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ABSTRACT

Humans and animals must develop adaptive strategies to optimize decision-
making in dynamic and uncertain environments, often without the benefit of im-
mediate rewards. While existing literature posits that animals use internal ”belief”
states as the foundation for their decision policy, the mechanism for updating them
in a dynamic environment remains unclear. Furthermore, there is no known neu-
ral mechanism that can implement belief updates without the need for a reward.
To address this gap, we take a multidisciplinary approach that integrates theoret-
ical derivation, training artificial neural networks, and behavioral experiments in
rodents to explore potential neural mechanisms of cognitive flexibility.
A belief state is a joint probability distribution over all relevant latent variables of
the environment. Updating the joint distributions using only partial observations
and marginalizing to obtain estimators is computationally demanding, in partic-
ular when latent variables are changing. Moreover, it is nontrivial for a neural
network to learn how to implement this complex inference. To tackle these chal-
lenges, we introduce a novel change-detection task specifically designed to cap-
ture the complexities of partially observed dynamic environments. We formulate
a Bayesian theory for sequentially updating joint probabilities and demonstrate
that neural networks can accomplish the task near optimally, even in the absence
of immediate rewards. We show that the network dynamics mirror the sequential
update of the Bayesian latent state estimators. Furthermore, rodents trained on
this task show behavior that aligns with our theoretical model and neural network
simulations, suggesting that mice utilize dynamic internal state representation and
inference to solve this task. Overall, our findings elucidate the computational prin-
ciples behind flexible cognitive behavior that allows both biological and artificial
agents to achieve zero-shot adaptation: modifying their behavior policy to reflect
changes in the environment without the need for trial and error.

1 INTRODUCTION

If at first you don’t succeed, skydiving is not for you. There are scenarios where a trial-and-error ap-
proach is simply not an option. In these cases, agents must adapt swiftly to a changing environment,
often based only on ambiguous inputs. This necessitates an understanding of how both biological
and artificial systems can achieve such adaptability, particularly in the context of Partially Observed
Markov Decision Processes (POMDPs), where the complexity introduced by partial observability
and sparse reward limits the efficacy of traditional reinforcement learning techniques.

One strategy to circumvent this limitation is to utilize internal ”beliefs” (Kaelbling et al., 1998),
which are essentially probability distributions over relevant latent states. These belief states are
internal representations that facilitate inferences about the environment, enabling agents to make
more informed policy decisions. However, belief states are not gracefully implemented by neural
networks (Rodriguez et al., 1999). A key question in neuroscience is how brain circuits can over-
come this problem (Pouget et al., 2013). The issue becomes even more significant when agents need
to rely on their internal beliefs in volatile environments.
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Furthermore, most existing literature on belief states has operated under the assumption of stationary
environments. This leaves the question of how these internal states could be updated in dynamically
changing contexts (Howard & Kahana, 2002). This is a critical gap, especially in cases when under-
standing that the environment has shifted is crucial before any action can be taken—scenarios where
trial-and-error approaches are not only inefficient but also potentially perilous.

To address these challenges, we take an interdisciplinary approach that combines theoretical deriva-
tion, neural network simulations, and behavioral experiments in rodents. Our primary focus is on
elucidating the computational foundations and neural mechanisms that support cognitive flexibil-
ity—the ability to adapt behavior responsively in dynamic settings without the need for an immedi-
ate reward.

Our main contributions are as follows:

• We introduce a theoretical framework that elucidates the optimal sequential updates of internal be-
lief states, providing a robust computational basis for decision-making in dynamic environments.

• We demonstrate that neural networks and biological agents rely on a combination of dynamic
inference and policy learning. Furthermore, we show, for the first time to our knowledge, that
recurrent networks learn sequential Bayesian inference for a POMDP in a volatile environment by
means of reinforcement learning while provided only with sparse rewards.

• We show that by basing a policy on dynamic internal belief states, agents can rapidly adapt to a
changing environment without acting, effectively achieving zero-shot adaptation.

