<t[eu,v H (b()]) ()

where || stands for the concatenation operation. Here NN has multiple choices, like Identity or simple

static GNN [13—-15]. In our implementation, we adopt Graph Transformer Convolution [16], which

can pay more attention to the relation between different nodes. And we choose the time encoding ¢
presented in Time2Vec [17] as TGN does.

3.2 Temporal NCN Module with Efficient CN Extractor

Our Temporal NCN Module can efficiently perform multi-hop common neighbor extraction with its
CN extractor, and aggregate their neural embeddings to attain the node features.

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

repr(u,w)
Training: Last Batch Message tiu—a

tyv—b

Update‘ 'Nei ghbor Update| Mem =

v
—
Extract CN| [_CN@w) =0 Retrieve CN Mem Predictio

X

memy}
—’ A 4
A

. . . repr(v,w.
Retrieve |Neighbor Retrieve| Mem privw)

tz t1

tyiu—ow (mem,?, mem,})
{mem(?}
{ b}

Figure 2: Pipeline of TNCN. TNCN operates through a sequential update and prediction framework
that processes successive batches of messages. During the update phase, TNCN updates the neighbor
dictionary and the node memory. In the prediction phase, the model retrieves neighbors to identify
common neighbors, leveraging the representations of the target nodes and their CNs for prediction.

>

Inference: Current Batch Message tyv o w

Extended Common Neighbor. The definition of multi-hop common neighbors (CN) is given in
Definition 2.3, extending the traditional (1,1)-hop CN (i.e., nodes on 2-paths between v and v) to
arbitrary (i, j)-hop CN. Additionally, we define the zero-hop neighbor of a central node, i.e., u is
considered as a neighbor of itself, which will be utilized to calculate CNs with other nodes. Given
source node u and target node v, the (0,1)-hop and (1,0)-hop CN not only records the historical
interactions between two nodes, but also reveals the frequency of their interactions.

Efficient CN Extractor. The CN Extractor is a crucial component of the TNCN model, contributing
significantly to its high performance and scalability. It can efficiently gather pertinent information
about a given center node and extract multi-hop common neighbors for a source-destination pair.

For each relevant node w, the extractor stores its historical interactions with other nodes as both
source and destination. After a batch of events is processed by the model, the storage is updated
with the latest interactions. This allows us to maintain a record of all historical interactions up to
a certain timestamp, effectively constructing a dynamic lookup dictionary for fast retrieval during
subsequent inference. To strike a balance between memory consumption and model capacity, we save
only the most recent K events and relevant nodes for each center node, where K is a hyperparameter
determined by the specific dataset.

To implement an efficient batch CN extractor, we organize the historical interactions in a Sparse
Tensor, representing the temporal adjacency matrix. Then we perform self-multiplication to generate
high-order adjacency connectivity. Sparse matrix hadamard product is finally employed to obtain
separate (i,7)-hop CNs. All these operations can be efficiently implemented by sparse tensor
operators and are supported by GPU to facilitate fast, batch processing. Now we show the detailed
procedure as follows. For some special and higher-order cases analysis, please refer to Appendix G.

Details of Common Neighbor Extraction. Our temporal CN extractor begins with a sparse matrix A
constructed from the interactions of related nodes. We then include three stages to precisely generate
arbitrary (7, j)-hop CNs:

1. Generate up to k-hop neighbors. The original matrix A only includes 1-hop neighbors. To
extend this, we: (a) Use self-loops for 0-hop neighbors, denoted as A°. (b) Perform sparse matrix
multiplication (i.e., A¥) to include arbitrary k-hop neighbors. Combining them, we obtain an updated
neighborhood matrix set A = {A"}K .

2. Extract neighbors for each source and destination node with corresponding indices in the same
batch. Assume that we require the k-th hop neighbors of node u, then vector A*[id(u)] is the result,
where id(u) stands for the reindexed id for node u. A*[id(u)][id(v)] = w > 0 if v is a k-hop
neighbor of u, otherwise this element is 0. w represents the historical interaction frequency.

3. Obtain arbitrary (i, j)-hop CNs. We can perform hadamard product of A*[id(u)] and A7 [id(v)] to
acquire different hops of CNs. The operator can extract corresponding CNs for source-destination
node pairs in a batch parallelly.

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

By re-indexing the node IDs when generating Ato prevent conflicts, the CN extractor can conduct the
sparse matrix calculation, which are all performed in a Torch style that supports batch operations,
thus enhancing parallelism and efficiency.

The utilization of Multi-hop Common Neighbors significantly boosts TNCN’s performance, result-
ing in higher scores in temporal link prediction tasks. Furthermore, by employing sparse tensors, our
model achieves substantial reductions in both storage requirements and computational complexity,
thereby decreasing time consumption and enhancing efficiency. We also give a comparison between
our TNCN and traditional NCN in Table 12 in Appendix D.4.

3.3 NCN-based Prediction Head

We finally construct our NCN-based representation as follows. For source and destination nodes, we
perform an element-wise product. For multi-hop CN nodes, we aggregate their embeddings in each
hop with sum pooling.

X! = emb, @ embl, NCN jy(u,v) = &) embl,. 3)
' wGCbej)(u,v)
These embeddings are then concatenated as the final pair-wise representation:
. K
repr(u,v) = [X4, || ([N NCN) (u, 0)]. 4)
i,

We have used ®, @, and || to denote element-wise product, element-wise summation, and concatena-
tion of vectors, respectively. The pair-wise representation repr(u, v) for nodes u and v will be fed to
a projection head to output the final link prediction.

4 Efficiency and Effectiveness of TNCN

In this section, we explore the two principal benefits of TNCN: efficiency and effectiveness. These
advantages are demonstrated through an analysis of two core components within the framework for
temporal graph link prediction: graph representation learning and link prediction methods.

Temporal graph representation learning aims to develop an embedding function, denoted as Emb,
which learns an embedding for each node encoding its structural and feature information within
the graph. Specifically, given a new event represented as (u,v,t), the function Emb leverages
prior events to generate meaningful embeddings. We first categorize graph representation learning
approaches into two types: memory-based and k-hop-subgraph-based, according to their temporal
scope of evolved events.

Definition 4.1. Memory-based approach. Given a new event (u, v, t), if Emb conforms to the
following form, the method is referred to as a memory-based approach, which opts to maintain a
dynamic, incrementally updated embedding for each node.

Emb(u,t) = fo(Mem(u,t")), Embv,t) = fou(Mem(v,t')), 5)

where the M em can be obtained from the pipeline in Definition 2.4, and f,,,;, is a learnable function.

Definition 4.2. k-hop-subgraph-based approach. Given a new event (u, v, t), if E'mb conforms to
the following form, the method is defined as a subgraph-based approach, which chooses to recalculate
node embeddings by considering the entire historical events.

Emb(u,t) = femb(g5,<t)7 Emb(v,t) = femb(gf,<t)7 (6)
K
where G _, is a subgraph induced from G by node u’s k-hop temporal neighborhood kL—JO Ni(u),
containing only the edges (events) with time ¢’ < ¢, and f,,, is a learnable function.

4.1 Effectiveness

The analysis begins by assessing the effectiveness of the two paradigms. To do so, we first introduce
the concept of k-hop event [18].

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

Definition 4.3. k-hop event & monotone k-hop event. A k-hop event is a sequence of consecutive
edges {(us, Wit1,tu;uip,) |4 € {0,...,k — 1}, k > 1} connecting the initial node w to the final
node uy. For example, {(u,x,t'), (z,v,t)} is a 2-hop event. In the case where k = 1, the k-hop
event reduces to a single interaction (u, v, t). A monotone k-hop event is a k-hop event in which the
sequence of timestamps {t, ,., | € {0,...,k — 1}, k > 1} is strictly monotonically increasing.

Then, we analyze the expressiveness of the two approaches in terms of encoding k-hop event.
Theorem 4.4. (Ability to encode k-hop events). Given a k-hop event {(u;, Uit1,tu, u,,) | 1 €
{0,...,k — 1}, k > 1}, if the node embedding of ug at time t,,, ., can be reversely recovered from
the encoding Enc({(u;, Wit1,tu, uiyy) | @ € {0,...,k — 1}, k > 1}), then we say the encoding
function Enc is capable of encoding the k-hop event. The following results outline the encoding
capabilities of different learning paradigms:

e Memory-based approaches can encode any k-hop events with k = 1.
e Memory-based approaches can encode any monotone k-hop events with arbitrary k.
e k-hop-subgraph-based approaches can encode any k'-hop events with k' < k.

The proof is in Appendix I. From Theorem 4.4, we can conclude that 1) memory-based approaches
have superior expressiveness in encoding k-hop events compared to 1-hop-subgraph-based ap-
proaches, and 2) memory-based approaches have superior expressiveness in encoding monotone
k-hop events than &’-hop-subgraph-based approaches when &k’ < k.

