Under review as a conference paper at ICLR 2026

Wg@sﬁﬁ%ﬁ@s&% SCALING ARTIST MESH GENERA-
TION VIA LOCAL-TO-GLOBAL ASSEMBLY

Anonymous authors
Paper under double-blind review

Part: 223
Face: 127,703

/3

’;‘”’Vt %17209 Part: 143
ace: T z‘%‘,"’? 2o Face: 17,38
AN AN
n?ix!ﬂ{y‘unr‘ Auﬂﬂ\“!\!%@
'll!e"muﬂgggmmggg
Y SN (S

L

i AR I\

! Q“"s‘jnﬁ““’
R
‘ﬁggg V"‘
Qé‘xl‘s i‘ﬁr/ﬂ
ey N

=7

=

7Y ZaX

,'/Vg N
MNNZ
N

N&Z7

N
1A
RN

a5
i

¢

S
i

B

7S

Figure 1: MeshMosaic empowers scaling up artist mesh generation to more than 100k triangles by
assembling boundary-conditioned local patches into cohesive, high-resolution meshes. It delivers
flexible support over mesh density and ensures the faithful retention of intricate design details. Faces
are assigned random blue colors to better illustrate the mesh layout.

ABSTRACT

Scaling artist-designed meshes to high triangle numbers remains challenging for
autoregressive generative models. Existing transformer-based methods suffer from
long-sequence bottlenecks and limited quantization resolution, primarily due to the
large number of tokens required and constrained quantization granularity. These
issues prevent faithful reproduction of fine geometric details and structured density
patterns. We introduce MeshMosaic, a novel local-to-global framework for artist
mesh generation that scales to over 100K triangles—substantially surpassing prior
methods, which typically handle only around 8K faces. MeshMosaic first segments
shapes into patches, generating each patch autoregressively and leveraging shared
boundary conditions to promote coherence, symmetry, and seamless connectivity
between neighboring regions. This strategy enhances scalability to high-resolution
meshes by quantizing patches individually, resulting in more symmetrical and
organized mesh density and structure. Extensive experiments across multiple
public datasets demonstrate that MeshMosaic significantly outperforms state-of-
the-art methods in both geometric fidelity and user preference, supporting superior
detail representation and practical mesh generation for real-world applications.

1 INTRODUCTION

Artist-designed triangular meshes are a cornerstone in film, gaming, AR/VR, and industrial design.
High-quality artist meshes are central to computer graphics and 3D vision, distinguished by their
stylized topology, directional flows, uneven triangle densities, sharp edges, and symmetry. Recent

advances in 3D generation (Xiang et al.| 2025} [Li et al., 2024a} [Liu et al.| 2023}, [Long et al., 2024)
and reconstruction (Wang et al.,[2023; [Huang et al.| [2024} Xu et al., 2023} [Hou et al.} [2022) highlight
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Figure 3: Gallery of our artist mesh generation results.

the limitations of classical meshing methods like Marching Cubes (Lorensen & Cline} [1998)), which
rely on uniform grids and produce redundant triangles, struggling with sharp features. Traditional
meshing either yields uniform (Liu et al.} [Xu et al} [2024; Wang et al.} [2025b; Dong et al.,
or oversimplified (Chen et al.,[2023; (Garland & Heckbert, [1997) results; while anisotropic
techniques (Zhong et al [2014) better align to curvature, they still fall short in capturing the varying
density and structure of artist meshes.

The rise of large language models (LLMs) (Zhao et al, [2023a)
has inspired GPT-like architectures for mesh generation, such as
MeshGPT ,[2024) and its successors
20244jc; [Zhao et al.| 2025} [Hao et all, 2024} [Tang et al.} 024b).
Despite progress, these approaches struggle to scale up due to
prohibitively long token sequences and limited quantization
resolution, making it difficult to generate high-triangle meshes
with fine detail. However, in practice, artist-designed meshes
often require significantly higher resolutions to achieve the visual
fidelity demanded in modern games and films. For example,
production-quality character models or hero assets frequently
contain upwards of 100K faces, far exceeding the capacities Figure 2: ‘Mosaic Art m
handled by current generative methods (Zhao et al.} 2025} [Weng @
et all 2023}, [Lionar et all [2025). This substantial gap underscores the need for methods capable of
generating high-triangle meshes that preserve the intricate details and structural coherence.

Inspired by the compositional principles of classical mosaic art (Fig.[2), we propose MeshMosaic,
a novel local-to-global framework for scalable artist mesh generation. Mosaic artworks achieve
global complexity and coherence by assembling intricate local tiles; in a similar spirit, MeshMosaic
constructs a complete mesh by stitching together multiple locally generated patches. Unlike previous
methods that attempt to model the entire mesh sequence, our framework divides the mesh into
semantically meaningful patches, each autoregressively generated from a full-size point cloud with
full-resolution quantization. To enable a compact yet faithful geometric representation, we employ
shared boundary conditions and semantic segmentation, which address challenges related to boundary
alignment and asymmetry. This patch-based strategy not only sidesteps the long-sequence bottleneck,
but also effectively captures fine-grained geometric structures and global coherence, allowing for
high-detail modeling within each patch while maintaining consistency across the entire mesh.

