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ABSTRACT

Though recent advances in unified multimodal understanding and generation have
unfolded, building multimodal humanoid agents capable of mimicking core hu-
man abilities, such as language understanding, speech, and behavior generation,
remains challenging. Symbolic modalities like language rely on discrete tokens,
while perceptual modalities such as vision and behavior benefit from continuous
representations, making unified understanding and generation across such diverse
modalities difficult. Insightfully, by decoupling model parameters across modalities
and adopting a modality-expert training strategy, we avoid degrading the original
language model’s intelligence while enabling the interleaving of continuous and
discrete tokens within a unified generative framework. Inspired by this, we propose
HumanExpert, a unified multimodal generative model for humanoid agent tasks,
synthesizing language, speech, and behavior in one interleaved autoregressive-
diffusion framework with a behavior expert. Specifically, HumanExpert employs
a mixture-of-experts (MoE) architecture with a modality-independent backbone,
where the behavior expert enables human behavior modeling while preserving the
intelligence of the pre-trained language model. Based on this MoE architecture,
we design an interleaved autoregressive-diffusion framework that generates text,
audio, and behavior tokens, supervising the text and audio in an autoregressive
manner and the behavior modality with diffusion loss. We further implement a
diffusion forcing strategy to stabilize continuous generation. As a newly emerging
and comprehensive task, we carefully design a humanoid agent evaluation protocol
and achieve competitive performance in language understanding, audio-behavior
alignment, and behavior execution for versatile multimodal humanoid generation.

1 INTRODUCTION

Recent advances in unified image-language understanding and generation, such as GPT-4o Hurst et al.
(2024), Janus Wu et al. (2024), Transfusion Zhou et al. (2024), and Show-O Xie et al. (2024a), have
demonstrated strong multi-task generalization and architectural scalability, which have driven the
evolution of unified frameworks across language, vision, speech, and other modalities, such as human
motion Jiang et al. (2023a) and robotic action Black et al.; Kim et al. (2024). Due to these unified
multimodal foundations, humanoid generation, capable of mimicking human abilities in language
understanding, speech generation, and behavior execution, should benefit robotics, human-computer
interaction, filming, and virtual assistants.

Previous research on video-based human animation has explored diverse tasks, including portrait
animation Guo et al. (2024); Tian et al. (2024; 2025), upper/full-body human animation Hu (2024);
Hu et al. (2025a); Gan et al. (2025); Tan et al. (2024); Luo et al. (2025); Zhu et al. (2024); Men
et al. (2024), and humanoid generation Ao (2024); Wang et al. (2025c). Recent portrait animation
works Guo et al. (2024); Tian et al. (2024); Jiang et al. (2024) involve two conditions: face param-
eters Guo et al. (2024) or audio signals Tian et al. (2024); Jiang et al. (2024). The former, such as
LivePortrait Guo et al. (2024), relies on intermediate representations like keypoints to efficiently
drive portraits, while the latter, such as EMO Tian et al. (2024) and Loopy Jiang et al. (2024),
favors an end-to-end approach to achieve audio-to-video generation without explicit facial modeling.
Moreover, OmniTalker Wang et al. (2025c) proposes a cascaded approach that generates audio
before talking-head animation, enabling finer-grained control. On the other hand, recent DiT-based
human animation works, such as OmniHuman Lin et al. (2025a), EMO2 Tian et al. (2025), and
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Talking

The sky is blue because of the way sunlight interacts with the atmosphere. 
Shorter wavelength blue light scatters more than other colors.

Why is the sky blue? 

Behavior Execution Quickly look up to the sky, then laugh with a happy face.

Go on a road trip! Pack up the car, open up the music, 
and explore new places. It’s beautiful out there!

What’s a fun way to spend a weekend?        

Look to the left, then turn your head to the upper left.

or or

Figure 1: HumanExpert can address diverse humanoid generation tasks through various text or audio
instructions. We provide the results on audio question-to-answer, talking head animation (the uppers),
and behavior execution (the bottoms).

HunyuanCustom Hu et al. (2025b), benefit from general text-to-video backbones Yang et al. (2024);
Kong et al. (2024); Seawead et al. (2025), achieving diverse conditional controls including text, audio,
object interaction, and human identity, and producing more appearance-realistic and context-aware
animations. However, most above methods primarily focus on animation control via text or audio
cues, with generation processes that are typically modular or cascaded, often lacking unified modeling
of human-like intelligence. Inspired by Body-of-Her Ao (2024) and other human-like generation
works Zeng et al. (2024); Wang et al. (2025c); Xu et al. (2025), we thus aim to build a unified
multimodal humanoid generative model that generalizes across language-audio understanding and
speech-behavior generation, while mimicking human-like intelligence in both thoughts and behavior.