While the memory-based approach does not consistently rival the expressiveness of the k-hop-
subgraph paradigm, it possesses advantages in monotone events and long-history scenarios (where
k-hop subgraphs would be unaffordable to extract).

Corollary 4.5. If we use up to k hop neighborhood information of central node u, then TNCN can
capture at least (k + 1)-hop subgraph information around u.

This is because TNCN with memory-based backbone can obtain additional 1-hop information
regardless of the time monotony, i.e. arbitrary central node can interact with its neighbor when the
edge between them exists. This can extend TNCN’s capability for free.

We also demonstrate the effectiveness of TNCN in the following theorem 4.6 with the proof in
Appendix I. The first part shows that it can capture three important pairwise features commonly used
as effective link prediction heuristics, namely Common Neighbors (CN), Resource Allocation (RA),
and Adamic-Adar (AA) [19-21]. The experimental results in Appendix D further validate this claim.
In the second part we reveal that TNCN is strictly more expressive than some traditional temporal
graph networks including Jodie [2], DyRep [3], TGN [4] and TGAT [6] under the same condition,
which are widely used as baselines.

Theorem 4.6. (Expressivity of TNCN)
1. TNCN is strictly more expressive than CN, RA, and AA.

2. TNCN is strictly more expressive than Jodie with the same dimension of time encoding, DyRep
with the same aggregation function, TGAT with the same attention layers and neighbors, and
TGN under identical condition for all module choices.

From this theorem we can find that TNCN extends the previous generic memory-based framework of
temporal graph networks with explicitly adopting the neural embeddings of common neighbors. This
method can serve as a complementary addition for learning pair-wise representations.

4.2 Efficiency

We then turn our attention to the efficiency of the two approaches. A pivotal factor is the frequency
with which individual events are incorporated into computations. In memory-based approaches,
each event is utilized a single time for learning, immediately following its associated prediction.
Conversely, in the k-hop-subgraph-based method, an event may be employed multiple times, as
it is revisited in different nodes’ temporal neighborhood and repeated been processed within each
subgraph’s encoding (such as message passing) process. This discrepancy leads to divergent cumula-
tive frequencies of event utilization throughout the learning process, resulting in the huge efficiency
advantage of memory-based methods. We formalize this observation as:

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

Theorem 4.7. (Learning method time complexity). Denote the time complexity of a learning method
as a function of the total number of events processed during training. For a given graph G with the
number of nodes designated as |N'| and the number of edges as |E|, the following assertions hold:

 For memory-based approaches, the time complexity is © (|€]).

e For k-hop-subgraph-based approaches with k = 1, the lower-bound time complexity is §) (%),

and the upper-bound time complexity is O (% + |E|IN |)

e For k-hop-subgraph-based approaches with k = 2, the upper-bound time complexity is

o((fjﬂgﬂNf).

The proof is attached in Appendix I with part of the proof based on a classic conclusion from de
Caen [22] in the graph theory. Following Theorem 4.7, it becomes evident that the computational
overhead incurred by a memory-based method is significantly lower than that of a subgraph-based
method, particularly as k increases. These results highlight the advantages of memory-based methods
in mitigating the computational efficiency challenges associated with large-scale temporal graphs.

So based on the memory backbone, our TNCN furthur utilizes an efficient CN extractor, eliminating
the necessity for message passing on entire graphs. Consequently it achieves a unified optimization
objective: to avoid message passing on entire subgraphs in favor of non-repetitive operations.

To summarize, TNCN introduces the extended common neighbor approach with the efficient CN
extractor. This method serves as a complementarity for learning pair-wise representations, while
culminating in a cohesive solution that is both efficient and effective.

5 Related Work

Memory-based Temporal Graph Representation Learning. Memory-based models learn node
memory using continuous events with non-decreasing timestamps. Researchers have proposed several
memory-based methods including JODIE [2], DyRep [3] and TGN [4]. These methods are superior
in higher efficiency, while lacking in capturing structural information.

Graph-based Temporal Graph Representation Learning. Subsequent works have incorporated
the neighborhood structure into temporal graph learning. CNE-N [23] employs a hash table to map
interactions and computes co-neighbor encodings to predict future links. Unlike our TNCN which
directly utilizes CN embeddings in prediction, CNE-N simply counts neighbor numbers. Additionally,
while CNE-N manages recent interactions through hash tables, TNCN adopts a monotonic storage
scheme. NAT [10] similarly builds a multi-hop node dictionary to compress neighbors, but it may
suffer from hash collisions. DyGFormer [11] encodes one-hop neighbors and their co-occurrences,
then uses a Transformer for predictions, requiring repeated neighborhood sampling and computations.
It only models 1-hop neighbor frequency and does not use CN embeddings. In contrast, TNCN
supports multi-hop neighbors and includes their embeddings, enabling richer representations.

We also include detailed introduction to more related works in Appendix B.

6 Experiments

This section assesses TNCN'’s effectiveness and efficiency by answering the following questions:

Q1: What is the performance of TNCN compared with state-of-the-art baselines?
Q2: What is the computational efficiency of TNCN in terms of time consumption?
Q3: Do the extended common neighbors bring benefits to original common neighbors?

6.1 Experimental Settings

Datasets. We evaluate our model on five large-scale real-world datasets for temporal link prediction
from the Temporal Graph Benchmark [24]. These datasets span several distinct fields: co-editing
network on Wikipedia, Amazon product review network, cryptocurrency transactions, directed reply
network of Reddit, and crowdsourced international flight network. They vary in scales and time spans.

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

Table 1: Test Performance of different models under MRR metric. The top three are emphasized by
red, blue and bold fonts. ‘-’ denotes scenarios where a specific method was either not applied to the
dataset or was unable to complete the validation and testing phases within a reasonable timeframe.

Model Wiki Review Coin Comment Flight
JODIE 0.631 £1.69 0.414 £0.15 - - -
DyRep 0.519+195 0401 +0.59 0452+4.60 0.289 £330 0.556=+1.40
TGAT 0599 £1.63 0.196 £0.23 0.609 +0.57 0.562 £ 2.11 -
TGN-official 0.528 £0.06 0.387£0.02 0.737+£0.03 0.622 +£0.02 0.705 £ 0.02
TGN-ns 0.689 £0.53 0.375£0.23 0.586+3.70 0.379 £2.10 -
CAWN 0.730 £0.60 0.193 £0.10 - - -
EdgeBank(tw) 0.633 0.029 0.574 0.149 0.387
EdgeBank(un) 0.525 0.023 0.359 0.129 0.167
TCL 0.781 £0.20 0.165+1.85 0.687+0.30 0.701 £0.83 -
GraphMixer 0.598 £0.39 0.369£1.50 0.756 £0.27 0.762 £ 0.17 -

NAT 0.749 £1.00 0.341 £ 2.00 - - -
DyGFormer 0798 £042 0.224+1.52 0.752+0.38 0.670 £0.14 -
CNE-N 0.802 £0.20 0.261 £0.25 0.772+0.21 0.790 £ 0.14 -
TPNet 0.827 £ 0.01 - 0.832 £0.01 0.825£0.06 0.884 £+ 0.01
TNCN-official 0.724 £0.01 0.419£0.09 0.770£0.06 0.727 £0.12 0.817 + 0.04
TNCN-ns 0.803 £0.01 0.427£0.06 0.771 +0.04 0.705+£0.12 0.831 £0.03

Additional details about the datasets are provided in Appendix A. We set the evaluation metric as
Mean Reciprocal Rank (MRR) consistent with the TGB official leaderboard.

Baselines. We systematically evaluate our proposed model TNCN against a diverse set of baselines:
a heuristic algorithm Edgebank [11], memory-based models Jodie [2], DyRep [3] and TGN [4] that
obviate the need for frequent temporal subgraph sampling, and GraphMixer [25] which employs an
MLP-mixer. We also include various graph-based models such as CAWN [9], TGAT [6], TCL [5],
NAT [10], DyGFormer [11], CNE-N [23] and TPNet [26], which learn from neighborhood structure
information.

Here we evaluate our TNCN under two similar but different settings, the official setting (“official”)
and the new setting (“ns”). “*-official” strictly complies to the official setting of TGB evaluation
policy, using both streaming setting and lag-one scheme for both memory update and neighborhood
awareness. Streaming setting means the information of the validation and test sets can only be
employed for updating the memory without any back propagation. Lag-one scheme implies that
the model can access only the information from before the current batch for predictions; in other
words, the latest usable batch is the previous one. This applies to not only the memory, but also
the neighborhood awareness. “*-ns” obeys the streaming setting but considers the interactions
within the same batch before the current prediction time. This allows the model to utilize more
recent neighborhood information, potentially giving it unfair advantages in datasets where recent
interactions are crucial. Methods “*-official” use the former setting while others report the latter. For
a fair evaluation and comparison, here we display the performance of our TNCN under both settings.