Experiments on multiple datasets show that MeshMosaic establishes new milestones in geometric
fidelity and detail, also strongly preferred in user studies for artistry. Our approach supports stable
generation of high-resolution meshes with over 100K triangles (see Fig.[T) and faithfully reproduces
fine detail via per-patch quantization. See Fig. [3]for a gallery of our results.

Our key contributions are:

* We introduce a local-to-global autoregressive framework that decomposes meshes into patches,
fundamentally overcoming the long-sequence bottleneck in mesh generation.

* We employ boundary-aware local quantization alongside semantic segmentation guidance, en-
suring precise cross-patch alignment, symmetry preservation, global consistency, and stronger
representation of intricate details.
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* We achieve state-of-the-art results on multiple datasets, significantly outperforming baselines in
fidelity and user preference.

2 RELEATED WORKS

2.1 3D SHAPE GENERATION

Remarkable advances have been made in 3D shape generation, particularly with the adoption of
signed distance field (SDF) representations, which offer notable accuracy and flexibility for modeling
complex shapes. Despite such progress, these SDF-based methods often depend on the Marching
Cubes algorithm (Lorensen & Clinel [1998) for mesh extraction, which can result in redundant
triangles and consequently large file sizes—posing limitations for scalable deployment and real-time
applications.

For instance, Wonder3D (Long et al., [2024) introduces a cross-domain diffusion framework for
generating high-quality, multi-view textured 3D meshes from single images, achieving improved
consistency and visual fidelity over previous approaches. CLAY (Zhang et al.,|2024) expands the
scope with a large-scale generative model that transforms text, images, and 3D-aware inputs into
intricate geometry and material compositions, making robust 3D asset creation accessible to broad
user bases. TRELLIS (Xiang et al.,[2025) leverages structured occupancy fields to guide the formation
of salient shape features, supporting high-precision modeling conditioned on text or image prompts.
Hunyuan3D-2.5 (Lai et al.| [2025) proposes a two-stage diffusion pipeline for crafting high-fidelity
assets, combining powerful generative models with physically-based rendering for enhanced realism
in both shape and texture. CraftsMan3D (Li et al.||2024b)), evolves toward interactive 3D design by
developing a native diffusion-based framework capable of producing meshes with regular topology
and fine surface detail, while supporting user-driven refinements.

2.2  ARTIST MESH GENERATION

The quest for artist-quality mesh generation has inspired a new wave of models that focus on efficient
topology and expressive geometry. MeshGPT (Siddiqui et al., 2024) pioneers autoregressive mesh
synthesis through sequence-based modeling, employing quantized latent embeddings and transformer
architectures to predict efficient triangulation and structural patterns reminiscent of hand-crafted
meshes. Building on this idea, MeshAnything (Chen et al.| |2024b) and MeshAnythingV2 (Chen
et al.l [2024c) offer advanced mesh generation using adjacent mesh tokenization, reducing token
sequence lengths and enabling more complex, artist-grade meshes, with MeshAnythingV2 doubling
the operational face limit.

MeshXL (Chen et al., [2024a) introduces the Neural Coordinate Field, which fuses explicit coordinate
representation with implicit neural embeddings for more scalable, high-fidelity mesh modeling.
EdgeRunner (Tang et al.||2024b) addresses past limitations of autoregressive mesh approaches by
presenting an improved tokenization algorithm and compressing variable-length meshes into fixed-
size latent vectors, yielding more diverse, generalizable, and higher-quality outputs. Meshtron (Hao
et al.,|2024)) leverages a novel hourglass neural architecture with sliding window inference and robust
sampling, achieving new levels of scalability and fidelity.

In addition, TreeMeshGPT (Lionar et al.,|2025) introduces a tree sequencing method for triangle
adjacency, dynamically growing mesh structures during autoregressive generation for improved
training and mesh quality. iFlame (Wang et al.| |2025a)) balances efficiency and generative power
by combining linear and full attention within an hourglass framework, augmented by caching for
fast inference and training. Nautilus (Wang et al.| 2025c)) explores locality-aware autoencoding by
leveraging manifold mesh properties, novel tokenization, and dual-stream conditioning, significantly
enhancing scalability and structural consistency.

Compression-oriented approaches such as Blocked and Patchified Tokenization (BPT) (Weng et al.|
2025) further reduce token sequence length, allowing detailed mesh synthesis with more faces.
Building on BPT, DeepMesh (Zhao et al.| 2025) integrates reinforcement learning for human prefer-
ence alignment, supporting the generation of intricately detailed meshes with precise topology. In
addition to autoregressive-based approaches, methods such as PolyDiff (Alliegro et al.,[2023) and
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Figure 4: The pipeline of MeshMosaic. During inference, our method first applies PartField

to obtain semantic segmentation of the input shape. The input point cloud is then sampled

according to the segmented patches and the original shape. Finally, our approach produces a clean,
highly detailed mesh by assembling the generated patches.

Seg;ent—ation Result

PDT (Wang et al.} [2025b)) directly employ diffusion models to generate structured triangles or points
from Gaussian noise.

