Neural Operator: Graph Kernel Network for Partial Differential Equations

Abstract

The classical development of neural networks
has been primarily for mappings between a
finite-dimensional Euclidean space and a set
of classes, or between two finite-dimensional
Euclidean spaces. The purpose of this work is
to generalize neural networks so that they can
learn mappings between infinite-dimensional
spaces (operators). We formulate approxima-
tion of the infinite-dimensional mapping by
composing nonlinear activation functions and
a class of integral operators. The kernel in-
tegration is computed by message passing on
graph networks. This approach has substantial
practical consequences which we will illustrate
in the context of mappings between input data
to partial differential equations (PDEs) and
their solutions. In this context, such learned
networks can generalize among different ap-
proximation methods for the PDE (such as fi-
nite difference or finite element methods) and
among approximations corresponding to dif-
ferent underlying levels of resolution and dis-
cretization. Experiments confirm the purposed
graph kernel network does have the desired
properties and show competitive performance
compared to the stat of the art solvers.

1 INTRODUCTION

There are numerous applications in which it is desirable
to learn a mapping between Banach spaces. In partic-
ular, either the input or the output space, or both, may
be infinite dimensional. The possibility of learning such
mappings opens up a new class of problems in the de-
sign of neural networks, with widespread potential ap-
plicability. New ideas are required to build on tradi-
tional neural networks which are mappings from finite

dimensional Euclidean spaces into classes, or into an-
other finite-dimensional Euclidean space. We study the
development of neural networks in the setting in which
the input and output spaces comprise real-valued func-
tions defined on a bounded open set D in R%.

1.1 Our Contributions

We introduce a new neural network architecture which is
appropriate for the learning of mappings between spaces
of functions defined on bounded open subsets of R?.

e Unlike existing methods, our approach is demon-
strably able to share a single set of neural network
parameters between methods based on different ap-
proximation methods and different grids.

e A Nystrom extension connects the neural network
on function space to families of GNNs on arbitrary,
possibly unstructured, grids.

e The method is demonstrated to have competitive ap-
proximation accuracy, as shown in the experiments.

e The ability of transfer learning between different
discretizations with one set of parameters .

e The ability of semi-supervised learning that learns
from data at a few points and the generalizes to the
whole domain.

These concepts are illustrated in the context of a family
of elliptic PDEs prototypical of a number of problems
arising throughout the sciences and engineering.

2 PROBLEM SETTING

Our goal is to learn a mapping between two infinite di-
mensional spaces by using a finite collection of observa-
tions of input-output pairs from this mapping: supervised



learning. Let A and U be separable Banach spaces and
Ft: A — U a (typically) non-linear map. Suppose we
have observations {a;,u;}_; where a; ~ pis an i.id.
sequence from the probability measure y supported on A
and u; = FT(a;) is possibly corrupted with noise. We
aim to build an approximation of F' by constructing a
parametric map

F:AxO0->U (1)

for some finite-dimensional parameter space © and then
choosing 67 € © so that F(-,01) ~ FT.

This a natural framework for learning in infinite-
dimensions as one could define a cost functional C' :
U x U — R and seek a minimizer of the problem

min E,,[C(F(a,0), F'(a))]

0coe
which directly parallels the classical finite-dimensional
setting [Vapnik, 1998]. Showing the existence of min-
imizers, in the infinite-dimensional setting, remains a
challenging open problem. We will approach this prob-
lem in the test-train setting in which empirical ap-
proximations to the cost are used. We conceptual-
ize our methodology in the infinite-dimensional set-
ting. This means that all finite-dimensional approxima-
tions can share a common set of network parameters
which are defined in the (approximation-free) infinite-
dimensional setting. To be concrete we will consider
infinite-dimensional spaces which are Banach spaces of
real-valued functions defined on a bounded open set in
R?. We then consider mappings F' which take input
functions to a PDE and map them to solutions of the
PDE, both input and solutions being real-valued func-
tions on R,

A common instantiation of the preceding problem is the
approximation of the second order elliptic PDE

rzeD

x € 0D @
for some bounded, open set D C R? and a fixed
function f € L2?(D;R). This equation is prototyp-
ical of PDEs arising in numerous applications includ-
ing hydrology [Bear and Corapcioglu, 2012] and elastic-
ity [Antman, 2005]. For a givena € A = L>(D;R*)N
L?(D;R™T), equation (2) has a unique weak solution
u € U = H}(D;R) [Evans, 2010] and therefore we can
define the solution operator F' as the map a + u. Note
that while the PDE (2) is linear, the solution operator F
is not.

Since our data a; and u; are , in general, functions, to
work with them numerically, we assume access only to

point-wise evaluations. To illustrate this, we will con-
tinue with the example of the preceding paragraph. To
this end let Px = {z1,...,2x} C D be a K-point
discretization of the domain D and assume we have ob-
servations a; | p,., u;| p,. € RX, for a finite collection of
input-output pairs indexed by j. In the next section, we
propose a kernel inspired graph neural network architec-
ture which, while trained on the discretized data, can pro-
duce an answer u(x) for any x € D given a new input
a ~ p. That is to say that our approach is independent of
the discretization Px and therefore a true function space
method; we verify this claim numerically by showing in-
variance of the error as K — oo. Such a property is
highly desirable as it allows a transfer of solutions be-
tween different grid geometries and discretization sizes.

3 GRAPH KERNEL NETWORK

We propose a graph kernel neural network for the solu-
tion of the problem outlined in section 2. As a guiding
principle of our architecture, we take the following ex-
ample. Let £, be a differential operator depending on a
parameter a € A and consider the PDE

rzeD
xr € 0D

(Lou)(z)

(@) 5

for a bounded, open set D C R4 and some fixed func-
tion f living in an appropriate function space determined
by the structure of £,. The elliptic operator £, =
—div(aV-) from equation (2) is an example. Under fairly
general conditions on £, [Evans, 2010], we may define
the Green’s function G : D x D — R as the unique
solution to the problem

where §, is the delta measure on R? centered at . Note
that G will depend on the parameter a thus we will
henceforth denote it as G,. The solution to (3) can then
be represented as

um:L@mMMMy @

Generally the Green’s function is continuous at points
x # y, for example, when L, is uniformly ellip-
tic [Gilbarg and Trudinger, 2015], hence it is natural to
model it via a neural network. Guided by the representa-
tion (4), we propose the following iterative architecture



fort=0,...,T —1.
vep1(x) =0 (th(x)

-s-/Dn(z,(x,y,a(w)’a(y))Ut(y) V:v(di‘/))
®)

where 0 : R — R is a fixed function applied element-
wise, v, 1s a fixed Borel measure for each x € D and
W e R"*", together with the parameters ¢ entering ker-
nel kg : R2(4FD — R are to be learned from data.
We model r, as a neural network mapping R2(4+1) to
RTLXTL.

