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Abstract
Fast convolution algorithms, including Winograd
and FFT, can efficiently accelerate convolution
operations in deep models. However, these al-
gorithms depend on high-precision arithmetic to
maintain inference accuracy, which conflicts with
the model quantization. To resolve this conflict
and further improve the efficiency of quantized
convolution, we proposes SFC, a new algebra
transform for fast convolution by extending the
Discrete Fourier Transform (DFT) with symbolic
computing, in which only additions are required
to perform the transformation at specific trans-
form points, avoiding the calculation of irrational
number and reducing the requirement for preci-
sion. Additionally, we enhance convolution effi-
ciency by introducing correction terms to convert
invalid circular convolution outputs of the Fourier
method into effective ones. The numerical er-
ror analysis is presented for the first time in this
type of work and proves that our algorithms can
provide a 3.68× multiplication reduction for 3×3
convolution, while the Winograd algorithm only
achieves a 2.25× reduction with similarly low nu-
merical errors. Experiments carried out on bench-
marks and FPGA show that our new algorithms
can further improve the computation efficiency of
quantized models while maintaining accuracy, sur-
passing both the quantization-alone method and
existing works on fast convolution quantization.

1. Introduction
Convolution operations are a crucial component of many
deep learning models. Due to their intensive computation
requirements, optimizing convolution calculations is key to
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improving model deployment efficiency. Fast Convolution
Algorithms and Quantization are two distinct approaches to
mitigate the computational burden. Fast convolution algo-
rithms can reduce the arithmetic complexity by multiplying
inputs and kernel weights in the transformation domain.
A 3×3 convolution performed with Winograd F(2×2, 3×3)
algorithm consumes just 1

2.25 multiplications compared to
direct computing. Whereas, model quantization reduces
the cost of a single arithmetic operation and data trans-
mission by converting high-precision floating numbers to
low-precision integers. An int8 multiply-and-accumulate
operation consumes only 1

16 of the energy compared to a
fp32 operation.

However, when attempting to combine existing fast con-
volution algorithms and model quantization to further im-
prove computational efficiency, the model accuracy could
be severely degraded. This is due to the significant increase
in numerical error when the two methods are used together.
For example, Winograd, a well-known fast convolution al-
gorithm for small filter sizes (Lavin & Gray, 2016), has
ill-conditioned transformation matrices (with high condi-
tion numbers), necessitating the use of high-precision arith-
metic to avoid numerical issues (Barabasz et al., 2020).
Another renowned fast algorithm for convolution is the
Fast Fourier transform (FFT). While its transformation is
well-conditioned, its irrational coefficients can introduce
significant rounding errors, particularly under low-precision
representation. Number Theoretic Transform (NTT) can
achieve precise computation for integer convolution, but
it involves module operations and the transformations for
inputs and filters would extend the bit-width to be equivalent
to that of the outputs.

At present, two research approaches have been developed
to tackle the aforementioned problem. One approach in-
volves customizing the quantization method specifically
optimized for fast convolution algorithms (Li et al., 2021;
Chikin & Kryzhanovskiy, 2022; Andri et al., 2022; Tianqi
et al., 2023). However, this approach struggles to main-
tain satisfactory accuracy under int8 quantization for faster
algorithms such as Winograd F(4×4, 3×3). The other ap-
proach is to explore new fast algorithms that are better fit for
quantization (Liu & Mattina, 2020; Alam et al., 2022). Nev-
ertheless, these emerging algorithms encounter challenges
in achieving low arithmetic complexity. These facts show

1



SFC: Achieve Accurate Fast Convolution under Low-precision Arithmetic

that simultaneously achieving low arithmetic complexity
and low-precision quantization while maintaining model
accuracy is a persistent challenge, which, to our knowledge,
no existing work has overcome.

This paper aims to develop a new efficient fast convolution
algorithm with high numerical accuracy, which is compat-
ible with model quantization techniques. We note that all
the complex coefficients in the Fourier Transform have con-
stant modulus 1, so the quantization error can be reduced
by bypassing the direct calculation on these coefficients. To
achieve this, we introduce symbolic computing to avoid the
involvement of irrational numbers, where the transforma-
tion process contains only additions. This advance adapts
the Fourier transform to low-precision arithmetic. We also
discovered that conventional Fourier convolution does not
fully utilize its circular convolution outputs, which signifi-
cantly affects its efficiency, so we add correction terms to
convert these neglected outputs into valid results. Moreover,
we investigate the error generation mechanism of convolu-
tion algorithms and compare the numerical errors of direct
convolution, Winograd, and our algorithms. The key contri-
butions can be summarized as follows:

1. We formulate an efficient and quantization-friendly fast
convolution algorithm extended from Fourier Convo-
lution. We employ symbolic computing to perform
Discret Fourier Transformation by just additions, and
introduce correction terms to fully utilize its circular
convolution outputs and further enhance its efficiency.

2. We analyse the numerical error of direct convolution
and other fast convolution algorithms. Our method can
achieve 3.68× arithmetic reduction while the Winogard
algorithm only achieves 2.25× at equivalent numerical
accuracy. Through error analysis and observation of
the energy distribution in the frequency domain, we
also present a frequency-wise quantization strategy to
improve model accuracy at low-bitwidth.

3. Experiments on the ImageNet dataset validate that our
method can achieve less than 0.2% accuracy degrada-
tion with int8 post-training quantization. In the same
model accuracy, our method achieves up to 2.5× bit-
operations reduction compared to Winograd convolu-
tion or direct convolution under quantization. FPGA
implementation shows that our algorithms can signifi-
cantly improve model inference throughput combined
with low-precision arithmetic.

