
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REINITIALIZING WEIGHTS VS UNITS FOR MAINTAIN-
ING PLASTICITY IN NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Loss of plasticity is a phenomenon where a neural network loses its ability to
learn when trained for an extended time on non-stationary data. It is a crucial
problem to overcome when designing systems that learn continually. An effective
technique for preventing loss of plasticity is reinitializing parts of the network. In
this paper, we compare two different reinitialization schemes: reinitializing units
vs reinitializing weights. We propose a new algorithm named selective weight
reinitialization for reinitializing the least useful weights in the network. We com-
pare our algorithm to continual backpropagation, a previously proposed algorithm
that reinitializes units. Through our experiments in continual supervised learn-
ing problems, we identify two settings when reinitializing weights is more effec-
tive at maintaining plasticity than reinitializing units: (1) when the network has
a small number of units and (2) when the network includes layer normalization.
Conversely, reinitializing weights and units are equally effective at maintaining
plasticity when the network is of sufficient size and does not include layer nor-
malization. We found that reinitializing weights maintains plasticity in a wider
variety of settings than reinitializing units.

Systems that learn from a continuous stream of data, that learn continually, are better suited for
making predictions about a changing world such as ours. For example, a system that learns contin-
ually in a water treatment plant makes more accurate predictions than a system that learns offline
and is then deployed (Janjua et al., 2023). Similarly, a system that continually adjusts its predictions
about drivers’ earnings makes better ride-sharing matches than alternatives based on fixed heuris-
tics (Azagirre et al., 2024). Even current large language model systems such as ChatGPT (OpenAI,
2023) could be improved if they are designed to learn continually; such systems could stay up to
date with current information without needing to be retrained from scratch. The already impres-
sive performance of modern deep learning systems could be further improved if such systems are
designed to learn continually.

However, modern deep learning systems were designed using the train-once approach, in which
networks are trained once on a large dataset, then frozen and deployed. Unfortunately, the techniques
developed under the train-once approach often are unsuccessful in continual learning. A form of
failure of conventional deep learning systems is the loss of the ability to learn when the system
is trained for an extended time on non-stationary data, a phenomenon known as loss of plasticity
(Dohare et al., 2024). Since the essential requirement of a learning system is that it is capable of
learning from data, loss of plasticity presents a fundamental problem for deep learning systems that
learn continually.

Fortunately, loss of plasticity can be prevented. An effective and simple technique for mitigating loss
of plasticity is sporadically reinitializing parts of the network. Reinitialization algorithms must care-
fully balance maintaining plasticity and preserving the information stored in the network weights.
If a large part of the network is reinitialized at once, then the information necessary for making
correct predictions may be destroyed, harming performance. On the other hand, if reinitialization
is done too sparsely, the network might still suffer from loss of plasticity. Continual backpropaga-
tion (Dohare et al., 2021; 2024) achieves this balance by occasionally reinitializing the least useful
units in the network. To date, continual backpropagation is one of the most effective reinitialization
algorithms for maintaining plasticity (Kumar et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The idea of reinitializing parts of the network can be implemented at many different levels, such
as the entire network (Nikishin et al., 2022), a number of layers (Nikishin et al., 2022; Dohare
et al., 2024), units (Dohare et al., 2021; Sokar et al., 2023; Dohare et al., 2024), or weights in the
network. Of all the ways reinitialization can be implemented, reinitialization at the level of the
weights has yet to be studied for the purpose of maintaining plasticity. This paper fills this gap in
the literature by proposing an algorithm for reinitializing weights in the network named selective
weight reinitialization. Every certain number of updates, selective weight reinitialization measures
the utility of the weights in each layer in the network and reinitializes a proportion of the weights
with the lowest utility.

Using selective weight reinitialization and continual backpropagation, we empirically investigate the
question: are there settings where reinitializing weights is more effective at maintaining plasticity
than reinitializing units? We first study this question with feed-forward networks in the permuted
MNIST problem (Goodfellow et al., 2014; Zenke et al., 2017), where we found that reinitializing
weights is more effective at maintaining plasticity in two settings: (1) when the network has a small
number of units per layer and (2) when the network employs layer normalization. We then proceed
to compare both algorithms in a class-incremental learning problem based on the CIFAR-100 dataset
(Krizhevsky et al., 2009) using residual networks (He et al., 2016) and vision transformers (Doso-
vitskiy et al., 2021). Once again, we found that reinitializing units is less effective at maintaining
plasticity when the architecture includes layer normalization, such as in vision transformers. How-
ever, when combined with another reinitialization scheme, which resets the parameters of the layer
normalization modules, reinitializing units is just as effective as reinitializing weights at maintaining
plasticity. Overall, we found that reinitializing weights successfully maintained plasticity in a wider
variety of settings than reinitializing units, suggesting it is a more reliable reinitialization scheme.

Our study uncovers settings where the well-studied reinitialization scheme, reinitializing units, loses
plasticity. We contribute towards a general solution for maintaining plasticity in neural networks by
proposing a new reinitialization scheme that reinitializes weights. This new scheme prevents loss
of plasticity in settings where reinitializing units fails to maintain plasticity. In addition to main-
taining plasticity, reinitializing weights has the added benefit of being straightforward to implement.
Measuring the utility of units in a network architecture has to account for the complex connectivity
patterns of the different structures in the network. On the other hand, reinitializing weights does not
have to account for any complex interdependencies between structures, so it can be readily applied
to any network architecture.

1 RELATED WORK

1.1 LOSS OF PLASTICITY

Recently, the loss of plasticity effect has drawn the attention of the machine learning community.
At first, the observations were presented in different subfields in machine learning such as class-
incremental learning (Chaudhry et al., 2018), supervised learning (Ash & Adams, 2020), reinforce-
ment learning (Dohare et al., 2021; Nikishin et al., 2022; Lyle et al., 2022), and continual learning
(Dohare, 2020; Rahman, 2021), but the observations were not recognized as part of the same under-
lying phenomenon. However, it was only when Sutton & Dohare (2022) presented a direct study of
the phenomenon that the community developed a unifying language, and all previous observations
were attributed to the same underlying phenomenon. Since then, an increasing number of papers
has studied the loss of plasticity effect in the last couple of years (Abbas et al., 2023; Sokar et al.,
2023; Lyle et al., 2023; 2024; Lee et al., 2024b;a; Elsayed & Mahmood, 2024; Elsayed et al., 2024;
Dohare et al., 2024; Lewandowski et al., 2024; Kumar et al., 2024).

Along with the direct study of loss of plasticity, several algorithms have been proposed to mitigate
the effect. Proposed techniques for maintaining plasticity include regularizing the parameters of the
network (Kumar et al., 2024; Lewandowski et al., 2024; Dohare et al., 2024; Elsayed et al., 2024),
architectural modifications (Lyle et al., 2023; Abbas et al., 2023; Nikishin et al., 2023; Lyle et al.,
2024; Lee et al., 2024b), adding parameter noise (Ash & Adams, 2020; Elsayed & Mahmood, 2024),
and, the focus of this paper, reinitialization techniques (Nikishin et al., 2022; Dohare et al., 2021;
Sokar et al., 2023; Dohare et al., 2024). Moreover, combining multiple techniques is often more
effective at maintaining plasticity than any of them alone (Lee et al., 2024a; Dohare et al., 2024).
We contribute to this rich literature by proposing a new reinitialization algorithm that maintains

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

plasticity in a wide variety of settings. Our algorithm can be easily applied to any architecture and
combined with other methods for maintaining plasticity.

1.2 REINITIALIZATION ALGORITHMS

Reinitialization algorithms have been employed for maintaining plasticity (Nikishin et al., 2022;
Dohare et al., 2021; Sokar et al., 2023; Dohare et al., 2024) and for improving generalization per-
formance in neural networks (Mahmood & Sutton, 2013; Taha et al., 2021; Alabdulmohsin et al.,
2021; Zhou et al., 2022; Zaidi et al., 2023). Reinitializing layers in a network has been shown to
increase the decision margins and promote convergence to a flatter local minimum, resulting in im-
proved generalization in supervised learning (Alabdulmohsin et al., 2021). For loss of plasticity,
reinitialization has been used to restart dormant or dead units in the network and restore the initial
conditions of the weights that promote learning (Sokar et al., 2023; Dohare et al., 2024). These
algorithms vary in what parts of the network they reinitialize, such as the entire network, groups of
layers, single layers, and units.