Two challenges are crucial for unified humanoid generations. The first is unifying the learning of
continuous and discrete tokens within a single framework, and the second is solving the multimodal
scaling problem without degrading the intelligence of pre-trained models. Insightfully, by decoupling
model parameters across modalities Esser et al. (2024) and adopting a modality-expert training
strategy Black et al.; Liang et al. (2024), a new expert can learn to generate new modality while
preserving the original intelligence. Therefore, with recent advances in unified multimodal modeling,
unified humanoid models equipped with a behavior expert can interleave continuous and discrete
tokens in a single generative framework. Meanwhile, such frameworks preserve the capabilities of
the pre-trained model, and support continued supervised fine-tuning on origin language modality for
human-agent intelligence alignment.

In this work, we propose a unified multimodal humanoid generative model, HumanExpert, which
leverages behavior expert to integrate strong large-scale audio-language models for humanoid tasks
within a unified hybrid autoregressive-diffusion framework. To comprehend and generate human-like
behaviors across different modalities, we first adopt a mixture-of-experts (MoE) architecture as a
modality-independent backbone, wherein the behavior expert branch learns human behavior modeling
interacting with language and audio latents, but avoid degrading the pre-trained intelligence. To
efficiently train this MoE, we utilize an autoregressive-diffusion framework, supervising the text and
audio with softmax loss and behavior with diffusion loss, generating text, audio, and behavior tokens
in an interleaved manner. Moreover, we introduce a diffusion-forcing strategy to stabilize continuous
behavior modeling, while history-based classifier-free guidance is employed to further improve output
quality. We final incorporate DiT-based human video models to render behavior embeddings into
realistic human videos. To evaluate our model, we carefully design a humanoid evaluation protocol
and show that HumanExpert achieves competitive performance across language understanding (audio
QA), audio-behavior alignment (lip sync), and behavior execution (listen-to-command).

We summarize our contributions as follows: (1) We propose a unified multimodal humanoid generative
model, HumanExpert, which interleaves text, audio, and behavior tokens for human animation, and
performs diverse humanoid tasks with one single model. (2) We introduce behavior experts within a
mixture-of-experts backbone to comprehend with audio-language latents for efficient multimodal
scaling, enabling the new humanoid learning without degrading the pre-trained intelligence. (3) We
propose a general humanoid benchmark for multi-task humanoid evaluation, where HumanExpert
shows competitive results across language understanding, speech generation, and behavior execution.
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2 RELATED WORK