2. Related Work
Fast Convolution Algorithms. The FFT was the first
utilized algorithm (Mathieu et al., 2014) to fast the train-
ing of convolutions. Subsequently, for small convolutions,

the Winograd minimum filtering algorithm (Lavin & Gray,
2016) was found to outperform the Fourier-based method
due to its real field arithmetic operations, whereas the
Fourier method requires more inefficient arithmetic in com-
plex field. Additionally, the NTT has also been proposed to
accelerate convolutions (Hong et al., 2022). However, when
combining quantization and fast convolution algorithms, the
challenge of potential model accuracy degradation arises.
The Winograd algorithm is susceptible to numerical insta-
bility due to the ill-conditioned Vandermonde matrix in the
transformation (Vincent et al., 2017; Barabasz et al., 2020).
Fourier-based methods demand a high-precision format to
accurately represent irrational numbers. NTT methods can
offer accurate integer computing, but involve a large number
of modulo operations and high-bitwidth intermediate data
representations, reducing computation efficiency.

Quantization for Fastconv. Some approaches aim to opti-
mize the quantization method to regain model accuracy.
For example, LoWino (Li et al., 2021) presents a post-
training quantization (PTQ) method for Winograd, opti-
mizing the scaling factor by minimizing the KL distance
between the quantized and original vectors. Another PTQ
work (Chikin & Kryzhanovskiy, 2022) introduces a bal-
ancing operation between the filter and input channels to
enhance bit-width utilization and improve the quality of
quantization for Winograd. Additionally, a full quantiza-
tion method with optimizing the transformation matrix in
Winograd has been proposed (Tianqi et al., 2023), which
successfully restores model accuracy when employing the
Winograd F(4×4, 3×3) algorithm with int8 quantization.
Nevertheless, the methods above tend to struggle to achieve
satisfactory accuracy recovery under sub-int8 quantization.

Numerical Accuracy for Fastconv. Another approaches
focus on improving the intrinsic properties of the fast algo-
rithm itself. As Winograd algorithms can be defined by root
points, a bilinear approach that strikes a balance between
computational complexity and numerical accuracy has been
proposed (Barabasz & Gregg, 2019). Additionally, two ex-
isting works (Barabasz et al., 2020; Alam et al., 2022) aimed
to discover more effective polynomial root points to improve
numerical accuracy. The Winograd algorithms have also
been extended to the Residue Number System (RNS) (Liu &
Mattina, 2020), decomposing single high-precision interme-
diate multiplications into multiple low-precision arithmetics
(e.g., 8-bit). However, these all come at the cost of increased
computational complexity.

3. Preliminaries
Algorithms Construction. Fast convolution algorithms,
including Winograd, Fourier Transform, and Number Theo-
retic Transform all employ a three-stage computing process:
transformations of filters and inputs, element-wise multi-
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plication, and a transformation for generating outputs. The
generalized form for fast 2D convolution is as follows:

y = AT [[GfGT ]⊙ [BTxB]]A (1)

where ⊙ denotes element-wise multiplication, and B, G,
and A represent the linear transformations of the input, filter,
and multiplication result.

For one specific algorithm (whether Winograd, FFT or
NTT), the G, B and A are all derive from a Vandermonde
matrix V , which consist of a set of root points s0..sN−1:

V =


1 s10 s20 ... sN−1

0

1 s11 s21 ... sN−1
1

.. .. .. ... ..

1 s1N−1 s2N−1 ... sN−1
N−1

 (2)

A N × N matrix V and its inverse V −1 can construct a
fast convolution algorithm for R×R filter accommodating
N ×N inputs with M ×M outputs, or M ×M inputs with
N ×N outputs, where N = M +R− 1.

Difference. The fundamental difference among various
algorithms lies in the number field of V and the chosen
Sn. In the Winograd algorithm (also known as Toom-Cook
algorithm), the Sn are N interpolation points selected in
the real number field R. Similarly, all arithmetic operations
are performed in the R. As a comparison, all arithmetic in
Fourier convolution is defined in the complex field C. And
the matrix V is the discrete Fourier transform matrix, where
Sn = e−j 2π∗n

N . The number theoretic transformation is
similar in structure to the Fourier transform, but it operates
in a finite field denoted as Fp.

Arithmetic Complexity Reduction. Assuming these trans-
formations are lightweight compared to element-wise mul-
tiply and can be amortized due to channel reuse, the fast
algorithms consume N2 = (M +R− 1)2 multiplications
to generate M2 outputs, where the arithmetic complexity
reduction is M2R2

(M+R−1)2 . However, convolution operations
in CNNs are generally defined in R, so employing fast al-
gorithms defined in C or Fp (such as FFT and NTT) would
lead to waste in the calculation. Hence, Winograd, defined
in R, is the most popular algorithm for model acceleration.

Precision Requirement. For Winograd, the extremum of a
row in V is [1, SN−1

n ]. So the required arithmetic precision
grows exponentially with N . Thus only the Winograd al-
gorithm with small N is practical. In comparison, the FFT
method performs a significant numerical advantage when
dealing with large filters due to its numerically stable V
matrix. However, performing accurate Fourier transforms
necessitates high-precision arithmetic. NTT method provide
a bit-correct result for integral convolution. However, when
using NTT to perform a calculation with N -bit inputs and

2N -bit outputs, the transformed inputs must have a dataw-
idth of at least 2N -bit, which increases the datawidth of
⊙.