Reinitialization is also an integral part of dynamic sparse training algorithms. While the primary
goal of such algorithms is to directly learn a sparse network, the algorithms often involve pruning
and restarting weights in the network (Mocanu et al., 2018; Evci et al., 2020). The motivation of
dynamic sparse training algorithms is to explore the space of subnetworks in a larger network to
find a sparse solution (Frankle & Carbin, 2019). These algorithms have been shown to be robust
to periodic changes in their input distribution, which suggests that they may also be effective for
maintaining plasticity (Grooten et al., 2023). The algorithm we introduce in this paper, selective
weight reinitialization, has parallels to dynamic sparse training algorithms. However, instead of
learning a sparse network, we entirely focus on reinitializing weights to maintain plasticity.

Finally, there is a biological basis for reinitialization algorithms. Biological neurons have been
observed to prune a proportion of their synaptic connections periodically along with growing new
connections at the same rate (Kasai et al., 2021). This process is analogous to the continuous ini-
tialization of weights in reinitialization algorithms. The synaptic pruning and growing process in
biological neurons suggest that reinitialization may be a requirement to facilitate continual learning
in connectionist networks. Notably, reinitialization happens at the level of synaptic connections,
equivalent to weights in neural networks, not at the level of neurons.

2 LEARNING PROBLEM

We focus our study of plasticity to the continual supervised learning setting. In this setting, a learning
system generates predictions, ŷ ∈ Rc, based on observations, x ∈ Rn, to match a target, y ∈ Rc.
Observations and targets are jointly sampled from a probability distribution p, which changes every
certain number of samples, S. For convenience, we refer to all the observation-target pairs sampled
from the same probability distribution as a task. We subscript the probability distribution of each
task by k. Thus, observation-target pairs are sampled according to p0 in the first task, p1 in the
second task, and so on. On each task, the goal of the learning system is to minimize the expected
loss between its predictions and the targets Epk

[ℓ(y, ŷ)]. For the rest of the paper, we use the
cross-entropy loss ℓ(y, ŷ) = −

∑c
j=1 yj log(ŷj).

We use a neural network parameterized by θ to generate predictions in the continual supervised
learning setting, fθ(x) = ŷ. At learning step t ∈ {0, 1, . . . , S − 1} in a task, the network receives a
mini-batch of m observation-target pairs, {(xi,yi)}mi=1, sampled from the probability distribution of
the current task, pk for k ≥ 0. To keep track of the evolution of the learning system, we subscript the
parameters of the network by the current learning step and the current task number, θS·k+t. Since
access to pk is not often available, the network parameters are updated to minimize the empirical
loss Ĵ(θS·k+t) = 1

m

∑m
i=1 ℓ(yi, fθS·k+t

(xi)) based on the current mini-batch of data. To update
the network parameters, we use the stochastic gradient descent rule,

θS·k+t+1
.
= θS·k+t − α∇θS·k+t

Ĵ(θS·k+t),

where α ≥ 0 is a learning rate parameter that scales the size of the update and ∇θS·k+t
Ĵ(θS·k+t) is

the gradient of the empirical loss with respect to the current network parameters.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

To measure loss of plasticity, we compare the learning performance in the current task of a network
trained continually on all previous tasks and a newly initialized network. If the performance of the
network trained continually is lower than the performance of the newly initialized network, then the
network trained continually has lost plasticity. In the permuted MNIST experiments in Sections 3
and 4, we use the accuracy computed as the network is learning as a measure of performance, online
accuracy. In the incremental CIFAR-100 experiments in Section 5, we use the accuracy computed
on a separate test set, test accuracy. Both of these metrics measure the ability of a network to
generalize to unseen data, which is different from the ability to minimize the loss studied in other
papers (Lyle et al., 2023; Elsayed & Mahmood, 2024). Henceforth, we use loss of the ability to
generalize and loss of plasticity interchangeably. Still, we note that loss of plasticity has been
used to refer to both loss of trainability (Lyle et al., 2023; Lewandowski et al., 2024) and loss of
generalizability (Ash & Adams, 2020; Lee et al., 2024b; Dohare et al., 2024).

3 REINITIALIZING WEIGHTS FOR MAINTAINING PLASTICITY

Several reinitialization schemes have been used for the purpose of maintaining plasticity. However,
one remains to be explored in the loss of plasticity literature: reinitializing weights. The first contri-
bution of this paper is to propose an algorithm that reinitializes weights and to study its effectiveness
at maintaining plasticity.

We named our algorithm selective weight reinitialization. Every certain number of updates, selective
weight reinitialization measures the utility of the weights in the network and reinitializes a propor-
tion of the weights with the lowest utility. The motivation for reinitializing parts of the network is to
restore the initial conditions that allowed the network to learn and that were slowly removed by the
learning process. The algorithm involves four different design choices: the utility function, U , used
for ranking the weights, the reinitialization strategy,R, which dictates how to reinitialize parameters
in the network, the reinitialization frequency, τ , and the proportion of weights, p, to be reinitialized
at each reinitialization step.

We study two utility functions: a utility function based on the magnitude of the weights, magnitude
utility, and a utility function based on the magnitude of the gradient of the weights, gradient utility.
Given a weight, w, in a matrix, W , the magnitude utility function assigns a utility of |w| to the
weight. The gradient utility function assigns a utility of |w · gw|, where gw is the derivative of the
loss with respect to w, which can be estimated from a mini-batch of data. Both utility functions are
widely used in neural network pruning with comparable results (Blalock et al., 2020), and both can
be implemented with little computational overhead.

We devise two reinitialization strategies based on the initialization distribution used at the start of
training. The first reinitialization strategy samples new values from the initialization distribution.
For example, if the entries of a matrix, W , were initialized according to a Normal distribution with
mean µ and standard deviation σ, then when reinitializing w ∈ W , we sample its new value from
N (µ, σ). On the other hand, if the entries of the bias vector, b, were initialized to a fixed value
of zero, then at reinitialization b ∈ b would be set to zero. We call this reinitialization strategy
reinitialization with initial distribution. We chose this reinitialization strategy because it moves
the distribution of weights closer to the initialization distribution, which is designed to facilitate
learning (Glorot & Bengio, 2010; He et al., 2015). The second reinitialization strategy reinitializes
weights to the mean of their initialization distribution. Using the same example as before, w would
be reinitialized to µ, and b would be reinitialized to zero. We call this reinitialization strategy
reinitialization to the mean. Since the mean of initialization functions is often zero, this strategy is
equivalent to setting the value of new weights to zero. Setting the values of new connections to zero
yields good generalization performance in dynamic sparse training algorithms (Mocanu et al., 2018;
Evci et al., 2020).

Note that there would be a reinitialization function for each weight matrix and bias vector in the net-
work for either of these reinitialization strategies. We represent a reinitialization strategy as a set of
reinitialization functions with an entry for each weight matrix and bias vector. Thus, for a network
parameterized by {W1,W2, . . . }, omitting bias vectors for simplicity, the corresponding reinitial-
ization strategy isR = {I1, I2, . . . }, where Ii is the reinitialization function for a matrix Wi. Given
a utility function and a reinitialization strategy, the reinitialization frequency, τ , and reinitialization
proportion, p, are treated as hyper-parameter values to be tuned. Finally, when computing the num-
ber of weights to reinitialize, we handle decimal numbers by sampling from a Bernoulli distribution

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Selective Weight Reinitialization
Input: network with L hidden layers with weights {W1, . . . ,WL}
Input: utility function U
Input: reinitialization strategyR = {I1, . . . , IL}
Hyper-parameters: Reinitialization frequency τ and reinitialization proportion p
for each training step t do

Sample a mini-batch of data
Compute prediction, loss, and gradients, and update network parameters
if t is a multiple of τ then

for Wi in {W1, . . . ,WL} do
Compute utilities: {U(w) | w ∈Wi}
Compute number of weights to reinitialize:
k ← Integer Part(p · |Wi|) +Bernoulli(Fractional Part(p · |Wi|))
Reinitialize the value of the k lowest-utility weights using Ii

end for
end if

end for

with a probability of success equal to the decimal number. Algorithm 1 gives the pseudocode for
selective weight reinitialization.

