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Abstract—Classical manipulator motion planners work across
different robot embodiments [34]. However they plan on a
pre-specified static environment representation, and are not
scalable to unseen dynamic environments. Neural Motion Plan-
ners (NMPs) [22] are an appealing alternative to conventional
planners as they incorporate different environmental constraints
to learn motion policies directly from raw sensor observations.
Contemporary state-of-the-art NMPs can successfully plan across
different environments [9]. However none of the existing NMPs
generalize across robot embodiments. In this paper we propose
Cross-Embodiment Motion Policy (XMoP), a neural policy for
learning to plan over a distribution of manipulators. XMoP
implicitly learns to satisfy kinematic constraints for a distribution
of robots and zero-shot transfers the planning behavior to
unseen robotic manipulators within this distribution. We trained
XMoP on planning demonstrations from over three million
procedurally sampled robotic manipulators in different simulated
environments. Despite being completely trained on synthetic em-
bodiments and environments, our policy exhibits strong sim-to-
real generalization across manipulators with different kinematic
variations and degrees of freedom with the same set of frozen
policy parameters. We show sim-to-real demonstrations on two
unseen manipulators solving novel planning problems in different
real-world environments even with dynamic obstacles. Videos are
available at https://sites.google.com/view/xmop.

I. INTRODUCTION

Motion planning for robotic manipulators is the task of find-
ing a sequence of robot configurations connecting a start joint
state to the goal joint state while respecting joint limits of the
robot and avoiding obstacles. Even after decades of research
in this domain, real-time motion planning in complex unseen
environments is still a challenging problem [29, 21, 24].

Classical motion planners either use random sampling to
explore the configuration-space [18, 17, 16, 28] or employ
gradient-based optimization methods [23, 15, 26, 8] to search
for a valid plan. While these algorithms generalize across
embodiments, they often demand a non real-time computation
budget for generating desired motion behaviors in geomet-
rically complex environments [21, 28]. Furthermore, these
algorithms conventionally assume the availability of a pre-
computed geometric representation of the robot’s workspace
for state validation, thus making them unscalable in unseen
environments with novel types of obstacles. To overcome these
limitations, Neural Motion Planners (NMP) learn to generate
trajectories directly from visual observations [22, 12, 14, 33,
5, 9]. However, these policies are individually trained on data
from a single manipulator, trading-off the cross-embodiment

flexibility offered by classical planners that are agnostic to a
robot’s morphology.

We identify two fundamental problems that have deterred
learning cross-embodiment motion planning. First, different
manipulators have varying kinematic properties such as link
lengths and joint limits, as well as diverse morphologies
characterized by their degrees of freedom. Each manipulator
operates within a particular configuration-subspace bounded
by its joint limits. Thus, training a single neural policy to
generate actions spanning multiple bounded subspaces renders
cross-embodiment motion planning a challenging task to learn.
Second, data for training cross-embodiment policies is difficult
to gather as there are only a limited number of embodiments
available commercially, which do not fully capture the distri-
bution of possible kinematic variations.

To address the above challenges, we present Cross-
Embodiment Motion Policy (XMoP), a framework of data-
driven methods to learn neural policies for cross-embodiment
motion planning. Our contributions are outlined as follows:
• Our novel control policy uses the robot’s physical de-

scription, i.e., URDF [30] to operate on link-wise SE(3)
observations and plans for task-space end-effector targets
across a distribution of 6 and 7 DoF manipulators, enabling
zero-shot configuration-space plan generalization.

• We propose a 3D semantic segmentation-based model
for perceptual cross-embodiment collision detection that
shows a 98% recall and zero-shot transfers to real-world
unseen environments.

• Finally, we combine the control policy with the collision
model under a model-predictive framework, achieving 70%
success rate for motion planning with unseen robotic
manipulators.