In summary, no matter which type of algorithm is chosen,
achieving both robust computation and significant arith-
metic reduction under low-precision operations remains a
challenge.

4. Symbolic Fourier Convolution Algorithm
It is worth noting that the Fourier transform has better nu-
merical stability, as all its root points are distributed on
a circle of radius 1 in the complex plane. When dealing
with larger N , it is more accurate than Winograd. However,
Fourier transform has two serious drawbacks. First, its irra-
tional coefficients are not friendly for low-precision format
and would give more computation burden for transformation
calculation.

In addition, the FFT is not as efficient as Winograd. There
are two reasons for this. Firstly the FFT is computed using
complex numbers and even after utilizing the Hamiltonian
symmetry with real sequences and the fast complex multi-
plication, each complex multiplication still requires 1.5 real
multiplications. Secondly, the direct calculation result of
the FFT is a circular convolution, so padding the sequence
with zeros to achieve a linear convolution is required, which
would wasted computation.

We propose two key improvement strategies to address these
drawbacks:

1. We employ symbolic computation rather than numer-
ical computation to implement the discrete Fourier
transform (DFT). By selecting an appropriate number
of DFT points, we can avoid or minimize the irrational
values involved in computing. All complex points can
be represented by first order integer coefficient polyno-
mials under both 4 and 6 DFT points.

2. We introduce correction terms to fully exploit the cyclic
convolution output generated by the Fourier method to
enhance computing utilization, and the smaller number
of transformation points we chose also helps to reduce
the proportion of complex arithmetic.

4.1. Symbolic Computing for DFT

Generally, the coefficients of the N-point DFT are derived
from:

e
2πn
N j = cos(

2πn

N
) + jsin(

2πn

N
), n = 0, 1, .., N − 1

when n
N /∈ {0, 1

4 ,
1
2 ,

3
4}, irrational values will be introduced.

To eliminate the rounding errors that arise from these irra-
tional values, we employ symbolic computation rather than
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numerical calculation. This approach represents irrational
values in polynomials with integer coefficients.

To illustrate, we consider the 3-point DFT. For a real input
sequence x = (x0, x1, x2)

T , its transform processing can
be represented as:X0

X1

X2

 =

1 1 1
1 s s2

1 s2 s

x0

x1

x2

 , s = e
2π
3 j (3)

Figure 1. The geometric symmetry in DFT-3, DFT-4 and DFT-6.

We do not substitute the numerical value of s into the cal-
culation. Instead, we represent and compute subsequent
variables using the polynomial form of s. This allows us to
express the DFT outputs Xn as Xn = Xn,0 + Xn,1 · s +
Xn,2 · s2.

By exploiting the geometric symmetry among 1, s, s2, the
s2 can be expressed as s2 = −(s0 + s1), as Figure 1. Fur-
ther, the Hamiltonian symmetry of the real signal Fourier
transform can reduce the number of components by almost
half. Thus we can rearrange Equation 3 as following:

X0

X1

X2

 =

1 0 0
0 1 s
0 1 s2

1 1 1
1 0 −1
0 1 −1

x0

x1

x2

 (4)

In the above formula, s = e
2π
3 j is not need to be explicitly

included in the calculation but serves as a notation from
the outset. Similar to complex number, the production of
a0 + a1s and b0 + b1s can be calculated as:

(a0 + a1s)(b0 + b1s) = c0 + c1s,

[
c0
c1

]
=

[
1 −1 0
1 0 1

]
(

 1 0
0 1
−1 1

[
a0
a1

]
⊙

1 0
0 1
1 −1

[
b0
b1

]
)

(5)

Through enumeration, we can identify that 6 and 4 are
suitable choices for DFT points in small-size convolution
applications.

1) DFT-6

Considering DFT-6, its transformation coefficients con-
sist of six values: 1, ej

π
3 , ej

2π
3 ,−1, ej

4π
3 , ej

5π
3 . Defin-

ing s = e
π
3 j , thus s2 = s − 1, which allows all coef-

ficients to be expressed as first-order polynomials of s:
1, s, s− 1,−1,−s, 1− s. When two first-degree polynomi-
als are multiplied, any quadratic term can be reduced to a
first-degree term using the rule s2 = s− 1. Therefore, the
DFT-6 transform processing under symbolic computation is
as follows:

DFT6(x) = S6F6x =


1 0 0 0 0 0
0 1 s 0 0 0
0 0 0 1 s 0
0 0 0 0 0 1
0 1 −s2 0 0 0
0 0 0 1 −s2 0

 ·


1 1 1 1 1 1
1 1 0 −1 −1 0
0 −1 −1 0 1 1
1 0 −1 1 0 −1
0 −1 1 0 −1 1
1 −1 1 −1 1 −1

 ·


x0

x1

x2

x3

x4

x5


(6)

Here, S6 represents the format transition from symbolic
to numerical computing without any arithmetic, and F6

signifies the Fourier transform under symbolic computing.
We refer to the intermediate matrix as SFT-6 (Symbolic
Fourier Transform-6), as its coefficients consist solely of 1, -
1, and 0. The inverse transform iDFT6 can be rearranged in a
similar way. F6 has its fast algorithm by decomposing it into
DFT-3 and DFT-2. Therefore, only 14 addition operations
are needed to perform SFT-6 (subtraction can be considered
as addition of complement). The inverse transformation
matrix iF6 can be derived in a similar way:

iF6 =
1

6


1 1 1 1 1 1
1 −1 −2 −1 1 2
−1 −2 −1 1 2 1
−1 −1 2 −1 −1 2
−2 1 1 −2 1 1
−1 1 −1 1 −1 1

 (7)

Note that 1
6 can be fused into floating model without having

to compute that division operation during inference stage.