Discretization of the continuum picture may be viewed
as replacing Borel measure v, by an empirical approx-
imation based on the K grid points being used. In this
setting we may view k4 as a K x K kernel block matrix,
where each entry x4 (x,y) is itself a n x n matrix. Each
block shares the same set of network parameters. This is
the key to making a method which shares common pa-
rameters independent of the discretization used.

Finally we observe that, although we have focussed on
neural networks mapping a to u, generalizations are pos-
sible, such as mapping f to u, or having non-zero bound-
ary data g on 0D and mapping g to u. More generally
one can consider the mapping from (a, f, g) into v and
use similar ideas. To illustrate ideas we will consider
the mapping from f to u below (which is linear and for
which an analytic solution is known) before moving on
study the (nonlinear) mapping from a to u. Since in the
setting f is fixed, our iterative kernel integration convo-
luted with representation v instead of f.

Algorithmic Framework. The initialization vg(x) to
our network (5) can be viewed as the initial guess we
make for the solution u(z) as well as any other depen-
dence we want to make explicit. A natural choice is to
start with the coefficient a(x) itself as well as the position
in physical space x. This (d+1)-dimensional vector field
is then lifted to a n-dimensional vector field, an operation
which we may view as the first layer of the overarching
neural network. This is then used as an initialization to
the kernel neural network, which is iterated 7" times. In
the final layer, we project back to the scalar field of in-
terest with another neural network layer.

Due to the smoothing effect of the inverse elliptic oper-
ator in (2) with respect to the input data a (and indeed
f when we consider this as input), we augment the ini-
tialization (z,a(x)) with a Gaussian smoothed version
of the coefficients a.(x), together with their gradient
Vac(x). Thus we initialize with a 2(d + 1)-dimensional
vector field. Throughout this paper the Gaussian smooth-

ing is performed with a centred isotropic Gaussian with
variance 5. The Borel measure v, is chosen to be the
Lebesgue measure supported on a ball at x of radius r.
Thus we have

Uo(x) = P(l‘, a(x), ae(x)v vae(x)) +p (6)
v (x) = U(th(x)

+f . Rolenysa().al)u(y) dy)

)
u(z) = Qur(z) +4 ®)

where P € R™20+D ¢ R” g, (z) € R™ and
Q € RY*" ¢ € R. The integration in (7) is approx-
imated by a Monte Carlo sum via a message passing
graph network with edge weights (z,y, a(x), a(y)). The
choice of measure v, (dy) = 1 (s, dy is two-fold: 1) it
allows for more efficient computation and 2) it exploits
the decay property of the Green’s function.

Message Passing Graph Networks. Message passing
graph networks comprise a standard architecture em-
ploying edge features [Gilmer et al., 2017]. If we prop-
erly construct the graph on the spatial domain D of the
PDE, the kernel integration can be viewed as an aggre-
gations of messages. Given node features v;(z) € R”,
edge features e(z, y) € R™, and a graph G, the message
passing neural network with averaging aggregation is

\Nt@” Z kg (e(z,y))ve(y)
yEN(z)
9

where W € R™*™, N(z) is the neighborhood of = ac-
cording to the graph, k4 (e(z,y)) is a neural network
taking as input edge features and as output a matrix in
R™ ™, In relation to (7), e(z,y) = (z,y,a(zx),aly)) €
RQ(d-}-l)'

Vi1 (z) = Wug(z) +

Graph Construction. To use the message passing
framework (9), we need to design a graph which con-
nects the physical domain D of the PDE. The nodes are
chosen to be the K discretized spatial locations. Here
we work on a standard uniform mesh, but there are many
other possibilities such as finite-element triangulations.
The edge connectivity is then chosen according to the in-
tegration measure in (7). In particular, each node = € R?
is connected to all neighboring nodes which lie within
the ball B(xz,r), defining the neighborhood set N (z).
Then for each neighbor y € N(z), we assign the edge
weight e(z,y) = (x,y,a(x),a(y)). Equation (9) can
then be viewed as a Monte Carlo approximation of (7).
This local structure allows for more efficient computa-
tion while remaining invariant to mesh-refinement. In-
deed, since the radius parameter r is chosen in physical



space, the size of the set N (z) grows as the disretization
size K grows. This is a key feature which makes our
methodology mesh-independent.

Nystrom Approximation of the Kernel. While the
aforementioned graph structure severely reduces the
computational overhead of integrating over the entire
domain D (corresponding to a fully-connected graph),
the number of edges still scale like O(K?). To over-
come this, we employ a random Nystrom-type approx-
imation of the kernel. In particular, we uniformly sam-
ple m < K nodes from the original graph, construct-
ing a new random sub-graph. This process is repeated
! € N times, yielding ! random sub-graphs each with
m nodes. This can be thought of as a way of reduc-
ing the variance in the estimator. We use these sub-
graphs when evaluating (9) during training which gives
the more favorable scaling O(Im?). Indeed, numerically
we find that [ = 4 and m = 200 is sufficient even when
K = 4212 = 177,241. In the evaluation phase, when
we want the solution on a particular mesh geometry, we
simply partition the mesh into sub-graphs each with m
nodes and evaluate each separately.

We will now demonstrate the quality of this kernel ap-
proximation in a RHKS setting. A real Reproducing Ker-
nel Hilbert Space (RKHS) (H, (-,-), | - ||) is a Hilbert
space of functions f : D — R where point-wise evalua-
tion is a continuous linear functional, i.e. | f(z)| < C|| f]|
for some constant C' > 0, independent of x. For every
RHKS, there exists a unique, symmetric, positive definite
kernel k : D x D — R, which gives the representation
f(x) =(f,k(-,z)). Let T : X — H be alinear operator
on ‘H acting via the kernel

ri= [ Rt

Let T}, : H — H be its m-point empirical approxima-
tion

T, = /B AW a)

hence

1 m
Vm (dy) = m Z Oy (dy),
k=1
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Tof = &y ) f (Yr)-

1
m

b
Il

1

The error of this approximation achieves the Monte
Carlo rate O(m~1/2):

Proposition 1. Suppose E, ., [k(-,y)*] < oo then there
exists a constant C > 0 such that

C
E||T — Tpnlls < ——
[ HHS_\/R

where || - || g5 denotes the Hilbert-Schmidt norm on op-
erators acting on H.