6.2 Experimental Results

Reply to Q1: TNCN possesses remarkable performance. We conducted comprehensive evaluations
of prevailing methods on TGB. The main results are summarized in Table 1. It is evident from the table
that TNCN attains new SOTA performance on Review dataset. Additionally, TNCN demonstrates
competitive results on the remaining datasets, ranking 2nd or/and 3rd on Wiki, Coin and Flight.
TNCN almost consistently surpasses both memory-based models such as TGN and DyRep, and
graph-based methods like DyGFormer and NAT. The dataset where TNCN still exhibits a large gap
from the top-three baselines is Comment. This may be ascribed to the high “surprise index” of this
non-bipartite dataset, wherein prior events have a diminished correlation with subsequent events,
potentially reducing the impact of CNs. (More details about Surprise index are in Appendix A.)

To obtain a more comprehensive evaluation, we have also conducted experiments on the previous
small and medium datasets under both transductive and inductive settings. In these experiments,
TNCN achieves 6 new SOTA out of 7 datasets in transductive setting and 3 in inductive setting,

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

B Train
71 mmm validation
B Test

Time(s)

DyRep CNE-N TCL GraphMixer TGAT DyGFormer CAWN

(a) tgbl-wiki (log scale)

80000 | mmm Train
mmm Validation
70000 1 mmm Test

60000 -

50000 -

Time(s)

E 40000
30000
20000

10000 1

TGN TNCN DyRep CNE-N TCL GraphMixer TGAT DyGFormer CAWN

(b) tgbl-review (linear scale)

Figure 3: Time Consumption of Memory and Graph-based Method on Wiki and Review Datasets.

further facilitating its strong performance. The overall performance and some additional results (such
as TGN with heuristics, efc.) can be referred to Appendix D.

Reply to Q2: TNCN shows great scalability on large datasets. To evaluate computational efficiency,
we collected the time consumption on Wiki and Review datasets, as depicted in Figure 3. Compared
with memory-based methods, TNCN exhibits a comparable order of magnitude in terms of time
consumption. However, when benchmarked against graph-based models, TNCN demonstrates a
substantial acceleration, achieving approximately 2.5 to 5.9 times speedup during the training phase
and a 1.8 to 30.3 times increase in inference speed. In the Table 13 we provide a full comparison of the
time consumption for different models over the five TGB datasets. Notably, the scalability concerns
become even more evident as the size of the dataset expands; several graph-based models cannot
complete the validation and testing processes within a reasonable time budget. The primary factors
contributing to TNCN’s efficiency are the synergistic, time-efficient design of its two core components
and the implementation of the Efficient CN Extractor that facilitates batch operations through parallel
processing. For detailed statistics about TNCN and NAT, please refer to Appendix E.1.

6.3 Ablation Study

Reply to Q3: Extended CN brings improvements. To elucidate the benefits of extended CN, we
conducted an ablation study under official setting on the hop range of common neighbors. The results
are shown in Table 2. Here we use notation "k-hop CN" to simply denote the CNs up to (k, k)-hop.
The conventional NCN method considers only (1,1)-hop CN. However, this approach may not be
universally applicable across all temporal networks. For instance, bipartite graphs lack such (1,1)-hop
CN in their structure, necessitating the consideration of 2-hop CN. Additionally, memory-based
methods may omit a notable aspect: they generally find it difficult to quantify the frequency of
interactions between a given pair of nodes, which brings the need for 0-hop neighborhood.

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

Table 2: Test performance of TGN and TNCN with different ranges of common neighbors.

Model Wiki Review Coin Comment

TGN 0.528 0.387 0.737 0.622
TNCN-1-hop-CN 0.621 0.419 0.737 0.641
TNCN-0O~1-hop-CN 0.720 0.298 0.739 0.727
TNCN-0~2-hop-CN 0.724 0.317 0.770 0.662

To address these limitations, we have expanded the original (1,1)-hop CN to O~k-hop CN. The results
indicate that TNCN utilizing O~ 1-hop CN markedly surpasses the (1,1)-hop CN on various datasets.
This enhancement underscores the significance of the introduced 0-hop neighbors to our architecture.
Nevertheless, the inclusion of 2-hop CN yields mixed results across datasets. We also show the result
of TNCN without temporal NCN module (which is TGN), revealing the effectiveness of this module.

We have also conducted experiments for parameter analysis. Please refer to Appendix D.3 for details.

7 Conclusion and Limitation

We propose TNCN for temporal graph link prediction, which employs a temporal common neighbor
extractor combined with a memory-based node representation learning module. TNCN has achieved
new state-of-the-art results on several real-world datasets while maintaining excellent scalability to
handle large-scale temporal graphs.

However, based on our observation of TNCN’s performance on the Comment dataset, there are some
limitations in our model. Specifically, non-bipartite datasets with high surprise values, such as the
Comment dataset, tend to make it more challenging for TNCN to accurately predict the probability
of future connections. This indicates that while TNCN performs well overall, it may struggle with
datasets that exhibit high variability or unexpected patterns. Further research is needed to address
these challenges and improve the model’s robustness in such scenarios.

Acknowledgement

This work is supported by the National Key R&D Program of China (2022ZD0160300) and National
Natural Science Foundation of China (62276003).

References

[1] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61-80, 2008. 2

[2] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory
in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 1269-1278, 2019. 2,3,6,7, 8, 14

[3] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In International conference on learning representations,
2019. 6,7,8, 14

[4] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and
Michael Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv
preprint arXiv:2006.10637, 2020. 2,3, 6,7, 8, 14, 15

[5] Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song,
Jingren Zhou, and Hongxia Yang. Tcl: Transformer-based dynamic graph modelling via
contrastive learning. arXiv preprint arXiv:2105.07944, 2021. 2, 8, 14

[6] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive
representation learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020. 2, 6, 8, 15

[7] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in
neural information processing systems, 31, 2018. 2, 15

10

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

[8] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34:9061-9073, 2021. 2, 15

[9] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. arXiv preprint arXiv:2101.05974,
2021. 2,8, 14

[10] Yuhong Luo and Pan Li. Neighborhood-aware scalable temporal network representation learning.
In Learning on Graphs Conference, pages 1-1. PMLR, 2022. 7, 8, 15

[11] Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New
architecture and unified library. Advances in Neural Information Processing Systems, 36:
67686-67700, 2023. 2,7, 8, 15

[12] Xiyuan Wang, Haotong Yang, and Muhan Zhang. Neural common neighbor with completion
for link prediction. arXiv preprint arXiv:2302.00890, 2023. 2, 15

[13] Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information processing

systems, 29, 2016. 3

[14] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua
Bengio, et al. Graph attention networks. stat, 1050(20):10-48550, 2017.

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017. 3

[16] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked
label prediction: Unified message passing model for semi-supervised classification. arXiv
preprint arXiv:2009.03509, 2020. 3

[17] Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota,
Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec:
Learning a vector representation of time. arXiv preprint arXiv:1907.05321,2019. 3

[18] L. LOV "ASZ, Peter Winkler, Andr “as Luk “acs, and Andrew Kotlov. Random walks on graphs:
A survey. 1993. URL https://api.semanticscholar.org/CorpusID:10655982. 5

[19] Mark EJ Newman. Clustering and preferential attachment in growing networks. Physical review
E, 64(2):025102, 2001. 6, 15

[20] Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social networks, 25(3):
211-230, 2003. 16

[21] Tao Zhou, Linyuan Lii, and Yi-Cheng Zhang. Predicting missing links via local information.
The European Physical Journal B, 71:623-630, 2009. 6, 16

[22] D. de Caen. An upper bound on the sum of squares of degrees in a graph. Discrete Mathematics,
185(1):245-248, 1998. ISSN 0012-365X. doi: https://doi.org/10.1016/S0012-365X(97)00213-6.
URL https://www.sciencedirect.com/science/article/pii/S0012365X97002136.
7,23

[23] Ke Cheng, Peng Linzhi, Junchen Ye, Leilei Sun, and Bowen Du. Co-neighbor encoding schema:
A light-cost structure encoding method for dynamic link prediction. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 421-432, 2024.
7,8, 15

[24] Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele
Rossi, Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Tempo-
ral graph benchmark for machine learning on temporal graphs. Advances in Neural Information
Processing Systems, 2023. 7

[25] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
arXiv preprint arXiv:2302.11636, 2023. 8

[26] Xiaodong Lu, Leilei Sun, Tongyu Zhu, and Weifeng Lv. Improving temporal link prediction via
temporal walk matrix projection, 2024. URL https://arxiv.org/abs/2410.04013. §, 15

11

https://api.semanticscholar.org/CorpusID:10655982
https://www.sciencedirect.com/science/article/pii/S0012365X97002136
https://arxiv.org/abs/2410.04013

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

[27] Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better
evaluation for dynamic link prediction. Advances in Neural Information Processing Systems,
35:32928-32941, 2022. 14

[28] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang,
Ping Cui, Yupu Yang, Bowen Sun, and Zhenyu Guo. Apan: Asynchronous propagation attention
network for real-time temporal graph embedding. In Proceedings of the 2021 International
Conference on Management of Data, SIGMOD/PODS ’21. ACM, June 2021. doi: 10.1145/
3448016.3457564. URL http://dx.doi.org/10.1145/3448016.3457564. 14