In the element-wise multiplication steps, multiplications are
performed in polynomial form. Multiplying two 1st-order
polynomials requires 4 real number multiplications. We can
utilize a short fast convolution algorithm to reduce it to 3:

(a0 + a1s)(w0 + w1s) = o0 + o1s,

[
o0
o1

]
=

[
1 −1 0
−1 0 1

]
(

1 0
0 1
1 1

[
a0
a1

]
⊙

1 0
0 1
1 1

[
w0

w1

]
)

(8)
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2) DFT-4

Similarly, the DFT-4 can be constructed in the same manner.

DFT4(x) = S4F4x =


1 0 0 0
0 1 j 0
0 0 0 1
0 1 −j 0

 ·


1 1 1 1
1 0 −1 0
0 −1 0 1
1 −1 1 −1



x0

x1

x2

x3


(9)

The multiplication on the DFT-4 convolution can be per-
formed as:

(a0 + a1s)(w0 + w1s) = o0 + o1s,

[
o0
o1

]
=

[
1 −1 0
−1 −1 1

]
(

1 0
0 1
1 1

[
a0
a1

]
⊙

1 0
0 1
1 1

[
w0

w1

]
)

(10)

If we want to compute A((Gf) ⊙ (Bx)) directly in the
real number field, akin to the Winograd algorithm, without
involving polynomial multiplication, we can integrate Eq. 8
or Eq. 10 into the SFT matrix Eq. 6 or Eq. 9. In the 1D case,
this does not impact efficiency. However, in the 2D case,
it introduces slight redundant components and marginally
reduces the acceleration ratio. We list these algorithms with
polynomial multiplication integrated in the appendix.

4.2. Achieving Efficient Linear Convolution

The conventional Fourier Transform method inherently
generates cyclic convolution. As a consequence, only
(N − R + 1)2 components are valid for the intended N2

linear convolution. However, it’s noteworthy that the invalid
results are not entirely useless. They actually contain partial
sums that can be effectively utilized. By intelligently apply-
ing correction terms to these partial sums, it is possible to
convert them into valid outputs. This approach significantly
enhances the efficiency of the convolution process.

Figure 2 illustrates an example of Fourier-based cyclic
convolution for N = 6 and R = 3. The first term oc1
is equal to a6w1 + a1w2 + a2w1, but the desired output
is o1 = a0w1 + a1w2 + a2w1. To align o1 with oc1, a
corrective term is introduced to obtain the desired output:
o1 = oc1+(a0−a6)w1. This adjustment allows us to obtain
an additional correct result by adding just one MAC oper-
ation, thus utilizing the Fourier convolution output more
efficiently compared to discarding erroneous terms.

To unambiguously represent a particular algorithm, we em-
ploy the notation SFC-N (M , R), where N represents the
length of the SFT transformation, M represents the feature

tile size, and R represents the kernel size. For example,
the SFC-6(6×6, 3×3) algorithm is constructed based on a
6-point Fourier transform, employing a 3×3 kernel size and
a 6×6 feature tile size.

By introducing correction terms, we can also adjust input
tile size M independently. For example, as the images in the
ImageNet dataset are in size 224×224, the feature map size
in the model has a common factor of 7. Utilizing the SFC-
6(7×7, 3×3) algorithm to infer models trained on Imagenet
would have higher tiling efficiency without the need for zero
padding. The transformation matrix integrated polynomial
multiplication of the SFC-6(7×7, 3×3) is as follows:

BT =



0 1 1 1 1 1 1 0 0
0 1 1 0 −1 −1 0 0 0
0 0 −1 −1 0 1 1 0 0
0 1 0 −1 −1 0 1 0 0
0 1 0 −1 1 0 −1 0 0
0 0 −1 1 0 −1 1 0 0
0 1 −1 0 1 −1 0 0 0
0 1 −1 1 −1 1 −1 0 0
1 0 0 0 0 0 −1 0 0
0 −1 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 1 0
0 0 −1 0 0 0 0 0 1


,

A =
1

6



1 1 1 1 1 1 1
2 1 −1 −2 −1 1 2
−1 1 1 1 −1 −2 −1
−1 −2 −1 1 2 1 −1
1 −2 1 1 −2 1 1
1 1 −2 1 1 −2 1
−2 1 2 −2 1 1 −2
−1 1 −1 1 −1 1 −1
6 0 0 0 0 0 0
0 0 0 0 0 6 0
0 0 0 0 0 0 6
0 0 0 0 0 0 6


,

G =



1 1 1
0 1 1
−1 −1 0
−1 0 1
−1 0 1
1 −1 0
0 −1 1
1 −1 1
1 0 0
0 0 1
0 1 0
0 0 1



(11)

The SFC-6(6×6, 3×3) algorithm can reduce 73% multipli-
cations for 3×3 convolutions. And multiplications can be
optimized by 81% and 79% for 5×5 and 7×7 convolutions,
respectively. A selection of achievable Symbolic Fourier
Convolution algorithms is listed in Table 1. For comparison,
we also list their efficiencies and the numerical errors ob-
tained from simulation and theoretical analyses (Detailed in
Section 5). In Table 1, we can see that for 3×3 convolution
the SFC-6(6×6, 3×3) algorithm is 1.64× faster than the
Winograd (2×2, 3×3) algorithm, while maintaining nearly
the same numerical error.