4 EXPERIMENTS

In the following section, we compare kernel networks
with different benchmarks on Darcy Equation. The net-
work is trained and evaluated on the same full grid. The
results are presented in Table 1. NN is a simple point-
wise feedforward neural network. It is mesh-free, but
perform badly due to lack of neighbor information. FCN
is the state of the art neural network method based on
Fully Convolution Network [Zhu and Zabaras, 2018]. It
has a dominating performance for small grids s = 61.
But fully convolution networks are mesh-dependent and
therefore their error grows when moving to a larger grid.
PCA+NN is an instantiation of the methodology pro-
posed in [Bhattacharya et al., 2020]: using PCA as an
autoencoder on both the input and output data and in-
terpolating the latent spaces with a neural network. The
method provably obtains mesh-independent error and
can learn purely from data, however the solution can only
be evaluated on the same mesh as the training data. RBM
is the classical Reduced Basis Method (using a PCA ba-
sis), which is widely used in application and provably
obtains mesh-independent error [DeVore, 2014]. It has
the best performance but the solutions can only be evalu-
ated on the same mesh as the training data and one needs
knowledge of the PDE to employ it. KernelGNN stands
for our graph kernel network. It enjoys competitive per-
formance against all other methods while being able to
generalize to different mesh geometries.

Table 1: Scaling of different network architectures
Networks 141 211 421

NN 0.1716 0.1716 0.1716

FCN 0.0493 0.0727 0.1097

PCA+NN 0.0298 0.0298 0.0299

RBM 0.0251 0.0255 0.0259

KernelGNN | 0.0332 0.0342 0.0369
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Neural Operator: Graph Kernel Network for Partial Differential Equations

Abstract

The classical development of neural networks
has been primarily for mappings between a
finite-dimensional Euclidean space and a set
of classes, or between two finite-dimensional
Euclidean spaces. The purpose of this work is
to generalize neural networks so that they can
learn mappings between infinite-dimensional
spaces (operators). The key innovation in our
work is that a single set of network parame-
ters, within a carefully designed network ar-
chitecture, may be used to describe mappings
between infinite-dimensional spaces and be-
tween different finite-dimensional approxima-
tions of those spaces. We formulate approxi-
mation of the infinite-dimensional mapping by
composing nonlinear activation functions and
a class of integral operators. The kernel in-
tegration is computed by message passing on
graph networks. This approach has substantial
practical consequences which we will illustrate
in the context of mappings between input data
to partial differential equations (PDEs) and
their solutions. In this context, such learned
networks can generalize among different ap-
proximation methods for the PDE (such as fi-
nite difference or finite element methods) and
among approximations corresponding to dif-
ferent underlying levels of resolution and dis-
cretization. Experiments confirm the purposed
graph kernel network does have the above de-
sired properties and show competitive perfor-
mance compared to the stat of the art solvers.

1 INTRODUCTION

There are numerous applications in which it is desirable
to learn a mapping between Banach spaces. In partic-

ular, either the input or the output space, or both, may
be infinite dimensional. The possibility of learning such
mappings opens up a new class of problems in the de-
sign of neural networks, with widespread potential ap-
plicability. New ideas are required to build on tradi-
tional neural networks which are mappings from finite
dimensional Euclidean spaces into classes, or into an-
other finite-dimensional Euclidean space. We study the
development of neural networks in the setting in which
the input and output spaces comprise real-valued func-
tions defined on a bounded open set D in R9.

1.1 Literature Review And Context

We formulate a new class of neural networks, which
are defined to map between spaces of functions on R¢.
Such neural networks, once trained, have the impor-
tant property that they are discretization invariant, shar-
ing the same network parameters between different dis-
cretizations. In contrast, standard neural network archi-
tectures depend heavily on the discretization and have
difficulty in generalizing between different grid repre-
sentations. Our methodology has an underlying Nystrom
approximation formulation [Nystrom et al., 1930] which
links different grids to a single set of network param-
eters. We illustrate the new conceptual class of neural
networks within the context of partial differential equa-
tions, and the mapping between input data (in the form
of a function) and output data (the function which solves
the PDE). Both supervised and semisupervised settings
are considered.

In PDE applications, the defining equations are often
local, whilst the solution operator has non-local effects
which, nonetheless, decay. Such non-local effects can be
described by integral operators with graph approxima-
tions of Nystrom type [Belongie et al., 2002] providing a
consistent way of connecting different grid or data struc-
tures arising in computational methods. For this reason,
graph networks hold great potential for the solution op-



erators of PDEs, which is the departure for our work.

Partial Differential Equations (PDEs). A wide range
of important engineering and physical problems are gov-
erned by PDEs. Over the past few decades, significant
progress has been made on formulating [Gurtin, 1982]
and solving [Johnson, 2012] the governing PDEs in
many scientific fields from micro-scale problems (e.g.,
quantum and molecular dynamics) to macro-scale ap-
plications (e.g., civil and marine engineering). Despite
the success in the application of PDEs to solve real-
life problems, two significant challenges remain. First,
identifying/formulating the underlying PDEs appropri-
ate for the modeling of a specific problem usually re-
quires extensive prior knowledge in the corresponding
field which is then combined with universal conservation
laws to design a predictive model; for example, mod-
elling the deformation and fracture of solid structures re-
quires detailed knowledge on the relationship between
stress and strain in the constituent material. For compli-
cated systems such as living cells, acquiring such knowl-
edge is often elusive and formulating the governing PDE
for these systems remains prohibitive; the possibility of
learning such knowledge from data may revolutionize
such fields. Second, solving complicated non-linear PDE
systems (such as those arising in turbulence and plastic-
ity) is computationally demanding; again the possibility
of using instances of data from such computations to de-
sign fast approximate solvers holds great potential. In
both these challenges, if neural networks are to play a
role in exploiting the increasing volume of available data,
then there is a need to formulate them so that they are
well-adapted to mappings between function spaces.

We first outline two major neural network based ap-
proaches for PDEs. We consider PDEs of the form

(La)w) = f@),  weD "
u(z) =0, x € 0D,
with solution w D — R, and parameter a
D — R entering the defintion of £,. The domain

D is discretized into K points (see Section 2) and
N training pairs of coefficient functions and (approx-
imate) solution functions {a;,u; }jvzl are used to de-
sign a neural network. The first approach parametrizes
the solution operator as a deep convolutional neural
network between finite Euclidean space F : RX x
©® — RX [Guoetal, 2016, Zhu and Zabaras, 2018,
Adler and Oktem, 2017, Bhatnagar et al., 2019].  Such
an approach is, by definition, not mesh independent
and will need modifications to the architecture for dif-
ferent resolution and discretization of K in order to
achieve consistent error (if at all possible). We demon-
strate this issue in section 4 using the architecture of

[Zhu and Zabaras, 2018] which was designed for the so-
lution of (3) on a uniform 64 x 64 mesh. Furthermore this
approach is limited to the discretization size and geom-
etry of the training data hence it is not possible to query
solutions at new points in the domain. We show both in-
variance of the error to resolution and our method’s abil-
ity to transfer the solution between meshes in section 4.

