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Abstract

We study the inherent privacy of releasing a single sample from a Dirichlet posterior1

distribution. As a complement to the previous study that provides general theories2

on the differential privacy of posterior sampling from exponential families, this3

study focuses specifically on the Dirichlet posterior sampling and its privacy4

guarantees. With the notion of truncated concentrated differential privacy (tCDP),5

we are able to derive a simple privacy guarantee of the Dirichlet posterior sampling,6

which effectively allows us to analyze its utility in various settings. Specifically,7

we provide accuracy guarantees of the Dirichlet posterior sampling in Multinomial-8

Dirichlet sampling and private normalized histogram publishing.9

1 Introduction10

The Bayesian framework provides a way to perform statistical analysis by combining prior beliefs11

with real-life evidence. At a high level, the belief and the evidence are assumed to be described12

by probabilistic models. As we receive new data, our belief is updated accordingly via the Bayes’13

theorem, resulting in the so-called posterior belief. The posterior tells us how much we are uncertain14

about the model’s parameters.15

The Dirichlet distribution is usually chosen as the prior when performing Bayesian analysis on discrete16

variables, as it is a conjugate prior to the categorical and multinomial distributions. Specifically,17

Dirichlet distributions are often used in discrete mixture models, where a Dirichlet prior is put on18

the mixture weights [LW92; MMR05]. Such models have applications in NLP [PB98], biophysical19

systems [Hin15], accident analysis [de 06], and genetics [BHW00; PM01; CWS03]. In all of these20

studies, samplings from Dirichlet posteriors arise when performing Markov chain Monte Carlo21

methods for approximate Bayesian inference.22

Dirichlet posterior sampling also appears in other learning tasks. For example, in Bayesian active23

learning, it arises in Gibbs sampling, which is used to approximate the posterior of the classifier over24

the labeled sample [NLYCC13]. In Thompson sampling for multi-armed bandits, one repeatedly25

draws a sample from the Dirichlet posterior of each arm, and picks the arm whose sample maximizes26

the reward [ZHGSY20; AAFK20; NIK20]. And in Bayesian reinforcement learning, state-transition27

probabilities are sampled from the Dirichlet posterior over past observed states [Str00; ORR13].28

Dirichlet posterior sampling can also be used for data synthesis. Suppose that we have a histogram29

(x1, . . . , xd) of actual data. An approximate discrete distribution of this histogram can be obtained by30

drawing a sample Y from Dirichlet(x1 + α1, . . . , xd + αd), where α1, . . . , αd are prior parameters.31

Then synthetic data is produced by repeatedly drawing from Multinomial(Y). There are many32

studies on data synthesis that followed this approach [AV08; MKAGV08; RWZ14; PG14; SJGLY17].33
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In the above examples, the data that we integrate into these tasks might contain sensitive information.34

Thus it is important to ask: how much of the information is protected from the Dirichlet samplings?35

The goal of this study is to find an answer to this question.36

The mathematical framework of differential privacy (DP) [DMNS06] allows us to quantify how much37

the privacy of the Dirichlet posterior sampling is affected by the prior parameters α1, . . . , αd. In the38

definition of DP, the privacy of a randomized algorithm is measured by how much its distribution39

changes upon perturbing a single data point of the input. Nonetheless, this notion might be too40

strict for the Dirichlet distribution, as a small perturbation of a near-zero parameter can cause a large41

distribution shift. Thus, it might be more appropriate to rely on one of several relaxed notions of42

DP, such as approximate differential privacy, Rényi differential privacy, or concentrated differential43

privacy. It is natural to wonder if the Dirichlet posterior sampling satisfies any of these definitions.44

1.1 Overview of Our results45

This study focuses on the privacy and utility of Dirichlet posterior sampling. In summary, we provide46

a closed-form privacy guarantee of the Dirichlet posterior sampling, which in turn allows us to47

effectively analyze its utility in various settings.48

§3 Privacy. We study the role of the prior parameters in the privacy of the Dirichlet posterior49

sampling. Theorem 1 is our main result, where we provide a guaranteed upper bound for truncated50

concentrated differential privacy (tCDP) of the Dirichlet posterior sampling. In addition, we convert51

the tCDP guarantee into an approximate differential privacy guarantee in Corollary 2.52

§4 Utility. Using the tCDP guarantee, we investigate the utility of Dirichlet posterior sampling53

applied in two specific applications:54

• In Section 4.1, we consider one-time sampling from a Multinomial-Dirichlet distribution.55