1.1 RELATED WORK

Traditionally, research on associative learning in animals has utilized deterministic cues and overt
state representations Vertechi et al.. However, some studies suggest that animals may also employ
internal belief states to represent latent features of the environment. Research on internal belief
states in animals has mostly focused on reward prediction errors and their implementation by the
dopaminergic system (Starkweather et al., 2017; Sarno et al., 2017; Babayan et al., 2018). Other
studies confronted the challenges of implementing or learning belief-state representations by neural
networks (Rao, 2010; Vértes & Sahani, 2019). A recent study has demonstrated that recurrent neural
networks trained under a reinforcement learning paradigm approximate belief states in their neural
activity (Hennig et al., 2023). Here, the authors show how recurrent neural networks can predict
future rewards directly from observation, utilizing the internal dynamics of the network. Yet, it is
unclear how neural circuits learn useful belief representations in more complex environments. As
in (Hennig et al., 2023), our work employs Deep Reinforcement Learning (Botvinick et al., 2020)
to show that recurrent neural networks learn useful internal belief representations. However, our
novelty is considering a dynamic environment with sparse rewards. In our work, internal beliefs
change based on observation without the need for an action or a reward. This framework allows
agents to adapt rapidly to implicit changes in the environment without changing its synaptic weight
and without the need to trial and fail—an important behavior absent in past models.

A different approach for understanding an agent’s adaptation to changing environments considers
meta-learning of latent variables (Wang et al., 2018). Here, neural networks do not learn an internal
representation of a latent variable–a belief state. Instead, agents ”learn to learn” so they can per-
form ad hoc reinforcement learning of latent variables after training. This line of research has been
successful and led to many applications. However, as the name suggests, this framework considers
continuous learning and thus relies on acting and error signals. Here, we adapt the same neural
architecture as in (Wang et al., 2018) and show it can avoid the trial-and-error paradigm by learning
a dynamic inference model. Our approach echoes the ideas of holistic reinforcement learning (Rad-
ulescu et al., 2019), which argues that neural systems adapt their internal representations to enable
better policy learning. In our work, useful representations are neural dynamics that mirror sequential
Bayesian inference.

In neuropsychology, cognitive control refers to an internal process by which high-level goals mod-
ify behavior by providing an appropriate context (Botvinick & Braver, 2015). A large body of work
studies how cognitive control shapes decision-making, both at the computational level (Jiang et al.,
2014) and the neuro-mechanistic level (Braver et al., 2009). While cognitive control considers con-
text as an internal goal, models often treat it as an explicit signal. In many cases, however, the
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context is a hidden property of the environment (Howard & Kahana, 2002; Mante et al., 2013; Rem-
ington et al., 2018). In our work, the context is implicit in the observations, and the agent must
learn to infer it and dynamically update its internal belief state. The result is an agent that adapts its
behavior to changing contexts without explicit control.

This paper is structured as follows: Section 2 introduces the framework and a novel change-
detection task designed to probe decision-making in dynamic environments. In Section 3, we derive
a Bayesian theory for joint latent variable inference. Our theory serves as a guideline when analyz-
ing trained networks and animal behavior. In Section 4 we train an actor-critic neural architecture
on our task. We show that the network’s performance compares with a Bayesian agent and use our
Bayesian theory to analyze and interpret their dynamics. Finally, in Section 5, we present a physical
implementation of our task and results from behavioral experiments with mice. In particular, we
provide evidence that mice adapt their behavior based on rapid inference of observations. A short
summary and outlook can be found in Section 6. Further details on theoretical derivations, neural
network training, and behavioral experiments can be found in the attached appendix.