The second approach directly parameterizes the solution
u as a neural network F : D x ©® — R [E and Yu, 2018,
Raissi et al., 2019, Bar and Sochen, 2019].  This ap-
proach is, of course, mesh independent since the solution
is defined on the physical domain. However the para-
metric dependence is accounted for in a mesh-dependent
fashion. Indeed, for any given new equation with new co-
efficient function a, one would need to train a new neural
network F,. Such an approach closely resembles classi-
cal methods such as finite elements, replacing the linear
span of a finite set of local basis with the space of neural
networks. This approach suffers from the same computa-
tional issue as the classical methods: one needs to solve
an optimization problem for every new parameter. Fur-
thermore, the approach is limited to a setting in which the
underlying PDE is known; purely data-driven learning of
a map between spaces of functions is not possible.

Our methodology can be understood as a generaliza-
tion of the above approaches. It most closely resem-
bles the classical reduced basis method [DeVore, 2014]
or the method of [Cohen and DeVore, 2015].  Our
method, to the best of our knowledge, is the
first practical deep learning method that is able
to learn maps between infinite dimensional spaces.
It remedies the mesh-dependent nature of the ap-
proach in [Guoetal., 2016, Zhu and Zabaras, 2018,
Adler and Oktem, 2017, Bhatnagar et al., 2019] by pro-
ducing a quality of approximation that is invariant to
the resolution of the function and having the abil-
ity to transfer solutions between meshes.  More-
over, it needs to only be trained once on the equa-
tions set {aj,u;}_, and obtaining a solution for
a new a ~ p only requires a forward pass of
the network, alleviating the major computational is-
sues incurred in [E and Yu, 2018, Raissi et al., 2019,
Herrmann et al., 2020, Bar and Sochen, 2019]. Lastly,
our method requires no knowledge of the underlying
PDE; the true map F' can be treated as a black-box,
perhaps trained on experimental data or on the output of
a costly computer simulation which is not necessarily a
PDE.

Graph Neural Networks. Graph neural network
(GNNs), a class of neural networks that apply on
graph-structured data, have recently been developed
and seen a variety of applications. Graph networks
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Graph kernel network is invariant of resolution. It can train on
small resolution and generalize to large resolution, thereby
avoid the large complexity scaling on grid size. Error is the

squared [ absolute error on Darcy Equation.

incorporate an array of techniques such as graph
convolution, edge convolution, attention, and graph
pooling [Kipf and Welling, 2016, Hamilton et al., 2017,
Gilmer et al., 2017, Velickovié et al., 2017,
Murphy et al., 2018]. GNNs have also been ap-
plied to the modeling of physical phenomena such as
molecules [Chen et al., 2019] and rigid body systems
[Battaglia et al., 2018], as these problems exhibit a
natural graph interpretation: the particles are the nodes
and the interactions are the edges.

The work [Alet et al., 2019] performed an initial study
that employs graph networks on the problem of learn-
ing solutions to Poisson’s equation among other physical
applications. They propose an encoder-decoder setting,
constructing graphs in the latent space and utilizing mes-
sage passing between the encoder and decoder. However
their model uses a nearest neighbor structure that is un-
able to capture non-local dependencies as the mesh size
is increased. In contrast, we directly construct a graph in
which the nodes are located on the spatial domain of the
output function. Through message passing, we are then
able to directly learn the kernel of the network which ap-
proximates the PDE solution. When querying a new lo-
cation, we simply add a new node to our spatial graph
and connect it to the existing nodes, avoiding interpola-
tion error by leveraging the power of the Nystrom exten-
sion for integral operators.

Continuous Neural Networks. The concept of
defining neural networks in infinite-dimensional
spaces is a central problem that long been studied
[Williams, 1996, Neal, 1996, Roux and Bengio, 2007,
Globerson and Livni, 2016, Guss, 2016]. The gen-
eral idea is to take the infinite-width limit which
yields a non-parametric method and has connec-
tions to Gaussian Process Regression [Neal, 1996,
Matthews et al., 2018, Garriga-Alonso et al., 2018,
Rasmussen and Williams, 2005].  Such methods have
never been applied to PDE problems and have thus
far not yielded efficient numerical algorithms that
can parallel the success of convolutional or recurrent

neural networks in finite dimensions. For an overview
of non-parametric methods applied to PDE(s) see
[Dunlop et al., 2018] and references therein. Another
idea is to simply define a sequence of compositions
where each layer is a map between infinite dimensional
spaces with a finite-dimensional parametric dependence.
This is the approach we take in this work, going a step
further by sharing parameters between each layer.

1.2  Our Contributions

We introduce a new neural network architecture which is
appropriate for the learning of mappings between spaces
of functions defined on bounded open subsets of R.

e Unlike existing methods, our approach is demon-
strably able to share a single set of neural network
parameters between methods based on different ap-
proximation methods and different grids, as demon-
strated in Figure 1.

e A Nystrom extension connects the neural network
on function space to families of GNNs on arbitrary,
possibly unstructured, grids.

e The method is demonstrated to have competitive ap-
proximation accuracy, as shown in the experiments.

e The ability of transfer learning between different
discretizations with one set of parameters .

e The ability of semi-supervised learning that learns
from data at a few points and the generalizes to the
whole domain.

These concepts are illustrated in the context of a family
of elliptic PDEs prototypical of a number of problems
arising throughout the sciences and engineering.

2 PROBLEM SETTING

Our goal is to learn a mapping between two infinite di-
mensional spaces by using a finite collection of observa-
tions of input-output pairs from this mapping: supervised
learning. Let A and U/ be separable Banach spaces and
F': A — U a (typically) non-linear map. Suppose we
have observations {a;, u;}}_, where a; ~ y is an i.i.d.
sequence from the probability measure . supported on A
and u; = F'(a;) is possibly corrupted with noise. We
aim to build an approximation of F by constructing a
parametric map

F:Ax0=U 2

for some finite-dimensional parameter space © and then
choosing 67 € © so that F(-,0") ~ F*.