To the best of our knowledge, XMoP is the first neural
policy for configuration-space planning that zero-shot transfers
to unseen robotic manipulators. We demonstrate sim-to-real
transfer on Franka FR3 and Sawyer robots solving novel
planning problems in unstructured real-world environments.

II. METHODOLOGY

A. Whole-Body Control Formulation

Prior methods for neural motion planning directly predict
configuration-space actions that do not generalize across em-
bodiments [22, 12, 14, 33, 5, 9]. We formulate XMoP as
a Markovian motion dynamics model f(pt+1:t+H |pt, gt) that
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Fig. 1: XMoP perceives the embodiment state as a sequence of whole-body SE(3) link poses pt and predicts link-wise pose transformations
Tt+1:t+H over a horizon H to move the end-effector towards the goal pose gt. We use a Transformer [31] base policy architecture, that
operates on an input pose sequence (pt, gt) and uses self-attention to convert the query tokens into a sequence of link-wise relative pose
transformations. Contextual information is provided to the Transformer using three types of position embeddings: (1) LPE is a fixed set
of sinusoidal position embeddings that are repeated over the horizon providing kinematic chain awareness for every horizon step; (2) HPE
and (3) CPE, are learned position embeddings providing awareness for horizon and input, respectively. Additionally, we use novel attention
masking strategies within the Transformer for cross-embodiment adaptation. The predicted link-wise transformations are multiplied with the
instantaneous link poses to reconstruct the future whole-body pose of the manipulator, which is reached by using a whole-body IK procedure
to retrieve the configuration-space joint positions.

provides the future states of manipulator over a horizon of H
steps. The instantaneous state observation for the manipulator
is represented as a sequence of rigid-body SE(3) link poses
with respect to the robot’s base i.e., pt ∈ RD×4×4, where D
is the manipulator’s degrees of freedom. The goal gt ∈ R4×4

represents the end-effector SE(3) target for motion planning.
Our policy π(at|pt, gt) as shown in Fig. 1, learns to predict
link-wise relative SE(3) transformations at = Tt+1:t+H for
reconstructing the whole-body manipulator pose in future
time steps. The formulation for the transformation target
Tt+k ∈ RD×4×4 for k ∈ {1, ...,H} is shown in eq. 1.

Tt+kpt = pt+k =⇒ Tt+k = pt+k(pt)
−1 (1)

where link poses pt are obtained using the manipulator’s
forward kinematics function ϕ(jt), with jt ∈ RD as the instan-
taneous configuration-space observation. The configuration-
space action in future time step jt+k is retrieved from the
predicted whole-body pose p̂t+k = T̂t+kpt by solving for
whole-body IK using the following constrained optimization
procedure:

min
jt+k

∥p̂t+k − ϕ(jt+k)∥, s.t. jL < jt+k < jU (2)

where jL and jU are the lower and upper joint limits of the
manipulator. The above optimization objective is non-convex,
and hence a close initial guess is required for convergence. We
address this issue by collecting dense planning demonstrations
with a maximum per-joint deviation of 0.05 rad. Thus, making
the instantaneous observation jt to be an initial guess that
lies within the close neighbourhood of jt+k. In practice,
we employ additional stochasticity to handle redundancy and
singularities in manipulators.

B. Pose Transformation Policy

We formulate the whole-body transformation policy
πθ(at|pt, gt) as a stochastic diffusion policy [7] parameterized
by θ that predicts a batch of possible future trajectories for
model predictive control. While training, the noise prediction
model ϵθ takes the noisy sample aτt , which is obtained by
applying the forward diffusion process to a0t = Tt+1:t+H ,
where τ is the diffusion step. Additionally, we also pass
c = (pt, gt) for observation and goal conditioning. For
step conditioning, we follow the adaptive layer normalization
strategy proposed in Diffusion Transformers [20]. We train
the noise prediction model using mean square error loss as
shown in eq. 3 which minimizes the variational lower bound
of the KL-divergence between the original data distribution
p(a0t ) and the DDPM [11] q(a0t ) distribution.