Further, for larger kernel size, the Winograd algorithm is
no longer able to construct linear transformations with suffi-
ciently low numerical errors, no matter how the root points
are chosen. Although there exists work by splitting the core,
making it possible to compute large size convolutions with
the Winograd(2×2, 3×3) algorithm with low numerical error
(Huang et al., 2020), it is not possible to achieve a lower
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Figure 2. Converting invalid cyclic convolution to linear convolution, which is a process that can also be used to adjust the input tile sizes.

arithmetic complexity than Winograd(2×2, 3×3). Whereas
our algorithm provides higher speedups and keeps the high
numerical stability.

Table 1. Comparison of different fast convolution algorithms.
Mean square error was measured on randomly generated data,
and κ(AT ) was calculated using the singular value of AT .

Algorithm Mean Square
Error κ(AT )

Arithmetic
Complexity

direct convolution 1.0 1.0 100%
Wino(2×2, 3×3) 2.2 2.4 44.4%
Wino(3×3, 3×3) 6.4 14.5 30.4%
Wino(4×4, 3×3) 10.5 20.1 25%
SFC-4(4×4, 3×3) 2.4 2.7 31.94%
SFC-6(6×6, 3×3) 2.4 3.3 27.16%
SFC-6(7×7, 3×3) 2.6 3.4 29.93%
Wino(2×2, 5×5) 10.5 20.1 36%
SFC-6(6×6, 5×5) 3.6 3.5 20.44%
Wino(2×2, 7×7) 28.1 31.0 32.6%
SFC-6(4×4, 7×7) 3.6 3.5 21.99%

5. Error Analysis and Frequency-wise
Quantization

This section would analyze the numerical error of fast con-
volution algorithms, which can be used to guide the devel-
opment of quantization methods and serve as a benchmark
for assessing the numerical stability across various fast al-
gorithms.

To cover the direct convolution into the same error analysis
model, we can consider it as a fast convolution with R = 3,
M = 1. For derivation convenience, we use the overlapped

output form, in which A is a reversible square matrix.y0y1
y2

T

=

1 1
1

·((
1 1

1

·
f0f1
f2

)⊙(
[
1
]
·
[
x0

]
))

(12)

We denote the quantized element-wise multiply as ⊙Q,
through which the operands are quantized and multiplied.
δy represents the calculation error of the output y. The error
forward propagation process can be described as:

y + δy = AT · ((G · f)⊙Q (BT · x)) (13)

We assume these transformations to be accurate, and the
quantized operator ⊙ introduces rounding errors. These
errors would be subsequently magnified by the matrix mul-
tiplying AT ·.

Set s+δs = (G ·f)⊙Q (BT ·x), by substituting y = AT ·s
into the Equation 13, we can obtain:

δy = (AT )−1 · δs (14)

Applying the properties of the paradigm || ∗ || yields:

||δy|| <= ||(AT )|| · ||δs|| (15)

Similar, bringing in ||s|| <= ||(AT )−1|| · ||y||, we have:

||δy||
||y||

<= ||(AT )−1|| · ||(AT )|| · ||δs||
||s||

(16)

Here we can perform an analysis of Eq.16. The first term
||(AT )−1|| · ||(AT )|| is the condition number of matrix AT ,
denoted as κ(AT ). This term indicates the amplification
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factor applied to the error δs. The condition number of the
standard orthogonal matrix is constant 1, like A in direct
convolution (Eq.1) and vanilla Fourier convolution, which
would not amplify δs anymore. While the κ(AT ) for Wino-
grad convolution can reach up to 31.0, as listed in Table
1. However, in our method, the κ(AT ) takes the values of
2.7, 3.3, and 3.5 for SFC4(4,3), SFC6(6,3), and SFC6(4,7),
respectively, which is much less than that of Winograd.

The final term ||δs||
||s|| in Eq.16 is the error caused by the

quantized operator ⊙Q, which depends on the data width,
quantization method, and data distribution. For floating
numbers, the error is fairly stationary as every operand has
its own exponent code(scaling factor). We conduct numer-
ical experiments under single precision (fp16) in Table 1,
and it is find that the numerical error is highly correlated to
the κ(AT ), in accordance with our analysis.

Figure 3. The energy distribution in the frequency domain of the 9-
th layer in Resnet18. Energy is concentrated in the low frequencies.

For model quantization, numbers in a group share the same
scaling factor to achieve integer representation. The granu-
larity of the scaling factor group should fit with the data dis-
tribution to achieve low quantization error. Some work has
found that in Winograd convolution, scaling factor grouping
based on the transformation domain coordinates can recover
model accuracy effectively. Here we give a brief theoretical
explanation. Assume that the input x has a fixed energy
||x|| = 1, the maximum possible value in the transforma-
tion domain is (1, 1, 1, 8, 8, 1) for F(4,3) algorithm, which
would be quadratic in 2D convolution. Grouping one ten-
sor to one scaling factor would cause a waste of 3/6 bit in
1D/2D. For Fourier convolution, each frequency would have
the same maximum value. However, due to the frequency
properties of the model inputs (image or audio), there will
be a tendency for the energy to converge towards lower fre-
quencies, as Figure 3 shows. Thus grouping scaling factors
by frequency can also reduce the error of Fourier convo-
lution, but not as necessary as Winograd. This is because
the aforementioned tendency is only significant in the first
few layers, and the magnitude variance is not as large as

Winograd.

y =
∑
Cin

(sTx

⌈
BTxB/sTx

⌋
intNTx

⊙sTf

⌈
GfGT /sTf

⌋
intNTf

)

(17)

The scaling factor sTx is of size [T×T ], where T is the
size of the transform domain. For the scaling factor sTf

of weights, considering that per-channel quantization can
achieve better results in direct convolutions, we suggest com-
bining per-frequency quantization and per-channel quanti-
zation whose sTf is of size [OC×T×T ] to achieve higher
accuracy.