Human Behaviour and Animation. Ranging from 2D pose Cao et al. (2019); Andriluka et al. (2014);
Khirodkar et al. (2024) to 3D motion Li et al. (2017); Oufqir et al. (2020); Romero et al. (2022);
Loper et al. (2023); Pavlakos et al. (2019), and from explicit keypoints to implicit latents Wang et al.
(2024d); Siarohin et al. (2019); Zhao & Zhang (2022); Zhao et al., Human Behavior Representations
generally serve as a foundation for video-based human research, such as portrait animation Xie et al.
(2024b); Tian et al. (2024); Guo et al. (2024); Jiang et al. (2024); Ji et al. (2024); Cui et al. (2024a);
Zheng et al. (2024); Chen et al. (2025), upper/full-body human animation Hu (2024); Hu et al. (2025a);
Gan et al. (2025); Lin et al. (2025a); Tian et al. (2025); Hu et al. (2025b), humanoid generation Ao
(2024); Wang et al. (2025c), as well as 3D-based tasks including human motion generation Xin
et al. (2023); Tevet et al. (2022); Jiang et al. (2023a); Zhang et al. (2023b); Petrovich et al. (2022),
human-object interaction Pan et al. (2025a); Li et al. (2024a), and even humanoid robotics Cheng et al.
(2024). Targeting videos, Portrait Animation synthesizes facial movements and expressions, often
guided by 2D Zhou et al. (2020); Guo et al. (2024); Chen et al. (2019); Ji et al. (2021; 2022); Wei et al.
(2024) and 3D face parameters Zhang et al. (2023a; 2021a); Kim et al. (2018); Zhang et al. (2021b);
Yi et al. (2022); Zhang et al. (2023d), or directly by audio signals Jiang et al. (2024); Tian et al. (2024);
Wang et al. (2024a;b); Cui et al. (2024a); Wang et al. (2025c). The former, such as MakeItTalk Zhou
et al. (2020) and LivePortrait Guo et al. (2024), relies on intermediate representations like keypoints
to efficiently drive portraits and achieve broad applicability, while the latter, such as EMO Tian et al.
(2024) and Loopy Jiang et al. (2024), favors an end-to-end manner, by performing audio-to-video
synthesis without explicit behavior modeling, aiming to reduce intermediate errors for robustness.
In addition, OmniTalker Wang et al. (2025c) proposes a cascaded approach that generates audio
before talking-head animation, enabling finer-grained control. Beyond faces, Human Animation Hu
(2024); Tan et al. (2024); Luo et al. (2025); Men et al. (2024); Zhu et al. (2024) has advanced with
DiT-based text-to-video models Yang et al. (2024); Kong et al. (2024); Seawead et al. (2025); Wan
et al. (2025) and large pre-trained backbones, enabling flexible animation across face, upper body,
and full body. Recent works, such as OmniHuman Lin et al. (2025a), HumanDiT Gan et al. (2025),
EMO2 Tian et al. (2025), and HunyuanCustom Hu et al. (2025b), support diverse conditional controls
including text, audio, object interaction, and character identity, achieving more appearance-realistic
and context-aware animations. However, most human animations primarily focus on conditional
control via audio or text cues, with generation processes typically modular or cascaded, often lacking
unified multimodal understanding and generation. Inspired by Body-of-Her Ao (2024) and other
human-like works Zeng et al. (2024); Wang et al. (2025c), Humanoid Generation offers a newly
comprehensive task, we thus aim to synthesize humanoid agents that mimic deep human abilities such
as language understanding, speech generation, and behavior execution within a unified framework.

Unified Multimodal Understanding and Generation has shown great potential in the image
domain Wu et al. (2024); Xie et al. (2024a); Zhou et al. (2024); Pan et al. (2025b); Yu et al. (2024);
Ma et al. (2024); Hurst et al. (2024); Team et al. (2023), often requiring complex and challenging
architectures, ranging from hybrid encoding to hybrid backbones, to support unified vision-language
understanding and generation. Meanwhile, these advances have also inspired broader tasks, such as
vision-language modeling (VLM) Wang et al. (2024c); Lu et al. (2024); Liu et al. (2023; 2024), vision-
language-action modeling (VLA) Black et al.; Kim et al. (2024), speech-language modeling Zeng
et al. (2024); Team (2025); Xu et al. (2025), human motion modeling Jiang et al. (2023a), all evolving
toward unified frameworks. While language models primarily rely on discrete tokens for symbolic
modalities, perceptual modalities like vision and human behavior benefit more from continuous
representations Wang et al. (2025b); Li et al. (2024b). To address this gap, Hybrid Encoding
has been proposed to support both semantic-level and pixel-level understanding and generation,
enabling flexible encoding strategies across and within modalities to improve cross-modal alignment.
While TokenBridge Wang et al. (2025b) decouples discretization from tokenizer training by applying
post-training quantization to extract discrete tokens directly from continuous tokens, more recent
work Wu et al. (2024); Zhou et al. (2024); Xie et al. (2024a) adopts hybrid encoding schemes
to ease the burden of multimodal representation learning. Relying on such encodings, Hybrid
Backbone architectures have progressed from pure autoregressive models (using discrete tokens) or
pure diffusion models (using continuous tokens) to unified frameworks that combine both objectives,
such as Transfusion Zhou et al. (2024) and Show-O Xie et al. (2024a), which adaptively learn from
mixed modalities. To further enhance training in these settings, Diffusion Forcing Chen et al. (2024)
introduces a new paradigm where a diffusion model denoises tokens with independently sampled
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noise levels under a next-token prediction framework. Building upon this, DFoT Song et al. (2025)
incorporates history-guided strategies across temporal and frequency dimensions to improve video
dynamics and generalization. Despite these advances in vision-language and multi-task generation,
the development of unified multimodal models, capable of generating humanoid agents that mimic
human behavior and intelligence, remains limited and underexplored.