2 PROBLEM SETUP

Our goal is to understand how artificial and biological agents are able to adapt rapidly to changing
environments without the need to act and potentially fail. To study this behavior, we introduce a
simple change-detection task that encapsulates the challenges of acting in an ambiguous and dy-
namic environment. We begin by defining the state of the world at the time t as st. The state st
is pertinent to the task, meaning that the reward is a function of the current state Rt = Rt(st, at),
where at is the action chosen at the time t. For simplicity, we consider a binary state st = {0, 1}.
We refer to st = 1 as being in a safe state and st = 0 as unsafe. The task of the agent is to act
(at = 1) in a safe state (st = 1), and withhold action (at = 0) in an unsafe state (st = 0). Acting in
a safe state rewards the agent with Rt = 1. As in every POMDP, the states are not directly observed
by the agent. Instead, in every time step, the agent receives an observation drawn from a probability
function xt ⇠ P (xt|st, ✓t), where ✓t is a latent variable that is not directly pertinent to the task.
Importantly, the environment is dynamic, and both st and ✓t change with time, complicating the
inference of the pertinent state st. Here, ✓t updates less frequently than the state, which gives it the
role of a context. Thus, the reward depends only on the state st, but the context ✓t is necessary to
accurately infer the partially observable state.

In our model, the context ✓t represents the current uncertainty in the environment. The observable is
a binary variable xt 2 {0, 1} and at each time step, it is equal to the binary state st with probability
1 � ✓t and flipped with probability ✓t. Thus, xt = 1 can be viewed as a go signal and xt = 0 is a
nogo signal, while ✓t determines how misleading the signals are. For binary contexts ✓t 2 {0, 1},
observations are equivalent to an XOR Boolean operation, xt = XOR(st, ✓t), the simplest example
of negative interaction information (Timme et al., 2011). Here, we consider a noisy generalization of
the XOR function and allow 0  ✓t  1. For brevity, we treat ✓t as a discrete variable that can have
arbitrary-many values within the range; however, it can be easily turned into a continuous variable.

We further break the inherent symmetry of the XOR problem by allowing different levels of uncer-
tainty in the safe and unsafe states. For simplicity, we consider no uncertainty in the safe state and
the context ✓t controls the uncertainty in an unsafe state. Thus, a safe state yields an uninterrupted
chain of go signals. Conversely, the observations in an unsafe state form a Bernoulli distribution
with a parameter ✓t. Now, consider an abnormally long series of go signals: should the agent infer
the state has become safe or that the noise level has increased? In the next section, we will come
back to this question.

Finally, the spontaneous dynamics of the environment are governed by the state transition matrix,
T ss0 = �ss0(1 � 2�) + �, and the context transition matrix, T ✓✓0 = �✓✓0(1 � m✏) + ✏, where m
is the number of possible contexts. Thus, the state and context transitions follow Poisson processes
with rates � and ✏, respectively. Importantly, ✏ ⌧ �, so context switches are less frequent. We
note that our theory holds even without the symmetry in the transition matrices. Thus, for example,
unsafe states can be longer than safe states or vice versa. The structure of the task is summarized in
Figure 1. When the agent acts, the state is changed to an unsafe state; if it acts in an unsafe state, it
receives no reward. Animals have been shown to optimize the rate of reward as opposed to the sum
of rewards (Niv et al., 2007) . Maximizing the reward rate requires fast reactions, and the task can
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Figure 1: Change-detection task based on a partially observable Markov decision process
(POMDP). (a) Probabilistic graphical model with negative interaction information ✓t ! xt  st.
Transition in the latent state st and context ✓t follow a Poisson renewal process with rates � and ✏,
respectively. (b) A sample trajectory based on the model in a. While only observing xt, the task is
to withhold action in the unsafe state (red) and respond quickly when the state turns safe (green).

be viewed as a change-detection problem. Importantly for us, having no explicit negative rewards
allowed us to train mice without subjecting them to actual punishments.

Our framework presents a fundamental difficulty. The agent needs to track both the state and the
context in order to choose an appropriate action. This challenge raises two questions: (1) When the
statistics of observations change, how can the agent know if it is due to a change in the state or a
change in the context? (2) Given that the reward only informs about the pertinent state, can a neural
network learn the complex inference of the latent state and context? In the following, we derive a
Bayesian theory for the optimal behavior and show that artificial networks learn to approximate the
Bayesian solution.