Lxmop−m = ∥ϵθ(aτt , c, τ)− ϵ∥22, ϵ ∈ N (0, I) (3)

Our policy utilizes the Transformer [31] model as the under-
lying backbone which expects input in a sequence format. We
emphasize on four key design decisions in our policy:
1) SE(3) Proprioception: The embodiment state is provided

to and queried from the policy as a sequence of SE(3)
pose-tokens, allowing the policy to learn motion synergies
between rigid-body links. We use the noisy sample aτt as
transform query, which is passed to the Transformer as
pose-tokens, as shown in Fig. 1.

2) Kinematic Masking: We introduce an inductive bias for
kinematics by restricting attention to parent or ancestor
links at the current horizon step, and to the same link at
both the current and previous horizon steps.

3) Morphology Adaptation: To enable learning over dif-
ferent morphologies, we fix the pose-token for the end-
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Fig. 2: Point-wise training labels for XCoD. Collision, Not
Collision, Obstacles.

effector and mask out the pose-tokens of unavailable links.
4) Link-Horizon Position Embedding: Contextual informa-

tion is provided to the Transformer using position embed-
dings for query and input pose-tokens. Fig. 1 shows the
position embedding scheme used in XMoP.

Prior works have used link-wise tokens [10], temporal state
inputs [13, 25], action diffusion [7, 13, 5], and SE(3) pose ob-
servations [19, 27] for learning and planning applications. We
combine these ideas with our whole-body pose transformation
method to learn neural policy for cross-embodiment motion
planning.

C. Collision-Free Motion Synthesis

We formulate collision detection as a semantic segmentation
problem for identifying the links of the robot that are in
collision given a pointcloud observation of the workspace.
Our semantic collision detection model XCoD : R4 → R2

takes segmented pointcloud of the workspace as input where
each point consists of 3D spatial coordinates, and a semantic
label. These points are uniformly sampled from the surface
of individual links of the manipulator and scene obstacles for
the future time steps as predicted by our planning policy πθ.
We assign unique semantic labels to every link corresponding
to its degree of freedom, while using a reserved label for
all obstacles. For training the collision model, we utilize
point-wise binary label y, where collision-free link points are
assigned a training label of 0, whereas link points in collision
are assigned a training label of 1. Fig. 2 shows planning scenes
and corresponding colorized pointclouds highlighting point-
wise training labels. We utilize a Point Transformer V3 [32]
model for the semantic segmentation task and train it using
cross-entropy loss along with an additional surrogate Lovász
hinge loss, that has shown to improve semantic segmentation
performance in prior works [4].

We use XCoD to assign scores for a batch of trajectories
predicted by XMoP and choose the least collision future trajec-
tory for locally reactive planning. eq. 4 shows the formulation
of the proposed Model Predictive Control (MPC) method
where N is the number of surface points sampled from the

manipulator, B is the prediction batch size, and ŷ is the per-
point collision logit from XCoD.

a∗t = a
(q)
t , q = argmin[s1, s2, . . . , sB ],

s =
1

HN

H∑
h=1

N∑
i=1

argmax ŷi
(4)

Similar to diffusion Policy [7], we predict for Hp steps while
executing only Ha steps on the manipulator. XMoP avoids
geometric biases from manipulator design, by conditioning
on task-space observations (SE(3) poses and pointclouds) that
implicitly promote cross-embodiment and sim-to-real general-
ization.

D. Data Generation and Training

Kinematic Templates. Synthetic manipulators are repre-
sented with open kinematic chains connecting a series of
rigid-body links. We design these links using axis-aligned
cylinders forming a rigid-body template. Each link template
is parameterized with the following information: (1) length of
the cylinders, (2) radius of the cylinders, and (3) constraints
for the joint that connects the link to the preceding link.
We follow the design pattern of two commercially available
robots: (1) 6-DoF UR [2] (2) 7-DoF Sawyer [1]. Fig. 1 (left)
shows a composed manipulator sampled from our synthetic
embodiment distribution by randomizing the parameters for
constituent link templates. We adopt the 3.27 million synthetic
planning problems from the MπNets dataset [9] and generate
demonstration data by sampling a unique embodiment for each
problem and solving it using the AIT∗ [28] motion planner.