Mixture of Multimodal Experts. With the advancement of pre-trained large models, full-parameter
fine-tuning on dense models has shown potential for performance gains, but also poses economic
inefficiencies and substantial scaling challenges in downstream tasks. To address these issues, Sparse
Models have been widely explored, including LoRA Hu et al. (2022), adapters Zhang et al. (2023c);
Poth et al. (2023), mixture-of-experts (MoE) Jacobs et al. (1991), modality-specific branches Esser
et al. (2024), and mixture-of-transformers(MoT) Liang et al. (2024); Shi et al. (2024); Black et al.,
offering flexible solutions for multimodal and multi-stage training. Among them, LoRA Hu et al.
(2022) is the most widely adopted due to its simplicity and effectiveness, especially in tasks such
as image stylization Wang et al. (2023) and vision adaptation Wang et al. (2025a). However, its
applicability to multimodal output generation remains limited. Recently, Multimodal Expert Esser
et al. (2024); Black et al. has demonstrated strong learning capabilities. For instance, Stable Diffusion
3 Esser et al. (2024) proposes MM-DiT, which uses separate weights for the text-image modalities
and enables bidirectional information flow, thereby improving text comprehension. Moreover,
π0 Black et al. builds on a pre-trained VLM by incorporating a separate action expert to generate
continuous actions via flow matching, enabling fine-grained control in embodied generation. Similarly,
MoT Liang et al. (2024) proposes a sparse multimodal transformer architecture to reduce pretraining
costs across text, image, and speech inputs, and LMFusion Shi et al. (2024) extends this adaptive
strategy to unify image understanding and generation. Inspired by π0 Black et al. and MoT Liang
et al. (2024), we propose HumanExpert, a framework for humanoid generation that decouples model
parameters across modalities with behavior expert, which can reduce multimodal scaling costs, avoid
downgrading pre-trained language models, and enable the interleaving of discrete and continuous
tokens within a unified generative framework.

3 METHOD

We introduce HumanExpert, a unified generative framework that extends pretrained text-only LLMs
Touvron et al. (2023); Xu et al. (2025) and text–speech LLMs Yao et al. (2024); Zeng et al. (2024)
with behavior generation for natural embodied interaction. As shown in Fig. 2, HumanExpert builds
on a transformer backbone and replaces non-embedding components—feed-forward blocks, attention,
and layer norms—with modality-specific experts, following Black et al.; Liang et al. (2024); Shi et al.
(2024). Modalities interact through shared cross-modal attention for unified understanding. Text
and speech are produced autoregressively, while behavior is generated via holistic denoising with
per-token noise levels using an expert part model. This hybrid design preserves causal semantics for
language/audio and enables long-horizon, stable behavior synthesis without regenerating past tokens.

Formally, given text w1:N , we tokenize into Lt tokens using Tiktoken (vocabulary size Kt). Spoken
input s is discretized by a pretrained speech tokenizer Es into a sequence of L speech tokens.
Conditioned on text or speech, HumanExpert outputs (1) a sequence of discrete tokens z1:Lout for
text/speech, which detokenize to wout or decode to sout, and (2) a behavior sequence mout. We define
behavior as disentangled motion in two forms: (i) head animation—a 1D identity-agnostic latent m ∈
RT×512 at 25 fps learned jointly with a video generator; (ii) whole-body animation—normalized 2D
pose keypoints from RTMPose Jiang et al. (2023b), where 133 keypoints j ∈ RT×266 are normalized
by the character center c ∈ RT×2 and bounding-box size b ∈ RT×1, producing m ∈ RT×271 with
values scaled to [−1, 1]. A DiT-based renderer converts mout into video vout with generated speech.

3.1 MODEL ARCHITECTURE

HumanExpert consists of two structurally similar but parametrically independent expert modules. The
text-speech expert handles both text and speech modalities, generating discrete token sequences in an
autoregressive manner. The behavior expert, on the other hand, focuses on the behavior modality,
generating motion sequences via a token-level denoising diffusion process.
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Figure 2: Architecture overview: HumanExpert consists of text-speech expert and behavior expert.
By leveraging multimodal embeddings, behavior expert generates continuous behavior tokens by
diffusion forcing, while text-speech expert generates discrete text or audio tokens by next-token
prediction in a unified framework.