2.3  PART-BASED SHAPE GENERATION

Part-based shape generation rests on the principle that decomposing objects into semantic parts
furnishes rich priors for structure-aware reconstruction and controllable synthesis. Universal segmen-
tation techniques have scaled part discovery across a wider range of data. Segment Any Mesh
generalizes promptable segmentation to 3D meshes, supporting flexible and category-
agnostic part extraction crucial for interactive and generative workflows. SAM3D 2023)
adapts this paradigm to large-scale 3D scenes, enabling multi-granular, prompt-driven segmentation.
By distilling knowledge from SAM’s multi-view segmentation results, SAMPart3D
2024) further specializes in part segmentation for individual objects. More recently, PartField
et al.,[2025) represents shapes as continuous feature fields and trains a transformer-based feed-forward
network with an ambiguity-agnostic contrastive loss, achieving efficient and high-quality open-world
part segmentation. PartCrafter 2025) jointly creates multiple semantically distinct parts
from a single image, enabling end-to-end part-aware 3D mesh synthesis with global coherence and
fine-grained detail.

Human modelers typically create models based on their understanding of component-based structures
2020), and thus part-based generation is a problem of significant importance. Part123
2024) illustrates this by reconstructing 3D shapes from single images while predicting se-
mantic parts and their spatial arrangement. ComboStoc 2024) introduces combinatorial
stochasticity into diffusion by jointly sampling discrete structural decisions (such as part templates
or multiplicity) with continuous geometry. These segmentation frameworks underpin part-based
shape generation by providing scalable, promptable part vocabularies and supporting interactive
conditioning and evaluation at the part level.

3 METHOD

3.1 OVERVIEW

Given a 3D reference shape, our target is to generate an artistic triangle mesh from it (see Fig. ).
MeshMosaic decomposes this task into a patch-by-patch generation process, allowing the generation
of more triangles to carve details. First, we segment the shape into multiple different patches
and determine their sequential order (Sec.[3.2). Next, we introduce an innovative approach that
incorporates boundary and global context as conditioning information for each individual patch
(Sec.[3.3). Finally, we present the training methodology for this framework (Sec. [3.4).
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Figure 6: The workflow of MeshMosaic for generating a single patch. Both global and local point
cloud features are extracted by a locked Michelangelo (Zhao et al.,[2023b) encoder. For each patch,
the nearest boundary mesh is identified, tokenized, and concatenated before the target mesh token
sequence. The GRU network encodes boundary tokens, which are then combined with global and
local features and fed into an autoregressive hourglass transformer for mesh generation.

3.2 LOCAL-TO-GLOBAL MESH GENERATION

Semantic Patch Segmentation. Autoregressively generating the complete shape directly can
be problematic, since such networks must handle long token sequences and may struggle to
represent fine geometric details due to limited quantization resolution. By decomposing the
shape into multiple patches and generating them sequentially, these issues are largely mit-
igated, and each patch maintains fine granularity while keeping network input manageable.

We use PartField (Liu et al., 2025) for semantic segmentation at

inference time (see Fig. [4)), which embeds semantic structure and

produces well-aligned boundaries, often guided by curvature flow <>\ //?
to enhance realism and make future edits easier. /

Sorting patches. Then, we will generate the whole mesh in a part-

by-part manner, which requires us to determine a generation order.

Thus, the patch generation is carried out in breadth-first search (BFS)

order, beginning from the spatially lowest patch and then proceeding

to adjacent patches. Sequential generation with the autoregressive

model ultimately yields the final mesh assembly. Fig. [5]shows a 2D Flgure 5: 2D 111ustrat10n of
illustration with eight patches, where the black line demonstrates the patches with BES order.

mesh surface. Then, for each patch, we adopt the following structure to generate the triangle meshes.

3.3 GENERATING SINGLE PATCH

We next concentrate on generating individual
patches. Simply applying the same network ar-
chitecture on every patch without considering
connection relationship risks continuity issues,
such as broken boundaries, irregular density, or
lost symmetry. Fig. [6]illustrates our dedicated
architecture for generating individual patches.
The following paragraphs elaborate on our solu-
tions to these specific challenges. Segmentation  Patch1 Patch 2 Patch 3
Figure 7: Example of boundary condition.

Constructing Boundary Condition. When generating triangles for a specific patch, we will use the
triangles from existing generated patches as boundary conditions. This essentially enables the smooth
connection between different patches. Specifically, we introduce an efficient boundary conditioning
mechanism: the token sequence from earlier patches is fed as context to subsequent patches. To
avoid inefficiency and information dilution from excessively long token sequences, for each patch,
we select only 512 spatially nearest triangles from prior patches. These are tokenized, passed through
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a Gate Recurrent Unit (Cho et al., [2014)) (GRU) network, and the resulting embedding conditions
the transformer network (see Fig.[6] blue arrows). Fig. [7]shows an example of the plane shape. The
whole shape was segmented into three patches. Each patch gets the boundary information from the
previous patches, following the BFS order. For the very first patch, where no previous boundaries
exist, we supply a placeholder token sequence consisting entirely of terminator tokens to the GRU
network, establishing a neutral starting context for the generation process.