3 THEORY FOR OPTIMAL BEHAVIOR WITH INTERNAL BELIEF STATES

In this section, we derive a theory for optimal behavior in the task presented above. We begin by
defining an objective and a solution by an optimal observer who has knowledge of the true noise
level and only tries to infer the state. Then, we consider the context as a dynamic variable and study
the evolution of the belief state, defined by the joint probability of the variables st and ✓t.

3.1 OPTIMAL POLICY

We start by analyzing the optimal behavior in the simple case of a static environment in which the
context does not change, ✓t = ✓ and is known to the agent; we discuss a changing context in the next
section. The goal of the agent is to maximize its return. Within a fixed time horizon, this narrows
down to maximizing the reward rate, defined by r = R/T , where R is the average reward per action,
and T is the average time between two actions. Both the average reward and time between actions
depend on the policy and the context.

Consider a context without noise, ✓t = 0. In that case, the agent should ideally act immediately
upon receiving a go signal. However, in a context with nonzero noise, ✓t > 0, there is a ✓t chance
that the go signal is misleading and acting will yield no reward. A better policy, in this case, is to
wait and accumulate enough evidence (Gold & Shadlen, 2007). Thus, the policy narrows down to
choosing an appropriate waiting time ⌧ , which we define as the number of consecutive go signals
(xt = 1) before the agent should act. Clearly, the optimal policy assigns the best waiting time for
each context, ⌧⇤✓ .

Optimizing the reward rate imposes a speed-accuracy trade-off: Waiting longer will increase the
chance that the state is safe and increase the average return R per action. On the other hand, longer
wait times increase the average time T between two actions. This trade-off implies that when max-
imizing the reward rate in a given context r(⌧ ; ✓), there is indeed an optimal waiting time ⌧⇤✓ that
depends on the context.

The average return when waiting for ⌧ steps before acting is given by the probability the agent is
acting in a safe state, R = P (st = 1|✓,xt�⌧ :t = 1). Here, we used a slicing notation xta:tb = 1
to denote that xt = 1 8ta < t  tb. The probability of being safe can be written explicitly (see
Appendix A.1) as

R(⌧ ; ✓) = P (st = 1|✓,xt�⌧ :t = 1) = 1� b⌧

1� c
P⌧�1

k=0 b
k
, (1)
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where b ⌘ (1 � �)✓ is the probability of a misleading go (i.e., the probability the state did not
change times the probability of it being flipped), and c ⌘ (1��)(1� ✓) is the probability of getting
observing a nogo. Using similar arguments, the average time between actions reads

T̄ (⌧ ; ✓) =
⌧b⌧ +

P⌧�1
k=0 b

k(⌧�+ c(k + 1))

1� c
P⌧�1

k=0 b
k

. (2)

Using (1) and (2), one can write an expression for the average reward rate r(⌧ ; ✓) = R/T̄ and find
the optimal waiting times ⌧⇤✓ . Note that ⌧⇤✓ is an integer while ✓ is a real number. Figure 2a shows
samples of the curve r(⌧ ; ✓) for several values of ✓. In each curve, the maximum indicates the
optimal waiting time and reward rate for the relevant context. The optimal waiting times directly
define the optimal behavior—it defines how exactly an agent should act based on the inputs xt.
Importantly, from (1), we see that keeping track of the number of consecutive go signals, ⌧ , is
equivalent to keeping track of the estimated probability that the state is safe

ŝt =
X

st={0,1}

stP (st|✓,xt) = P (st = 1|✓,xt�⌧ :t = 1) . (3)

Here, the notation xt denotes the current and all previous observations. Thus, using the number
of consecutive gos as a proxy, we have calculated the optimal policy ⇡?(at|ŝt, ✓). Simply put, the
policy is to act if and only if the estimate of the state is equal to or larger than the threshold, which
we define as ŝ?✓ = P

�
st = 1|✓,xt�⌧⇤

✓ :t
= 1

�
, obtained by plugging ⌧?✓ into (3).