Text-speech Expert first employs a pretrained speech tokenizer from Zeng et al. (2024) to encode
a speech segment s of duration T seconds to a sequence of discrete speech tokens z1:L = {zi}Li=1.
These tokens are embedded in a shared vocabulary space, allowing seamless integration with language
representations. The tokenizer comprises two components: an encoder E and a conditional flow
matching model D. The encoder E is based on Whisper Radford et al. (2023), a multilingual ASR
model. It processes the input Mel spectrogram smel through the Whisper subnetwork, then applies
1D average pooling to reduce the temporal resolution by a factor of k. The resulting features are
discretized via a vector quantizer, producing semantic tokens z1:L. Each token zi corresponds to
the nearest codebook vector, with the codebook updated during training using exponential moving
averages (EMA) and a random restart strategy Dhariwal et al. (2020). The flow matching model
D reconstructs Mel spectrograms conditioned on discrete tokens z1:L. It learns a transformation
from a simple prior distribution p0(smel) to the target distribution q(smel), using a time-dependent
vector field trained via an optimal transport objective. Finally, a HiFi-GAN vocoder converts the
generated spectrograms into speech waveforms. Together, E and D enable speech to be represented
as discrete tokens that are semantically aligned with language. To jointly model text and speech, we
adopt a decoder-only transformer initialized from a pretrained language model. The original language
vocabulary Vt = {vit}

Kt
i=1 is extended with a speech vocabulary Vs = {vis}

Ks
i=1, which preserves the

ordering of the speech tokenizer’s codebook Z. This results in a unified vocabulary V = {Vt, Vs},
allowing both input and output sequences to include a mix of text and speech tokens. Using this
unified token space, the model can model diverse speech-language tasks in a consistent format.

Behavior Expert adopts the architectural backbone of pretrained language models, but with behavior-
specific sizes and parameters. While structurally similar, it operates independently of the text-speech
expert. To enable joint reasoning across modalities, HumanExpert integrates behavior with text and
speech through shared cross-modal attention layers, promoting unified multimodal understanding and
generation. Specifically, we extend the decoder-only transformer with behavior-specific self-attention
and feed-forward networks (FFNs), analogous to the image and text branches. Each behavior input
m is first projected into a sequence of latent embeddings xm

t . These latent embeddings are processed
using behavior-specific query, key, value (QKV) projections, and attention layers. To facilitate
cross-modal interaction, we compute QKV representations by interleaving modality-specific hidden
states. Specifically, we apply separate linear projections to the hidden states of the text-speech
modalities e(t,s) and behavior e(m). The Q, K, and V at position i are obtained by summing the
modality-specific projections at the corresponding positions and applying a hybrid attention mask
tailored for chunk-level streaming. Thus, text queries are strictly causal, while motion queries may
attend bidirectionally within the current chunk and to any past chunks, but never to future chunks.
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Formally, this is expressed as:

Qt,s,m = e(t,s)W t,s
Q + e(m)Wm

Q

Kt,s,m = e(t,s)W t,s
K + e(m)Wm

K

V t,s,m = e(t,s)W t,s
V + e(m)Wm

V

(1)

As illustrated in Fig. 2, cross-modal attention is then applied using a hybrid attention mask, where
text and speech tokens attend only within their own modalities, while behavior tokens attend to all
modalities:

hm
O = Om

(
softmax

(
Qt,s,m(Kt,s,m)T + Maskm

√
d

)
V t,s,m

)
(2)

The resulting hidden states are passed through behavior-specific FFNs, producing contextually
enriched representations. Finally, these are projected into behavior noise predictions. This modular
design allows the behavior expert to model both low-level motor dynamics and high-level semantic
intent, while benefiting from shared cross-modal context through interleaved attention.

3.2 TRAINING OBJECTIVES

Text-speech Expert mixed text and speech tokens from a shared vocabulary V . The source sequence
is denoted as Xin = {xi

in}Ni=1, and the target sequence as Xout = {xi
out}Li=1, where N and L are the

lengths of the input and output sequences, respectively. As illustrated in Fig. 2, the input tokens are
passed through a transformer decoder that generates the target sequence in an autoregressive fashion.
At each time step, the model predicts the probability of the next token conditioned on the previously
generated tokens and the source input:

pθ(Xout | Xin) =

L∏
i=1

pθ(x
i
out | x<i

out, Xin) (3)

This part is trained to maximize the log-likelihood of the target sequence, using following objective:

LLM = −
L∑

i=1

log pθ(x
i
out | x<i

out, Xin) (4)

Behavior Expert operates on sequences of behavior tokens {xt
m}Tt=1, where each token may be

subject to a different degree of partial noising. Unlike the text-speech expert, which is trained
autoregressively, the behavior expert adopts a non-autoregressive training objective, enabling the
model to handle varying noise levels across time steps. To model this, we denote the noisy behavior
sequence as {xkt

m}Tt=1, where kt ∈ [0,K] indicates the noise level of token xt
m. The behavior

expert consists of a recurrent dynamics function pθ(zt | zt−1, xin, x
kt
m , kt) and an observation model

pθ(x
0
m | zt) that together learn to denoise the input sequence by minimizing the expected prediction

error over varying noise levels. The overall training objective follows a noise-prediction paradigm:

LDF = E
kt,xm,ϵt

zt∼pθ(zt|zt−1,xin,x
kt
m ,kt)

T∑
t=1

∥∥ϵt − ϵθ(zt−1, xin, x
kt
m , kt)

∥∥2 (5)

Here, ϵt is the added Gaussian noise at timestep t, and ϵθ predicts the noise based on the previous latent
state zt−1 and the noisy token xkt

m . The behavior expert thus learns to reconstruct clean behavior
tokens by leveraging both temporal context and the structure of noise, enabling robust behavior
generation even under partial observability or corrupted inputs. Moreover, to enable classifier-free
guidance at inference, we randomly drop text and audio conditions with probability p for training.
The overall training objective combines both components:

Ltotal = λLM · LLM + λDF · LDF (6)

3.3 INFERENCE

HumanExpert outputs each modality using distinct sampling strategies. The text-speech expert
generates discrete tokens autoregressively, while the behavior expert synthesizes continuous motion
sequences through a structured denoising process guided by a noise schedule matrix.
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Text-speech Expert generates the target sequence token by token, recursively sampling from the
predicted distribution:

pθ
(
x̂t

i | x̂t
<i, xs

)
. (7)

This autoregressive decoding conditions each token on both the source input and the previously
generated tokens, allowing it to produce coherent and contextually grounded text or speech outputs.

Behavior Expert follows the sampling procedure by denoising from a noise schedule matrix K ∈
[K]M×T defined over a 2D grid, where each row m corresponds to a behavior sequence and each
column t to a time step. Each entry Km,t specifies the desired noise level of token xt

m during
generation. To synthesize a behavior sequence of length T , we initialize {xt

m}Tt=1 with Gaussian
noise N (0, I), corresponding to KM,t = K. The module then denoises row-by-row from m = M
to m = 0, and left-to-right within each row, progressively reducing noise based on the prescribed
schedule K. At the final row m = 0, the denoised output {xt

0}Tt=1 constitutes the generated behavior
sequence, where K0,t = 0 ensures that each token is fully reconstructed. This procedure enables the
behavior expert to flexibly control the denoising rate for different tokens and time steps. Because the
module is trained to handle arbitrary sequences of noise levels, K can be customized to adaptively
govern behavior synthesis strategies, such as uniform denoising, left-to-right generation, or other
user-specified temporal schedules, without retraining the model.

Classifier-Free Guidance(CFG). After the next-token prediction in the text-speech steam, the
behavior expert functions as a conditional diffusion model that incorporates all text/audio hidden
states, often called key-value (KV) caches, and behavior history. Therefore, we leverage these
two types of conditions to apply CFG, which enables more accurate control and improves sample
quality. Specifically, we adopt history guidance Song et al. (2025) during sampling, employing three
conditioning strategies: 1) full history, including text/audio context and behavior history; 2) partial
condition, with text/audio context and low-frequency behavior history; and 3) fully masked condition.
We also implement a vanilla history guidance that uses only two strategies: full-history context and
fully masked context, providing a balance between performance and runtime efficiency. In addition,
we follow the pyramid scheduling strategy from Diffusion Forcing Chen et al. (2024), where tokens
in the far future are assigned higher noise levels than those in the near future. This schedule offers a
favorable trade-off between effectiveness and computational cost.

Humanoid Agents Interfaces. To produce visually expressive humanoid agents, the generated
behavior sequence mout is transformed into photorealistic video frames using a hybrid rendering
architecture Zhao et al. or DiT-based human animation backbone Lin et al. (2025a). These renderers
integrate pretrained diffusion models GD with a reference-conditioned network GR, allowing for both
motion fidelity and visual consistency. The behavior sequence mout is injected into the denoising
backbone of GD via motion-guided cross-attention layers, which modulate temporal dynamics while
preserving appearance based on a given reference image IR (e.g., a portrait or full-body photo). To
further ensure identity consistency and suppress visual artifacts from the driving motion, the reference
encoder GR extracts fine-grained appearance features fapp from IR. These features are fused with
intermediate motion representations in the generator, enabling visual rendering of humanoid agents.