[29] Xinshi Chen, Yan Zhu, Haowen Xu, Mengyang Liu, Liang Xiong, Muhan Zhang, and Le Song.
Efficient dynamic graph representation learning at scale. arXiv preprint arXiv:2112.07768,
2021. 14

[30] Yizhou Chen, Anxiang Zeng, Guangda Huzhang, Qingtao Yu, Kerui Zhang, Cao Yuanpeng,
Kangle Wu, Han Yu, and Zhiming Zhou. Recurrent temporal revision graph networks, 2023. 14

[31] Hongkuan Zhou, Da Zheng, Xiang Song, George Karypis, and Viktor Prasanna. Disttgl:
Distributed memory-based temporal graph neural network training. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1-12,2023. 14

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017. 15

[33] Yuxing Tian, Yiyan Qi, and Fan Guo. Freedyg: Frequency enhanced continuous-time dy-
namic graph model for link prediction. In The Twelfth International Conference on Learning
Representations. 15, 16

[34] Harry Shomer, Yao Ma, Haitao Mao, Juanhui Li, Bo Wu, and Jiliang Tang. Lpformer: An
adaptive graph transformer for link prediction. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, volume 35 of KDD 24, page 2686-2698.
ACM, August 2024. doi: 10.1145/3637528.3672025. URL http://dx.doi.org/10.1145/
3637528.3672025. 15

[35] Tao Zou, Yuhao Mao, Junchen Ye, and Bowen Du. Repeat-aware neighbor sampling for
dynamic graph learning, 2024. URL https://arxiv.org/abs/2405.17473. 15

[36] Dongyuan Li, Shiyin Tan, Ying Zhang, Ming Jin, Shirui Pan, Manabu Okumura, and Renhe
Jiang. Dyg-mamba: Continuous state space modeling on dynamic graphs, 2024. URL https:
//arxiv.org/abs/2408.06966. 15

[37] Xuanwen Huang, Wei Chow, Yize Zhu, Yang Wang, Ziwei Chai, Chunping Wang, Lei Chen,
and Yang Yang. Enhancing cross-domain link prediction via evolution process modeling.
In Proceedings of the ACM on Web Conference 2025, WWW 25, page 2158-2171, New
York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400712746. doi:
10.1145/3696410.3714792. URL https://doi.org/10.1145/3696410.3714792. 15

[38] Haoyang Li, Yuming Xu, Yiming Li, Hanmo Liu, Darian Li, Chen Jason Zhang, Lei Chen, and
Qing Li. When speed meets accuracy: an efficient and effective graph model for temporal link
prediction, 2025. URL https://arxiv.org/abs/2507.13825. 15

[39] Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39-43,
1953. 15

[40] Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd, et al. The pagerank citation
ranking: Bringing order to the web. 1999. 15, 16

[41] Shuming Liang, Yu Ding, Zhidong Li, Bin Liang, Yang Wang, Fang Chen, et al. Can gnns learn
heuristic information for link prediction? 2022. 15

[42] Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang, and Hyunwoo J Kim. Neo-gnns:
Neighborhood overlap-aware graph neural networks for link prediction. Advances in Neural
Information Processing Systems, 34:13683—13694, 2021. 15

[43] Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Yannick Hammerla, Michael M Bronstein, and Max Hansmire. Graph neural
networks for link prediction with subgraph sketching. In The eleventh international conference
on learning representations, 2022. 15, 16

12

http://dx.doi.org/10.1145/3448016.3457564
http://dx.doi.org/10.1145/3637528.3672025
http://dx.doi.org/10.1145/3637528.3672025
https://arxiv.org/abs/2405.17473
https://arxiv.org/abs/2408.06966
https://arxiv.org/abs/2408.06966
https://doi.org/10.1145/3696410.3714792
https://arxiv.org/abs/2507.13825

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

[44] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: A general graph neural network framework for link prediction. Advances in Neural
Information Processing Systems, 34:29476-29490, 2021. 15

[45] Haitao Mao, Juanhui Li, Harry Shomer, Bingheng Li, Wenqi Fan, Yao Ma, Tong Zhao,
Neil Shah, and Jiliang Tang. Revisiting link prediction: A data perspective. arXiv preprint
arXiv:2310.00793,2023. 15

[46] Juanhui Li, Harry Shomer, Haitao Mao, Shenglai Zeng, Yao Ma, Neil Shah, Jiliang Tang, and
Dawei Yin. Evaluating graph neural networks for link prediction: Current pitfalls and new
benchmarking. Advances in Neural Information Processing Systems, 36, 2024. 15

[47] Albert-Laszl6 Barabdsi and Réka Albert. Emergence of scaling in random networks. Science,
286(5439):509-512, 1999. doi: 10.1126/science.286.5439.509. URL https://www.science.
org/doi/abs/10.1126/science.286.5439.509. 16

[48] Glen Jeh and Jennifer Widom. Scaling personalized web search. In Proceedings of the 12th
international conference on World Wide Web, pages 271-279, 2003. 16

[49] SN Perepechko and AN Voropaev. The number of fixed length cycles in an undirected graph.
explicit formulae in case of small lengths. Mathematical Modeling and Computational Physics
(MMCP2009), 148, 2009. 19

13

https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://www.science.org/doi/abs/10.1126/science.286.5439.509

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

A Datasets

Table 3 shows some detailed datasets statistics of TGB and 4 shows several temporal graph datasets
commonly used by previous work. Through the two tables we can observe that TGB official datasets
possess temporal graphs with larger scale to 10 million, 10 times surpassing the largest previous
datasets such as LastFM. With the aim to examine our TNCN model’s efficiency, we choose the
increasingly accepted datasets TGB in the main table.

Table 3: TGB Dataset Statistics.

Dataset Domain Nodes Edges Steps Surprise Edge Properties

tgbl-wiki interact 9,227 157,474 152,757 0.108 W: x,Di: vV, A: V
tgbl-review rating 352,637 4,873,540 6,865 0.987 W: v, Di: v, A: x
tgbl-coin transact 638,486 22,809,486 1,295,720 0.120 W: v, Di: v, A: x
tgbl-comment social 994,790 44,314,507 30,998,030 0.823 W:v,Di: vV, A: vV
tgbl-flight traffic 18143 67,169,570 1,385 0.024 W: x,Di: vV, A: V

Here “Surprise index” [27] refers to the ratio of test edges that are not seen during training, which
can be calculated as W Low surprise index implies that memory-based methods such as

Edgebank [27] may potentlally achieve good performance, while high surprise may require more
inductive capability. The surprise index varies across TGB datasets.

Table 4: Previous Dataset Statistics.

Datasets Domains Nodes Links N&L Feat Bipartite Duration ~ Unique Steps Time Granularity

Wikipedia Social 9,227 157,474 - & 172 v 1 month 152,757 Unix timestamps
Reddit Social 10,984 672,447 - & 172 v 1 month 669,065 Unix timestamps
MOOC Interaction 7,144 411,749 -&4 v 17 months 345,600 Unix timestamps
LastFM Interaction 1,980 1,293,103 -& - v 1 month 1,283,614 Unix timestamps
Enron Social 184 125,235 -& - X 3 years 22,632 Unix timestamps
UCI Social 1,899 59,835 -& - X 196 days 58,911 Unix timestamps

B Related Work
B.1 Memory-based Temporal Graph Representation Learning

Temporal graph learning has garnered significant attention in recent years. A classic approach in this
domain involves learning node memory using continuous events with non-decreasing timestamps.
Kumar et al. [2] propose a coupled recurrent neural network model named JODIE that learns
the embedding trajectories of users and items. Another contemporary work DyRep [3] aims to
efficiently produce low-dimensional node embeddings to capture the communication and association
in dynamic graphs. Rossi et al. [4] introduces a memory-based temporal neural network known
as TGN, which incorporates a memory module to store temporal node representations updated
with messages generated from the given event stream. Apan [28] advances the methodology by
integrating asynchronous propagation techniques, markedly increasing the efficiency of handling
large-scale graph queries. EDGE [29] emerges as a computational framework focusing on increasing
the parallelizability by dividing some intermediate nodes in long streams each into two independent
nodes while adding back their dependency by training loss. Chen et al. [30] extend the update method
for the node memory module, introducing an additional hidden state to record previous changes
in neighbors. Complementing these efforts, additional contributions such as Edgebank [27] and
DistTGL [31] have been directed towards formalizing and accelerating memory-based temporal
graph learning methods.