3.2 BELIEF STATES

In a dynamic environment, where both the state and the context can change, the agent must keep
track of the latent variables st and ✓t. As we have seen above, the current state can be estimated by
counting the number of consecutive go signals ⌧ . We note that the exact way in which the estimator
ŝt changes with each additional go signal depends on the current context ✓t.

Within the unsafe state, st = 0, the context can be inferred as a simple running average over recent
inputs ✓̂ = 1

n

Pt
t�n xt. The longer the window for averaging n, the more accurate the estimate.

However, since the state can change, the agent needs to know whether to attribute a string of con-
secutive go cues to a noise fluctuation or a state change. The same string of ⌧ go cues should change
ŝ or ✓̂ with some probability that depends on the current estimates ŝ and ✓̂.

In this case, the belief state is given by the conditional joint probability P (st, ✓t|xt), denoting the
probability of finding st and ✓t given the past observation. Here, we note the history dependence of
the joint probability, conditioned on all observations xt. Importantly, the conditioned probability
does not factorize because of the interaction between state and context when generating observa-
tions. From the belief states, one can obtain the estimators for the current state and context using the
marginal probabilities

ŝt =
X

st,✓t

stP (st, ✓t|xt), and ✓̂t =
X

st,✓t

✓tP (st, ✓t|xt). (4)

Sequential updates of the belief states. To see how the belief P (st, ✓t|xt) updates with new
observations, we extend the Chapman-Kolmogorov equation (Gardiner et al., 1985) for joint condi-
tional probabilities to explicitly write how the joint distribution is updated with new observations.
The update rule is given by

P (st, ✓t|xt) / P (st, ✓t, xt|xt�1) (5)
= P (xt|st, ✓t,xt�1)P (st, ✓t|xt�1)

= P (xt|st, ✓t)
X

st�1

T stst�1

X

✓t�1

T ✓t✓t�1P (st�1, ✓t�1|xt�1).

The proportionality constant can readily be turned into an equality by normalizing the updated equa-
tion. On the left-hand side of (5) we have the joint probability of the state and context given all past
observations; on the right-hand side, we have the belief state at the previous time states, weighted by
the transitioning probability and the current observation. For initial conditions, we assume s0 = 0
and ✓0 is distributed according to the equilibrium of the transition matrix, though at large t the sys-
tem is agnostic towards the initial states. Together, equations (4) and (5) describe how the Bayesian
estimation of the state and context gets updated with observations.
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Figure 2: Optimal behavior. The behavior in the task is defined by how many time steps the agent
should wait before it determines the state is safe. (a) Reward rate curves as a function of the waiting
time ⌧ from the last nogo signal, given by r(⌧ ; ✓) = R/T̄ . Colors indicate the context values ✓. Both
Bayesian estimators and RNN performance are suboptimal because of errors in context estimation,
but their performance is similar. The vertical line denotes the optimal waiting time averaged across
all contexts. (b) Context-dependent waiting time distributions. Network and Bayesian agents show
similar mean waiting times. (c) Adaptation behavior after a context switch. On the x-axis is the
number of trials (actions) from a context switch (0 being the last trial of the previous context), and
on the y-axis is the Pearson correlation of the agent’s waiting time with optimal waiting times of the
current (dark shade) and previous (light shade) contexts. Importantly, the behavior shows a nonzero
correlation even before the first reward in a new context.

