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ABSTRACT

Deepfakes can fuel online misinformation. As deepfakes get harder to recognize
with the naked eye, human users become more reliant on deepfake detection mod-
els to help them decide whether a video is real or fake. Currently, models yield a
prediction for a video’s authenticity, but do not integrate a method for alerting a
human user. We introduce a framework for amplifying artifacts in deepfake videos
to make them more detectable by people. We propose a novel, semi-supervised
Artifact Attention module, which is trained on human responses to create atten-
tion maps that highlight video artifacts, and magnify them to create a novel visual
indicator we call “Deepfake Caricatures”. In a user study, we demonstrate that
Caricatures greatly increase human detection, across video presentation times and
user engagement levels. We also introduce a deepfake detection model that in-
corporates the Artifact Attention module to increase its accuracy and robustness.
Overall, we demonstrate the success of a human-centered approach to designing
deepfake mitigation methods.

1 INTRODUCTION

Fake or manipulated video (“deepfakes”) pose a clear threat in online spaces that rely on video, from
social media, to news media, to video conferencing platforms. To the human eye, these computer-
generated fake videos are increasingly indistinguishable from genuine videos Nightingale & Farid
(2022); Groh et al. (2022). Computer vision models, however, can achieve impressive success at
deepfake detection. Here, we explore how best to augment human deepfake detection with AI-
assistance.

Currently, AI-assisted deepfake detection relies on using text-based prompts to tell a user that a video
is a deepfake. However, recent studies indicate low rates of compliance for these text-based visual
indicators: in one study, participants paired with a deepfake detection model updated their response
only 24% of the time, and switched their response (from ”real” to ”fake”, or vice versa) only 12%
of the time Groh et al. (2022). More innovative approaches have been proposed, such as showing
users a heatmap of regions predicted to be manipulated Boyd et al. (2022), but this did not increase
acceptance rates relative to text-based indicators. Overall, to make an impact, the development of
deepfake detection models must proceed alongside the exploration of innovative and effective ways
to alert human users to a video’s authenticity.

We present a novel framework that provides strong classical deepfake detection, but crucially also
creates a compelling visual indicator for fake videos by amplifying artifacts, making them more
detectable to human observers. Because humans tend to be highly sensitive to distortions in faces,
we hypothesize that focusing our visual indicator on amplifying artifacts is likely to yield a highly
detectable and compelling visual indicator. Our model, “CariNet”, identifies key artifacts in deep-
fakes using a novel Artifact Attention Module, which leverages both human supervision and machine
supervision to learn what distortions are most relevant to humans. CariNet then generates Deepfake
Caricatures, distorted versions of deepfakes, using a Caricature Generation Module that magnifies
unnatural movements in videos, making them more visible to human users.

We make two primary contributions: First, we generate a novel visual indicator for fake videos
called Deepfake Caricatures, and show in a user study that they increase human deepfake detection
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accuracy by up to 40% compared to non-signalled deepfakes. Second, we develop a framework
for identifying video artifacts that are relevant to humans, collect two datasets of human labels
highlighting areas that are perceived as fake, and propose a competitive model that leverages this
new data.

Figure 1: A. Overview of our framework. The model learns to identify artifacts visible to humans,
then amplify them to generate Deepfake Caricatures: transformations of the original videos where
artifacts are more visible. B. Example frames of a standard deepfake video (top) and a deepfake
caricature (bottom).

2 RELATED WORK

Deepfake detection systems Deepfake detection is a young but active field. Many novel architec-
tures have been proposed in the last few years to detect videos or images where faces have been
digitally manipulated Afchar et al. (2018); Bayar & Stamm (2016); Nguyen et al. (2019b); Sabir
et al.; Güera & Delp (2018); Montserrat et al. (2020). Some approaches detect fake faces based on
warping or artifacts in the video frames Durall et al. (2019); Li & Lyu (2018); Yang et al. (2019);
Li et al. (2020; 2019c). Others detect anomalous biological signals, such as blood volume changes
Ciftci & Demir (2019), blinking Li et al. (2018), or eye color and specularity Matern et al. (2019).
Recently, models have been augmented with attention mechanisms that highlight specific parts of
the input, such as face regions (nose, eyes, etc.) Tolosana et al. (2020), the blending boundary Li
et al. (2019c), or regions that are likely to have been manipulated Li et al. (2019a); Stehouwer et al.
(2019). Overall, we build on this previous work to develop a novel network that uses attention
mechanisms to detect human-relevant artifacts, and amplifies them to increase human detection.