B.2 Graph-based Temporal Graph Representation Learning

Subsequent works have incorporated the temporal neighborhood structure into temporal graph
learning. CAWN [9] employs random anonymous walks to model the neighborhood structure. TCL
[5] samples a temporal dependency interaction graph that contains a sequence of temporally cascaded

14

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

chronological interactions. TGAT [6] considers the temporal neighborhood and feeds the features into
a temporal graph attention layer utilizing a masked self-attention mechanism. NAT [10] constructs
a multi-hop neighboring node dictionary to extract joint neighborhood features and uses RNN
to recursively update the central node’s embedding. DyGFormer [11], instead, leverages one-hop
neighbor embeddings and the co-occurrence of neighbors to generate features, which are well-patched
and subsequently fed into a Transformer [32] decoder to obtain the final prediction. FreeDyG [33]
also utilizes historical interaction frequency akin to DyGFormer, afterwards transforming it with
Fast Fourier Transform (FFT) and IFFT through the frequency domain. LPFormer [34] attempts to
adaptively learn the pairwise encodings via graph attention module, utilizing relative position, ppr
value and neighboring information to obtain the score. CNE-N [23] uses a hash table to map an
interaction event to its position. It calculates the co-neighbor encoding for each (neighbor - end node)
pair within the local subgraph, recording the number of their common neighbors. These information
are then concatenated to predict the probability of the future link. TPNet [26] constructs temporal
walk matrices via random propagation to simultaneously consider both temporal and structural
information. Pairwise and auxiliary feature are then decoded to make the prediction. Another work
RepeatMixer [35] pays more attention to the repeat-aware neighbors. Such neighbor sequences are
then leveraged and adaptively aggregated to learn the temporal patterns. DyG-Mamba [36] introduces
SSM to dynamic graph learning. It first extracts the first-hop interaction sequence between the given
node pairs and encodes them. The time-span encoding between any two continuous timestamps are
also computed, serving as control signals for the continuous SSM to obtain the final representation.
CrossLink [37] represents the graph evolution by a sequence of temporal events, where each event
representation is obtained from a graph encoder. It finally utilizes a decoder-only transformer to
model the sequence and predicts the next token, i.e. the link existence. EAGLE [38] aggregates
the most recent neighbors of a central node and leverage temporal personalized PageRank value to
capture the structural pattern, afterwards using adaptive weights to dynamically merge these features
to get the prediction result.

B.3 Link Prediction Methods

Link prediction is a fundamental task in graph analysis, aiming to determine the likelihood of a
connection between two nodes. Early investigations posited that nodes with greater similarity tend to
be connected, which led to a series of heuristic algorithms such as Common Neighbors, Katz Index,
and PageRank [19, 39, 40]. With the advent of GNNs, numerous methods have attempted to utilize
vanilla GNNs for enhancing link prediction, revealing sub-optimal performance due to the inability to
capture important pair-wise patterns such as common neighbors [7, 8, 41]. Subsequent research has
focused on infusing various forms of inductive biases to retrieve intricate pair-wise relationships. For
instance, SEAL [7], Neo-GNN [42], and NCN [12] have integrated neighbor-overlapping information
into their design. BUDDY [43] and NBFNet [44] have concentrated on extracting higher-order
structural information. Additionally, Mao et al. [45], Li et al. [46] have contributed to a more unified
framework encompassing different heuristics.

C TNCN Model Configuration

Network Choice. In our experiment, the changeable neural networks are chosen as follows:

In Memory Module, we choose Identity as msgfunc and GRU as upd. In inference stage we process
node memory with Graph Attention Embedding to get the temporal representation. As for Prediction
Head, we finally choose M LP as the repr function.

Hyper-parameter. Several detailed hyper-parameters for TNCN are shown in Table 5, which can
help researchers to reproduce the experiment performance as reported in this paper.

D Additional Experimental Results
D.1 Transductive and Inductive Experiments on Previously Small and Medium Datasets

In addition to the large-scale TGB dataset, we also conduct experiments on some traditional small and
medium datasets previously used in dynamic graph link prediction. We follow TGN [4] to evaluate
different models under both transductive and inductive settings. The transductive setting deal with the

15

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

Table 5: Some Experiment Hyper-parameters.

Dataset num_neighbors num_epoch patience mem_dim emb_dim time_dim
Wiki 15 20 5 184 184 100
Review 15 10 3 184 184 100
Coin 10 5 3 100 100 100
Comment 10 3 2 100 100 100

future links between previously observed nodes in the training stage, and the inductive setting predicts
link existence between unseen nodes. We compare TNCN with the aforementioned baselines with
the addition of FreeDyG [33], which is also a competitive method in temporal graph link prediction.
The overall performance of TNCN and different models are in Table 6.

From Table 6 we can find that TNCN achieves 6 new SOTA out of 7 datasets in transductive setting
and 3 in inductive setting, furthur uncovering the strong performance of our model.

Table 6: Average Precision (AP) under Transductive and Inductive settings on small and medium
dataset. The best is in bold font, and the second is underlined. (“Trans” and “Ind” are the abbreviation
for transductive and inductive respectively.)

Setting ‘ Method Wikipedia Reddit Mooc Lastfm Enron Social Evo. UcCI Avg. Rank

CAWN 98.624+0.05 98.66+£0.09 80.15+0.25 86.99+£0.06 89.56+0.09 84.96+0.09 95.18+0.06 8.71
JODIE 96.15+0.36 97.20+£0.05 80.23+2.44 70.85+2.13 84.77+0.30 89.89+0.55 89.43+1.09 11.57
DyRep 95.81+0.15 98.00£0.19 81.97+0.49 71.924+2.21 82.38+3.36 88.87+0.30 65.14+2.30 11.86
TGAT 96.944+0.06 98.52+£0.02 85.84+0.15 73.42+£0.21 71.12+0.97 93.16£0.17 79.63+0.70 10.43
NAT 98.684+0.04 99.10£0.09 86.54+0.02 88.56+0.02 92.42+0.09 94.43+1.67 94.37+0.21 6.29
TCL 96.47+0.16 97.53+0.02 82.38+0.24 67.274+2.16 79.70+0.71 93.13+0.16 89.57+1.63 11.29
DyGFormer 99.03+0.02 99.22+0.01 87.524+0.49 93.00+£0.12 92.47+0.12 94.73+£0.01 95.7940.17 4.64
Trans FreeDyG ~ 99.26+0.01 99.4840.01 89.61£0.19 92.154+0.16 92.51£0.05 94.914+0.01 96.28+0.11 3.14
TPNet 99.32+0.03 99.27+£0.01 96.3940.09 94.50£0.08 92.904+0.17 94.73+0.02 97.35+0.04 221
EdgeBank 90.37+0.00 94.864+0.00 57.97+0.00 79.294+0.00 83.53+£0.00 74.954+0.00 76.20-0.00 12.43
GraphMixer 97.25+0.03 97.31+£0.01 82.78+0.15 75.61£0.24 82.25+0.16 93.37+£0.07 93.25+0.57 9.71
CNE-N 99.0940.04 99.224£0.01 94.18+0.07 93.55£0.12 92.48+0.10 94.60£0.03 96.85+0.08 3.64
TGN 98.57+0.05 98.70+£0.03 89.15+1.60 77.07+3.97 86.53+1.11 93.57+0.17 92.34+1.04 7.57
TNCN 99.03+0.02 99.79+0.02 96.69+0.04 98.65+0.06 97.08+0.14 99.95+0.04 97.44+0.08 1.50

CAWN 98.24+0.03 98.19+£0.03 81.42+0.24 89.42+0.07 86.35+0.51 79.94+0.18 92.73+0.06 7.71
JODIE 94.82+0.20 96.50+0.13 79.63+1.92 81.61+3.82 80.72+1.39 91.964+0.48 79.86+1.48 10.00
DyRep 92.43+0.37 96.09+0.11 81.07+0.44 83.02+1.48 74.55+3.95 90.04+0.47 57.48+1.87 11.29
TGAT 96.224£0.07 97.09+0.04 85.50+0.19 78.63+0.31 67.05+1.51 91.414+0.16 79.54+0.48 10.50
NAT 98.55+0.09 98.56+£0.21 78.16+0.01 85.91+£0.02 94.94+1.15 95.16+0.66 92.58+1.86 5.71
TCL 96.22+0.17 94.09+0.07 80.60+0.22 73.53+1.66 76.14+0.79 91.554+0.09 87.364+2.03 10.93
DyGFormer 98.59+0.03 98.84+0.02 86.96+0.43 94.23+0.09 89.76+0.34 93.144+0.04 94.54+0.12 4.71
Ind FreeDyG ~ 98.97+0.01 98.914+0.01 87.75+£0.62 94.894+0.01 89.69+0.17 94.76+0.05 94.85+0.10 3.14
TPNet 98.91+0.01 98.86+0.01 95.07+0.26 95.364+0.11 90.344+0.28 93.2440.07 95.7440.05 2.43
EdgeBank / / / / / / / /
GraphMixer 96.65+0.02 95.26+0.02 81.41+£0.21 82.11+0.42 75.88+0.48 91.86+0.06 91.19+0.42 9.43
CNE-N 98.37+0.03 98.78+£0.01 91.894+0.31 94.64+0.12 89.66+0.22 93.29+0.37 95.03+0.16 4.00
TGN 97.83+£0.04 97.50+0.07 89.04+1.17 81.45+4.29 77.944+1.02 90.774+0.86 88.124+2.05 8.57
TNCN 98.31+0.05 99.07+0.02 91.56+0.23 95.74+0.50 92.04+0.22 95.514+0.07 94.57+0.17 2.57

D.2 Comparison with Some Classic Heuristic Methods

We exhibits the result between TGN with some classic heuristics and TNCN under official setting on
tgbl-wiki dataset in the Table 7. Here heuristics consist of CN [47], RA [21], AA [20], PPR [40, 48]
and ELPH [43]. In these heuristic methods, the heuristic statistics are concatenated with TGN
embedding to obtain final predictions. From the table we can see that these basic heuristics such
as CN and RA do not bring performance improvement. However, some sophisticated heuristics
like graph sketching in ELPH can enhance the backbone’s capability. Nevertheless, using these
heuristics cannot outperform a more generalized model like our TNCN, which comprehensively takes
neighborhood nodes’ representations into account.