We proceed to assess the effectiveness of selective weight reinitialization at maintaining plasticity.
We assess the four combinations of utility functions and reinitialization strategies. For this initial
assessment, we use the permuted MNIST problem (Goodfellow et al., 2014; Zenke et al., 2017),
which consists of several tasks, each corresponding to different random permutations of the pixels
of the images of the MNIST dataset. We train networks on 1,000 different permutations with a
mini-batch size of 30. For each permutation, we only do one pass through the data, resulting in
2,000 updates to the network per task. We use a feed-forward network with ReLU activations, three
hidden layers, and 100 units per layer.

We include two baselines, the network trained without any modification, the base system, and
the network trained using L2-regularization, the base system using L2-regularization. Using L2-
regularization has been reported to be a strong baseline in the permuted MNIST problem (Dohare
et al., 2024). We add selective weight reinitialization to the base system and compare its perfor-
mance against the two baselines. We tuned the hyper-parameters of the baselines and selective
weight reinitialization using a grid search; see Appendix A for more details on hyper-parameter
tuning.

We report the average online accuracy per task of each learning system in Figure 1. We refer to
the average online accuracy as the performance for the remainder of this section. The base system
(in black in Figure 1) had an initial increase in performance followed by a steady decrease. The
base system with L2-regularization (in pink) maintained stable performance throughout training.
Selective weight reinitialization with magnitude utility (Figure 1a) experienced a less severe per-
formance drop than the base system, but its performance had a lot of variability. Selective weight
reinitialization with gradient utility and reinitialization to the mean (in orange in Figure 1b) had
higher performance than the base system, but it still suffered from loss of plasticity. Finally, selec-
tive weight reinitialization with gradient utility and reinitialization with initial distribution (in blue)
showed higher performance than the base system and experienced no drop in performance. We
present further analysis involving correlates of loss of plasticity in Appendix B.

Takeaways. Regardless of the reinitialization strategy, gradient utility resulted in higher perfor-
mance than magnitude utility. Between the two variants of selective weight reinitialization that
used gradient utility, only the one using reinitialization with initial distribution maintained plastic-
ity. However, it is noteworthy that reinitialization to the mean had better initial performance than
reinitialization with initial distribution. Henceforth, we focus only on selective weight reinitializa-
tion with gradient utility and report the results with magnitude utility in the appendices.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Permutation Number

Selective weight reinitialization
with gradient utility

1 200 400 600 800 1000

Average
Online Accuracy
(Average of 30 Runs)

85%

90%

95%

Base system

Reinitialization to the mean

Reinitialization with initial distribution
Base system using L2-regularization

a

Permutation Number
1 200 400 600 800 1000

Base system

Base system using L2-regularization

Reinitialization to the mean

Reinitialization with
initial distribution

b
Selective weight reinitialization

with magnitude utility

Figure 1: Average online accuracy of selective weight reinitialization with (a) magnitude utility
and (b) gradient utility. Each line is the average of 30 runs while the shaded regions correspond to
the standard error. All variants of selective weight reinitialization had higher average online accu-
racy than the base system. However, only selective weight reinitialization with gradient utility and
reinitialization with initial distribution completely maintained plasticity throughout the experiment.

4 REINITIALIZING WEIGHTS VS REINITIALIZING UNITS FOR MAINTAINING
PLASTICITY IN FEED-FORWARD NETWORKS

We proceed to use selective weight reinitialization and continual backpropagation to study the ques-
tion: are there settings where reinitializing weights is more effective at maintaining plasticity than
reinitializing units? Both algorithms work similarly but at different levels in the network. Contin-
ual backpropagation (CBP) reinitializes low-utility units in the network according to a replacement
rate. Moreover, newly reinitialized units are protected from being reinitialized again for a number
of updates until the units have met a maturity threshold. On the other hand, selective weight reini-
tialization (SWR) reinitializes a proportion of low-utility weights every certain number of steps.

We devised two settings where reinitializing units may fail to balance maintaining plasticity and
preventing the loss of previously learned information. The first setting is when the network architec-
ture includes layer normalization. Layer normalization is a technique for normalizing the values of
units in a layer by subtracting the sample average and dividing by the sample standard deviation (Ba
et al., 2016). We suspect that reinitializing units may affect the statistics used in layer normalization,
harming performance.

The second setting where we expect reinitializing units to be less effective is when the network has a
small number of units. In such a case, reinitializing even a single unit may modify a large portion of
the network at once. For example, reinitializing a single unit in a network with 100 units changes 1%
of the weights, whereas the change would be ten times as large in a network with only ten units. In
either case, reinitializing weights allows for a smaller portion of the network to be modified because
it works at a lower level of granularity.

We use four network architectures in the permuted MNIST problem to assess the effectiveness of
reinitializing units vs weights. First, we use a feed-forward network with three hidden layers, ReLU
activations, and 100 units per layer, large network setting. Second, we add layer normalization to
the large network, large network with layer norm setting, to see if reinitializing units or weights
affect the statistics in the layer normalization modules and whether that affects performance. Third,
we use the same network architecture but with ten units per layer, small network setting, to assess
the effectiveness of reinitializing units for maintaining plasticity in small networks. Finally, we add
layer normalization to the small network, small network with layer norm setting, to test how the two
settings interact. We use the online accuracy averaged over each task as a performance measure.

For each architecture, we present the performance of five learning systems:

1. the network architecture trained without any modification, base system (black lines in Fig-
ure 2),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Average
Online Accuracy
(Average of 30 Runs)

85%

90%

95%

Permutation Number
1 200 400 600 800 1000

Average
Online Accuracy
(Average of 30 Runs)

75%

80%

90%

Permutation Number
1 200 400 600 800 1000

85%

a

c

Large Network Large Network with Layer Norm

Small Network Small Network with Layer Norm

b

d

Base system

SWR with reinitialization to the mean

SWR with reinitialization with initial distribution
Base system using L2-regularization

Continual backpropagation

Base system

SWR with reinitialization to the mean

SWR with reinitialization with initial distribution

Base system using L2-regularization

Continual backpropagation

Base system

SWR with reinitialization to the mean

SWR with reinitialization with initial distribution

Base system using L2-regularization

Continual backpropagation

Base system

SWR with reinitialization to the mean

SWR with reinitialization with initial distribution

Base system using L2-regularization
Continual backpropagation

Figure 2: Average online accuracy of selective weight reinitialization and continual backpropaga-
tion in four settings: (a) large network, (b) large network with layer norm, (c) small network, and (d)
small network with layer norm. Each line is the average of 30 runs; the shaded regions correspond to
the standard error. Selective weight reinitialization with initialization with initial distribution main-
tained plasticity in all four settings, whereas continual backpropagation maintained plasticity only
in the large network setting.

2. the network trained using L2-regularization, base system with L2-regularization (pink),
3. the network trained with CBP, continual backpropagation (green),
4. the network trained with SWR with gradient utility and reinitialization with initial distribu-

tion, SWR with reinitialization with initial distribution (blue),
5. and SWR with gradient utility and reinitialization to the mean, SWR with reinitialization to

the mean (orange).

We used a grid search to tune the hyper-parameters of each learning system for each architecture. We
include more details about hyper-parameter selection along with the results of SWR with magnitude
utility in Appendix A.

Effectiveness of reinitialization schemes when using layer normalization. Contrasting the results
without and with layer norm (left and right columns of Figure 2, respectively), we confirm our initial
intuition: reinitializing units is less effective at maintaining plasticity when the network employs
layer normalization. When using a large network, using CBP resulted in stable performance without
layer normalization (Figure 2a), but resulted in steadily decreasing performance when using layer
normalization (Figure 2b). In the small network, using CBP resulted in a drop in performance in the
networks with and without layer normalization (bottom row of Figure 2); this effect was more severe
when using layer normalization (Figure 2d). On the other hand, SWR with initialization with initial
distribution resulted in stable performance in the networks with and without layer normalization.