6. Experimental Evaluation
We conducted experiments on image classification tasks to
demonstrate the effectiveness of our algorithms. To compre-
hensively evaluate the computation cost of models acceler-
ated by fast convolution algorithm and quantization, it is crit-
ical to consider both the reduction in arithmetic complexity
afforded by fast convolution and the reduction in arithmetic
data width introduced by quantization. Consequently, we
adopt bit-operations (BOPs) as a metric of computation cost,
diverging from the traditional floating-operations (FLOPs).
In this metric, an n-bit addition operation requires n BOPs,
whereas an n-bit multiplication costs n(n-1) BOPs. This is
because an n-bit multiplication can be decomposed into n-1
instances of n-bit additions. The transformation cost of fast
algorithms is also taken into account.

6.1. Post-training Quantization on Image Classification
Benchmarks

Experiments were conducted on the ImageNet dataset,
which contains 1.4 million images of size 224×224×3, dis-
tributed across 1,000 classes. We randomly selected 500
images from training set to create the calibration set for
PTQ fine-tuning. Model accuracy was evaluated on the
validation set. We utilized pre-trained fp32 models from
TorchVision as our benchmarks. All batch normalization
layers were fused into the preceding convolution layers prior
to quantization.

We conducted quantization on the following algorithms: 1)
Direct convolution, 2) The well-known Winograd F(4×4,
3×3) algorithms, which have been extensively researched
for their quantization methods in recent years, and 3) our
proposed SFC algorithms, including 1D and 2D format.
For all these methods, all 3×3 convolution layers with a
stride of 1 were replaced by the corresponding algorithm.
Direct convolution and our SFC algorithms were quantized
using AdaQuant (Hubara et al., 2020), while the Winograd
algorithm was processed with Scaling Gradient Backward
(Jain et al., 2020), due to observed convergence differences
with AdaQuant in the Winograd F(4×4, 3×3). All the data
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in the spatial domain are quantized to int8, and the data in
the transformation domain are quantized from int8 to int4.
As mentioned in Section 5, storing spatial domain data in
external storage is unnecessary; instead, data can be stored
in the transform domain to avoid errors caused by multiple
quantization operators.

Figure 4. Model Accuracy vs. Computation Cost. We done post-
training quantization for Resnet18 on Imagenet dataset from int8
to int4.

Table 2. Post-training quantization experiments on ImageNet.

Resnet18 Bits Top-1 ∆
Channel Balancing Wino(4×4, 3×3) 8 67.54 -2.22

Full Quant. Wino(4×4, 3×3) 8 68.16 -1.60
Full Quant. Wino(4×4, 3×3) 6 64.34 -5.42

Ours SFC6(7×7, 3×3) 8 69.59 -0.17
Ours SFC6(7×7, 3×3) 6 68.80 -0.96

Resnet34 Bits Top-1 ∆
Channel Balancing Wino(4×4, 3×3) 8 71.86 -1.44

Full Quant. Wino(4×4, 3×3) 8 71.75 -1.55
Full Quant. Wino(4×4, 3×3) 6 68.80 -4.50

Ours SFC6(7×7, 3×3) 8 73.14 -0.16
Ours SFC6(7×7, 3×3) 6 72.40 -0.90

Resnet50 Bits Top-1 ∆
Channel Balancing Wino(4×4, 3×3) 8 75.84 -0.29

Full Quant. Wino(4×4, 3×3) 8 75.74 -0.40
Full Quant. Wino(4×4, 3×3) 6 74.75 -1.39

Ours SFC6(7×7, 3×3) 8 76.02 -0.12
Ours SFC6(7×7, 3×3) 6 75.54 -0.60

Since it is not feasible to align a specific category of data,
such as ensuring uniform computational costs across a
column to compare accuracy in the table, we have illus-
trated the accuracy curves in relation to computation cost
(BOPs) in Figure 4 for a visual comparison of different al-
gorithms. To ensure a fair and comprehensive comparison,
we have included the state-of-the-art Winograd-quantization
work in the figure, including Channel Balancing (Chikin &

Kryzhanovskiy, 2022) and Full Quantization (Tianqi et al.,
2023). A subset of the detailed data is presented in Table
2. As depicted in Figure 4, the SFC-6(7×7, 3×3) algorithm
demonstrates a computation cost reduction of 1.6× to 2.5×
compared to both the Winograd F(4×4, 3×3) and direct con-
volution algorithms, while maintaining equivalent model
accuracy. The experiments confirm that the SFC algorithms
achieve a reduction in arithmetic complexity comparable
to Winograd, with model accuracy similar to that of direct
convolution (quantization-alone).

Figure 5. The MSE for different algorithms under int8 PTQ. Lower
numerical error results to better PTQ results.