Policy. Finally, the optimal action is determined using the current Bayesian estimates of the state
and context but is otherwise identical to the policy calculated in the previous section:

⇡?(at|ŝt, ✓̂t) =
(
1 (act) ŝt � ŝ?(✓̂t)
0 (don’t act) otherwise

. (6)

To see how the model behaves, we tested it on our task. In Figure 2a we see that the model behaves
close to optimally in each context, suggesting a good inference of the underlying ✓t. Indeed, the
waiting time distribution was dependent on the context, as seen in Figure 2b. In Figure 2c. we
show the correlation in waiting times between the model and the optimal waiting times of an ideal
observer who has access to the true ✓t. Importantly, the inference of the new context is rapid, and
behavior is adapted already within the first trial. These results are not surprising, as they rely on
input inference and not the reward to detect changes. However, these theoretical results serve as a
baseline when we study networks’ and rodents’ behaviors in the following sections.

We summarize the two main features of our model. First, the internal states’ update does not require
the system to act. Thus, the agent can update its internal state rapidly as the environment changes.
Second, the optimal policy depends on the point estimators and not the full joint probability distri-
bution; this is because the system can infer the state of the world from the input and does not require

exploration. As a result, the optimal policy is deterministic and requires only the best estimate of
the latent variables (Sutton & Barto, 2018).

4 NEURAL NETWORKS MIRROR BELIEF-STATE ESTIMATORS UPDATE

In the previous section, we have shown that the optimal policy depends only on the Bayesian esti-
mates of the latent variables conditioned on past and current observations. Calculating the estimators
requires keeping a representation of the full joint probability function P (st, ✓t|xt) and implement-
ing the complex dynamics defined by (5). Holding track of the full probability becomes prohibitively
costly as the latent dimensionality increases. In this section, we show that neural networks trained on
our task represent the Bayesian estimators ŝt and ✓̂t, and mirror their sequential updates conditioned
on the current observation.

Neural architecture and training. We trained artificial neural networks to solve the task using
a deep reinforcement learning algorithm (Botvinick et al., 2020). Our neural architecture utilized
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Figure 3: Network activity encodes Bayesian estimation of the state and context. (a) Using a
linear readout from network activity, we decode the estimate ✓̂nett (solid orange) of the current con-
text ✓t (solid black). As a point of comparison, the naive Bayesian model (dotted grey) is noticeably
worse. Shown is an average of 45 realizations of st and xt trajectories. (b) Network decoded belief
ŝt (solid orange) together with the full Bayesian estimator ŝnett (dashed blue) and the naive model
(dotted grey) for a sample xt trajectory (bottom). Overall, our analysis shows that the network
closely follows the Bayesian estimators produced by the joint belief state, updated using (5). The
scales on top denote the context and state transition time scales.

an actor-critic framework previously used on related sequential decision-making tasks (Wang et al.,
2018). The input to the networks was the observations x, and the output at any given time was
whether the network chose to act or not. The network received a reward whenever it acted in a safe
state. We report here the results of the training of an LSTM architecture (see Appendix A).

Neural networks represent Bayesian estimators. First, we asked whether the network activity
represents the estimators. For that, we trained a linear decoder to read out the true latent variables.
We used logistic regression to classify the true state st 2 {0, 1} and the resulting readout probability
for ŝnett . To obtain the estimation of the continuous context variable, we used linear regression
on the true context ✓t 2 (0, 1) and obtained a set of readout weights for ✓̂nett . For the analysis,
we used data unseen by the regression. We emphasize that the readout weights are not time or
context-dependent and are calculated once for the network. To assess how well the network readout
performs, we measured the root mean square error (RMSE) across different times and inputs. While
regressing to the true value, our readout showed a closer fit to the Bayesian estimators (Figure 3). In
particular, the context estimation ✓̂nett had a better fit with the Bayesian estimate ✓̂t (RMSE=0.062)
compared with the true context ✓t (RMSE=0.098).

To further support the claim that the network approximates the joint probability P (ŝt, ✓̂t|xt), we
compare the result to a naive Bayesian estimate, in which the agent is unaware of the connection
between the state and the context and estimates two independent beliefs, P (ŝt|xt) and P (✓̂t|xt).
This corresponds to the vertical line in Figure 2a. In the naive model, the state inference is context-
independent and is bound to perform worse (dotted line in Figure 3). Nevertheless, it is a useful
baseline that suggests the network’s internal belief is based on the joint probability. The derivation
of the naive model’s dynamic is detailed in Appendix A.1.2.