The performance drop in CBP is partially explained by the change in sample average and standard
deviation after reinitializing a unit. Table 1 shows the absolute change in the statistics of the activa-
tions before and after a reinitialization step. In the small network setting, reinitializing units caused
a larger change in sample average and standard deviation than reinitializing weights. In the large
network setting, there was no consistent pattern across all the layers in the network. Notably, the loss

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Average per task of the absolute difference in sample average (Avg) and standard deviation
(SD) of activations per layer after a reinitialization step in CBP or SWR with reinitialization with
initial distribution. The quantities reported are averages of 30 runs. The standard error of each
measurement was less than 0.002 in the large network setting and less than 0.03 in the small network
setting.

Large Network Setting Small Network Setting
Change in Avg Change in SD Change in Avg Change in SD

Layer 1 2 3 1 2 3 1 2 3 1 2 3

CBP 0.35 0.04 0.02 0.21 0.04 0.02 1.09 3.48 2.96 0.88 1.63 2.69

SWR 0.06 0.07 0.05 0.11 0.08 0.21 0.38 0.72 0.65 0.36 0.4 0.44

of plasticity when reinitializing units was more severe in the small network with layer norm than in
the large network with layer norm. We explore other explanations for the difference in performance
in Appendix B.

Effectiveness of reinitialization schemes in small networks. We confirm our initial intuition that
reinitializing units is less effective than reinitializing weights in networks with few units. We con-
trast the results in large and small networks (top and bottom rows of Figure 2, respectively). In
the small network setting (Figure 2c), the performance of CBP decreased after the first few tasks,
but performance stabilized soon after. In contrast, the performance of CBP was stable in the large
network without layer normalization (Figure 2a). When using layer normalization, CBP experi-
enced a steady decrease in performance in both the large and small networks (Figures 2b and 2d,
respectively), but the effect was more severe in the small network.

One possible explanation for the difference in CBP’s and SWR’s performance is that SWR can reini-
tialize weights at a slower rate because it works at the weights’ level. This was true in the small net-
work setting, where CBP reinitialized weights at a rate of 8.35 per parameter update, whereas SWR
with reinitialization with initial distribution reinitialized 1.36 weights per update (see Appendix A
for a detailed calculation of this values). However, in the small network with layer norm setting,
CBP reinitialized 0.084 weights per update, whereas SWR reinitialized 0.687 weights per update.
Thus, the reinitialization rate is not entirely responsible for the difference in performance. We ex-
plore other possible explanations for the difference in performance by looking into the correlates of
loss of plasticity in Appendix B.

Takeaways. We found two settings in which reinitializing units was less effective at maintaining
plasticity than reinitializing weights: when the network uses layer normalization and when it has
a small number of units. The first setting is particularly relevant for modern applications because
layer normalization has become the standard approach for normalizing activations in transformer
architectures (Vaswani et al., 2017; Devlin et al., 2018; Dosovitskiy et al., 2021), the architectures
responsible for the success of large language models. The second setting is relevant for continual
learning. If one subscribes to the big world hypothesis (Javed & Sutton, 2024), which poses that
a learning system should be orders of magnitude smaller than the world they are learning about,
then one can no longer rely on the size of the network to design successful learning algorithms.
Working under the big world hypothesis, reinitializing weights is more effective than reinitializing
units because it does not rely on having a large number of units to maintain plasticity. Finally,
although L2-regularization was a strong baseline in this problem, it is not always sufficient for
maintaining plasticity. This can already be seen in Figure 2b, but we also make the same observation
in the next section in a more complex problem.

5 REINITIALIZING WEIGHTS VS REINITIALIZING UNITS FOR MAINTAINING
PLASTICITY IN RESNET-18 AND VISION TRANSFORMERS

We move on to a large-scale demonstration with real-world data. This section aims to compare
the effectiveness of reinitializing weights for maintaining plasticity in a more realistic dataset using

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Number of Classes
5 50 100

-4%

-2%

2%

4%

Accuracy Relative
to Network Trained

from Scratch

Base system
Base system

Selective weight
reinitialization

Selective weight
reinitialization

Output layer
resetting

Continual backpropagation

Continual backpropagation

Number of Classes
5 50 100

-10%

-8%

-6%

-4%

-2%

2%

4%

6% Continual backpropagation
with layer norm resetting

Layer norm
resetting

a Incremental CIFAR-100
with ResNet-18 b Incremental CIFAR-100

 with Vision Transformers

Figure 3: Accuracy relative to a network trained from scratch for each learning system in CIFAR-
100 with (a) ResNet-18 and (b) vision transformers. Each line is the average of 15 runs in the
ResNet-18 plot and 10 runs in the vision transformer plot; the shaded regions correspond to the
standard error. Continual backpropagation and selective weight reinitialization both maintain plas-
ticity in ResNet-18. In vision transformers, only selective weight reinitialization maintains plasticity.
However, continual backpropagation matches the performance of selective weight reinitialization
when combined with layer norm resetting.

modern architectures. Our secondary goal is to determine if reinitializing weights still shows an
advantage over reinitializing units for maintaining plasticity in more complex problems.

We use the class incremental CIFAR-100 problem studied in by Chaudhry et al. (2018) and Dohare
et al. (2024). In this problem, networks are trained on an increasing number of classes from the
CIFAR-100 dataset, which consists of 100 classes with 500 training and 100 test images per class.
In the first task, the network is trained to predict five classes. After several epochs, the number
of classes in the dataset increases by five, and a new task begins. This process continues until the
dataset contains all 100 classes, resulting in 20 tasks.

To isolate the loss of plasticity effect, we implement measures for preventing forgetting and overfit-
ting. To prevent forgetting, the network is constantly retrained on old classes; new classes are added
to the dataset, but old classes are not removed. To prevent overfitting, we use image transformations
and early stopping. For image transformation, we use random cropping with padding of 4 pixels
on each side of the image, random horizontal flipping with 0.5 probability, and random rotation
between 0 and 15 degrees. To implement early stopping, we train the network for a fixed number of
epochs, measure its accuracy after each epoch on a validation dataset of 50 images per class taken
from the training set, and reset the network to the network with the highest validation accuracy at
the start of each task. The measure of performance is the highest test accuracy achieved during each
task.

We used two network architectures for this problem: ResNet-18 and vision transformers. Both
architectures are trained using stochastic gradient descent with a momentum of 0.9. The ResNet-18
architecture was trained for 200 epochs per task and used a learning rate scheduler that decreased
the learning rate at epochs 60, 120, and 160. The vision transformer architecture was trained for
100 epochs per task and used a linear learning rate schedule. The learning rate increased to 0.01
for the first 30 epochs and then decreased to zero during the last 70 epochs. We used fewer training
epochs for the vision transformer since we did not notice any increase in performance when using
a larger number of epochs. For both architectures, the learning rate scheduler was restarted at the
start of each task. The ResNet-18 architecture used batch normalization (Ioffe & Szegedy, 2015).
The vision transformer architecture used dropout and layer normalization. Both architectures used
L2-regularization.

We compare the performance of continual backpropagation and selective weight reinitialization
when combined with these architectures. For the ResNet-18, we compare to the results presented by
Dohare et al. (2024). For the vision transformer, we apply continual backpropagation only between
feed-forward layers in the network since an extension of continual backpropagation for attention
layers has yet to be proposed. We apply selective weight reinitialization to all the weight matri-
ces and bias vectors in the architectures. During hyper-parameter tuning, we found that selective

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

weight reinitialization with reinitialization to the mean was more effective in these architectures.
See Appendix C for more details on hyper-parameter selection.

We present the difference in the performance of each learning system compared to a network trained
from scratch on the same set of classes. Additionally, we include other reinitialization baselines.
We include a baseline that reinitializes the output layer in the ResNet-18 architecture and another
baseline that reinitializes the layer norm parameters in the vision transformer architecture. We did
not notice any increase in performance from reinitializing the parameters in the batch normalization
layers in ResNet-18 or reinitializing the output layer in vision transformers, so we omitted those
baselines. For these reinitialization baselines, reinitialization happened before the start of each new
task.

In ResNet-18, continual backpropagation and selective weight reinitialization maintained plasticity
(Figure 3a). However, continual backpropagation scores a higher test accuracy than selective weight
reinitialization over most tasks during the experiment. In vision transformers, selective weight reini-
tialization maintains plasticity, whereas continual backpropagation slightly improves over the base
system (Figure 3b). However, when combined with layer norm resetting, continual backpropagation
performs just as well as selective weight reinitialization; see Appendix C for more details about the
success of layer norm resetting. It is important to note that continual backpropagation with layer
norm resetting has privileged knowledge of when tasks change, whereas selective weight reinitial-
ization does not use that information.