Data Augmentation. During training, we randomize the po-
sition and orientation of the link frames for pose computation
by uniformly choosing cylinders from the constituent kine-
matic templates. With this frame augmentation, the number
of possible sequences for a single manipulator is 3DoF which
promotes cross-embodiment generalization during training.

III. EXPERIMENTS AND RESULTS

We evaluate XMoP on 7 different robotic manipulators
from 5 commercial manufacturers: Franka Panda, Rethink
Sawyer, Kuka IIWA, Kinova Gen3 6-DoF, Kinova Gen3 7-
DoF, Universal Robots UR5, and Universal Robots UR10. For
each manipulator we use a set of 500 novel problems from the
MπNets [9] test distribution, ensuring that valid collision-free
IK solutions exist for both start and goal end-effector targets.
It should be noted that none of the robots in our benchmark
experiments or real-world demos were part of the training
dataset. All of our results are zero-shot evaluations with single
pre-trained checkpoints.

A. Benchmark Evaluations

We evaluate XMoP on benchmark problems for each com-
mercial manipulator. Policy rollouts are terminated if the
manipulator’s end-effector reaches the goal or a maximum
of 200 rollout steps are exhausted. We consider a goal to
be reached when the L2 norm of the SE(3) pose difference



Embodiment
XMoP+XCoD AIT∗+XCoD AIT∗+PyBullet

SR[%] ↑ PL ↓ ST[s] ↓ SR[%] ↑ PL ↓ ST[s] ↓ SR[%] ↑ PL ↓ ST[s] ↓

Panda 71.8 4.6 ± 4.7 49.8 ± 65.8 86.0 3.6 ± 2.3 39.7 ± 27.3 94.4 2.9 ± 1.5 4.0 ± 0.3

Sawyer 70.8 4.8 ± 5.3 42.9 ± 53.6 90.4 3.3 ± 2.8 34.6 ± 27.1 92.4 1.9 ± 0.9 3.9 ± 0.5

IIWA 71.0 5.1 ± 5.6 38.3 ± 52.5 87.6 2.8 ± 2.1 32.3 ± 21.2 93.4 2.1 ± 1.0 3.9 ± 0.4

Gen3 6-DoF 67.6 4.7 ± 6.0 51.8 ± 70.9 71.0 2.5 ± 2.6 24.2 ± 11.0 92.4 2.0 ± 0.9 3.9 ± 0.5

Gen3 7-DoF 78.2 5.5 ± 5.9 44.0 ± 53.0 88.4 3.3 ± 2.6 35.0 ± 22.6 94.2 2.2 ± 1.2 3.9 ± 0.4

UR5 70.8 3.1 ± 3.3 42.2 ± 71.2 80.8 2.6 ± 1.9 31.0 ± 20.7 88.8 2.1 ± 1.5 3.9 ± 0.4

UR10 67.4 3.1 ± 3.4 31.5 ± 52.0 72.6 2.9 ± 2.6 33.2 ± 24.8 92.2 2.1 ± 1.2 3.8 ± 0.6

TABLE I: Results from our benchmark evaluations. We expect the baseline AIT∗+PyBullet to perform better as it has access to the ground
truth obstacle information whereas XMoP relies purely on visual inputs.

between end-effector and goal is less than a pre-specified
threshold of 0.01.