We also plot the mean squared error (MSE) between ac-
celerated layers to fp32 layers for different methods under
int8 quantization. The experimental results, presented in
Figure 5, match perfectly with the numerical error analysis
conducted in Section 5 and Table 1.

6.2. FPGA Simulation

We develop RTL code for the convolution accelerator based
on the SFC-6(7×7,3×3) algorithm. The resource consump-
tion and timing report are synthesized using Xilinx Vi-
vado tools. The parallelism of our design is configured
at [4×4×7×7], indicating that one convolution operator with
4 input channels, 4 output channels, and 7×7 feature map
are processed simultaneously. The VGG-16 model is taken
as an example, whose convolution layers all have 3×3 filters
with stride=1, making it well-suited for fast convolution.
All components in our datapath are quantized to int8, and
all computing stages in fast convolution are designed to
operate in a full pipeline architecture. The DSP48 hardcore
is a crucial resource on FPGA, as it can efficiently deploy
multiply operations. One DSP48 unit can implement two
int8 multipliers or one int16 multipliers, which means that
our implementation consumes only 1056 DSPs (calculated
as 4×4×132×0.5). In comparison, Winograd-based or NTT-
based accelerators (Liang et al., 2020; Prasetiyo et al., 2023)
require more DSPs for high precision multipliers, and accel-
erators for direct convolution (Huang et al., 2022) need more
DSPs due to a higher complexity of multiplications. The re-
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sult highlights the efficiency of integrating fast convolution
with model quantization.

Table 3. FPGA synthesis results.

Works Liang et al.,
2020

Prasetiyo et al.,
2023

Huang et al.,
2022

Ours

Algorithm Winograd NTT direct conv SFC
Platform zcu102 xc7vx980t alveo U50 xczu19eg
Precision 16bit 8bit/21bit 8bit 8bit

LUTs - 601.7K 335K 221K
DSPs 2304 4100 3395 1056
Clock 200M 200M 200M 200M

Throughput
(GOPs)

2601 2859.5 1000 2129

GOPs/DSPs
/Clock

5.64 3.48 1.96 10.08

6.3. Ablation Study on Quantization Granularity

In Section 5, we theoretically predict that frequency-wise
quantization will produce less error than tensor-wise quanti-
zation. Here, we provide an ablation experiment on Resnet-
18 by enumerating combinations of different quantization
granularity in Table 4 and Table 5. The results underscore
that the Winograd algorithm exhibits more sensitivity to
quantization granularity, requiring the finest granularity
even with int8 quantization. In contrast, the SFC main-
tains acceptable accuracy under int8 quantization without
specialized quantization. However, at lower bitwidths, it is
still necessary to employ frequency-wise quantization for
activation tensors.

Table 4. Ablation study for Resnet18 on int8 quantization.

Algorithm Activation
Granularity

Filter
Granularity Accuracy

SFC-6(7×7, 3×3)

Tensor Channel 69.18
Freq. Channel 69.54
Freq. Freq. 69.55
Freq. Channel+Freq. 69.58

Wino(4×4, 3×3) Tensor Channel 57.40
Freq. Channel+Freq. 67.62

Table 5. Ablation study for Resnet-18 with SFC(7×7, 3×3).

Quant. Granularity int8 int6 int4
A: Tensor, W:Channel 69.18 65.42 17.81
A: Freq., W:Channel 69.54 68.34 31.10

A: Freq., W:Freq.+Channel 69.58 68.83 55.82

7. Conclusion
We propose a novel fast convolution algorithm extended
from the Fourier transform, which solves the accuracy prob-
lem of the conventional fast convolution algorithm applied
to quantized models. According to experiment results, our
algorithms outperform state-of-the-art fast convolution quan-
tization works on both model accuracy and computation cost
reduction. Our algorithms share exactly the same compu-
tational flow as the Winograd algorithm, which means that
they can be deployed on general-purpose processors (CPUs,
GPUs) and hardware accelerator design conveniently by
following the existing works.
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A. Typical Symbolic Fourier Convolution Algorithms
For SFC-4(4× 4, 3× 3) algorithm, the matrices (with polynomial multiplication integrated) are:

BT =



0 1 1 1 1 0
0 −1 1 −1 1 0
0 1 −1 −1 1 0
0 0 −1 0 1 0
0 1 0 −1 0 0
1 0 0 0 −1 0
0 −1 0 0 0 1


,

G =



1 1 1
1 −1 1
1 −1 −1
1 0 −1
0 −1 0
1 0 0
0 0 1


, A =

1

4



1 1 1 1
1 −1 1 −1
0 2 0 −2
2 −2 −2 2
−2 −2 2 2
4 0 0 0
0 0 0 4



(18)

It costs 49 multiplications to generate 16 outputs. And only 46 multiplications are consumed when Hermitian symmetry is
fully considered.