Takeaways. The results in ResNet-18 show that reinitializing weights is a viable strategy for main-
taining plasticity, albeit with lower generalization performance than reinitializing units. On the other
hand, the results in vision transformers confirm that reinitializing units is less effective than reini-
tializing weights when the architecture includes layer normalization. Nevertheless, combining layer
norm resetting and reinitializing units is an effective technique for maintaining plasticity in vision
transformers. An interesting observation in vision transformers with continual backpropagation is
that attention layers do not seem to be the source of loss of plasticity. Continual backpropagation was
only used between feed-forward layers, ignoring attention layers. Yet, continual backpropagation
maintains plasticity when combined with layer norm resetting.

6 CONCLUSION AND FUTURE WORK

We presented an algorithm for reinitializing weights for maintaining plasticity, a reinitialization
scheme that had remained unexplored in the loss of plasticity literature. Through comparisons in
continual supervised learning, we uncovered two settings where reinitializing weights is more ef-
fective at maintaining plasticity than reinitializing units. Moreover, the idea of reinitializing weights
is easier to implement than reinitializing units since it does not have to account for the complex
interconnections between the structures in the network, which is a difficulty also encountered in
structural pruning (Fang et al., 2023). Finally, we demonstrated in a class-incremental problem that
reinitializing weights maintains plasticity in larger architectures that employ many of the techniques
used in modern applications.

While effective at maintaining plasticity in various settings, selective weight reinitialization has
one drawback: no single reinitialization strategy works best in all cases. Specifically, there is no
dominant reinitialization strategy. Practitioners would have to test both reinitialization strategies
presented in this paper and different values for the reinitialization frequency and proportion to find
a configuration that works well in their setting. Finding a reinitialization strategy that works well in
every setting would significantly improve the applicability of selective weight reinitialization.

Lastly, as mentioned in the related work section, selective weight reinitialization shares characteris-
tics with dynamic sparse training algorithms but entirely focuses on maintaining plasticity. Adapting
selective weight reinitialization to train a sparse network and maintain plasticity is possible. The al-
gorithm would be initialized with a sparse network and, instead of reinitializing weights, it would
prune active and regrow inactive connections in the same manner described in Section 3. If im-
plemented in a truly sparse fashion, this algorithm could result in fast learning while maintaining
plasticity.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C. Machado. Loss of plastic-
ity in continual deep reinforcement learning. In Sarath Chandar, Razvan Pascanu, Hanie Sedghi,
and Doina Precup (eds.), Proceedings of The 2nd Conference on Lifelong Learning Agents, vol-
ume 232 of Proceedings of Machine Learning Research, pp. 620–636. PMLR, 22–25 Aug 2023.
URL https://proceedings.mlr.press/v232/abbas23a.html.

Ibrahim Alabdulmohsin, Hartmut Maennel, and Daniel Keysers. The impact of reinitialization on
generalization in convolutional neural networks, 2021. Preprint available at https://arxiv.
org/abs/2109.00267.

Jordan Ash and Ryan P Adams. On warm-starting neural network training. Advances in neural
information processing systems, 33:3884–3894, 2020.

Xabi Azagirre, Akshay Balwally, Guillaume Candeli, Nicholas Chamandy, Benjamin Han, Alona
King, Hyungjun Lee, Martin Loncaric, Sébastien Martin, Vijay Narasiman, et al. A better match
for drivers and riders: Reinforcement learning at lyft. INFORMS Journal on Applied Analytics,
54(1):71–83, 2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. Preprint
available at https://arxiv.org/abs/1607.06450.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? Proceedings of machine learning and systems, 2:129–146, 2020.

Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Vittorio Ferrari,
Martial Hebert, Cristian Sminchisescu, and Yair Weiss (eds.), Computer Vision – ECCV 2018, pp.
556–572, Cham, 2018. Springer International Publishing. ISBN 978-3-030-01252-6.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. Preprint
availabble at http://arxiv.org/abs/1810.04805.

Shibhansh Dohare. The interplay of search and gradient descent in semi-stationary learning prob-
lems. Master’s thesis, University of Alberta, 2020.

Shibhansh Dohare, Richard S Sutton, and A Rupam Mahmood. Continual Backprop: Stochastic
gradient descent with persistent randomness, 2021. Preprint at https://arxiv.org/abs/
2108.06325.

Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
mood, and Richard S Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):
768–774, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Mohamed Elsayed and A. Rupam Mahmood. Addressing loss of plasticity and catastrophic forget-
ting in continual learning. In The Twelfth International Conference on Learning Representations,
2024. Available at https://openreview.net/pdf?id=sKPzAXoylB.

Mohamed Elsayed, Qingfeng Lan, Clare Lyle, and A. Rupam Mahmood. Weight clipping for deep
continual and reinforcement learning. Reinforcement Learning Journal, 5:2198–2217, 2024.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International conference on machine learning, pp. 2943–2952.
PMLR, 2020.

11

https://proceedings.mlr.press/v232/abbas23a.html
https://arxiv.org/abs/2109.00267
https://arxiv.org/abs/2109.00267
https://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2108.06325
https://arxiv.org/abs/2108.06325
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/pdf?id=sKPzAXoylB

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=rJl-b3RcF7.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks. In 2nd International
Conference on Learning Representations, 2014. Avialable at https://arxiv.org/abs/
1312.6211.

Bram Grooten, Ghada Sokar, Shibhansh Dohare, Elena Mocanu, Matthew E. Taylor, Mykola Pech-
enizkiy, and Decebal Constantin Mocanu. Automatic noise filtering with dynamic sparse training
in deep reinforcement learning. In Proceedings of the 2023 International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS ’23, pp. 1932–1941, Richland, SC, 2023. In-
ternational Foundation for Autonomous Agents and Multiagent Systems. ISBN 9781450394321.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, 2015.

Muhammad Kamran Janjua, Haseeb Shah, Martha White, Erfan Miahi, Marlos C Machado, and
Adam White. Gvfs in the real world: making predictions online for water treatment. Machine
Learning, pp. 1–31, 2023.

Khurram Javed and Richard S. Sutton. The big world hypothesis and its ramifications for artificial
intelligence. In Finding the Frame: An RLC Workshop for Examining Conceptual Frameworks,
2024. Preprint available at https://openreview.net/forum?id=Sv7DazuCn8.

Haruo Kasai, Noam E Ziv, Hitoshi Okazaki, Sho Yagishita, and Taro Toyoizumi. Spine dynamics in
the brain, mental disorders and artificial neural networks. Nature Reviews Neuroscience, 22(7):
407–422, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images, 2009. Retrieved from https://www.cs.toronto.edu/˜kriz/
learning-features-2009-TR.pdf.

Saurabh Kumar, Henrik Marklund, and Benjamin Van Roy. Maintaining plasticity in continual learn-
ing via regenerative regularization. In Proceedings of the 3rd Conference on Lifelong Learning
Agents. PMLR, 2024.

Hojoon Lee, Hanseul Cho, Hyunseung Kim, Daehoon Gwak, Joonkee Kim, Jaegul Choo, Se-Young
Yun, and Chulhee Yun. Plastic: Improving input and label plasticity for sample efficient rein-
forcement learning. Advances in Neural Information Processing Systems, 36, 2024a.

Hojoon Lee, Hyeonseo Cho, Hyunseung Kim, Donghu Kim, Dugki Min, Jaegul Choo, and Clare
Lyle. Slow and steady wins the race: Maintaining plasticity with hare and tortoise networks. In
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scar-
lett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 26416–26438. PMLR,
21–27 Jul 2024b. Available at https://proceedings.mlr.press/v235/lee24d.
html.

12

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://arxiv.org/abs/1312.6211
https://arxiv.org/abs/1312.6211
https://openreview.net/forum?id=Sv7DazuCn8
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://proceedings.mlr.press/v235/lee24d.html
https://proceedings.mlr.press/v235/lee24d.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alex Lewandowski, Saurabh Kumar, Dale Schuurmans, András György, and Marlos C Machado.
Learning continually by spectral regularization, 2024. Preprint available at https://arxiv.
org/pdf/2406.06811.