Human face perception Humans are exceptionally sensitive to the proportions of faces. Psychology
research has shown that faces are encoded in memory based on their deviations from a generic
averaged face Benson & Perrett (1991); Sinha et al. (2006), and that the proportions of facial features
are at least as important as the particular shape of a facial component for distinguishing among
faces Benson & Perrett (1991). This sensitivity is leveraged in the art style known as “caricature”,
where distinctive features of a face are exaggerated in a way that makes them easier to recognize and
remember Benson & Perrett (1991); Mauro & Kubovy (1992); Sinha et al. (2006); Tversky & Baratz
(1985), by drawing attention to the facial regions that differ most from the norm. Inspired by these
caricatures, our method makes distortions of proportions in fake videos more visible, increasing a
viewer’s ability to recognize the video as fake.

AI-assisted decision making AI decision aids are increasingly being employed for a wide variety of
applications Vaccaro & Waldo (2019); Xing et al. (2021); Tschandl et al. (2020). These supplement
the judgments of a human user with the output of a machine learning algorithm. Such decision aids
improve the accuracy of human decisions, particularly in cases where the AI can detect signals that
are complementary to those that humans can detect Tschandl et al. (2020). However, the design of
the communication interface between the model and human user is crucial for human acceptance of
the model result Tschandl et al. (2020); Deb & Claudio (2015); Hussain et al. (2019); Ancker et al.
(2017). We hypothesize that amplifying artifacts in deepfake videos is well-suited for improving
human deepfake detection: it targets and amplifies the same information humans would use to make
an unassisted judgment, in an easy-to-understand format, without adding irrelevant information.
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Figure 2: Artifact Attention and Caricature Generation modules. (a) Artifact attention operates
with an encoder-decoder architecture to generate artifact heatmaps. These heatmaps are supervised
with pre-collected human annotations. The Caricature module receives both the heatmaps and the
internal codes e, distorts those codes according to the heatmaps, and generates caricatures by recon-
structing the video from the distorted codes. (b) The frame distortion block computes the difference
between codes ei and ei+1, re-weights it according to the artifact attention maps, and then amplifies
it by a factor of α before adding it back to ei to generate distorted code êi+1.

Figure 3: Annotation interface and outputs. Our annotation interface allows users to paint over zones
that appear fake. Our system tracks both the position and frame at which an annotation occurs. Users
highlighted both large areas and more specific, semantically meaningful areas (e.g., eyebrows).

3 MODEL SPECIFICATION

We present a framework that leverages human annotations to detect video artifacts in deepfakes, then
amplifies them to create Deepfake Caricatures. Our model, dubbed CariNet, uses a combination of
self-attention and human-guided attention maps. CariNet contains three main modules (Figure 1)

• An Artifact Attention Module that outputs heatmaps indicating the probable location of
artifacts in each input frame.

• A Classifier Module, which estimates whether the video is fake. This module incorporates
the output of the artifact attention module to modulate attention toward artifacts.

• A Caricature Generation Module, which uses the Artifact Attention maps to amplify
artifacts directly in the videos, yielding deepfake caricatures.

3.1 ARTIFACT ATTENTION MODULE

This module (Figure 2) guides the model towards regions in the videos that are most likely to contain
artifacts. It consists of an encoder-decoder architecture that is partially supervised with human
annotations. We incorporate human annotations for two reasons: 1) it biases the model toward the
artifacts that are informative to humans, and 2) it guides the module towards regions which may not
be locally connected, both of which we hypothesized would yield better caricatures.
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Figure 4: The Classifier module and its attention blocks. (a) the classifier takes the feature
maps output by the convolutional stem, passes them through attention blocks modulated by human
heatmaps, and computes logit scores for each frame before classifying the video. The consensus
operation is an average of the logits followed by thresholding to determine the output label. (b) Our
attention block: a traditional residual block is followed by key, query and value matrices following
the self-attention framework. The key-query product is modulated by our human heatmaps. ×
represents matrix multiplication and · represents element-wise multiplication.