D.3 Detailed Statistics of Parameter Analysis

Here we provide some results on parameter analysis of our TNCN model. Figure 4 (a) illustrates the
model performance under different numbers of neighbors. Incorporating more recent neighbors can
retain richer information, while it may bring about some irrelevant noise. We can find that the test

16

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

Table 7: Comparison between TGN with heuristics and TNCN on tgbl-wiki Dataset.

Model Val MRR Test MRR Training Time (s) Inference Time (s)
TGN 0.569 0.528 10.33 98.74
TGN-CN 0.561 0.505 12.33 106.21
TGN-RA 0.563 0.511 16.51 115.04
TGN-AA 0.565 0.517 11.42 115.01
TGN-PPR 0.521 0.427 207.01 327.22
TGN-ELPH 0.715 0.681 240.92 1614.86
TNCN 0.742 0.724 21.45 250.49

mrr increases as num_neighbors rises from a small value, but it declines after a certain threshold. In
Figure 4 (b), we examine how the embedding and memory dimension affect the final performance.
A similar trend is observed for this parameter. On the other hand, both the training and test time
consistently increase with the parameter values becoming larger. This phenomenon is revealed in the
Tables 8 to 11. In Table 8 and 9, we show the detailed MRR and time consumption of our TNCN
with different numbers of neighbors over Wiki and Coin dataset. In Table 10 and 11 we show how
the embedding and memory dimension influence the final performance. To strike a balance between
the model capability and time consumption, we finally select the intermediate and appropriate values.

0.75 1 -~ Val MRR 0.75 1 -~ Val MRR

0.7408 0.7424 Test MRR 0.7412 Test MRR

0.7402
0.74 40.7379, 73 0.74 w
0.7418 : 0.7404

0.73 A 0.73 A

0.71 A 0.71 4

1’0 1’2 1’4 1’6 1’8 2’0 1(’)0 1%0 1;34 25’)6 53’[2
(a) num_neighbors (b) emb_dim & mem_dim

Figure 4: Parameter Analysis on Wiki Dataset.

Table 8: Performance metrics for different numbers of neighbors on Wiki dataset.

num_neighbors 10 12 15 18 20

Val MRR 0.7379 0.7408 0.7412 0.7362 0.7418
Test MRR 0.7164 0.7193 0.7240 0.7187 0.7183
training time (s) 26.35 27.17 29.49 3032 31.56
test time (s) 378.88 396.75 407.43 413.83 420.22

D.4 Comparison between TNCN and traditional NCN

Here we provide a detailed comparison between our TNCN model and the traditional NCN method
in Table 12.

E Detailed Time and Memory Consumption Statistics
E.1 Time Consumption

Table 13 exhibits the detailed time consumption on TGB datasets with different models. We can
observe that TNCN maintains similar time consumption to memory-based networks while achieving
striking speedup compared with graph-based models.

17

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

Table 9: Performance metrics for different numbers of neighbors on Coin dataset.

num_neighbors 5 8 10 12 15
Val MRR 0.7492 0.7378 0.7430 0.7450 0.7406
Test MRR 0.7687 0.7619 0.7701 0.7662 0.7601
training time (s) 5936.19 6129.33 6406.00 6911.00 7529.01
test time (s) 56605.45 57117.99 57292.00 57745.00 57925.00

Table 10: Performance metrics for different embedding and memory dimensions on Wiki dataset.

emb_dim&mem_dim 100 150 184 256 512

Val MRR 0.7402 0.7373 0.7412 0.7426 0.7404
Test MRR 0.7178 0.7159 0.7240 0.7224 0.7235
training time (s) 2234 2547 2949 32.81 34.95

test time (s) 378.28 399.77 407.43 42045 459.86

Comparison between TNCN and NAT Here we also show some experimental results in Table 14
for the comparison between TNCN and NAT model. The hardware we use is NVIDIA GeForce RTX
2080 as NAT’s code isn’t compatible with higher version. Note that NAT model exposes a backward
as its instability, accomplishing about only 1/3 experiments when we test it.

E.2 Memory Consumption

In Table 15 we have shown the memory cost of different methods on TGB datasets. On most
of them (except Review) we can observe that TNCN takes similar GPU memory consumption to
memory-based networks while occupying significant less memory than graph-based models.

E.3 Overall Comparison between Performance and Time/Memory Consumption

Here we provide a scatter plot to compare different methods between the final performance and the
time/memory consumption. Figure 5 (a) shows the result on Wiki, and Figure 5 (b) on Coin. From
these scatter plots, we can obtain a more intuitive perception that TNCN can better achieve a balance
between the final performance and time/memory consumption.

Performance v.s. Time Consumption on Wiki

Perform Time Consumption on C:
0.85 0.80
CNE-N NCN
CNEN _TNCN DyGFormer @] phMixe
0.80 7 o @ TCL 0.75+ TGN
® [0) DyGFormer
2000 18000
0.754 CAvN 0.70 ch
z O 6000 =
g 4 16000
2 0.701 = = 0.65
] 3 &
2 065 z £ 0.60 O 14000 2
5 4000 & £ g
g
E GraphMixer_TGAT = 5 2
£ 0,601 © O 3000 < 0.554 12000
& &
0.55 1 16N 2000 0.50
° DyRep Memory (MB) Memory (MB) 10000
L © s00MB 1000 DyRep 5000 MB
0.50 1 2000 MB 0.45 - [] 10000 MB
4000 MB 15000 MB
7000 MB 18000 MB
0.45 0.40 T
10! 102 10° 104 10° 10° 10° 10 10°
Test Time (s) Test Time (s)
(a) Wiki (b) Coin

Figure 5: Comparison between Performance and Time/Memory Consumption.

F Pseudocode of TNCN Pipeline and CN Extraction

Algorithm 1 shows the pseudocode about the pipeline of our TNCN model, and Algorithm 2 for the
procedure of the CN extraction operation.

18

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

Table 11: Performance metrics for different embedding and memory dimensions on Coin dataset.

emb_dim&mem_dim 30 50 100 150 184
Val MRR 0.7387 0.7405 0.7430 0.7436 0.7518
Test MRR 0.7591 0.7606 0.7701 0.7646 0.7699
training time () 6228 6340 6406 6617 6721
test time (s) 56694 57179 57292 58103 59411

Table 12: The comparison of TNCN and NCN.

temporal scenario | backbone arbitrary CN hops | batch-wise CN extraction
NCN | X traditional GNN | X X
TNCN | ¢V memory-based %4 v

G Special Cases Analysis of Common Neighbor Extraction

Here are some special cases while calculating (1, 2), (2, 1) and (2, 2) hop CNs. Under these situations,
utilizing A*[id(u)] naively in step (2) will lead to walk-based neighbors, i.e. Jv,Ji # j,w; =
wj, s.t. (u, wr,ws, -+, Wi_1,v) exists. To obtain a clear version of arbitrary path-based (4, j)-hop
CNs, we should avoid the repetition of neighbors. We take (1, 2) as an example to analyse the detailed
method to eliminate repetition. Cases like (2, 1) and (2, 2) hop can be similarly solved.

Assume that node z is a (1, 2)-hop CN of pair (u,v), thus we know Jw, s.t. (u,z) and (v, w, x)
exist. There are two variants that render to be a walk-based CN instead of a path-based one that we
exactly require.

(@) ¢ = v. When x = v, the local graph has the topology shown in igure 6 a. This situation
should satisfy two conditions: w is a neighbor of v and there are historical interactions between
u and v. Denote the frequency between (u,v) before time ¢ as ¢*(u,v) = |[{(u,v,t')|t’ < t} U
{(v,u,)|t < t}|. So the naively computed CN(th) (u,v)[id(z)] value need to be subtracted by

[>" ¢! (w;,v)] * q*(u,v), i.e. the total interaction frequency of v before time ¢ multiplied by the
w;

frequency between (u, v).