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in rein-
forcement learning. In International Conference on Learning Representations, 2022. Avialable
at https://openreview.net/forum?id=ZkC8wKoLbQ7.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In International Conference on Machine Learning,
pp. 23190–23211. PMLR, 2023.

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, James Martens, Hado van Hasselt, Razvan Pascanu, and
Will Dabney. Normalization and effective learning rates in reinforcement learning. arXiv preprint
arXiv:2407.01800, 2024. Preprint available at https://arxiv.org/abs/2407.01800.

Ashique Rupam Mahmood and Richard S Sutton. Representation search through generate and test.
In AAAI Workshop: Learning Rich Representations from Low-Level Sensors, 2013.

TorchVision maintainers and contributors. Torchvision: Pytorch’s computer vision library. https:
//github.com/pytorch/vision, 2016.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):2383, 2018.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International conference on machine learning,
pp. 16828–16847. PMLR, 2022.

Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney, and
Andre Barreto. Deep reinforcement learning with plasticity injection. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=jucDLW6G9l.

OpenAI. GPT-4 technical report, 2023. Preprint available at https://arxiv.org/abs/
2303.08774.

Parash Rahman. Toward generate-and-test algorithms for continual feature discovery. Master’s
thesis, University of Alberta, 2021.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In International Conference on Machine Learning, pp.
32145–32168. PMLR, 2023.

Richard S. Sutton and Shibhansh Dohare. Maintaining plasticity in deep continual learning. Keynote
presentation at Conference on Lifelong Learning Agents, 2022. Available at https://www.
youtube.com/watch?v=p_zknyfV9fY.

Ahmed Taha, Abhinav Shrivastava, and Larry Davis. Knowledge evolution in neural networks. In
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12838–
12847, 2021. doi: 10.1109/CVPR46437.2021.01265.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

13

https://arxiv.org/pdf/2406.06811
https://arxiv.org/pdf/2406.06811
https://openreview.net/forum?id=ZkC8wKoLbQ7
https://arxiv.org/abs/2407.01800
https://github.com/pytorch/vision
https://github.com/pytorch/vision
https://openreview.net/forum?id=jucDLW6G9l
https://openreview.net/forum?id=jucDLW6G9l
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://www.youtube.com/watch?v=p_zknyfV9fY
https://www.youtube.com/watch?v=p_zknyfV9fY
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Sheheryar Zaidi, Tudor Berariu, Hyunjik Kim, Jorg Bornschein, Claudia Clopath, Yee Whye Teh,
and Razvan Pascanu. When does re-initialization work? In Javier Antorán, Arno Blaas,
Fan Feng, Sahra Ghalebikesabi, Ian Mason, Melanie F. Pradier, David Rohde, Francisco J. R.
Ruiz, and Aaron Schein (eds.), Proceedings on ”I Can’t Believe It’s Not Better! - Under-
standing Deep Learning Through Empirical Falsification” at NeurIPS 2022 Workshops, vol-
ume 187 of Proceedings of Machine Learning Research, pp. 12–26. PMLR, 03 Dec 2023. URL
https://proceedings.mlr.press/v187/zaidi23a.html.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International conference on machine learning, pp. 3987–3995. PMLR, 2017.

Hattie Zhou, Ankit Vani, Hugo Larochelle, and Aaron Courville. Fortuitous forgetting in con-
nectionist networks. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=ei3SY1_zYsE.

14

https://proceedings.mlr.press/v187/zaidi23a.html
https://openreview.net/forum?id=ei3SY1_zYsE

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL RESULTS AND DETAILS ABOUT PERMUTED MNIST
EXPERIMENTS

Hyper-parameter tuning. For the experiments in Permuted MNIST presented in Sections 3 and 4,
we tuned the hyper-parameters of each learning system using a grid search with ten runs per hyper-
parameter combination. After the search, we selected the hyper-parameter values that resulted in the
highest average online accuracy throughout the training period, i.e., the area under the curve. For the
base systems, we tuned the learning rate parameter, α. For the base systems using L2-regularization,
we tuned the regularization factor. For continual backpropagation, we tuned the replacement rate,
rr, and maturity threshold, mt. For selective weight reinitialization, we tuned the reinitialization
frequency, τ , and proportion, p. The base systems using L2-regularization, the continual backprop-
agation systems, and the selective weight reinitialization systems used the same learning rate as the
base systems in the corresponding setting. Finally, for the layer normalization settings, we compared
layer norm before and after the activation; using layer norm after the activation resulted in higher
average online accuracy in both the small and large networks.

Table 2 shows the hyper-parameter values tested for each algorithm. Underlined values correspond
to the values used in the main text, except for selective weight reinitialization. For selective weight
reinitialization, we labelled values with GD for gradient utility with reinitialization with initial dis-
tribution, GM for gradient utility with reinitialization to the mean, MD for magnitude utility with
reinitialization with initial distribution, and MM for magnitude utility with reinitialization to the
mean to indicate the values used for each of the corresponding algorithms in the main paper.

Selective weight reinitialization with magnitude utility in permuted MNIST. In Section 4, we
omitted the results using selective weight reinitialization with magnitude utility. We present those
results in Figure 4. The hyper-parameter values were chosen as described above. In every setting
we tested, magnitude utility had lower performance than gradient utility.

Base system

Base system using L2-regularization

Reinitialization to the mean

Reinitialization with
initial distribution

Permutation Number
1 200 400 600 800 1000

Average
Online Accuracy
(Average of 30 Runs)

75%

80%

90%

85%

Base system using L2-regularization

Reinitialization to the mean

Base system

Reinitialization with
initial distribution

Permutation Number
1 200 400 600 800 1000

c Small Network Small Network with Layer Norm

Average
Online Accuracy
(Average of 30 Runs)

85%

90%

95%

Base system using
L2-regularization

Reinitialization to the mean

Base system

Reinitialization with
initial distribution

Base system using L2-regularization

Reinitialization to the mean

Base system

Reinitialization with
initial distribution

a Large Network Large Network with Layer Normb

d

Figure 4: Average online accuracy of selective weight reinitialization with magnitude utility in the
(a) large network setting, (b) large network with layer norm setting, (c) small network, and (d) small
network with layer norm. Gradient utility achieved higher performance than magnitude utility in all
four settings.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 2: Hyper-parameter values used in each of the four network settings in Permuted MNIST.

Large Network Setting

Base system α ∈ {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005}

Base system using
L2-regularization L2-factor of 1× 10β with β ∈ {−3,−4,−5,−6,−7,−8}

Continual
backpropagation

rr ∈ {1× 10−1, 1× 10−2, 1× 10−3, 1× 10−4, 1× 10−5}
mt ∈ {1, 5, 50, 100, 500}

Selective weight
reinitialization

τ ∈ {300, 600, 1200GM, 2400GD, 4800MD, MM}
p ∈ {0.05, 0.1, 0.2GM, 0.4GD, 0.8MD, MM}

Large Network with Layer Norm Setting

Base system α ∈ {0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005}

Base system using
L2-regularization L2-factor of 1× 10β with β ∈ {−3,−4,−5,−6,−7,−8}

Continual
backpropagation

rr ∈ {1× 10−1, 1× 10−2, 1× 10−3, 1× 10−4, 1× 10−5}
mt ∈ {1, 5, 50, 100, 500}

Selective weight
reinitialization

τ ∈ {300, 600, 1200GD, 2400GM, 4800MD, MM}
p ∈ {0.05, 0.1GD, 0.2, 0.4, 0.8MD, MM, GM}

Small Network Setting

Base system α ∈ {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005}

Base system using
L2-regularization L2-factor of 1× 10β with β ∈ {−3,−4,−5,−6,−7,−8}

Continual
backpropagation

rr ∈ {1× 10−1, 1× 10−2, 1× 10−3, 1× 10−4, 1× 10−5}
mt ∈ {1, 5, 50, 100, 500}

Selective weight
reinitialization

τ ∈ {75, 150, 300MM, 600GM, 1200MD, GD}
p ∈ {0.005MM,MD, 0.01, 0.05, 0.1GM, 0.2GD}

Small Network with Layer Norm Setting

Base system α ∈ {0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005}

Base system using
L2-regularization L2-factor of 1× 10β with β ∈ {−3,−4,−5,−6,−7,−8}

Continual
backpropagation

rr ∈ {1× 10−1, 1× 10−2, 1× 10−3, 1× 10−4, 1× 10−5}
mt ∈ {1, 5, 50, 100, 500}

Selective weight
reinitialization

τ ∈ {75, 150, 300GM, 600, 1200MM, MD, GD}
p ∈ {0.005, 0.01, 0.05, 0.1GM, GD, 0.2MM, MD}

Notes on implementation of continual backpropagation. We used the implementation provided
by Dohare et al. (2024), the original authors of the continual backpropagation algorithm. In this
implementation, the layer normalization parameters associated with a hidden unit are reinitialized
along with the corresponding unit. Additionally, the implementation uses contribution utility com-
puted from the data in the current mini-batch instead of as a running average. We chose not to use

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

running averages to reduce the number of tunable hyper-parameters and because the mini-batch size
was large enough to provide accurate estimates for computing the contribution utility.