But instead of directly sampling from this distribution, we sample from another distribution56

with larger prior parameters. The accuracy is then measured by the KL-divergence between57

the original and the private distributions.58

• In Section 4.2, we use the Dirichlet posterior sampling for a private release of a normalized59

histogram. In this case, the accuracy is measured by the mean-squared error between the60

sample and the original normalized histogram.61

In both tasks, we compute the sample size that guarantees the desired level of accuracy. In the case62

of private histogram publishing, we also compare the Dirichlet posterior sampling to the Gaussian63

mechanism.64

1.2 Related work65

There are several studies on the differential privacy of posterior sampling. Wang, Fienberg, and66

Smola [WFS15] showed that any posterior sampling with the log-likelihood bounded by B is 4B-67

differentially private. However, the likelihoods that we study are not bounded away from zero; they68

have the form
∏
i p
xi
i which becomes small when one of the pi’s is close to zero. Dimitrakakis, Nelson,69

Zhang, Mitrokotsa, and Rubinstein [DNZMR17] showed that if the condition on the log-likelihood is70

relaxed to the Lipschitz continuity with high probability, then one can obtain the approximate DP.71

Nonetheless, with the Dirichlet density, it is difficult to compute the probability of events in which72

the Lipschitz condition is satisfied.73

In the case that the sufficient statistics x has finite `1-sensitivity, Foulds, Geumlek, Welling and74

Chaudhuri [FGWC16] suggested adding Laplace noises to x. Suppose that y is the output; they75

showed that sampling from p(θ|y) is differentially private and as asymptotically efficient as sampling76

from p(θ|x). However, for a small sample size, the posterior over the noisy statistics might be too77

far away from the actual posterior. Bernstein and Sheldon [BS18] thus proposed to approximate the78

joint distribution p(θ,x,y) using Gibbs sampling, which is then integrated over x to obtain a more79

accurate posterior over y.80
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Geumlek, Song, and Chaudhuri [GSC17] were the first to study the posterior sampling with the81

RDP. Even though they provided a general framework to find (λ, ε)-RDP guarantees for exponential82

families, explicit forms of ε and the upper bound of λwere not given. In contrast, our tCDP guarantees83

of the Dirichlet posterior sampling imply an explicit expression for ε, and also an upper bound for λ.84

The privacy of data synthesis via sampling from Multinomial(Y), where Y is a discrete distri-85

bution drawn from the Dirichlet posterior, was first studied by Machanavajjhala, Kifer, Abowd,86

Gehrke, and Vilhuber [MKAGV08]. They showed that the data synthesis is (ε,δ)-probabilistic DP,87

which implies (ε,δ)-approximate DP. However, as their privacy analysis includes the sampling from88

Multinomial(Y), their privacy guarantee depends on the number of synthetic samples. In contrast,89

we show that the one-time sampling from the Dirichlet posterior is approximate DP, which by the90

post-processing property allows us to sample from Multinomial(Y) as many times as we want while91

retaining the same privacy guarantee.92

The Dirichlet mechanism was first introduced by Gohari, Wu, Hawkins, Hale, and Topcu [GWHHT21].93

Originally, the Dirichlet mechanism takes a discrete distribution p := (p1, . . . , pd) and draws one94

sample Y ∼ Dirichlet(rp1, . . . , rpd). Note the absence of the prior parameters, which makes Y an95

unbiased estimator of p. But this comes with a cost, as the worst case of privacy violation occurs96

when almost all of the parameters are close to zero. The authors avoided this issue by restricting97

the input space to a subset of the unit simplex, with some of the pi’s bounded below by a fixed98

positive constant. This results in complicated expressions for the privacy guarantees as they involve99

a minimization problem over the restricted domain. In this study, we take a different approach by100

adding prior parameters to the Dirichlet mechanism. As a result, we obtain a biased algorithm that101

requires no assumption on the input space and has simpler forms of privacy guarantees.102

1.3 Notations103

We let Rd≥0 be the set of d-tuples of non-negative real numbers and Rd>0 be the set of d-tuples of104

positive real numbers. We assume that all vectors are d-dimensional where d ≥ 2. The notations for105

all vectors are always in bold. Specifically, x := (x1, . . . , xd) ∈ Rd≥0 consists of sample statistics of106

the data and α := (α1, . . . , αd) ∈ Rd>0 consists of the prior parameters. The vector p := (p1, . . . , pd)107

always satisfies
∑
i pi = 1. The number of observations is always N . We also denote x0 :=

∑
i xi108

and α0 :=
∑
i αi. For any vectors x,x′ and scalar r > 0, we write x+x′ := (x1 +x′1, . . . , xd +x′d)109

and rx := (rx1, . . . , rxd). For any positive reals x and x′, the notation x ∝ x′ means x = Cx′ for110

some constant C > 0, x ≈ x′ means cx′ ≤ x ≤ Cx′ for some c, C > 0, and x . x′ means x ≤ Cx′111

for some C > 0. Lastly, ‖x‖∞ := maxi|xi| is the `∞ norm of x.112

2 Background113

2.1 Privacy models114

Definition 2.1 (Pure and Approximate DP [DMNS06]). A randomized mechanism M : Xn → Y115

is (ε, δ)-differentially private ((ε, δ)-DP) if for any datasets x, x′ differing on a single entry, and all116

events E ⊂ Y ,117

P[M(x) ∈ E] ≤ eεP[M(x′) ∈ E] + δ.