Injecting Boundary Condition. Given the encoded boundary triangle information, we then inject
such information into the generation process of the current patch. We concatenate the boundary
condition tokens to the beginning of the target patch’s token sequence. This approach allows the
model to leverage self-attention mechanisms over both the boundary and the patch-specific tokens (see
the colored tokens in Fig. [6). By integrating boundary information directly into the patch generation
context, we ensure that the triangles along the shared boundaries naturally extend and blend into
neighboring patches. Ablation studies demonstrating the effect of these boundary conditions are
discussed in Appendix Sec.[A.2]

Local-to-Global Conditioning. While boundary conditioning enforces local continuity, we en-
hance global coherence via local-to-global point cloud features (middle of Fig. [6). During training
and inference, our autoregressive model is conditioned on representations from both the current
patch point clouds and the full shape point clouds. Both point clouds are encoded with a frozen
Michelangelo (Zhao et al.l 2023b)) encoder. The extracted global and local features are concatenated
with GRU boundary features and provided to the transformer as final condition input.

Local Quantization. Given both the boundary conditions and local-to-global information, we
generate the triangles locally using a local quantization. Unlike previous approaches, such as
DeepMesh (Zhao et al., 2025), which apply a uniform quantization of 5123 resolution to the entire
mesh, our method independently scales each patch to [0, 1] and quantizes it at 5122 resolution. This
local quantization approach enables a higher effective merged resolution, allowing for the preservation
and recovery of richer geometric details. As shown in Fig.[d]and Fig.[6] our pipeline first segments
the shape into patches, with each patch quantized independently to 5122 resolution and provided
with 16,384 sampled points as input. In contrast to baseline methods, which quantize the full shape
and use only a single set of 16,384 point cloud samples, our framework assembles meshes from
individually quantized patches, each paired with its respective sampled points. This strategy offers the
dual benefits of higher overall shape resolution and a greater abundance of conditional information
for the network to leverage during generation.

Gluing local patches. It should be noted that local quantization may introduce minor positional
displacements for each patch, which can lead to discontinuities along patch seams if not properly
addressed. To ensure seamless integration, we compute the displacement between the position of
boundary condition faces referenced by the current patch and their corresponding original quantized
positions in the previously assembled patches. The entire current patch is then translated according
to this computed displacement, aligning it precisely with previously assembled patches. This
compensatory adjustment guarantees smooth boundaries and continuity across the entire mesh,
enabling high-fidelity splicing between patches, producing a unified and detailed final mesh.

3.4 TRAINING STRATEGY

Our training begins by segmenting the input mesh and extracting boundary information for autore-
gressive conditioning. Semantic segmentation is omitted during training because it is relatively
time-consuming and reduces diversity. Instead, our approach utilizes random segmentation, which
promotes better network diversity and scalability.

Each mesh is partitioned into patches adaptively in training. Given an input mesh M with \V,, vertices
and NV, + facets, the number of patches is set to Meg = % X Arand, Where Appq is randomly sampled
from [0.5, 2.5] to encourage diversity. The denominator ensures that each patch, after tokenization,

yields a sequence length close to the window size (9K) for efficient training.

We apply farthest point sampling (Moenning & Dodgsonl, [2003) to select Ny, points as cluster
centers. Voronoi decomposition (Aurenhammer, |1991) partitions the mesh into patches based on
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Table 1: Quantitative comparison on ShapeNet (Chang et al.,[2015)), Thingi10K (Zhou & Jacobson),
2016) and Objaverse (Deitke et al., 2023b)) datasets. The best scores are emphasized in bold with
underlining, while the second best scores are highlighted only in bold.

Dataset | Method | HD| CDp1| CDgg(x10%) | NCt F1t ECD| EF11

MeshAnythingV2 | 0.078  0.009 0.640 0911 0652 0.055 0.130

BPT 0.017  0.003 0.012 0.962 0.875 0.040 0.159

ShapeNet TreeMeshGPT 0.161  0.034 5.430 0.841 0.556 0.089  0.100
DeepMesh 0.037  0.004 0.060 0967 0791 0.056 0.177

Ours 0.037  0.003 0.019 0973 0929 0.052 0.211

MeshAnythingV2 | 0.167  0.021 2.492 0.842 0358 0.036 0.110

BPT 0.157  0.035 7.771 0.875 0496 0.051 0.179

ThingilOK | TreeMeshGPT | 0.233  0.060 18.086 0.788 0387 0.057 0.161
DeepMesh 0.165  0.026 3.331 0.853 0321 0.031 0.137

Ours 0.051  0.004 0.052 0942 0.746 0.017 0.271

MeshAnythingV2 | 0.118  0.015 1.213 0.859 0430 0.021 0.115

BPT 0.151  0.034 7.016 0.846 0.502 0.027 0.164

Objaverse | TreeMeshGPT | 0.237  0.057 10.507 0.784 0308 0.067 0.072
DeepMesh 0.111  0.016 1.712 0.866 0471 0.021  0.168

Ours 0.072  0.007 0.387 0919 0.785 0.006 0.348

these centers, with bisecting planes separating triangle regions. Clusters are ordered by breadth-first
search, starting from the lowest center, to retrieve boundary information sequentially.