(b) w = u. The structure is exhibited in Figure 6 b. Here (u, v) has historical edges and x is a 1-hop
neighbor of u. The additive substraction value is [>_ ¢! (z, u)?] * ¢* (u, v).

x
(c) Both (1a) and (1b) are satisfied. The ground truth is as Figure 6 c. We just need to add back the
overlap value that have been diminished once more.

Note that the procedure above can only deal with CNs of no more than (2, 2)-hop perfectly. For
higher-order (3, j)-hop CN extraction, please refer to Perepechko and Voropaev [49] for more details
and complicated analysis.

H Case Study
H.1 Two Examples from TGB for Better Understanding TNCN’s Effectivity

In Figure 7, we show two case studies from TGB to give a better understanding of the effectivity of
our TNCN.

Figure (a) shows a case from tgbl-wiki, which is a bipartite graph. The yellow nodes 0 and 15 are a
(u, v) pair. If we use a node-wise method to predict the future link of (0, 15), we can find that node
15 has just 7 neighbors while node 0 has 12. So their properties may be different, thus having less
chance to have an interaction. However TNCN can observe that the blue nodes are their (1, 2)-hop
CNs and purple nodes are the (2, 1)-hop, and it will give a high probability over the existence of the
future link.

Figure (b) shows another case from tgbl-coin. Here we need to predict the link of (1, 8). Here TNCN
can find that these two nodes have multiple variants of common neighbors. Node 3 is their (1, 2)-hop

19

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

Table 13: Time Consumption of different methods on TGB Datasets. All these experiments are
conducted with NVIDIA GeForce RTX 4090.

Model(tr/val/test)(s) Wiki Review Coin Comment Flight
TGN 12/41/43 988/1389/1411 2578/5219/5408 6599/9984/10311 2990/19834/20627
DyGFormer 85/6268/6317 3891/25831/26911 12593/50893/51276 OOM OOM
GraphMixer 27/2385/2425 983/14188/12764 5917/71699/72103 OOM OOM
CNE-N 19/422/424 540/4749/4931 2308/18226/19317 OOM OOM
DyRep 22/27/29 1514/877/916 6305/3821/3746 13701/6419/6587 9352/12188/13112
TGAT 81/6359/6407 2564/33437/34814 25514/73372/73821 OOM OOM
CAWN 173/15690/15881 5692/79566/80717 OOM OOM OOM
TCL 31/680/682 948/9093/9962 4383/52973/54016 OOM OOM
TNCN 33/565/566 971/2626/2701 5926/54765/55177 9828/59439/60163 8209/50533/51064

Table 14: Comparison of Time Consumption between TNCN and NAT.
Dataset Model Train(s) Val(s) Test(s)

tgbl-wiki TNCN 21.45 250.49 251.52
NAT 74.92 298.6 29841

tgbl-review TNCN 1649 4788 4695
NAT 422 7516 7461

tgbl-coin TNCN 4920 28716 28805
NAT 1896 30398 30176

Table 15: Memory Consumption of different methods on TGB Datasets. All these experiments are
conducted with NVIDIA GeForce RTX 4090. (“-” stands for out of memory)

Inference Stage(MB) Wiki Review Coin Comment Flight

TGN 1050 6416 11496 13838 1182
DyGFormer 3174 5512 17428 - -
GraphMixer 4914 5388 17360 - -
CNE-N 1154 4628 16760 - -
DyRep 998 6416 9300 10418 1126
TGAT 5600 6588 18526 - -
CAWN 7656 10898 - - -
TCL 2204 5276 17292 - -
TNCN 1420 9586 11990 13842 1188

Algorithm 1 Pipeline of TNCN

1: for positive batch data (posu, posv, t) do

2 neg_batch <+ negative sampling

3 for batch_data in {pos_data, neg_data} do

4 mem, hist_events <— memory_module(batch_data);

5: > Get node memory and historical interactions
6 emb < transform(mem, hist_events);

7 > Get the node embedding
8 CN_mat < CN_extractor(hist_events);

9: > Obtain the CNs for given node pair in a batch
10: NCN_emb <+ AGG(emb, CN_mat);
11: > Aggregate the embeddings of CNs
12: p < Pred(emb_u, emb_v, NCN_emb);
13: > Calculate the probability of future links
14: end for
15: mem <— memory_update(pos_data);
16: > Update the memory module
17: end for

20

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

Algorithm 2 Procedure of CN Extraction

- Input: Temporal adjacency matrix of node v and v, denoted as A € RN*N and B € RV*N . A

and B are the sub-matrix from the whole adjacency matrix of the temporal graph, containing u, v
and their individual neighbors. N is the total number of their temporal neighbors and themselves.

Output: k;;, hop Common Neighbors of v and v, CNj, € RV,
Stage 1: Generate up to k-hop neighbors.
A« A+I,B+ B+ 1. > add self-loop
Compute A*~! and A*, B*~! and B*. > obtain up to k& — 1/ k hop adjacency matrix
No~r—1(u) = A*=id(u)], No~r(u) = A*[id(u)]. > Similar to v. N(u) € RN
Stage 2: Get 0 ~ k£ — 1 and 0 ~ k£ hop common neighbors.
CNok—1 = Nog—1 (1) © Noog—1(v), >CN e RV
CNo~r; = Nok(u) © Noog (0). > perform sparse matrix hadamard product

: Stage 3: Get exact k-hop common neighbors.

CN, = CNyur, — CNyjo—1. > perform sparse matrix subtraction

: Finally we get the exact k-hop common neighbors between node « and v.

X W

I T
Sl e

@x=v (b) w=u Qzr=v&w=u

Figure 6: Here shows the special cases related to (1,2)-hop CNs computation. Note that the graph is
undirected, while the directed arrows implies the path direction used to determine the corresponding
hop numbers.

‘ol \7

(a) tgbl-wiki (b) tgbl-coin

Figure 7: Two case studies from TGB.

21

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

CN, node 4 and 6 are the (2, 1)-hop, and node 2 is both their (1,1) and (2, 1) hop. The (2, 2)-hop
CNs are node 5 and 7, while node 9 being a special (2, 2)-hop CN that owns a shared 1-hop node 2.
With the abundant CN information, TNCN will be more likely to predict it as a positive future edge.

H.2 Some Statistics about Common Neighbors on Comment Dataset

Here we show some statistics about the structural information of common neighbors on Comment
dataset, which may account for the lower performance of TNCN. We have collected four variants
of statistics including (1) “s-nei/d-nei”: the number of recent neighbors (without repetition) of the
positive src/dst nodes, (2) “cn”: the number of common neighbors of the positive node pairs, and (3)
“prev”: their previous interaction times recently. All the values are the average from the test set. The
statistics are shown in the following Table 16.

Table 16: Statistics about CNs on Comment Dataset. (“’s” stands for the “surprise” event, “ns” for
not-surprise; “p” for the case where the ground-truth event ranks st in our prediction, “np” for not.)

s-nei d-nei cn prev

ssp 843 9.03 0.87 0.39
ssnp 889 878 0.07 0.02
ns-p 7.83 8.05 2.64 0.69

ns-np 8.76 8.88 0.17 0.07

From the table we can find that, although src/dst nodes from both surprise and not-surprise edges
have similar number of neighbors, their common neighbors and the previous contact frequecy are
distinct far away. Nodes from surprising edges always share less CNs and interaction times, making
CN features less effective in the prediction. From another aspect, the successfully predicted events
typically have their nodes with more CNs and historical interactions, which indicates that our TNCN
model may be misled by the node pair with more CNs in the prediction.

I Proofs

In this section, we give proofs on theorems 4.4, 4.7 and 4.6.

Theorem L.1. (Theorem 4.4. Ability of encoding k-hop event). Given a k-hop event
{(wiy Wig1s tuguiyy) |4 €{0,..., k =1}, k > 1}. If the node embedding of ug at time t., .., can be
formally derived by the encoding function Enc({(wu;, wit1,tu, u,.r) | 1 € {0,...,k =1}, k > 1}),
then the learning method is considered capable of encoding the k-hop event. The following outline
the encoding capabilities of different learning schemes:

e Memory-based approach can encode any k-hop events with k = 1.
e Memory-based approach can encode any monotone k-hop events with arbitrary k.

* k-hop-subgraph-based approach can encode any k'-hop events with k' < k

Proof. In the following analysis, we establish the encoding efficacy of the memory-based approach.
Consider a k-hop event with the simplifying assumption that £ = 1, which reduces the event to the
tuple (ug, U1, tyg,u,)- By adhering to the predefined schematics of the memory-based methodology,
the memory state Mem(ug, ty, u,) is updated via the function fy.n, such that Mem(ug, tygu,) =

tug,u . .
Smem(Mem(uo,t'), eugut s tug,uy, — t'). Let us denote the encoding function as Enc =
Fmem(Mem(ug,t'),...). It is our intention to demonstrate that this memory-based framework is
capable of encoding any k-hop event for k = 1.