Human-informed ground truth. We collected human labels on DFDCp and FF++ corresponding
to the locations most indicative of doctoring, as perceived by crowd-sourced participants. First,
we created a pool of challenging deepfake videos, as these are the most likely to yield non-trivial
information about artifacts. From the DFDCp dataset Dolhansky et al. (2019), we selected 500
videos that are challenging for humans (see Supplement), and 500 videos that are challenging for
the XceptionNet Rossler et al. (2019) detection model. From FF++, we selected 200 videos for each
of the four subsets (Deepfakes, FaceSwap, Face2Face and NeuralTextures). Next, we showed these
deepfakes to a new set of participants (mean N=11 per video), who annotated areas of the videos that
appeared manipulated (Figure 3). Participants were shown blocks of 100 3-second clips, and used
a paint-brush interface to paint on videos regions that appeared unnatural (see Supplement). This
resulted in over 11K annotations across 1000 videos for DFDC, and 9k annotations on 800 videos
for FF++. For each video clip, we aggregate all annotations and generate one 3D attention map by
first applying an anisotropic Gaussian kernel of size (20, 20, 6) in x, y and time dimensions, and
then normalizing the map of each frame to sum to one. These datasets, including attention maps and
individual labels, will be released on our project page upon publication.

Module details and training. The artifact attention module is based on the encoder-decoder archi-
tectural paradigm, and consists of an Xception-based encoder Chollet (2017) and a 6-block Resnet-
based decoder, where upsampling and convolutions are layered between each block (Figure 2). The
encoder produces codes e that retain spatial information, and the decoder utilizes those compressed
feature maps to generate output heatmaps. We use the human data to supervise the generation of
these heatmaps directly. This happens through the sum of three losses: the Pearson Correlation Co-
efficient, KL-Divergence, and L-1 loss. We confirmed that the Artifact Attention module achieves
good performance at reproducing the ground truth maps: predicted maps had an average 0.745
Correlation Coefficient (CC) and a 0.452 KL divergence (KL) with the human-generated maps. In
comparison, a simple 2D gaussian achieves 0.423 CC and 0.661 KL.

We trained versions of the Artifact Attention Module with both our DFDCp and FF++ artifact anno-
tations. Qualitatively, the kinds of regions and artifacts that are identified by each Artifact Attention
Module are similar. For the modeling results (5), we report the model leveraging the FF++-trained
artifact attention module to ensure fair comparisons with previous works. We additionally report the
results from the model leveraging the DFDC-trained artifact attention module in the supplement for
completeness.

3.2 CLASSIFIER MODULE

Our Classifier module (Figure 4) detects if the input is real or fake. This module receives feature
maps generated by an EVA-02 Fang et al. (2023) backbone (Stem in Figure 1), a transformer-based
model trained to output general visual representations through masked modeling on ImageNet. The
stem’s embeddings are fed to our classifier module, composed of L Human Attention Blocks fol-
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lowed by a global average pooling and a sigmoid activation. We define Attention Blocks as a Resid-
ual Block followed by a customized self-attention operation detailed in Figure 4b. We allow this
module to supplement its self-attention with the human-guided attention information provided by
the Artifact Attention Module, in order to increase attention to key parts of the input (details below).
We analyzed Attention block sequence sizes of L = 18 and L = 34: each alternative yields a differ-
ent model version, referred to as CariNet-S and CariNet. Cross entropy is used as the loss function.
The output of the binary logit function is assigned to each frame as a detection score; we take the
averaged score of the whole sequence as the prediction for the video clip.