We also curate a subset of meshes with high-quality connected component annotations, using each
component directly as a patch (with breadth-first ordering, as above). This subset supports tasks
requiring more regular, consistent patch segmentation and enables training for semantic reasoning.
We provide detailed training dataset analysis is in Appendix Sec. [A.T}

4 EXPERIMENTS

4.1 IMPLEMENTATION

Our implementation builds upon the released 0.5B param- Face Count Distribution
eter DeepMesh (Zhao et al., [2025) model, which serves as
the base for fine-tuning our approach. We introduce and
progressively fuse new boundary conditions and global
point cloud features into the architecture, connecting the
GRU boundary encoder and global feature input using ™ 1o
zero-initialized linear layers. Local point cloud features 5000
are mapped directly onto the original input cloud.

25000

20000

15000

Frequency

0
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Face Count

The curated dataset consists of 310K meshes, including
approximately 90K with connected component informa-
tion. The distribution of face count are visualized in Fig.
Please check Appendix Sec. [A.|for the data preprocess and more analysis. Training is conducted for
seven days on a cluster of 32 NVIDIA H20 96GB GPUs, using a cosine learning rate scheduler that
decays from 1 x 1074 to 1 x 10~°. Token window sizes for truncated windows follow DeepMesh’s
setting (9K, with a 50% overlap). We employ KV-caching in both training and inference and adopt
probabilistic sampling (temperature 0.5) to ensure stable mesh generation.

Figure 8: Distribution of face count in
our dataset.

4.2 COMPARISONS

To thoroughly assess the effectiveness of our proposed method, we perform comparative experiments
with four publicly available state-of-the-art mesh generation methods: MeshAnythingV2 (Chen
et al.,|2024c), BPT (Weng et al., [2025), TreeMeshGPT (Lionar et al.,[2025), and DeepMesh (Zhao
et al.| 2025). The comparison includes both quantitative measurements and qualitative visualization
of results. We randomly select 100 samples from each of the ShapeNet (Chang et al.l [2015)),
ThingilOK (Zhou & Jacobson, 2016)), and Objaverse (Deitke et al.,[2023b)) datasets for all experiments.
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Figure 9: Visual comparison of MeshMosaic with SOTA methods. The first row shows the input
shapes; the last row highlights detailed close-ups of meshes generated by our method. Faces are
randomly colored to highlight the mesh layout.

Geometric Metrics. As a mesh generation framework, faithfully preserving both the overall shape
and fine-grained details of the original object is paramount; notable deviations from the reference
geometry are unacceptable. To quantitatively measure the fidelity between the generated mesh and
the ground-truth shape, we utilize four widely adopted evaluation metrics: Hausdorff Distance (HD),
Chamfer Distance (CD), Normal Consistency (NC), and F-score (F1). Following CWF
2024), we additionally incorporate Edge Chamfer Distance (ECD) and Edge F-score (EF1), as
introduced by NMC (Chen & Zhang| 2021)), to specifically assess the preservation of sharp features.

As summarized in Tab. [T} our proposed method con-
sistently surpasses all baseline approaches across al-
most all datasets and evaluation metrics. MeshMo-
saic not only excels in geometric accuracy but also
demonstrates significant improvements in retaining
intricate features and ensuring overall mesh quality.
These comprehensive results underscore the effective-
ness and robustness of our approach for high-fidelity
mesh generation.

Qualitative comparisons in Fig. [0] further illustrate
that our method produces meshes with higher fi-
delity and finer detail. By contrast, MeshAny-
thingV2 (Chen et al,[2024c)) and BPT
2025)) yield meshes of relatively lower quality and =
resolution, resulting in the loss of high-frequency "] MeshAnythingV2, F# 768

details. TreeMeshGPT 2025) and Figure 10: Comparison on triangle numbers.
DeepMesh (Zhao et al. [2025)), while capable of generating denser meshes, utilize global one-
shot autoregressive mechanisms and consequently struggle to capture complex geometries, such as
those evident in the first and last examples. In contrast, our approach leverages a local-to-global prior
generation strategy, which not only ensures structural correctness but also enhances the representation
of subtle features. Moreover, although datasets like ShapeNet (Chang et al,[2015)), Thingil0k

& Jacobson, [2016), and Objaverse (Deitke et al., 2023b) exhibit varying complexity, our method
consistently outperforms competing methods across all of them.

We present a more compelling example in Fig. [I0] For a complex fighter jet model, our method
successfully reconstructs intricate details using nearly 30K triangles whereas other approaches
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Table 2: User study with SOAT methods aggregated from 27 professional participants in four
categories: Neatness, Artistry, Similarity to Ground Truth, and Detail Recovery. The best scores are
emphasized in bold with underlining, while the second best scores are highlighted only in bold.

Method \ Neatness 1 Artistry T Similarity to GT 1 Detail Recovery 1
MeshAnythingV2 0.864 0.780 0.612 0.628
BPT 1.040 0.932 1.072 1.084
TreeMeshGPT 0.696 0.684 0.600 0.512
DeepMesh 0.712 0.808 0.772 0.848
Ours 2.780 2.785 2912 2912

struggle with such highly complex shapes, typically yielding only a few hundred to a few thousand
triangles. This noticeable gap demonstrates the superior detail recovery and scalability of our method
with substantially higher triangle counts.