This a natural framework for learning in infinite-
dimensions as one could define a cost functional C' :
U x U — R and seek a minimizer of the problem
minEaNH[C’(}"(a,G),}"T(a))}
e

which directly parallels the classical finite-dimensional
setting [Vapnik, 1998]. Showing the existence of min-
imizers, in the infinite-dimensional setting, remains a
challenging open problem. We will approach this prob-
lem in the test-train setting in which empirical ap-
proximations to the cost are used. We conceptual-
ize our methodology in the infinite-dimensional set-
ting. This means that all finite-dimensional approxima-
tions can share a common set of network parameters
which are defined in the (approximation-free) infinite-
dimensional setting. To be concrete we will consider
infinite-dimensional spaces which are Banach spaces of
real-valued functions defined on a bounded open set in
R?. We then consider mappings F1 which take input
functions to a PDE and map them to solutions of the
PDE, both input and solutions being real-valued func-
tions on RY.

A common instantiation of the preceding problem is the
approximation of the second order elliptic PDE

reD

x €0D ®)
for some bounded, open set D C R and a fixed
function f € L%*(D;R). This equation is prototyp-
ical of PDEs arising in numerous applications includ-
ing hydrology [Bear and Corapcioglu, 2012] and elastic-
ity [Antman, 2005]. For a givena € A = L>®(D;R*)N
L?(D;R"), equation (3) has a unique weak solution
u € U = H}(D;R) [Evans, 2010] and therefore we can
define the solution operator F as the map a — u. Note
that while the PDE (3) is linear, the solution operator T
is not.

Since our data a; and u; are , in general, functions, to
work with them numerically, we assume access only to
point-wise evaluations. To illustrate this, we will con-
tinue with the example of the preceding paragraph. To
this end let Px = {z1,...,2x} C D be a K-point
discretization of the domain D and assume we have ob-
servations a;|p,. , u;|p,, € RX, for a finite collection of
input-output pairs indexed by j. In the next section, we
propose a kernel inspired graph neural network architec-
ture which, while trained on the discretized data, can pro-
duce an answer u(x) for any € D given a new input
a ~ . That is to say that our approach is independent of
the discretization Px and therefore a true function space
method; we verify this claim numerically by showing in-
variance of the error as K — oo. Such a property is

highly desirable as it allows a transfer of solutions be-
tween different grid geometries and discretization sizes.

We note that, while the application of our methodology is
based on having point-wise evaluations of the function,
it is not limited by it. One may, for example, represent
a function numerically as a finite set of truncated basis
coefficients. Invariance of the representation would then
be with respect to the size of this set. Our methodology
can, in principle, be modified to accommodate this sce-
nario through a suitably chosen architecture. We do not
pursue this direction in the current work.

3 GRAPH KERNEL NETWORK

We propose a graph kernel neural network for the solu-
tion of the problem outlined in section 2. As a guiding
principle of our architecture, we take the following ex-
ample. Let £, be a differential operator depending on a
parameter a € A and consider the PDE

(Lau)(z) = f(x), zeD

r € 0D

4)

for a bounded, open set D C R< and some fixed func-
tion f living in an appropriate function space determined
by the structure of £,. The elliptic operator £, =
—div(aV-) from equation (3) is an example. Under fairly
general conditions on £, [Evans, 2010], we may define
the Green’s function G : D x D — R as the unique
solution to the problem

L,G(z,-) =0y

where ¢, is the delta measure on R? centered at . Note
that G will depend on the parameter a thus we will
henceforth denote it as G,. The solution to (4) can then
be represented as

ulz) = /D Gl y) () dy. )

Generally the Green’s function is continuous at points
x # vy, for example, when L, is uniformly ellip-
tic [Gilbarg and Trudinger, 2015], hence it is natural to
model it via a neural network. Guided by the representa-
tion (5), we propose the following iterative architecture
fort=0,...,7 — 1.

V1 (z) =0 (th(x)

+/D/<a¢(x,y7a(96)aa(y))vt(y) Vr(dy))
(6)



where 0 : R — R is a fixed function applied element-
wise, v, is a fixed Borel measure for each x € D and
W € R™ "™ together with the parameters ¢ entering ker-
nel Ky R2(d+1) _y RPX7 are to be learned from data.
We model x4 as a neural network mapping R2(@+1) to
R’ILX’N,'

Discretization of the continuum picture may be viewed
as replacing Borel measure v, by an empirical approx-
imation based on the K grid points being used. In this
setting we may view k4 as a i x K kernel block matrix,
where each entry x4 (x,y) is itself a n x n matrix. Each
block shares the same set of network parameters. This is
the key to making a method which shares common pa-
rameters independent of the discretization used.

Finally we observe that, although we have focussed on
neural networks mapping a to u, generalizations are pos-
sible, such as mapping f to u, or having non-zero bound-
ary data g on 9D and mapping g to u. More generally
one can consider the mapping from (a, f, g) into v and
use similar ideas. To illustrate ideas we will consider
the mapping from f to u below (which is linear and for
which an analytic solution is known) before moving on
study the (nonlinear) mapping from a to u. Since in the
setting f is fixed, our iterative kernel integration convo-
luted with representation v instead of f.

Example: Poisson Equation. We consider a simplifi-
cation of the foregoing in which we study the map from
f to u. To this end we set vo(x) = f(z), T =1,n =1,
o(z) =z, W = w =0, and v, (dy) = dy (the Lebesgue
measure) in (6). We then obtain the representation (5)
with the Green’s function G, parameterized by the neu-
ral network k4 with explicit dependence on a(z), a(y).
Now consider the setting where D = [0, 1] and a(z) = 1,
so that (3) reduces to the 1-dimensional Poisson equation
with explicitly computable Green’s function. Indeed,

1
G(x,y):§(w+y*\y*$|)*xy-

Note that although the map f — wu is, in function space,
linear, the Green’s function itself is not linear in either ar-
gument. Figure 2 shows k4 after training with NV = 2048
samples f; ~ pu = N(0,(—A + I)~!) with periodic
boundary conditions on the operator —A + I. Notice
that we are able to almost perfectly capture the geometry
of the Green’s function. The learned solution map is uni-
versal: once we have this approximation of the Green’s
function we can map any f € L?(D;R) into solution
u € L?(D;R), even though though the training was en-
tirely from data drawn from p. While the approximation
is not perfect, this result is quite remarkable and speaks
to the generalization capabilities of our overall approach.
Furthermore, the training data f;, u; are specified on an

85-point uniform discretization of D while ry is eval-
uated on a 256 x 256 uniform grid, demonstrating our
method’s mesh invariance property.