Self-attention with artifact heatmaps. We define our self-attention layers in a similar manner to
prior self-attention work Zhang et al. (2018); Bello et al. (2019), but we extended the traditional
construction to incorporate modulation from the artifact attention heatmaps. Our self attention layer
computes an affinity matrix between keys and queries, where the keys are re-weighted by the artifact
attention map, putting more weight on the artifacts that are relevant to humans. Given a feature map
xi over one frame, and an artifact attention map A over that frame, the module learns to generate an
affinity matrix ai:

ai = softmax((WQxi)
T(WKxi ⊙A)). (1)

The softmaxed key-query affinity tensor is then matrix-multiplied with the values V = WV xi to
generate the output residual r. That residual is then scaled by γ and added to input xi to yield the
output feature map yi:

yi = γaTi (WVxi) + xi. (2)

WQ,WK,WV are learned weight matrices of shape RC̄×C , RC̄×C and RC×C respectively, with
C̄ = C/4. γ is a learnable scalar which controls the impact of the learned attention feature vis-a-vis
the original feature maps xi.

3.3 CARICATURE GENERATION MODULE

Finally, the primary contribution of our framework is a novel module for creating Deepfake Cari-
catures, a visual indicator of video authenticity based on amplification of video artifacts. Figure 1
illustrates the distortion exhibited by our caricatures, but the effect is most compelling when viewed
as a video (links to a gallery of caricatures can be found in the Supplement). Our Caricature Gener-
ation module leverages the encoder from the artifact attention module, distorts codes with a frame
distortion block that operates over every pair of codes ei and ei+1, and uses a Caricature Construc-
tor to create the final caricature (Figure 2). We instantiate the Caricature Constructor as a simple
decoder with four blocks composed of 3x3 convolutions followed by nearest neighbor upsampling.

The caricature effect is achieved by amplifying the difference between the representations of consec-
utive frames, while guiding this amplification with the artifact attention maps generated by the arti-
fact attention module, via element-wise multiplication between the tensor ediff = ResBlk(ei+1 −
ei) and the artifact attention map of frame xi (Figure 2b). This essentially results in a targeted
distortion aiming at magnifying the artifacts highlighted by the heatmap.

The distorted code êi of frame xi is computed as

êi+1 = ei + α(ei − ei+1)⊙A, (3)

where α is a user-defined distortion factor that controls the strength of the resulting caricature.

3.4 LEARNING AND OPTIMIZATION

Training is done in two phases: we first train the classification pipeline (Stem, Artifact Attention
Module and Classifier), then freeze the classification pipeline and train the caricature module on a
motion magnification task, before combining everything together to generate caricatures.

Classification pipeline. Our CariNets were separately trained on the DeepFake Detection Challenge
(DFDCp) dataset, FaceForensics++, CelebDFv2 and DeeperForensics. For all datasets, we train
on videos from the training set and evaluate on the validation or test set. We randomly sampled
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32 frames from videos during training. Fake videos are over-represented in these datasets, so we
oversampled real videos during training to achieve real/fake balance. Our CariNets were optimized
with Rectified Adam Liu et al. (2019) with the LookAhead optimizer Zhang et al. (2019). We use a
batch size of 32 and an initial learning rate of 0.001. Cosine annealing learning rate scheduling was
applied with half period of 100 epochs. We chose an early stopping strategy, stopping if validation
accuracy stagnates in a 10 epoch window. We apply flipping (probability 0.5) and random cropping
(224x224) augmentations. The full loss corresponds to the sum of the loss from the Classifier and
Artifact Attention modules (described above).

Caricature Module. This module was trained following the motion magnification framework from
Oh et al. (2018). We use their synthetic dataset, composed of triplets of frames (xi, xi+1, ŷi+1)
constructed to simulate motion magnification. xi and xi+1 correspond to video frames at index
i and i + 1 (respectively), and ŷi+1 corresponds to frame xi+1 with artificially magnified object
displacements. During training, we compute encodings ei and ei+1 with our frozen classification
pipeline, and feed each pair to a Frame Distortion Block (2) that learns to generate êi+1, a distorted
version of ei+1 where displacements are magnified. The caricature constructor then reconstructs
an estimated magnified frame ȳi+1, which is compared to the ground truth magnified frame ŷi+1

using a L-1 loss (no advantage found for more advanced losses). During this training period with
the synthetic dataset, no attention maps are fed to the frame distortion block. After training, when
generating a caricature, attention maps are used as a multiplicative modulation affecting the feature
maps of the frame distortion block (as shown in Figure 2), which effectively turns magnifications on
and off for different parts of the frame. This allows our module to function as a sort of magnifying
glass over artifacts.