4 EXPERIMENTS

Extensive comparisons evaluate the performance of our HumanExpert across multiple motion-relevant
tasks and datasets. We evaluate HumanExpert across multiple behavior-focused tasks and datasets.
Datasets, metrics, and implementation details are provided in Sec. 4.1. We first evaluate multimodal
generation by comparing against state-of-the-art audio-driven portrait animation methods in Sec. 4.2.
As these methods are limited in behavior execution, we further compare with identity-consistent,
text-conditioned video generation baselines. To validate our expert design, we compare against full-
parameter fine-tuning and low-rank adaptation (LoRA). Results in Sec. 4.3 show that our approach
preserves language capabilities while effectively extending to new modalities. Additional qualitative
results, extended ablations, and implementation details are provided in the supplementary materials.

4.1 EXPERIMENTAL SETUP

Datasets. To support both text-to-behavior generation and behavioral command execution, we curate
a hybrid dataset comprising 36k text–speech–video triplets and an additional 3k videos paired with
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Table 1: Comparison of behavior execution. HumanExpert outperforms text-conditioned video
baselines on silent behavior execution tasks, achieving better motion accuracy and visual coherence.

Method SSIM ↑ LPIPS ↓ FVD↓ ID-SIM ↑ EMO-SIM ↑
ConsisID (Yuan et al. (2025)) 0.414 0.604 2487 0.379 0.229
Phantom (Liu et al. (2025b)) 0.367 0.582 1899 0.647 -0.004
HumanExpert 0.538 0.306 792.6 0.723 0.137

Table 2: Comparison of audio–behavior alignment on CelebV-HQ. HumanExpert achieves competi-
tive performance and uniquely supports text-to-audio and silent-behavior generation—capabilities
not available in baseline methods.

Method SSIM ↑ LPIPS ↓ FID ↓ FVD Sync-C ↑ Sync-D ↓
JoyVasa (Cao et al. (2024)) 0.605 0.046 79.3 600.3 3.429 8.667
EchoMimic (Chen et al. (2025)) 0.486 0.400 113.4 815.4 2.331 9.574
Memo (Zheng et al. (2024)) 0.597 0.054 77.3 536.2 3.426 8.270
Hallo3 (Cui et al. (2024b)) 0.564 0.121 86.0 601.2 3.242 9.315
Sonic (Ji et al. (2024)) 0.491 0.168 108.5 585.0 3.650 6.784
HumanExpert 0.556 0.237 91.3 636.1 3.743 8.935

command–response annotations. The triplets are sourced from publicly available datasets Zhang
et al. (2021c); Xie et al. (2022); Kirschstein et al. (2023). The command set was collected with
adult participants who provided written consent and received fair compensation. We evaluate on
three curated sets. (1) A celebrity video benchmark of 100 videos sampled from the CelebV-HQ
dataset Zhu et al. (2022).(2) A behavioral-commands benchmark of 100 test videos depicting varied
command-execution behaviors. (3) A portrait benchmark of 100 in-the-wild reference images drawn
from DeviantArt DeviantArt (2025), GPT-4o Hurst et al. (2024), and Pexels Pexels (2025), covering
diverse facial structures, appearances, and visual styles. Together, these sets span wide appearance
and motion diversity and support consistent, cross-domain evaluation. Further details and qualitative
examples are provided in the supplementary materials.

Evaluation Metrics are summarized as two main aspects: (1) Image and Video Quality. To assess
visual fidelity, we compute both structural and perceptual image-level metrics, including Structural
Similarity Index (SSIM) and Learned Perceptual Image Patch Similarity (LPIPS). For temporal
consistency and overall video quality, we adopt the Fréchet Video Distance (FVD) Skorokhodov et al.
(2022). (2) Behavioral Alignment. To evaluate identity preservation, we use ArcFace Deng et al.
(2019) to compute cosine similarity between identity embeddings (ID-SIM). For emotion consistency,
we leverage a pretrained emotion recognition model, EmoNet Toisoul et al. (2021), and report the
mean of Concordance Correlation Coefficient (CCC) and Pearson Correlation Coefficient across both
valence and arousal dimensions (EMO-SIM). We also evaluate audio-visual synchronization with
Sync-C and Sync-D Chung & Zisserman (2016).