Algorithmic Framework. The initialization vg(z) to
our network (6) can be viewed as the initial guess we
make for the solution u(z) as well as any other depen-
dence we want to make explicit. A natural choice is to
start with the coefficient a(z) itself as well as the position
in physical space x. This (d+1)-dimensional vector field
is then lifted to a n-dimensional vector field, an operation
which we may view as the first layer of the overarching
neural network. This is then used as an initialization to
the kernel neural network, which is iterated 1" times. In
the final layer, we project back to the scalar field of in-
terest with another neural network layer.

Due to the smoothing effect of the inverse elliptic oper-
ator in (3) with respect to the input data a (and indeed
f when we consider this as input), we augment the ini-
tialization (z,a(x)) with a Gaussian smoothed version
of the coefficients a.(x), together with their gradient
Vae(x). Thus we initialize with a 2(d + 1)-dimensional
vector field. Throughout this paper the Gaussian smooth-
ing is performed with a centred isotropic Gaussian with
variance 5. The Borel measure v, is chosen to be the
Lebesgue measure supported on a ball at x of radius r.
Thus we have

Uo(x) = P(l‘, a(x), ae(x)v vae(x)) +p @)
v (x) = U(th(x)

+f . Folensa().aln)uy) dy)

®)
u(z) = Qur(z) +4 (©))

where P € R™2(d+1) 5 ¢ R 4y(z) € R"™ and
Q € R'*" ¢ € R. The integration in (8) is approx-
imated by a Monte Carlo sum via a message passing
graph network with edge weights (z,y, a(x), a(y)). The
choice of measure v, (dy) = 1 (s, dy is two-fold: 1) it
allows for more efficient computation and 2) it exploits
the decay property of the Green’s function. Note that if
more information is known about the true kernel, it can
be added into this measure. For example, if we know
the true kernel has a Gaussian structure, we can define
ve(dy) = 1) pe(y)dy where p,.(y) is a Gaussian
density. Then x4 will need to learn a much less compli-
cated function. We however do not pursue this direction
in the current line of work.

Message Passing Graph Networks. Message passing
graph networks comprise a standard architecture em-



Figure 2: Kernel For One-Dimensional Green’s Function
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Proof of concept: graph kernel network on 1 dimensional
Poisson equation; comparison of learned and truth kernel.

ploying edge features [Gilmer et al., 2017]. If we prop-
erly construct the graph on the spatial domain D of the
PDE, the kernel integration can be viewed as an aggre-
gations of messages. Given node features v;(z) € R™,
edge features e(x, y) € R™, and a graph G, the message
passing neural network with averaging aggregation is

1
viy1(2) = Wor(z) + N @) Z kg (e(z,y))ve(y)
yEN (z)

(10)
where W € R™ ™, N(x) is the neighborhood of x ac-
cording to the graph, k4 (e(x,y)) is a neural network
taking as input edge features and as output a matrix in
R™ ™, In relation to (8), e(x,y) = (x,y,a(x),aly)) €
R2(d+1)

Graph Construction. To use the message passing
framework (10), we need to design a graph which con-
nects the physical domain D of the PDE. The nodes are
chosen to be the K discretized spatial locations. Here
we work on a standard uniform mesh, but there are many
other possibilities such as finite-element triangulations.
The edge connectivity is then chosen according to the in-
tegration measure in (8). In particular, each node = € R?
is connected to all neighboring nodes which lie within
the ball B(x,r), defining the neighborhood set N(z).
Then for each neighbor y € N(x), we assign the edge
weight e(x,y) = (z,y,a(x),a(y)). Equation (10) can
then be viewed as a Monte Carlo approximation of (8).
This local structure allows for more efficient computa-
tion while remaining invariant to mesh-refinement. In-
deed, since the radius parameter r is chosen in physical
space, the size of the set N (x) grows as the disretization
size K grows. This is a key feature which makes our
methodology mesh-independent.

Nystrom Approximation of the Kernel. While the
aforementioned graph structure severely reduces the
computational overhead of integrating over the entire
domain D (corresponding to a fully-connected graph),
the number of edges still scale like O(K?). To over-
come this, we employ a random Nystrom-type approx-

imation of the kernel. In particular, we uniformly sam-
ple m < K nodes from the original graph, construct-
ing a new random sub-graph. This process is repeated
[ € N times, yielding ! random sub-graphs each with
m nodes. This can be thought of as a way of reduc-
ing the variance in the estimator. We use these sub-
graphs when evaluating (10) during training which gives
the more favorable scaling O(Im?). Indeed, numerically
we find that [ = 4 and m = 200 is sufficient even when
K = 4212 = 177,241. In the evaluation phase, when
we want the solution on a particular mesh geometry, we
simply partition the mesh into sub-graphs each with m
nodes and evaluate each separately.

We will now demonstrate the quality of this kernel ap-
proximation in a RHKS setting. A real Reproducing Ker-
nel Hilbert Space (RKHS) (A, (-,-),]| - ||) is a Hilbert
space of functions f : D — R where point-wise evalua-
tion is a continuous linear functional, i.e. | f(x)| < C|| f]]
for some constant C' > 0, independent of x. For every
RHKS, there exists a unique, symmetric, positive definite
kernel k : D x D — R, which gives the representation
f(x) ={f,k(-,z)). Let T : H — H be a linear operator
on H acting via the kernel

Tf= k() f(y)v(dy).

B(V"')

Let T}, : H — H be its m-point empirical approxima-
tion

To= [ sl wm(dy)
B(-,r)
hence
1 m
(dy) = — > by (dy),
k=1
1 m
Tonf = — > 6l ) f ).
k=1
The error of this approximation achieves the Monte

Carlo rate O(m~1/2):

Proposition 1. Suppose E,, [k(-,y)*] < oo then there
exists a constant C > 0 such that

C
E|T = Tnlus < —=

Jm

where || - || s denotes the Hilbert-Schmidt norm on op-
erators acting on H.

For a proof of this result see Appendix A.1. Assuming
boundedness of the kernel x, one can prove similar re-
sults that, instead of in expectation, hold with high prob-
ability [Rosasco et al., 2010].



We note that, in our algorithm, x : D x D — R"*"
whereas the preceding results are proven only in the set-
ting n = 1; nonetheless they provide useful intuition re-
garding the approximations used in our methodology.