4 RESULTS: HUMAN EXPERIMENTS

Here, we introduce Deepfake Caricatures, a novel visual signal that a video is a deepfake based on
amplified video artifacts. We demonstrate the effectiveness of Caricatures on user behavior in two
ways: first, we compare Caricatures to text-based visual indicators; second, we established the range
of conditions where Caricatures successfully boost deepfake detection. See supplement for detailed
methods and full statistical reporting.

Comparison of Caricatures and Text-Based Indicators: Currently, when news outlets share
videos that are known to be deepfakes, they flag the videos using text. However, previous work
has shown that users who saw deepfakes flagged using text often continue to believe that the videos
were real Boyd et al. (2022); Groh et al. (2022). We tested whether users found Caricatures more
convincing than text-based indicators. Fifty challenging deepfakes were selected from the DFDC
Dolhansky et al. (2019), along with 50 real videos, and presented to users in a deepfake detec-
tion task. Participants (N=30 per condition) were randomly assigned to 1 of 3 conditions: unaided
deepfake detection, detection where deepfakes were flagged using text, and detection where deep-
fakes were flagged using Caricatures. Average hit rates (HR) rates were measures for each condi-
tion. Overall, text-based visual indicators improved deepfake detection relative to unaided detection
(HR=0.78 and HR=0.53 respectively), although users’ performance remained well below ceiling.
Crucially, users in the Caricature conditions achieved hit rates of 0.94, substantially higher than
text-based and unaided detection (p < 0.0001 for both). Overall, our results show that vision-based
indicators such as Caricatures are much more effective than text-based indicators at changing user
behavior.

Evaluation of Caricatures across conditions: We next tested whether Caricatures robustly im-
proved performance under a variety of visual conditions (Figure 5). First, we tested how long Car-
icatures needed to be visible to confer a benefit to users. A random sample of 400 videos from
the DFDCp (Dolhansky et al. (2019), 200 real, 200 fake) were presented to participants, for 6 dif-
ferent durations: 300ms, 500ms, 1000ms, 3000ms, and 5000ms. The proportion of times each
deepfake video was detected in a sample of 10 participants was calculated. Averaged over all
timepoints, deepfake detectability was substantially higher for Caricatures than standard deepfakes,
(F (2, 1630) = 17.12, p < 0.001). Crucially, the advantage for Caricatures over standard deep-
fakes was significant at every presentation duration (p < 0.01 for all). Even with as little as 300
milliseconds of exposure (one third of a second), detection was better for caricatures by 14 percent-
age points. This advantage increases to 43 percentage points for a 5 second exposure (significant
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Figure 5: Behavioral results showing the effect of caricatures on human deepfake detection.
Top Panel: Deepfake detectability by humans for standard (orange) and caricature (green) con-
ditions. Colored boxes represent 95% confidence intervals, and stars indicate that the difference
between conditions is significant. Bottom Panel: Improvement in deepfake detection with Carica-
tures, binned by participant engagement level.

interaction, F (10, 1630) = 8.88, p < 0.001). Crucially, while deepfakes were detected no bet-
ter than chance without visual indicators, Caricatures boosted the likelihood of detection to above
50% across all presentation times. Thus, caricatures increase the likelihood that a deepfake will be
detected as fake, even when participants had less than a second of exposure.