Implementation Details. We adopt GLM-4-Voice Zeng et al. (2024) as the backbone architecture
for our speech-language expert, using a 40-layer transformer as the base model. The feed-forward
networks are configured with dimensionalities of dt,sff = 13,696 for the text-speech expert and
dmff = 6,848 for the behavior expert. Attention layers use an inner dimensionality of dkv = 128,
while hidden representations have dimensionalities of dt,s = 4,096 and dm = 2,048 for the two
experts, respectively. The text-speech expert loss λLM is set to zero, and all text-speech modules are
kept frozen during training. For the diffusion-based behavior generation, we apply classifier-free
guidance with a dropout probability of p = 0.1. During inference, we use a DDIM sampler with
50 denoising steps and set the guidance scale to w = 1.5. All models are optimized using the
AdamW optimizer. The learning rate is set to 1× 10−4 during the audio-behavior alignment stage
and 2 × 10−5 during full fine-tuning. We train using a mini-batch size of 4 for both stages. The
language model is trained for 300K iterations during the alignment phase, followed by an additional
300K iterations to incorporate the command execution task.

4.2 QUANTITATIVE RESULTS

Comparisons on Behavior Execution. Some actions—such as blinking, head turns, or micro-
expressions—occur without sound and cannot be handled by audio-driven methods. In contrast,
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Table 3: Ablation of Behavior Expert. Expert separation in HumanExpert preserves reasoning
abilities. ‘S→T’: speech-to-text; ‘T’: text-to-text.

Method Web Questions Llama Questions TriviaQA

T S → T T S → T T S → T

w/ FT 1.15 1.13 1.26 1.17 1.03 1.01
w/ LoRA 6.60 6.34 7.63 7.08 5.41 5.26
HumanExpert 6.69 6.40 7.65 7.13 5.43 5.32

HumanExpert supports such behaviors through unified modeling of text, speech, and behavior. Since
no existing methods address this setting, we compare against text-conditioned video generation
models with identity consistency. As shown in Tab. 3, HumanExpert achieves clearly superior results
in both motion accuracy and visual coherence.

Comparisons on Audio-Based Portrait Animation. This task involves generating talking head
videos conditioned on an audio input. While HumanExpert is capable of producing responses from
either text or audio prompts, for fair comparison, we apply teacher forcing to align the output of the
text-speech expert with the given driving audio. We compare our method with recent state-of-the-art
approaches Zheng et al. (2024); Cao et al. (2024); Chen et al. (2025); Ji et al. (2024); Cui et al.
(2024b), focusing on motion quality and identity consistency. As shown in Tab. 2, HumanExpert
achieves competitive results across most metrics, despite offering broader capabilities such as audio
generation from text prompts and silent behavior execution, which are beyond the scope of baseline
methods.

4.3 ABLATION STUDIES

HumanExpert is designed with two structurally similar but parametrically independent expert modules
to preserve the language model’s original reasoning capabilities. We conduct ablations to validate
this design choice. Additional results are included in the supplementary materials.

Architecture. We compare two model variants: (1) Full Fine-tuning: All language model parameters
are updated, with added behavior-specific embeddings and output heads. While this enables behavior
generation, it significantly impairs language reasoning due to the imbalance in training data, which
emphasizes alignment over QA. (2) LoRA-based Adaptation: The language model is frozen, and
behavior capabilities are introduced via low-rank adaptation. This preserves language understanding
but limits scalability due to fewer trainable parameters. These results highlight the value of modular
expert separation in maintaining strong language performance while extending to new modalities.

5 DISSCUSION

As a new trial to explore humanoid generation through unified multimodal models, the proposed
HumanExpert still has the following limitations. HumanExpert utilizes human behavior to represent
facial expressions and articulated bodies, whereas other existing works focus on video-based hu-
manoid agents Ao (2024); Tian et al. (2025). Besides, our method is also restricted to multiple humans
without modeling human-object Liu et al. (2025a), or human-environment interactions Ao (2024).
It is promising to extend our framework to real-time or instant video generation settings Lin et al.
(2025b); Frans et al. (2024), and to jointly generate controllable humans and interactive environments
within a unified world model.

We summarize HumanExpert as a unified text-audio-behavior framework that enables humanoid
agent tasks via behavior experts. Compared to prior works in human animation Cui et al. (2024b); Ji
et al. (2024), HumanExpert achieves competitive results in portrait animation, behavior execution,
and audio-based QA within a single framework. With the progress of multimodal models Liang
et al. (2024); Black et al., HumanExpert is capable of generating interleaved text-audio-behavior
sequences and shows competitive performance in language understanding, audio-behavior alignment,
and behavior execution, supporting its effectiveness for general multimodal humanoid generation.
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