4 EXPERIMENTS

In this section we demonstrate that the claimed properties
of our methodology and compare to existing approaches
in the literature. All experimental results concern the
mapping a — u defined by (3) with D = [0, 1]2. Co-
efficients are generated according to a ~ 4 u where
pu=N(0,(—A +9I)~3) with a Neumann boundry con-
dition on the operator —A+91. The mapping ) : R — R
takes the value 12 on the positive part of the real line and
3 on the negative hence the coefficients are piece-wise
constant with a random geometry and a fixed contrast
of 4. Such constructions are common in the modeling
of material microstructures and sub-surface flows. Solu-
tions u are obtained by using a second-order finite differ-
ence scheme on a 241 x 241 grid. Different resolutions
are downsampled from this dataset.

Without special notice we set the dimension of repre-
sentation n (i.e. the width of graph network) to be 64,
the number of iteration 7" to be 6, o to be ReLLU, and
the inner kernel network « to be a 3 layers feed-forward
network with widths (6,512,1024,n2) and ReLU acti-
vation. We use Adam optimizer with the learning rate
le — 4 and train for 200 epochs, unless otherwise stated.
These hyperparameters are not optimized and should be
free to change in practice. We adapt the message passing
network from the standard Pytorch graph network library
Torch-geometric [Fey and Lenssen, 2019]. All errors are
relative L? errors.

4.1 Supervised Setting

First we consider the supervised scenario that we are
given N training pairs {a;,u;}{, where each a; and u;
are provided on a s x s grid (K = s?).

Generalization of Resolutions on Full Grids. To ex-
amine the generalization property, we train the graph ker-
nel network on resolution s x s and test on another reso-
lution s’ x s’. We fix the radius to be » = 0.10, train on
N = 100 equation pairs and test on 40 equation pairs.

As shown in Table 1, for each row, the test errors of dif-
ferent resolutions remain on the same scale, which means
graph kernel networks can train on one resolution and
generalize to another resolution. The test errors on the
diagonal (s = s’ = 16 and s = s’ = 31) are the small-
est, which means the network has the best performance
when the training grid and the test grid are the same. In-

Table 1: Comparing Resolutions On Full Grids

Resolutions s' =16 s =31 s =61
s =16 0.0525 0.0591  0.0585
s=31 0.0787  0.0538  0.0588

r = 0.10, N = 100, relative [ test error

terestingly, for the second row, when training on s = 31,
it is easier to general to ' = 61 than to s’ = 16. This is
because when generalizing to a larger grid, the support of
the kernel becomes large which does not hurt the perfor-
mance. But when generalizing to a smaller grid, part of
the support of the kernel is lost, which causes the kernel
to be inaccurate.

Expressiveness and Overfitting We compare the
training error and test error with a different number of
training pairs NV to see if the kernel network can learn
the kernel structure even with a small amount of data.
We study the expressiveness of kernel network, examin-
ing how it overfits. We fix r = 0.10 on the s = s’ = 31
grid and train with N = 10,100, 1000 and 5000, 500,
100 epochs respectively.

Table 2: Comparing Number of Training Pairs

Training Size Training Error Test Error
N =10 0.0111 0.0876
N =100 0.0056 0.0455
N = 1000 0.0073 0.0307

5000, 500, 100 epochs respectively.

We see from Table 2 that the kernel network already
achieves a reasonable result when N = 10, and the accu-
racy is competitive when N = 100. In all three cases, the
test error is larger than the training error which means the
kernel network has enough expressiveness to overfit the
training set. Thos overfitting is not severe as the training
error will not be pushed to zero even for N = 10, after
5000 epochs.

4.2 Semi-Supervised Setting

In the semi-supervised setting, we are only given m
nodes sampled from a s x s grid for each training pair,
and want to evaluate on m’ nodes sampled from a s’ x s’
grid for each test pair. Without special notice, we set the
number of sampled nodes m = m’ = 200. For each
training pair, we sample twice | = 2; for each test pair,
we sample once I’ = 1. We train on N = 100 equations
and test on N/ = 100 equations. The radius for both
training and testing is set to r = r’ = 0.25.



Generalization of Resolutions on Sampled Grids.
Similar to the first experiments, we train the graph ker-
nel network with nodes sampled from the s X s resolution
and test on nodes sampled from the s’ x s’ resolution.

Table 3: Generalization of Resolutions on Sampled Grids

Resolutions s’ =61 s =121 s =241
s=16 0.0717  0.0768 0.0724
s=31 0.0726  0.0710 0.0722
s =61 0.0687  0.0728 0.0723
s =121 0.0687  0.0664 0.0685
s = 241 0.0649  0.0658 0.0649

N=1000m=m'=200,r =7 =0.25,1=2

As shown in Table 3, for each row, the test errors on dif-
ferent resolutions are about the same, which means the
graph kernel network can also generalize in the semi-
supervised setting. Comparing the rows, large training
resolutions s tend to have a smaller error. When sampled
from a finer grid, there are more variety of edges i.e. the
support of the kernel is larger on the finer grid. Still, the
performance is best when s = s’

The Number of Examples v.s. the Times of Sampling.
Increasing the number of times we sample [, will reduce
the error from Nystrom approximation. By comparing
different [ we want to find which number will be suffi-
cient. When we sample [ times for each equation, we
will get NI number of sampled training pairs. We are
also interested in fixing the total number of sample train-
ing pairs; for example, how will N = 100,/ = 10 com-
pare to N = 1000, = 1.

Table 4: The Number of Training Equations and the
Number of Sampling

I=1 1=2 1=4 1-=38
N=10 |01259 0.1069 0.0967 0.1026
N =100 |0.078 0.0687 0.0690 0.0621
N =1000 | 0.0604 0.0579 0.0540 0.0483

s=121,m=m' =200, =7 =0.25

As shown in Table 4, in general the larger [ the better,
but [ = 2 already gives good results. Meanwhile, (N =
100,17 = 8) has near the same error as (N = 1000, =
1), which implies we can increasing [ when the amount
of training data is small.

Different Number of Nodes in Training and Testing.
To further examine the Nystrom approximation, we com-
pare different numbers of node samples m, m’ for both
training and testing.

Table 5: Comparing the Number of Nodes in the Training
and Testing

m' = 100 200 400 800
m =100 | 0.0871 0.0716 0.0662 0.0609
m =200 | 0.0972 0.0734 0.0606 0.0562
m =400 | 0.0991 0.0699 0.0560 0.0506
m =800 | 0.1084 0.0751 0.0573 0.0478

s=121,r=7"=0.15,1=5

As can be seen from Table 5, in general the large m and
m’ the better. For each row, fixing m, the larger m’ the
better. But for each column, when fixing m’, increasing
m may not lead to better performance. This is again due
to the fact that when learning on a larger grid, the ker-
nel network learns a kernel with larger support. When
evaluating on a smaller grid, the learned kernel will be
truncated to have small support which grows the error.
In general, m = m/ will be the best choice.