In addition, in all examples we show here, we use context values ✓t that were not used to train the
recurrent networks. This shows that the networks have learned to generalize correctly to unseen
contexts in the range 0 < ✓t < 1 and did not just memorize a set of parameters.

Network dynamics mirrors the sequential dynamics of the Bayesian estimators. Recurrent
neural networks are high-dimensional, nonlinear dynamical systems, which are a priori well-suited
for approximating sequential updating. However, it is difficult to determine whether the networks
actually learned the complex dynamical landscape underlying the Bayesian inference or that they
follow more trivial trajectories. To test that, we examine their response to different observations xt

under different conditions by comparing the linear readouts ŝnett and ✓̂nett to the Bayesian theory.

In Figure 4a, we look at the update of the belief ŝt to a series of consecutive go signals in the
unsafe state. Each curve represents the average over different realizations of past observations. The
graph shows how the probability of being safe increases with t consecutive go signals, reflecting
the integrator dynamics of the optimal policy derived in Section 3. Furthermore, the belief collapses

7



Under review as a conference paper at ICLR 2024

Figure 4: Network dynamics implement sequential updating of the joint Bayesian estimators.
(a) State estimate of the network ŝnett (circle), Bayesian ŝt (star), and naive model (cross) as a
function of consecutive gos in the unsafe state. A single nogo signal collapses the state estimate, as
the state is evidently unsafe. Network estimates follow the Bayesian updates closely. (b) Update of
the context estimate �✓̂t, for the network (circle), Bayesian (star), and naive model (cross). A sharp
increase in context estimation after a nogo is a hallmark of the joint probability update. (c) Update
dynamics of estimators as a function of current state ŝt and context ✓̂t estimates. Arrows denote
updates for go (green) and nogo (red) observations with the same linestyles as in (a) and (b). Arrow
lengths are scaled to compensate for the exponentially saturating belief in ŝ. Solid, dashed, and
faded denote network, full Bayesian, and naive models, respectively. Overall, the network activity
approximates the dynamics of the Bayesian estimators ŝt and ✓̂t.

immediately with a single nogo signal, which indicates the state is unsafe. For comparison, we show
the naive inference, which doesn’t reflect the state-context coupling. We observe that the network
follows the dynamics of the joint-distribution estimators.

To further analyze the dynamics, we look at the updates to the estimators in each step, �ŝnett =
ŝnett � ŝnett�1 and �✓̂nett = ✓̂nett � ✓̂nett�1, and compare them to the update obtained by the Bayesian
model �ŝt and �✓̂t from (5). In Figure 4b, the update of the context estimate, �✓̂t is plotted as a
function of consecutive go signals followed by a nogo, again, averaged over different histories. A
hallmark of the joint probability update is that a single observation can sharply increase the context
estimate, because recent positive observations can now be explained by high unreliability ✓t. This
contrasts naive inference, in which the estimation of ✓̂t always increases in response to a go signal,
and decreases following a nogo. Again, networks follow estimators of the joint probability.

Finally, the updates of the estimators to go and nogo signals in the phase space of ŝt and ✓̂t are
depicted in Figure 4c. First, the update dynamics are complex; go and nogo signals result in dif-
ferent updates that depend on the current estimate. Second, the network dynamics approximate the
dynamics of the Bayesian theory we derived in Section 3; this is emphasized when contrasting the
naive estimator. Third, looking at the update arrows in Figure 4c, one can trace out an approximate
trajectory in the state space for either observation. If we had added uncertainty to the safe state, we
could have taken the limit where the discrete update becomes a continuous flow. This analysis is
beyond the scope of this work.

Overall, our analysis shows that recurrent dynamics implement the sequential update to the estima-
tors over the joint Bayesian belief state described by (5).