User Study. Beyond reconstruction accuracy, it is crucial that generated meshes are artist-quality
with sparse, neat, visually compelling, and easy to edit meshes. To assess this, we conducted a
user study, sampling 10 models from test datasets. Twenty-seven professional users with expertise
in computer graphics or 3D modeling anonymously rated five methods on four criteria: Neatness,
Artistry, Similarity to Ground Truth, Detail Recovery. Scores were assigned for the top three methods
in each category (3, 2, and 1 points, respectively; O for others). The final scores are summarized in
Tab.[2] MeshMosaic achieved the highest ratings in all categories, reflecting its superior aesthetic and
structural quality. Competing methods scored lower due to issues with mesh stability, single-pass
autoregressive models often stall or fail for long, complex meshes, yielding incomplete outputs.
BPT (Weng et al.,2025) ranked second in the user study, reflecting similar trends in reconstruction
metrics in Tab. [I] Although BPT (Weng et al. [2025) tends to produce more stable outputs, its
overall mesh quality is comparatively lower and struggles to preserve fine details. This is further
evidenced by its performance in the ECD and EF1 metrics: while BPT (Weng et al., [2025) delivers
satisfactory results for relatively simple shapes, such as those in ShapeNet (Chang et al.| 2015)). Its
scores decline markedly with increasing shape complexity (Thingil0K (Zhou & Jacobson,2016) and
Objaverse (Deitke et al.,|2023b) datasets).

5 DISCUSSION

Conclusion. We present MeshMosaic, a boundary-conditioned local-to-global autoregressive
framework that decomposes meshes into compact patches and assembles them coherently. This
design fundamentally removes the long-sequence bottleneck and enables higher-resolution quantiza-
tion, scaling generation to over 100K triangles while preserving fine-grained geometric detail. On
ShapeNet (Chang et al.,|2015), Thingi10K (Zhou & Jacobson|[2016)), and Objaverse (Deitke et al.,
2023b)) dataset, MeshMosaic achieves state-of-the-art fidelity and perceptual quality, consistently
surpassing the baselines. Beyond meshes, it offers a general paradigm for scaling autoregressive
generation of structured 3D data via patch-level modeling.

More Discussions. We also present ad-
ditional discussions and comprehensive
ablation studies in Appendix Sec. [A.2]
Including ablations for the various pro-
posed conditions, more detailed compar-
isons, analyses of different segmentation
inputs, evaluations of text and image in-
puts, running time assessments, and di-
versity metrics, among others.

Limitations and future works. While MeshMosaic enforces local coherence, boundary condition-
ing remains primarily local and may leave distant symmetric parts weakly coupled. As illustrated in
Fig.[T1] the two arms exhibit mild asymmetry despite reasonable connectivity and density. When
stronger symmetry is required, this could be alleviated by incorporating global perception mecha-
nisms to couple distant parts. Beyond symmetry, future work may explore cross-patch refinement,
multimodal conditioning, and adaptive quantization to further enhance resolution and editability.
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Reproducibility statement. MeshMosaic is developed entirely on top of the open-source
DeepMesh (Zhao et al., [2025) framework and fine-tuned using publicly available checkpoints. To
reproduce MeshMosaic results, users simply need to incorporate the global awareness and boundary
awareness modules into the existing DeepMesh (Zhao et al.| 2025) code. We will be releasing our
code and checkpoints in the near future.
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A APPENDIX

A.1 DATA PREPROCESSING

Training datasets are drawn from Objaverse-XL (Deitke et al.,[2023a) and other licensed datasets. To
enhance data quality, we implemented several filtering procedures. Only meshes with [500, 32000)
faces are retained, excluding those with excessively low or high token lengths. Meshes are subse-
quently cleaned and optimized using PyMeshlab (Muntoni & Cignoni, 2021): duplicate vertices/faces
removed, closely spaced or overlapping vertices merged, non-manifold elements and edges elimi-
nated.

And we computed a point-to-face ratio for each model:

N,
(I)p/f = ./\7: (1)

Meshes with @, ¢ > 0.8 are filtered out to exclude objects with too many open boundaries. For
robustness, we augment data via random rotations with three axes and uniform scaling within
[0.9,1.0].

Patch Number Distribution Component Number Distribution Token Length Distribution Boundary Token Length Distribution
10000

aaaaa

000
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Figure 12: Dataset statistics: from left to right (1) distribution of number of patches per mesh; (2)
number of connected components for partially connected components; (3) token length per training
patch; (4) token length of boundary condition sequences.

Fig.[12] provides a comprehensive analysis of our dataset. Moving from left to right, the first graph
illustrates the distribution of the number of patches generated through random segmentation. Most
simple shapes are divided into fewer than ten patches, whereas a small number of highly complex
cases yield over 60 patches. Although our training set contains no more than sixty splits per instance,
our method can handle inference tasks involving hundreds of patches during testing. This highlights
the strong generalization capability of our method (as shown in Fig. [I)).

Next, we report statistics on the number of connected components for samples with native splits
as previously noted. Most samples containing fewer than ten patches, similar to the distribution
observed from random splits.

Facilitated by our local-to-global architecture, the required token length for each training or inference
phase is significantly diminished. We present the distribution of token lengths for all split patches.
The vast majority contain fewer than 6,000 tokens, with the longest sequence not exceeding 20,000
tokens. This approach allows us to break down challenging problems into several manageable
subproblems, each of which can be solved independently. Lastly, we report that boundary condition
tokens are much shorter than full tokens, with all lengths falling below 2,000 tokens.