The Number of Nodes and the Radius. The computa-
tion and storage of graph networks directly scale with the
number of edges. In this experiment we want to study the
trade off between the number of nodes m and the radius
r when fixing the number of edges.

Table 6: The Number of Nodes and the Radius

T m  Edges Error
0.05 100 | 176 0.1108
0.05 200 | 666 0.1090
0.05 400 | 3354  0.0994
0.15 100 | 512 0.0860
0.15 200 | 2770  0.0705
0.15 400 | 14086 0.0539
0.40 100 | 1596  0.0649
0.40 200 | 9728  0.0517
0.40 400 | 55919 0.0407

s=121,l=5m' =m

As shown in Table 6, the more edges the better. But
when fixing the number of edges, the performance de-
pends more on the radius r than on the number of nodes
m. In other words, the error of truncating the kernel lo-
cally is larger than the error from Nystrom approxima-
tion. It would be better to use larger r with smaller m.

4.3 Full Scale Comparison with Different
Benchmarks

In the following section, we compare kernel networks
with different benchmarks. The network is trained and



evaluated on the same full grid. The results are pre-
sented in Table 7. NN is a simple point-wise feed-
forward neural network. It is mesh-free, but perform
badly due to lack of neighbor information. FCN is
the state of the art neural network method based on
Fully Convolution Network [Zhu and Zabaras, 2018]. It
has a dominating performance for small grids s = 61.
But fully convolution networks are mesh-dependent and
therefore their error grows when moving to a larger grid.
PCA+NN is an instantiation of the methodology pro-
posed in [Bhattacharya et al., 2020]: using PCA as an
autoencoder on both the input and output data and in-
terpolating the latent spaces with a neural network. The
method provably obtains mesh-independent error and
can learn purely from data, however the solution can only
be evaluated on the same mesh as the training data. RBM
is the classical Reduced Basis Method (using a PCA ba-
sis), which is widely used in application and provably
obtains mesh-independent error [DeVore, 2014]. It has
the best performance but the solutions can only be evalu-
ated on the same mesh as the training data and one needs
knowledge of the PDE to employ it. KernelGNN stands
for our graph kernel network. It enjoys competitive per-
formance against all other methods while being able to
generalize to different mesh geometries. Some figures of
KernelGNN are included in Appendix A.2.

Table 7: Scaling of different network architectures
Networks 141 211 421

NN 0.1716 0.1716 0.1716
FCN 0.0493 0.0727 0.1097
PCA+NN 0.0298 0.0298 0.0299
RBM 0.0251 0.0255 0.0259
KernelGNN | 0.0332 0.0342 0.0369

5 DISCUSSION AND FUTURE WORK

As shown in the experiments, we can conclude graph
kernel networks do have the desired mesh-free prop-
erty. It can learn the infinite-dimension mapping be-
tween functions space, instead of a mapping between
fixed discretization. Meanwhile, it can achieve com-
petitive performance compared to those mesh dependent
solver. Such a mesh-free method has many applications.
It has the potential to be a faster solver that learns from
only a few points and a few equations. It is the only
method that can works in the semi-supervised scenario,
when we only have measurements on some parts of the
grid. It is also the only method that can transfer between
different geometry. For example, when computing the
flow dynamic of many different airfoils, we can construct
different graphs and train together. When learning from

irregular grids and querying new locations, our method
does not require any interpolation, avoid subsequently
interpolation error.

Disadvantage. Graph kernel network’s runtime and
storage scale with the number of edges £ = O(K?).
While other mesh-dependent methods such as PCA+NN
and RBF require only O(K). This is somewhat in-
evitable, because to learn the continuous function or the
kernel, we need to capture pairwise information between
every two nodes, which is O(K'), whereas when the dis-
cretization is fixed, one just need to capture the point-
wise information, which is O(K). Therefore training
and evaluating the whole grid is costly when the grid
is large. On the other hand, doing sampling loses some
information about the data, which causes an error and
makes our method not as good as PCA+NN and RBM.

Future Work. To deal with the above problem, we
purpose a more efficient way to make use of the full
grid — multi-grid method. Instead of doing sampling
and throw most of the nodes away, we can construct
multi graphs corresponding to different resolutions, so
that within each graph, nodes only connect to their near-
est neighbors. The number of edges then scale as O(K)
instead of O(K?). The error term from Nystrom approx-
imation can be avoided.

Another direction is to extend the framework for time-
dependent PDEs. Since the graph kernel network is itself
an iterative solver with the time step ¢, it is natural to
frame it as an RNN that each time step corresponds to a
time step of the PDEs.
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A Appendix

A.1 Proof of Proposition 1

Proposition 1. Let {y; =1 be anii.d. sequence with y; ~ v. Define k, = k(+,y) for any y € D. Notice that by the
reproducing property,

Ey~u[]lB(~,r)(“y ® ky) f] = EyM/[ﬂB( ) (Ky, [)y]

[ Lt iy vidy)

D

- / Ly () () v(dy)
D
/ () v(dy)
B(- r)

hence
T =Eyu[lp(r(ky @ ky)]

and similarly

1
EZ (y; € B(- )("fyj ®"fyj)'

Define 7 := 1(y; € B(-,7))(ky, ® ky, ) forany j € {1,...,m} and T}, := 1 5., (ky ® k) for any y € D, noting
that B, [T,] = T and E[TY)] = T. Further we note that

B[ Tyllfrs < Eymullriyl|* < 00

and, by Jensen’s inequality,
1T} < BymnlI Tyl s < 00

hence T’ is Hilbert-Schmidt (as is 77, since it has finite rank). We now compute,

1 <& .
E|Tm — Tlfhs = Ell— YTV ~ T}

j=1

1K, 1 &
:EHEZT(”H%IS_QEZ E[TYD], T) s + T4 s

1 <& .
=E| ZT“’H?{S — I Tl%s

= —Ey Tyl 5s + — 3 ZZ E[TDLET® ) is — 1T
J=1k#j
= —Ey [Ty ||Hs+ ”T”HS 1T s
1
= —(E,~.||T; —||T
m( v [Tyl s — | HHs)
1

— By ||y = Tllrs-

Setting C% = E,, || Ty — T'||%; 5, we now have

CQ
E|[ T — Tli}s = —



Applying Jensen’s inequality to the convex function z +—+ 2 gives

C
E|T;, =T < —.
| lzs < NG

A.2 Figures of Table 7



Figure 3: s = 141
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Figure 4: s = 211
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Figure 5: s = 421
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