The SFC-6(6× 6, 3× 3) algorithm costs 100/88 multiplications to generate 36 outputs. The matrices are:

BT =



0 1 1 1 1 1 1 0
0 1 1 0 −1 −1 0 0
0 0 −1 −1 0 1 1 0
0 1 0 −1 −1 0 1 0
0 1 0 −1 1 0 −1 0
0 0 −1 1 0 −1 1 0
0 1 −1 0 1 −1 0 0
0 1 −1 1 1 −1 1 0
1 0 0 0 0 0 −1 0
0 −1 0 0 0 0 0 1


,

G =



1 1 1
0 1 1
−1 −1 0
−1 0 1
−1 0 1
1 −1 0
0 −1 1
1 −1 1
1 0 0
0 0 1


, A =

1

6



1 1 1 1 1 1
2 1 −1 −2 −1 1
−1 1 2 1 −1 −2
−1 −2 −1 1 2 1
1 −2 1 1 −2 1
1 1 −2 1 1 −2
−2 1 1 −2 1 1
−1 1 −1 1 −1 1
6 0 0 0 0 0
0 0 0 0 0 6



(19)
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The SFC-6(7× 7, 3× 3) algorithm costs 144/132 multiplications to generate 49 outputs. Its transformation matrices are:

BT =



0 1 1 1 1 1 1 0 0
0 1 1 0 −1 −1 0 0 0
0 0 −1 −1 0 1 1 0 0
0 1 0 −1 −1 0 1 0 0
0 1 0 −1 1 0 −1 0 0
0 0 −1 1 0 −1 1 0 0
0 1 −1 0 1 −1 0 0 0
0 1 −1 1 −1 1 −1 0 0
1 0 0 0 0 0 −1 0 0
0 −1 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 1 0
0 0 −1 0 0 0 0 0 1


,

G =



1 1 1
0 1 1
−1 −1 0
−1 0 1
−1 0 1
1 −1 0
0 −1 1
1 −1 1
1 0 0
0 0 1
0 1 0
0 0 1


, A =

1

6



1 1 1 1 1 1 1
2 1 −1 −2 −1 1 2
−1 1 2 1 −1 −2 −1
−1 −2 −1 1 2 1 −1
1 −2 1 1 −2 1 1
1 1 −2 1 1 −2 1
−2 1 1 −2 1 1 −2
−1 1 −1 1 −1 1 −1
6 0 0 0 0 0 0
0 0 0 0 0 6 0
0 0 0 0 0 0 6
0 0 0 0 0 0 6



(20)

The SFC-6(6× 6, 5× 5) algorithm costs 196/184 multiplications to generate 36 outputs. Its transformation matrices are:

BT =



0 0 1 1 1 1 1 1 0 0
0 0 1 1 0 −1 −1 0 0 0
0 0 0 −1 −1 0 1 1 0 0
0 0 1 0 −1 −1 0 1 0 0
0 0 1 0 −1 1 0 −1 0 0
0 0 0 −1 1 0 −1 1 0 0
0 0 1 −1 0 1 −1 0 0 0
0 0 1 −1 1 −1 1 −1 0 0
1 0 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 −1 0 0
0 0 −1 0 0 0 0 0 1 0
0 0 −1 0 0 0 0 0 1 0
0 0 0 −1 0 0 0 0 0 1



,

G =



1 1 1 1 1
−1 −1 0 1 1
1 0 −1 −1 0
0 −1 −1 0 1
0 1 −1 0 1
−1 0 1 −1 0
−1 1 0 −1 1
1 −1 1 −1 1
1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1



, A =
1

6



1 1 1 1 1 1 1
1 −1 −2 −1 1 2 −1
1 2 1 −1 −2 −1 2
−2 −1 1 2 1 −1 −1
−2 1 1 −2 1 1 1
1 −2 1 1 −2 1 −2
1 1 −2 1 1 −2 1
1 −1 1 −1 1 −1 −1
6 0 0 0 0 0 0
6 0 0 0 0 0 0
0 6 0 0 0 0 0
0 0 0 0 0 6 0
0 0 0 0 0 0 6
0 0 0 0 0 0 6



(21)
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B. Applying the SFC Algorithm to Large-size Convolution Kernels
Large-kernel convolutional neural networks have recently received extensive research attention in recent years, and the
kernel sizes ranging from 7×7 to 51×51. The vanilla Fast Fourier Transform (FFT) is an option available. Since large-size
convolutions commonly use depth-wise convolutions, this makes the multiplication complexity of the algorithm n2logn, i.e.,
the computational complexity of the FFT itself will become dominant.

As a comparison, our algorithm is accomplished using only addition in the transform stage, so applying our algorithm to
large-size convolutional kernels is promising. However, our algorithm itself is not applicable to scaling large numbers of
transformation points, which can lead to the appearance of higher-order terms further increasing the real multiplication
times. We therefore consider an iterative convolution approach to the operation.

Considering a convolution with a 29×29 kernel size and a 26×26 feature map size, we will describe the computational
process of iterative convolution. We split the feature map into 5×5 tiles with 6×6 size, while splite the kernel into 6×6
tiles with 5×5 size. Convolution operation will be performed between each feature map tile and each kernel tile, so we use
SFC(6×6, 5×5) to speed it up. Note that at this time the partial convolution results of the each tiles are still summed up in
the same pattern as the convolution window sliding, which allows us to use the SFC(5×5, 6×6) algorithm to speed up the
process as the feature map has been split into 5×5 tiles, and the kernel has been split into 6×6 tiles in the first iteration. The
number of multiplications required by above two iterations is the product of the multiplications in the two SFC algorithms,
i.e., 132 × 132 = 17,424 multiplications. Our approach reduces the number of multiplications to just 3% of what is required
by direct convolution.

We can increass the number of iterations to computing convolution with more larger sizes. Since the SFC algorithm
uses only addition for the transformation, it has an easier, efficient and flexible deployment compared to the FFT method.
However, when the convolution size is large enough to require 3 or more iterations, the FFT method will appear to be more
advantageous in terms of theoretical computational efficiency.
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