A.2 DISCUSSION AND ABLATION

Ablation Study. We perform an extensive ablation study to systematically examine the roles of
boundary conditions and global point cloud features within our mesh generation architecture. This
analysis provides critical insights into how each conditioning mechanism contributes to the fidelity
and coherence of generated meshes.

As illustrated in Fig.[I3] we analyze three distinct ablated configurations: (1) Ours w/o GPC, in
which the global point cloud conditioning feature is entirely removed; (2) Ours w/o BD, where the
GRU network responsible for boundary condition encoding is omitted; and (3) Ours w/o SA, which
disables the concatenation of boundary tokens for self-attention within the network.

To ensure a thorough assessment, ablation experiments are conducted under two regimes. The first
regime (top row in Fig. involves a controlled overfitting scenario, where the network is trained
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Figure 13: Ablation for boundary condition and global point cloud.

exclusively on a single airplane mesh for 20 epochs with a batch size of 8; segmentation boundaries
are randomized at each iteration to probe the model’s adaptability and generalization. The second
regime (bottom row) evaluates the network after comprehensive training on our entire dataset, thereby
measuring its capability across diverse object geometries.

For consistent comparison and clear visualization, all results in Fig. [[3]utilize an identical segmenta-
tion scheme, indicated by the purple dividing line, which partitions each shape into three patches at
inference time.

When global point cloud information is omitted (Ours w/o GPC), the network demonstrates reason-
able performance in the overfitted regime, as it only needs to reconstruct a single shape. However, in
the full dataset setting, the absence of global context leads to significant errors—most notably, the
right portion of the mesh exhibits pronounced deformation and collapse, revealing the necessity of
global information for guiding overall shape reconstruction. When the GRU-based boundary encod-
ing is eliminated (Ours w/o BD), visible cracks emerge along the seams in both regimes. In addition,
the absence of boundary communication induces substantial mesh density asymmetry in the full
dataset setting, with adjacent patches developing inconsistencies. This reflects the model’s inability
to properly propagate local information between neighboring patches. Disabling the concatenation
of boundary tokens for self-attention (Ours w/o SA) again results in prominent seam artifacts, and
in the full dataset scenario, produces overlapping, self-intersecting patches. The lack of explicit
constraints leads to independent patch generation, which ultimately causes geometric inconsistencies
and structural artifacts.

In contrast, the full model employ-

ing both boundary and global con- . = =
ditioning produces meshes that are \va s ;\ i, —
complete, uniform, and visually coher- o / e i
ent, with mesh density and topology __ 5" 5

smoothly balanced across all patches.
This clearly demonstrates the effec- !
tiveness of our proposed integration i "~ MeshAnythingv2
of local and global context, and high- £ (S
lights the importance of both condi-
tional mechanisms for high-fidelity
mesh generation.

it

Detail Eecovery. Thgnks to our —oGeT Decpiesh ‘
local-to-global sequential mesh gen- Figure 14: Detail recovery comparison.

eration strategy, our method signifi-

cantly surpasses previous approaches

in detail preservation. Unlike other methods that rely on a single quantized resolution for the en-
tire model, our approach assigns an independent 5123 resolution to each patch. As illustrated in
Fig.[14] our method is uniquely capable of recovering the original edge details of the pistol, whereas
competing methods either fail to capture these features or merge them into indistinct blocks.

Segmentation Input. Although our approach is primarily designed to operate under a segmented
training and inference regime, it nevertheless retains the flexibility to infer simple shapes without
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Figure 17: Our method without segmentation.

explicit segmentation. As demonstrated in Fig. [[3] both our method and DeepMesh (Zhao et al.
[2025) are capable of reconstructing a torus model in the absence of any segmentation.

Further analysis of segmentation strategies is shown in
Fig.[I6 In the middle example, reconstruction is per-
formed using random segmentation. While the overall
shape and fine details can still be recovered, the absence
of semantic segmentation often results in patch bound-
aries that traverse flat or non-essential regions, introducing
visual clutter and irregularity into the mesh appearance.
By employing PartField for semantic
guidance, our method achieves noticeably cleaner and
more coherent mesh boundaries, significantly enhancing
the aesthetic quality without compromising reconstruction
fidelity.

Comparison with DeepMesh. Directly scaling
DeepMesh (Zhao et al, 2025) to our local-to-global
setting is non-trivial. To further demonstrate the benefits
of our local-to-global framework and the importance of
our boundary condition method, we perform an ablation
study that directly compares it with DeepMesh
[2025). As depicted in Fig. [I7] we assess two
distinct inference settings for DeepMesh: the first
utilizes the entire shape without segmentation, while the
second processes each segmented patch individually and

subsequently assembles them to form the complete object.

In the first scenario, where DeepMesh generates the mesh

Figure 15: Inference without segmenta-
tion.
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Figure 16: Comparison of random and

semantic segmentation.

from an unsegmented input, it succeeds in producing reasonable global geometry. However, the
quality of reconstructed fine details—such as the eye region in the second example is noticeably
lacking. This demonstrates DeepMesh’s limitations when handling intricate local features under a

global, one-shot autoregressive scheme.