We also tested the degree of engagement required for Caricatures to be effective. How closely do
users need to pay attention to the videos in order to benefit from this visual indicator? Unbeknownst
to participants, engagement probes were embedded in the experiment (5 trials per 100-trial HIT),
which consisted of standard deepfakes with artifacts which were extremely easy to detect. We
reasoned that highly-engaged participants would succeed on all of these trials, but medium to low-
engagement participants would miss some proportion of them. Participants were binned based on the
proportion of engagement probes they correctly identified as fake, and the detection improvement
between caricatures and standard fakes was measured for each bin. We find that Caricatures yield
higher detection for 4 out of 5 levels of engagement (no improvement for extremely low engagement
levels; 3/4 results significant p < 0.05, and 1/4 marginal at p = 0.051). Thus Caricatures improve
detection even when users are not fully attending to the videos. Overall, these behavioral results
demonstrate that the Caricature method is extremely effective at signalling to a human user that a
video is fake.

5 RESULTS: MODEL EXPERIMENTS

While one goal of our framework was to create Deepfake Caricatures, a secondary goal was to
assess whether partial supervision from human annotations of artifacts can yield a more performant
deepfake detection model. We find that including the human annotations to supplement self-attention
during training boosts model performance, leading our models to perform near the state of the art.

5.1 EVALUATION DETAILS

Datasets. We evaluate models on four benchmarks: FaceForensics++ (FF++) Rossler et al. (2019),
The Deepfake Detection Challenge Dataset preview (DFDCp) Dolhansky et al. (2019), Celeb-DF
v2 Li et al. (2019d), DeeperForensics (DFo) Li et al. (2019d), and FaceShifter (FShifter) Li et al.
(2019b). Faces were standardized across datasets, such that each video was 360 × 360 pixels, and
showed a single face, with a minimum size of 50 pixels and a minimum margin of 100 pixels from
the edge of the frame. See Supplement for more details on the datasets and standardization.

Baseline comparisons. We evaluate the accuracy of CariNet relative to several established baselines
from the literature. For each model, we report performance as published for the datasets it was tested
on, and retrain following published model specifications for datasets it was not initially tested on;
further details are given in the Supplement.
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Model CelebDFv2 DFDCp FShifter DFo Overall
Xception Rossler et al. (2019) 73.7 65.7 72.0 84.5 75.3
Face X-ray Li et al. (2019c) 79.5 62.1 92.8 86.8 81.2
CNN-GRU Sabir et al. 69.8 63.7 80.8 74.1 73.4
Multi-task Nguyen et al. (2019a) 75.7 63.9 66.0 77.7 71.9
DSP-FWA Li & Lyu (2018) 69.5 64.5 65.5 50.2 63.1
Two-branch Masi et al. (2020) 73.4 64.0 - - -
Multi-attention Zhao et al. (2021) 67.4 67.1 - - -
LipForensics Zhao et al. (2021) 82.4 70.0 97.1 97.6 86.8
FTCN Zheng et al. (2021) 86.9 74.0 98.8 98.8 -
DCL Sun et al. (2022) 82.3 76.7 92.4 97.1 -
RF Haliassos et al. (2022) 86.9 75.9 99.7 99.3 -
S-B Shiohara & Yamasaki (2022) 93.2 72.4 - - -
X+PCC Hua et al. (2023) 54.9 62.7 - - -
CariNet (ours) 88.8 76.9 99.7 99.5 -

Table 1: Detection performance results on unseen datasets. We report Video-level AUC (%) on
four tested benchmarks. All models are pretrained on FF++ (all manipulations). Top results are
highlighted in bold, and second-best are underlined. CariNet achieves first or second place on all
datasets.

Method Train on remaining 3
DF FS F2F NT Avg

Xception Rossler et al. (2019) 93.9 51.2 86.8 79.7 77.9
CNN-GRU Sabir et al. 97.6 47.6 85.8 86.6 79.4
Face X-ray Li et al. (2019c) 99.5 93.2 94.5 92.5 94.9
LipForensics Haliassos et al. (2021) 99.7 90.1 99.7 99.1 99.5
CariNet (ours) 99.9 99.9 99.7 99.3 99.7

Table 2: Generalization to unseen manipulations. Video-level AUC (%) on four forgery types of
FaceForensics++ (Deepfakes (DF), FaceSwap (FS), Face2Face (F2F) and Neural Textures (NT).