5 MICE EXPERIMENTS SHOW RAPID COGNITIVE FLEXIBILITY

To test whether our paradigm can capture animal behavior, we trained adult mice on a physical
instantiation of our task. We chose an auditory stimulus modality, as it allows for the precise control
needed for the task, and mice are proficient in auditory tasks. In the experiments, go signals (xt =
1) were presented as a tone (an accord with five frequencies) and nogo signals (xt = 0) were
silent. Each step was 0.2 seconds long and gapless, so consecutive go signals were presented as
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a continuous tone. Mice were water-deprived, and a successful action rewarded the animal with a
drop of water.

Generally, the mice struggled to learn the task, which required us to design suitable adjustments.
First, after an action, an inter-trial interval (ITI) was introduced. During the ITI, the mice were
exposed to the unsafe state’s observations but were not punished for licking. This allowed us to
overcome the tendency of mice to lick several times when allowed. For simplicity, the ITI can be
viewed as prolonged unsafe states. To make sure the effects on the behavior are minimal, we derive
the state inference in the presence of ITIs in Appendix A. The second modification was extending
the safe period to allow the mice to learn the task.

Overall, the unsafe state’s duration time scale was 2 seconds (� = 0.5Hz), ITIs were 2 seconds
long, and the safe state was up to 7 seconds long. We trained 11 mice for 3-4 weeks, after which we
collected the behavioral data in 10 sessions from each mouse. Each session held at least 200 trials.

In general, mice were more impatient than artificial networks and showed sub-optimal performance.
This can likely be attributed to the effects of perception, motor delays, and environmental factors
that influence animal behavior. However, the statistical analysis of the data, together with our model,
reveals systematic behavior and suggests that mice may use dynamic internal belief as a mechanism
for cognitive flexibility in this task.

First, we see that mice modulate their behavior according to the current context. This can be seen by
the change in average waiting time in Figure 5a (compare with Figure 2b). This finding suggests that
the mice learn the underlying structure of the task. Second, the mice’s response is modulated on the
first action, as can be seen by the correlation between the recorded and optimal waiting time of the
current and previous context after the switch (Figure 5b, and compare with Figure 2c). This finding
suggests that the mice infer the latent states of the task based on the auditory input, and adjust their
behavior rapidly without requiring feedback from the environment. In the future, we plan to analyze
neural data to test this hypothesis.

Figure 5: Mice exhibit rapid
context adaptation. Behav-
ioral (waiting time) analysis
for mice performing the task.
(a) Same as Figure 2b , only
with mice data. (b) Same
as Figure 2c, only with mice
data.

6 SUMMARY

We have presented an interdisciplinary investigation into the neural mechanisms underpinning cog-
nitive flexibility, specifically the ability of biological and artificial agents to update belief states in
dynamic environments without relying on a trial-and-error approach. We introduced a novel change-
detection task designed to explore the computational challenges of solving POMDPs in dynamic
environments. The design of this task allowed for a multimodal approach: (1) We derived a theory
for sequential Bayesian inference of joint probabilities; (2) we analyzed the dynamics of artificial
neural networks solving the task and showed it mirrors the sequential update of the Bayesian esti-
mators; and (3) we showed that mice are able to adapt their behavior without a reward, resembling
the Bayesian and network policies..

In conclusion, our research offers a stepping-stone towards understanding the complex behavior of
intelligent agents. The ability of recurrent neural networks to leverage their internal dynamics for
nontrivial world inference underscores the potency of internal belief states underlying cognitive pro-
cesses. Our finding that neural networks can implement nontrivial inference using only experiential
learning makes this a potential mechanism for adaptive behavior. We believe it can pave the way for
the development of more sophisticated models that can further refine our understanding of cognitive
flexibility.
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REPRODUCIBILITY STATEMENT

We provide the code for our simulations, with scripts to reproduce the figures. This includes an
archived version of the network that we trained using Pytorch, as well as scripts to replicate the
training. Behavioral data used for Figure 5 will be available upon request with the publication of
this work.
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