In the second scenario, we input our segmented data into DeepMesh, allowing it to process each patch
independently. Local mesh resolution is indeed improved due to smaller region-specific quantization.
Nonetheless, the absence of key contextual mechanisms: explicit boundary conditions and global
shape information, leads to significant artifacts. The resulting meshes exhibit poor coherence across
patch boundaries, with misaligned regions and inconsistent topology.
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By contrast, our local-to-global strategy explicitly conditions each segment on both boundary and
global cues, enabling seamless integration and faithful reconstruction of complex features throughout
the mesh. This comparative analysis clearly highlights the expressive superiority and practical
robustness of our method, especially in scenarios that demand high-resolution details and structurally
consistent results.

Runtime. We  developed  our Taple 3: Comparison of runtime performance between
method on the DeepMesh (Zhao etal, DeepMesh and our method variants. The table reports the

2025) codebase, thereby ensuring training time per window (9K tokens) and the inference time
a comparable runtime environment per token in seconds.

and a rigorous basis for performance

assessment. Tab. [3|details the training | DeepMesh ~ Ours w/o BD  Ours w/o GPC ~ Ours
and inference efficiency of DeepMesh Train 0.451 0.531 0.558 0.633
versus our proposed framework, Infer 0.025 0.024 0.024 0.024

including variants with specific
ablations such as the boundary condition encoding (BD) and global point cloud encoding (GPC).

By incorporating GRU-based boundary condition encoding and a global point cloud conditioning
module into our pipeline, we necessarily introduce additional computational operations during the
training stage. This enhancement results in a moderate increase in training time relative to the original
DeepMesh (Zhao et al., 2025) implementation.

However, our approach leverages the KV-Cache technique to substantially accelerate inference. All
conditional features from global and boundary sources are preprocessed once at the beginning of the
inference stage and then cached for subsequent decoding steps. This enables our method to maintain
an average per-token inference time that is nearly equivalent to DeepMesh, regardless of ablation
configuration, thereby ensuring strong deployment efficiency and scalability.

It is important to note that the overall inference time for any given model depends linearly on the
total number of tokens generated. When the number of tokens is held constant, our method achieves
inference performance on par with DeepMesh. Crucially, the local-to-global segmentation strategy
of our method allows for the generation of meshes containing substantially more polygons, thereby
supporting finer geometric detail and more complex structures. This increase in expressive capability
is reflected in proportionally longer token sequences, resulting in a higher absolute inference time
for such rich meshes. Nevertheless, the per-token efficiency of our method remains high, and any
increase in total inference time is attributable to the practical need for representing more detailed and
high-resolution outputs. However, although we use K'V-cache to accelerate inference, and inference
time is only about 0.024 seconds per token, inference on a very complex mesh can still take a very
long time. For example, as shown by the mesh in the middle of Fig. [T} when the number of faces
exceeds 100K, inference typically requires several hours to complete. This remains far from meeting
the efficiency demands of industrial applications.

Text and Image-Conditioned Generation. Generating 3D shapes from text or image inputs
has become a prominent direction in computer graphics and generative modeling, with recent
advances delivering impressive results in open-domain shape synthesis. However, many contemporary
techniques, particularly those relying on Signed Distance Functions (SDF), produce meshes by
converting dense volumetric grids via algorithms like marching cubes. This process often results in
excessive and redundant triangles, leading to overly complex meshes that are inefficient for practical
applications in animation, rendering, or interactive editing.

In Fig.[T8] we showcase examples where state-of-the-art SDF-based methods, such as CLAY (Zhang
et al., |2024), generate initial 3D geometry from either textual prompts or image inputs. We then
refine these preliminary outputs using MeshMosaic, producing artist-quality meshes that retain rich
geometric details while optimizing triangle utilization. Compared to the raw outputs from CLAY,
meshes processed by our framework exhibit cleaner topology, enhanced visual fidelity, and improved
efficiency, making them far better suited for real-world downstream tasks. These results highlight the
effectiveness of our method for transforming dense generative outputs into structured, high-quality
assets tailored for professional use.
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Figure 18: Results generated by MeshMosaic using text prompts (left) or image inputs (right). Initial
3D shapes are created using CLAY (Zhang et al.} 2024) and enhanced by our approach.

Diversity Generation.
We further illustrate the
versatility and diversity of
mesh outputs produced by
MeshMosaic. As depicted
in Fig. [19] our framework
is capable of generating a
broad spectrum of meshes
even when provided with
an identical point cloud
input. This demonstrates
the network’s intrinsic capacity for structural variation and contextual adaptation. For example, in
the minotaur warrior scenario, our method synthesizes markedly distinct mesh representations for
different anatomical and accessory regions—including chest armor, shoulder plates, arms, and head.
Each of these regions features unique geometric patterns and connectivity details, clearly reflecting
localized artistic interpretation.

Importantly, despite considerable variations in mesh density, topology, and local connectivity, all
generated results exhibit strong global coherence and visual consistency. There are no conspicuous
artifacts or discontinuities between regions, confirming that our local-to-global generation strategy
supports both creative flexibility and structural integrity across the mesh. This empowers downstream
tasks—such as animation, editing, or customization—by facilitating the production of diverse, high-
quality assets from unified geometric representations.
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