Computing the reinitialization rate of continual backpropagation and selective weight reini-
tialization. Here, we explain how to compute the quantities reported in Section 4. In the case of
selective weight reinitialization, the number of weights reinitialized per parameter update is simply
the number of parameters in the network times the reinitialization proportion divided by the reini-
tialization frequency. For the small network setting, the network contained 8,180 parameters, and
selective weight reinitialization with reinitialization with initial distribution used a reinitialization
proportion of 0.2 and a reinitialization frequency of 1,200. Thus, the reinitialization rate was 1.36.
For the small network with layer norm setting, the network contained 8,240 parameters, the reinitial-
ization proportion was 0.1, and the reinitialization frequency was 1,200, resulting in a reinitialization
rate of 0.687.

In the case of continual backpropagation, computing the reinitialization rate for weights is more
complicated. In the small network setting, continual backpropagation used a replacement rate of
1×10−3. Since the network contains ten units per layer, continual backpropagation reinitializes one
unit every 100 steps. In the first layer, reinitializing a unit is equivalent to reinitializing one row of
the input weight matrix (784 weights), one bias term (1 weight), and a column in the output weight
matrix of the unit (10 weights), resulting in 795 weights reinitialized. In the second layer, we use the
same formula minus one because one of the entries in the row was reinitialized when reinitializing
the previous layer, which results in 20 weights reinitialized (10 from the input weight matrix, ten
from the output weight matrix, one from the bias term, and -1 from reinitializing weights in the
previous layer), and the same in the third layer. Thus, continual backpropagation reinitializes 835
weights every 100 updates, equivalent to 8.35 weights per update. When using layer norm, we add
plus two to the weights in each layer since the layer norm parameters are also reinitialized. In that
setting, continual backprop used a replacement rate of 1 × 10−5, or one unit every 10,000 updates.
Thus, continual backpropagation reinitializes 841 weights every 10,000 updates or 0.0841 weights
per update.

B CORRELATES OF LOSS OF PLASTICITY IN PERMUTED MNIST

Here, we present additional measurements that could explain the performance of the learning sys-
tems presented in the main text. Our goal is to rule out pathological scenarios that often occur along
with loss of plasticity but are not the root causes of it. We look for three pathological scenarios.
First, we look for a large accumulation of dead units corresponding to a loss of representational
capacity in the network. We measure the percent of units that always output zero on a random sam-
ple of 2,000 MNIST images after a new permutation is applied but before training recommences.
Second, we look for significant increases in the average magnitude of the parameters of the network,
which could signal instability in the optimization process. We measure the average magnitude of
the weight at the end of each task. Lastly, we look for shrinkage of the average magnitude of the
gradients, which could signal a drastic slowdown in learning. We measure the average gradient
magnitude online as the network learns from new observations.

Correlates of loss of plasticity in the initial assessment. In Section 3, we presented comparisons
between selective weight reinitialization using two different utility functions. While we noticed dif-
ferences in performance, we did not delve deeper into the qualitative difference between the two.
Figure 5 shows the three correlates of loss of plasticity. The base system showed every patholog-
ical scenario we described; it had many dead units, increasing weight magnitude, and decreasing
gradient magnitude. On the other hand, selective weight reinitialization with gradient utility and
reinitialization with initial distribution (blue lines in Figure 5) avoided all of these scenarios. Yet,
the results also show that these measurements are unreliable at predicting loss of plasticity. Se-
lective weight reinitialization with gradient utility and reinitialization to the mean also showed the
same pathological scenarios as the base system. Nevertheless, it had a higher and more stable per-
formance than selective weight reinitialization using magnitude utility, which scored better in these
three measurements.

Correlates of loss of plasticity in the large network with layer norm setting. In Section 4,
we proposed that reinitializing units drastically changed the statistics used in layer normalization
modules. We verified that was the case for the small network with layer normalization setting but

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Percent of
Dead Units

0%

20%

40%

60%

Selective weight reinitialization
with gradient utility

Selective weight reinitialization
with magnitude utility

Reinitialization to the mean

Reinitialization to the mean

Reinitialization with initial distribution

Reinitialization with initial distribution

Reinitialization to the mean

Reinitialization with initial distribution

Base system

Base system

Base system

Base system

Base system

Base system using L2-regularization

Reinitialization to the mean

Reinitialization to the mean

Reinitialization with
initial distribution

Reinitialization with initial distribution

Reinitialization to the mean
Reinitialization with initial distribution

ba

Base system using
L2-regularization

Base system using L2-regularization

Base system using L2-regularization

Base system

Base system using L2-regularization

Base system using L2-regularization

0.05

0.10

0.15

0.20

Average Weight
Magnitude

0.0010

Permutation Number
1 200 400 600 800 1000

0.0015

0.0020

0.0025

Permutation Number
1 200 400 600 800 1000

Average Gradient
Magnitude

c d

e f

Figure 5: Correlates of loss of plasticity for the initial assessment presented in Figure 1. Each
line corresponds to the average of 30 runs, whereas the shaded region corresponds to one standard
error. The base systems showed a large percentage of dead units, increasing weight magnitude,
and decreasing gradient magnitude, which could explain its poor performance. Selective weight
reinitialization with gradient utility and reinitialization with initial distribution avoided these three
scenarios and maintained plasticity throughout the experiment.

did not find the same effect when using a large network. Here, we look deeper into the network to
verify if reinitializing units resulted in other pathological scenarios.

Figure 6 shows the correlates of loss of plasticity. Only the correlates for selective weight reinitial-
ization with gradient utility are shown. Continual backpropagation maintained a small percent of
dead units and a large average gradient but also saw an increase in weight magnitude. This could
explain why it prevented some loss of plasticity; it prevented two of the three pathological scenar-
ios. The measurements corresponding to selective weight reinitialization with reinitialization to the
mean are puzzling. It accumulated a large percentage of dead units and saw a large decrease in
gradient magnitude. Yet, its performance was higher than continual backpropagation and the base
system using L2-regularization by the end of the experiment.

Correlates of loss of plasticity in the small network with layer norm setting. In Section 4, we
proposed that reinitializing units would result in more weights being reinitialized on average. This
was only true when not using layer normalization, which suggests other explanations for the poor
performance of continual backpropagation in small networks with layer norm setting. We look at
the correlates of loss of plasticity for such an explanation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Permutation Number
1 200 400 600 800 1000

SWR with reinitialization to the mean

SWR with reinitialization with initial distribution

Base system

Base system using L2-regularization
Continual backpropagation

SWR with reinitialization to the mean

Permutation Number
1 200 400 600 800 1000

0.05

0.10

0.15

0.20

0.25

0.30

0.35

SWR with reinitialization
with initial distribution

Base system

Base system

Base system using L2-regularization

Continual backpropagation

SWR with reinitialization to the mean

SWR with reinitialization
with initial distribution

Base system using
L2-regularization

Continual backpropagation

0%

20%

40%

60%

80%

Percent of Dead Units Average Gradient Magnitudecba Average Weight Magnitude

Permutation Number
1 200 400 600 800 1000

0.0010

0.0015

0.0020

0.0025

Figure 6: Correlates of loss of plasticity for a large network with layer norm setting presented in
Figure 2b. Each line corresponds to the average of 30 runs, whereas the shaded region corresponds
to one standard error. Continual backpropagation prevents a large accumulation of dead units and
a decrease in gradient magnitude, but it sees an increase in the average weight magnitude, which
could explain its poor performance.