We consider the encoding of an arbitrary monotonically increasing k-hop temporal event sequence
within a memory-based approach. The induction principle is applied to demonstrate the capability of
this approach. For the base case, k = 1, the encoding has been shown to be feasible. Now, assume
the proposition holds for a k’-hop event; that is, any &’-hop temporal sequence of monotonically
increasing events can be encoded using a memory-based approach. This assumption implies that
there exists an embedding function such that

Emb(uo, tug,u,) = Enc((ti, wig1, tu,upy) |1 €0,k = 1), @)

22

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

for all event sequences with &’ hops, where &’ > 1. Given an arbitrary ¥’ + 1-hop event, which can
be partitioned into an initial event (ug, 11, ty, 4,) and a subsequent &’-hop sequence. The existence
of an encoding function for the &’-hop sequence assures that

Emb(u07 tu()}ul) = femb(Mem(u07 tul,uz))
= f€mb(fmem(Mem(u07 tul,u2)7

tug,u

0:u1
Mem(ulatu1,u2)7 Cug,u1 atuoﬂh - tul,u2>7

1 (3)
Mem(ul’ tul,uz) = femb(Emb(ulv tu17u2))

= e:nlb (Enc({(ui, Ui+1, tui,ui+1)

lie{l,.. K} E >1})

Subsequently, it is demonstrated that Emb(ug, tw, 4,) provides an encoding for both the initial event
and the k’-hop sequence, thereby affirming its efficacy in encoding the entire k' + 1-hop event. This
concludes the inductive step and substantiates the inductive argument.

We consider a k-hop-subgraph-based approach for our analysis. It is evident that a k-hop subgraph
encompasses any k’-hop events, where k' < k. Furthermore, the aggregation methodology assimilates
all nodes contained within the subgraph. Collectively, these observations substantiate the theorem in
question.

O

Theorem L.2. (Theorem 4.7. Learning method time complexity). Denote the time complexity of a
learning method as a function of the total number of events processed during training. For a given
graph G with the number of nodes designated as |N'| and the number of edges as |E|, the following
assertions hold:

* For the memory-based approach, the time complexity is © (|&]).

e For k-hop-subgraph-based with k = 1, the lower-bound time complexity is () <‘|§\|f2) and the

upper-bound time complexity is O (% +1€] |N|>

e For k-hop-subgraph-based with k = 2, the upper-bound time complexity is
2 -
o (5 +1Ewn?)

Proof. In the proposed theorem, the time complexity is denoted as the aggregate quantity of events
processed throughout the training phase. The objective herein is to ascertain the precise count of such
utilized events.

In the context of the memory-based methodology, it is evident that each event is utilized a singular
time. Consequently, the cumulative number of events is expressed as |E|, which infers that the time
complexity adheres to the order of © (|£]).

In the context of k-hop-subgraph-based algorithms wherein & = 1, an event (u, v, t) is exploited once
for every incident event within the neighborhood of vertices u or v. Without loss of generality, we
focus on all events within the 1-hop-subgraph of vertex u. The aggregate count of events processed

1S given = u , wnere u enotes the degree of vertex u. onsequent ,t (&
is given by 7 i = © (d(u)?), where d(u) d he degree of Consequently, th

computational complexity is fundamentally proportional to » . \- d(u)?. Drawing on the results of

de Caen [22], the lower bound on the time complexity is established as €2 (%) whereas the upper

bound is determined as O (% + €] |N|>

In the context of k-hop-subgraph-based algorithms wherein k£ = 2, we adopt similar strategy where
each event(u, v,t) will only be utilized once another event within the subgraph of v or v is firstly
considered. The total number of events can be formulated as), d(u) Y-, cxr. D wenr, dw).
Replacing d(u) as Xi, -, cn, 2wen, a8 Yi, we reformulated is as 3, .|\ X;Y;, satisfying
Yien XP = Duen dw)? and 3o,y Y7 = 30, c pr d(u)*. Following Cauchy inequality and con-

clusions of >°, - d(u)?, we got the the upper-bound time complexity is O ((% + €| |N|)%) O

23

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

Theorem L.3. (Theorem 4.6. Expressivity of TNCN)
1. TNCN is strictly more expressive than CN, RA, and AA.

2. TNCN is strictly more expressive than Jodie with the same dimension of time encoding, DyRep
with the same aggregation function, TGAT with the same attention layers and neighbors, and
TGN under identical condition for all module choices.

Proof. (1) We first give definitions of these structural features under temporal settings. Given two
nodes u and v, the structural features before time ¢ are defined as follows:

CN(u,v,t) = Z 1,

weN} (u)NNE(v)
1
RA('U/,'U,t) = Z d(T

wEN} (u)NN} (v)

AA(u,v,t) = Z _

wENT(u)NN}(v) 1Og d(w)

’ ©))

~

Given a node u, the degree of node u is the number of events e with an endpoint at node wu.
Without loss of generality (W.L.O.G.), we consider node u as the source node, and the events are
{(u,v;,t;) | i € {0,...,k—1},k > 1}. Each time a new event is given, the embedding of node u is
updated by

Zi71 ’ msgfuncsrc(efj,vi))' (10)
With the MPNN universal approximation theorem, msgfunc can be a constant function, and upd
can be an addition function. Thus,

t; —

mem,; = upd,,..(mem

src

mem! =t = d(u). (11)
Then the embedding can learn arbitrary functions of node degrees, i.e.,
emb!, = f(d(u)). (12)

Thus, the neural common neighbor
T'NCN1(u,v) = et (w)nNt (v) emb!, can express Equation 9.

Extending to situations where the common neighbor node has some features we want to learn, the
traditional CN, RA, and AA cannot accommodate this. However, our TNCN can express these
features, demonstrating that TNCN is strictly more expressive than CN, RA, and AA.

(2) We first prove that TNCN is strictly more expressive than TGN. As TNCN possesses the same
memory-based framework as TGN to derive the emb!,, TNCN at least has the same expressivity as
TGN with identical module choices. Additionally, from part (1) of this theorem we know that TNCN
can capture certain heuristics such as CN where TGN fails. Hence TNCN is strictly more expressive
than TGN.

Since Jodie, DyRep and TGAT are specific instances of TGN with minor changes, we next shift our
object to prove that TGN has no less expressivity than the three methods.

For TGAT, it retains only the Graph Attention mechanism for embedding functions, removing all
memory and message modules present in TGN. Consequently, TGAT lacks the capacity to incorporate
temporal memory updates and message passing, making it less expressive than TGN.

Jodie differs from TGN in the memory updater and embedding function. Specifically, it utilizes an
RNN rather than a GRU, although GRU is a general variant of RNN. Additionally, Jodie employs the
time embedding as emb!, = (1 + At - w) ® mem!, , where w are learnable parameters. However,
TGN’s Graph Attention uses not only the memory mem!, but also the historical edge features eflﬂ),
and learns the coefficient via multi-head attention, thus achieving a higher expressivity.

DyRep also modifies the memory updater to an RNN. Meanwhile, it changes the embedding function
to Identity and message function to Graph Attention. Although it just swaps these two modules, the
expressivity is reduced in the temporal setting. When the model attempts to make its prediction,
it first generates the embeddings with the embedding function. So naturally the identity function

24

Efficient Neural Common Neighbor for Temporal Graph Link Prediction

processes less information in the emb!, than graph attention. After obtaining the prediction result, the
new messages will be calculated by the message function and fed into memory updater, where the
embt, can not get access. Hence TGN is more expressive than DyRep, especially when the recent
information can make large benefits.

In conclusion, TNCN is strictly more expressive than Jodie, DyRep, TGAT and TGN under the same
condition.

O

25

	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Memory Module
	3.2 Temporal NCN Module with Efficient CN Extractor
	3.3 NCN-based Prediction Head

	4 Efficiency and Effectiveness of TNCN
	4.1 Effectiveness
	4.2 Efficiency

	5 Related Work
	6 Experiments
	6.1 Experimental Settings
	6.2 Experimental Results
	6.3 Ablation Study

	7 Conclusion and Limitation
	A Datasets
	B Related Work
	B.1 Memory-based Temporal Graph Representation Learning
	B.2 Graph-based Temporal Graph Representation Learning
	B.3 Link Prediction Methods

	C TNCN Model Configuration
	D Additional Experimental Results
	D.1 Transductive and Inductive Experiments on Previously Small and Medium Datasets
	D.2 Comparison with Some Classic Heuristic Methods
	D.3 Detailed Statistics of Parameter Analysis
	D.4 Comparison between TNCN and traditional NCN

	E Detailed Time and Memory Consumption Statistics
	E.1 Time Consumption
	E.2 Memory Consumption
	E.3 Overall Comparison between Performance and Time/Memory Consumption

	F Pseudocode of TNCN Pipeline and CN Extraction
	G Special Cases Analysis of Common Neighbor Extraction
	H Case Study
	H.1 Two Examples from TGB for Better Understanding TNCN's Effectivity
	H.2 Some Statistics about Common Neighbors on Comment Dataset

	I Proofs