Baseline Planners We compare our policy against the upper
performance threshold of AIT∗ [28] planner that has access
to an oracle collision checker from PyBullet. We know that
our performance will be worse than AIT∗ which has access
to oracle environment state, however it is the best option
available to us for cross-embodiment evaluation as there is
no neural motion planner baseline that works across unseen
robot embodiments. Thus, we do not have a neural motion
planning baseline in this work. We also evaluate generalization
capabilities of our learned collision model XCoD by combin-
ing it with the AIT∗ baseline. This hybrid planner utilizes the
XCoD model for collision queries, where a state is considered
invalid if the ratio of detected link points in collision to the
total number of manipulator points is greater than 0.001.

We utilize the following quantitative metrics to evaluate the
planning performance: (1) Success Rate (SR) - A trajectory
is successful if the final end-effector position is within 1 cm
and orientation is within 5◦ of the goal, with no collisions
or joint limit violations. (2) Path Length (PL): Sum of L2
norm between consecutive configuration-space way points. (3)
Solution Time (ST): Total time elapsed to generate a successful
trajectory. Table I shows the benchmark results.

B. Result Analysis

Plan Optimality. Table I shows that the oracle AIT∗

baseline generates approximately 50% more optimal plans
and is 10 times faster compared to XMoP and XCoD MPC
policy. However, this comes with the assumption of privileged
obstacle information being available to PyBullet for collision
detection, thus making it infeasible for deployment in unstruc-
tured real-world environments.

Zero-shot Generalization. Table I demonstrates XMoP’s
ability to generalize to manipulators with novel designs that
were unseen during training, as our training data includes
only the design patterns of Sawyer and UR robots. XMoP
exploits the fact that motion behavior is characterized by the
whole-body pose of the embodiment [3, 6]. For similar whole-
body poses, different manipulators might have contrasting

joint configurations, but the link poses are relatively closer
in SE(3). Similarly, configuration-space actions for different
manipulators are dependent on their morphology, but link pose
transformations are similar for individual manipulator links.

Kinematic Constraints Satisfaction. Our policy predicts
link-wise transformations that obey different kinematics con-
straints across manipulators from a single pose sequence
observation. We will investigate these properties of XMoP in
future work.

Collision Detection. As shown in Table I, the hybrid plan-
ner achieves an average 82.4% success rate, which is within
10% of the oracle baseline, thus highlighting the effectiveness
of our collision detection model. Although XCoD is trained
on complete scene point clouds in simulation, it shows strong
generalization to unseen partial point clouds captured from
depth cameras in the real world.

Sim-to-Real Experiments. We deployed XMoP on two
commercial manipulators, Franka FR3 and Sawyer, in differ-
ent unseen real-world environments. Appendix Fig. 3 shows
intermediate snapshots of our policy rollouts. We used mono-
color obstacles and segmented them from a calibrated depth
camera to extract the obstacle point cloud.

IV. CONCLUSION

Limitation. As with any behavior cloning algorithm, our
policy performance is limited by the quality of the synthetic
demonstration data available for training and struggles to plan
for out-of-distribution goal poses and environment setups.

Conclusion. In this paper we presented XMoP, a novel
configuration-space neural motion policy for re-targeting plan-
ning behavior zero-shot to unseen robotic manipulators. We
formulated motion planning as a link-wise SE(3) pose trans-
formation method, showcasing its scalability for data-driven
policy learning. We used fully synthetic data for training mod-
els for motion planning and collision detection demonstrating
strong sim-to-real generalization to real robotic manipulators.
XMoP is trained using a behavior cloning approach and is
capable of planning the motion for a distribution of robots,
thereby unlocking a class of neural policies for learning cross-
embodiment behaviors.
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APPENDIX



Fig. 3: XMoP plans across different unstructured environments for two unseen 7-DoF commercial manipulators Franka FR3 and Sawyer
(better viewed when zoomed in). Our benchmark experiments and real-world demos use the same set of frozen policy parameters showcasing
zero-shot sim-to-real generalization for neural motion planning. Videos of policy rollouts are available at https://sites.google.com/view/xmop.
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