5.2 DEEPFAKE DETECTION PERFORMANCE

Generalization to unseen datasets. Typically, the performance of deepfake classifiers is assessed
primarily based on their ability to generalize well to datasets built with different techniques from
what the classifier was trained on Haliassos et al. (2021). Thus, we report our results as our model’s
ability to train on one dataset and perform well on another. We train models on FF++ and evaluate
their performance on CelebDFv2, DFDCp, FShifter and DFo. We note that the DFDCp videos
used during evaluation were a different set than the DFDCp videos on which we collected human
annotations, to ensure there was no data leak. As is typical Li & Lyu (2018); Haliassos et al.
(2021; 2022), we report AUC as it describes model accuracy across a range of decision thresholds.
Our CariNets show strong performance in this task, surpassing 13/13 models tested on DFDCp,
FShifter and DFo, and 12/13 models on CelebDFv2. We hypothesize that this performance is in part
resulting from the attentional framework proposed, which allows CariNet to build a more robust
representation of artifact location and properties, focusing as needed on lips, eyes or other telling
features. (Table 1).

Cross-forgery detection Several methods exist for creating deepfakes, and lead to different arti-
facts. In order to assess the quality of a detector, we must show good performance across deepfake-
generation methods. We divided the FF++ dataset based on the deepfake-generation methods it
includes (Deepfake D (2020), FaceSwap Kowalski (2020), Face2Face Thies et al. (2019), and Neu-
ralTextures Thies et al. (2019)), and trained the model on a subset of FF++ containing all four
manipulations. We then evaluated its performance on each method independently. In Table 2, we
show performance against alternative models from the literature. Overall, our technique is on par
with the best-performing model across generation methods.

Robustness to unseen perturbations Another key aspect of a forgery detector is the ability to
maintain performance even when the input videos have degraded quality, causing new, unseen per-
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Method Clean Cont. Noise Blur Pixel
Xception 99.8 98.6 53.8 60.2 74.2
CNN-GRU 99.9 98.8 47.9 71.5 86.5
Face X-ray 99.8 88.5 49.8 63.8 88.6
LipForensics 99.9 99.6 73.8 96.1 95.6
CariNet 99.9 99.9 78.6 96.2 97.6

Table 3: Generalization performance over unseen perturbations. Video-level AUC (%) on FF++
over videos perturbed with 5 different modifications. We report averages across severity levels.

Model DFDCp FF++ CelebDFv2 DFo Overall
CariNet-S w/o att. mechanism 70.92 93.73 73.9 84.56 80.78

CariNet-S w/o modulation from att. module 72.34 94.82 76.5 91.21 83.72
CariNet-S w/ fixed att. (Gaussian) 68.15 90.15 71.1 82.23 77.91

CariNet-S w/ maps from Shiohara (2022) 71.07 93.81 74.11 84.91 80.98
CariNet-S (ours) 72.90 96.81 80.1 94.33 86.04

Table 4: Ablation study results. We show how certain components of our approach affect video-
level AUC (%). We remove the attention mechanism from the Classifier module, we retain the
attention mechanism but prevent modulation from the human-informed Artifact Attention module,
we replace the human informed modulation with a fixed center bias and replace our heatmaps with
a similar approach. All modifications yield lower performance than our proposed network.

turbations. To analyze CariNet’s behavior across types of perturbation, we test our model trained
with FF++ on test videos from FF++ with 4 perturbations: Contrast, Gaussian Noise, Gaussian blur
and Pixelation. We follow the framework of Haliassos et al. (2021) and apply perturbations at 5
severity levels for our comparisons. We report average performance over the 5 severity levels in
Table 3. We observe that our method outperforms previous approaches at most severity levels. We
hypothesize that our human-guided attention framework might be of help in this setting, as humans
are naturally capable of adapting to different lighting conditions, blurs, resolutions and other pho-
tometric modifications. This adaptability might be captured in the ground truth maps that guide the
learning process of our Artifact Attention module.