Percent of Dead Units Average Gradient Magnitude

SWR with reinitialization to the mean

SWR with reinitialization
with initial distribution

Base system

Base system using L2-regularization

ba Average Weight Magnitude

Permutation Number
1 200 400 600 800 1000

c

Continual backpropagation

0.003

0.004

0.005

0.006

0.007

0.008

Permutation Number
1 200 400 600 800 1000

SWR with reinitialization to the mean

SWR with reinitialization
with initial distribution

Base system

Base system using L2-regularization

Continual backpropagation

0.2

0.4

0.6

SWR with reinitialization to the mean

Base system

Base system using
L2-regularization

SWR with reinitialization
with initial distribution

Continual backpropagation

Permutation Number
1 200 400 600 800 1000

0%

2%

4%

6%

8%

10%

12%

14%

Figure 7: Correlates of loss of plasticity for small network with layer norm setting presented in
Figure 2d. Each line corresponds to the average of 30 runs, whereas the shaded region corresponds
to one standard error.

Once again, we found that continual backpropagation was very effective at keeping units alive (Fig-
ure 7a). However, continual backpropagation also had an increasing average weight magnitude and
a decreasing average gradient magnitude. Along with the results in Figure 6, these findings suggest
that addressing the dormant neuron problem is not enough to prevent the loss of plasticity, which
contrasts the results found by Sokar et al. (2023).

C ADDITIONAL RESULTS AND DETAILS ABOUT CLASS-INCREMENTAL
CIFAR-100 EXPERIMENTS

Architectures. For the ResNet-18 experiments, we used the same architecture, hyper-parameters,
and implementation used by Dohare et al. (2024). For the vision transformer experiments, we mod-
ified the implementation provided in the torchvision python package (maintainers & contributors,
2016) to include the continual backpropagation implementation from Dohare et al. (2024) between
feed-forward layers. We tried several architecture settings to maximize the test accuracy on the
CIFAR-100 dataset during 100 epochs of training using stochastic gradient descent with a learning
rate of 0.01, a dropout probability of 0.1, and a momentum of 0.9. The best configuration we found
was a patch size of 4, 8 encoder blocks with an embedding dimension of 384 each, 12 attention
heads per block, and 1,536 hidden units in the multi-layer perceptron block. With this configuration,
the architecture has 14,279,140 parameters.

Hyper-parameter tuning in vision transformers. Except for the selective weight reinitialization
results, we used the same results presented by Dohare et al. (2024). For selective weight reinitial-
ization, we first tested hyper-parameter values randomly to find a suitable range for the grid search.
Then, we tried reinitialization frequencies in {130, 260, 520, 1040} and reinitialization proportions
in {0.025, 0.05, 0.1}. We ran each parameter combination for five different random seeds. We
selected the combination that maximized the sum of the highest test accuracy per task in the class-
incremental CIFAR-100 problem, equivalent to the area under the curve of the lines in Figure 8a.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The main text shows the results of selective weight reinitialization with reinitialization frequency
and proportion of 260 and 0.05, respectively.

Hyper-parameter tuning in vision transformers. For the base system, we tested values for the
learning rate in {0.2, 0.1, 0.05, 0.01, 0.005}, values for the L2-regularization factor in {1×10−4, 1×
10−5, 5× 10−6, 2× 10−6, 1× 10−6, 1× 10−7, 1× 10−8}, and values for the dropout probability in
{0.0, 0.05, 0.1, 0.15}. We did not scale the L2-regularization factor by the learning rate to keep the
regularization strength constant even as the learning rate decreased to zero due to the scheduler. In
the main text, we used a learning rate of 0.01, an L2-regularization factor of 2×10−6, and a dropout
probability of 0.1. These values were selected to maximize the test accuracy in the CIFAR-100
problem during 100 epochs of training. The network was trained using stochastic gradient descent
with a momentum of 0.9 and a mini-batch size of 90. All the other systems use the same learning
rate, L2-regularization factor, dropout probability, and momentum term as the base system.

For continual backpropagation with vision transformers, we tested values for the replacement rate
in {1 × 10−4, 1 × 10−5, 1 × 10−6, 1 × 10−7} and maturity threshold in {100, 1000, 10000} using
five random seeds per parameter combination. We selected the combination that maximized the sum
of the highest test accuracy per task, equivalent to the area under the curve of the lines in Figure
8b. In the main text, we present the results of continual backpropagation using a replacement rate of
1× 10−6 and a maturity threshold of 100. We used the contribution utility computed on the current
mini-batch of data.

After an initial random search, we tested reinitialization frequencies in {30, 65, 130} and reinitial-
ization proportions in {0.005, 0.01, 0.02} for selective weight reinitialization. The main text shows
the results of selective weight reinitialization with reinitialization frequency and proportion of 65 and
0.01, respectively. We used gradient utility and reinitialization to the mean. Note that reinitialization
to the mean reinitializes weights and bias to zero for every parameter matrix and vector, except for
the weights in the layer normalization modules. The weights of layer normalization modules were
reinitialized to one.

We used the same hyper-parameters as the base system for the layer norm resetting baseline. For
continual backpropagation with layer norm resetting, we used the same hyper-parameters as contin-
ual backpropagation.

Test accuracy plot. The main text presented the accuracy relative to the network trained from
scratch. For completeness, we presented the highest test accuracy per task of each algorithm in
Figure 8. Figure 3 was created by taking the difference between the performance of each learning
system and the network trained from scratch baseline (gray) in Figure 8.

Number of Classes
5 50 100

Highest Test
Accuracy
in Task

75

80

85

90

Number of Classes
5 50 100

50

60

70

80

a Incremental CIFAR-100
with ResNet-18 b Incremental CIFAR-100

 with Vision Transformers

Base system
Base system

Selective weight
reinitialization

Selective weight
reinitialization

Output layer resetting

Continual backpropagation

Continual backpropagation

Continual backpropagation
with layer norm resetting

Layer norm
resetting

Network
trained from

scratch

Network trained from scratch

Figure 8: Best test accuracy per task in class-incremental CIFAR-100 with (a) ResNet-18 and (b)
vision transformers. Each line is the average of 15 runs in the ResNet-18 plot and 10 runs in the
vision transformer plot; the shaded regions correspond to the standard error.

Observation about layer norm parameters. During our experiments, we noticed that the scaling
parameter in the layer normalization modules was shrinking in each consecutive task. As a reminder,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

the layer normalization performs the following operation,

y =
x− E[x]√
V[x] + ϵ

· γ + β,

where x is an activation in a layer, E[x] is the sample average of all the activations in the layer,
V[x] is the sample variance, ϵ is a small positive number to prevent division by zero, and γ and
β are learnable parameters. We found γ was shrinking throughout training, a potential form of
failure for layer norm. If γ reaches zero, then the network stops propagating gradients back to the
layers preceding the layer normalization module. This is why we devised the layer norm resetting
baseline in Figure 3. Learning systems that maintained plasticity also kept the value of γ relatively
high (Figure 9). The shrinkage of the scaling factor in layer normalization is an understudied failure
mode that deserves a more thorough investigation because of the essential role of layer normalization
in large language models.

Number of Classes

Average Magnitude
of Scaling Factors in
Layer Norm Modules

5 50 100
0.0

0.2

0.4

0.6

0.8

1.0

Base system

Selective weight reinitialization

Continual backpropagation

Continual backpropagation
with layer norm resetting

Layer norm resetting

Network trained from scratch

Figure 9: Average magnitude of the learnable parameter γ over all the layer normalization modules
in the vision transformer architecture. A drastic decrease in the magnitude of γ corresponds to a
reduction in accuracy in Figure 5.

21

	Related Work
	Loss of plasticity
	Reinitialization algorithms

	Learning problem
	Reinitializing weights for maintaining plasticity
	Reinitializing weights vs reinitializing units for maintaining plasticity in feed-forward networks
	Reinitializing weights vs reinitializing units for maintaining plasticity in ResNet-18 and Vision Transformers
	Conclusion and future work
	Additional results and details about permuted MNIST experiments
	Correlates of loss of plasticity in Permuted MNIST
	Additional results and details about class-incremental CIFAR-100 experiments