Ablation studies We confirmed the contribution of adding human supervision via our Artifact At-
tention module by performing ablation studies across the different datasets under study. We observe
performance drops for CariNet-S following ablation in four different scenarios (Table 4): (1) re-
moving our custom self-attention blocks (Figure 4) from the Classifier module, and replacing them
with simple 3D residual blocks, (2) retraining self-attention blocks in the Classifier module, but
removing the modulatory input from the Artifact Attention module (this yields regular attention
blocks with no key modulation), (3) replacing the output of the Artifact Attention module with a
fixed center bias, operationalized as a 2D gaussian kernel with mean µ = (W/2, H/2) and stan-
dard deviation σ = (20, 20), and (4) replacing the output of our attention module with self-blended
image masks from Shiohara & Yamasaki (2022) (closest to our approach). Overall, the complete
model performed the best, demonstrating the effectiveness of incorporating self-attention modulated
by human annotations into deepfake detection frameworks.

6 CONCLUSION AND DISCUSSION

This work takes a user-centered approach to deepfake detection models, and proposes a model whose
focus is not just to detect video forgeries, but also alert the human user in an intuitive manner. Our
CariNet shows excellent detection performance on four different datasets, and crucially, creates
novel Deepfake Caricatures which allow for above-chance detection by human observers. Overall,
this work establishes the importance of integrating computer vision and human factors solutions for
deepfake mitigation. As with any misinformation detection system, there is a risk that our network
could be leveraged to produce higher quality deepfakes. However, a system which allows humans to
directly detect if a video is doctored will empower them to assess for themselves whether to trust the
video. Aggregated over millions of watchers, we believe that the benefits of such a system outweigh
the risks.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Darius Afchar, Vincent Nozick, Junichi Yamagishi, and Isao Echizen. Mesonet: a compact facial
video forgery detection network. In 2018 IEEE International Workshop on Information Forensics
and Security (WIFS), pp. 1–7. IEEE, 2018.

Jessica S Ancker, Alison Edwards, Sarah Nosal, Diane Hauser, Elizabeth Mauer, and Rainu Kaushal.
Effects of workload, work complexity, and repeated alerts on alert fatigue in a clinical decision
support system. BMC medical informatics and decision making, 17(1):1–9, 2017.

Belhassen Bayar and Matthew C Stamm. A deep learning approach to universal image manipu-
lation detection using a new convolutional layer. In Proceedings of the 4th ACM Workshop on
Information Hiding and Multimedia Security, pp. 5–10, 2016.

Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V Le. Attention augmented
convolutional networks. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 3286–3295, 2019.

Philip J Benson and David I Perrett. Perception and recognition of photographic quality facial
caricatures: Implications for the recognition of natural images. European Journal of Cognitive
Psychology, 3(1):105–135, 1991.

Aidan Boyd, Patrick Tinsley, Kevin Bowyer, and Adam Czajka. The value of ai guidance in human
examination of synthetically-generated faces. arXiv preprint arXiv:2208.10544, 2022.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258, 2017.

Umur Aybars Ciftci and Ilke Demir. Fakecatcher: Detection of synthetic portrait videos using bio-
logical signals. arXiv preprint arXiv:1901.02212, 2019.

D. Deepfake. https://github.com/deepfakes/faceswap, 2020.

Shuchisnigdha Deb and David Claudio. Alarm fatigue and its influence on staff performance. IIE
Transactions on Healthcare Systems Engineering, 5(3):183–196, 2015.

Brian Dolhansky, Russ Howes, Ben Pflaum, Nicole Baram, and Cristian Canton Ferrer. The deep-
fake detection challenge (dfdc) preview dataset. arXiv preprint arXiv:1910.08854, 2019.

Ricard Durall, Margret Keuper, Franz-Josef Pfreundt, and Janis Keuper. Unmasking deepfakes with
simple features. arXiv preprint arXiv:1911.00686, 2019.

Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. Eva-02: A
visual representation for neon genesis. arXiv preprint arXiv:2303.11331, 2023.

Matthew Groh, Ziv Epstein, Chaz Firestone, and Rosalind Picard. Deepfake detection by human
crowds, machines, and machine-informed crowds. Proceedings of the National Academy of Sci-
ences, 119(1), 2022.
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