If M is (ε, 0)-DP, then we say that it is ε-differential privacy (ε-DP).118

The term pure differential privacy (pure DP) refers to ε-differential privacy, while approximate119

differential privacy (approximate DP) refers to (ε, δ)-DP when δ > 0.120

In contrast to pure and approximate DP, the next definitions of differential privacy are defined in121

terms of the Rényi divergence between M(x) and M(x′):122

Definition 2.2 (Rényi Divergence [Rén61]). Let P andQ be probability distributions. For λ ∈ (1,∞)123

the Rényi divergence of order λ between P and Q is defined as124

Dλ(P‖Q) :=
1

λ− 1
log

∫
P (y)λQ(y)1−λ dy =

1

λ− 1
log

(
E
y∼P

[
P (y)λ−1

Q(y)λ−1

]
.

)
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Definition 2.3 (tCDP and zCDP [BDRS18; BS16]). A randomized mechanism M : Xn → Y is125

ω-truncated ρ-concentrated differentially private ((ρ, ω)-tCDP) if for any datasets x, x′ differing on a126

single entry and for all λ ∈ (1, ω),127

Dλ(M(x)‖M(x′)) ≤ λρ.
If M is (ρ,∞)-tCDP, then we say that it is ρ-zero-concentrated differential privacy (ρ-zCDP).128

Note that both tCDP and zCDP have the composition and post-processing properties. Intuitively, ρ con-129

trols the expectation and standard deviation of the privacy loss random variable: Z = log P [M(x)=Y ]
P [M(x′)=Y ] ,130

where Y has density M(x), and ω controls the number of standard deviations for which Z concen-131

trates like a Gaussian. A smaller ρ and larger ω correspond to a stronger privacy guarantee. It turns132

out that tCDP implies approximate DP:133

Lemma 1 (From tCDP to Approximate DP [BDRS18]). Let δ > 0. IfM is a (ρ, ω)-tCDP mechanism,134

then it also satisfies (ε, δ)-DP with135

ε =

{
ρ+ 2

√
ρ log(1/δ) if log(1/δ) ≤ (ω − 1)2ρ

ρω + log(1/δ)
ω−1 if log(1/δ) > (ω − 1)2ρ

.

2.2 Dirichlet distribution136

For α ∈ Rd>0, the Dirichlet distribution Dirichlet(α) is a continuous distribution of d-dimensional137

probability vectors i.e. vectors whose coordinate sum is equal to 1. The density function of Y ∼138

Dirichlet(α) is given by:139

p(y) =
1

B(α)

d∏
i=1

yαi−1
i ,

where B(α) is the beta function, which can be written in terms of the gamma function:140

B(α) =

∏
i Γ(αi)

Γ(
∑
i αi)

. (1)

2.3 Dirichlet posterior sampling141

We consider the prior Dirichlet(α) and the likelihood of the form p(x|y) ∝
∏d
i=1 y

xi
i where142

x ∈ Rd≥0 consists of sample statistics of the dataset. The Dirichlet posterior sampling is a one-time143

sampling:144

Y ∼ Dirichlet(x + α).

There is a modification of the sampling which introduces a concentration parameter r > 0, and145

instead we sample from Dirichlet(rx + α) [GSC17; GWHHT21]. Smaller values of r make the146

sampling more private, and larger values of r make Y a closer approximation of x. Even though the147

case r = 1 is the main focus of this study, our main privacy results can be easily extended to other148

values of r as we will see at the end of Section 3.1.149

Consider a special case where x = p is an empirical distribution derived from the dataset, and we150

want Y to be a private approximation of p; the sampling Y ∼ Dirichlet(rp + α) is called the151

Dirichlet mechanism [GWHHT21]. It is interesting to note that the Dirichlet mechanism is a form of152

the exponential mechanism [MT07]: let r > 0 be the privacy parameter, Dirichlet(α) be the prior,153

and the negative KL-divergence be the score function of the exponential mechanism. Then the output154

Y of this mechanism is distributed according to the following density function:155

exp(−rDKL(p,y))
∏
i y
αi−1
i∫

exp(−rDKL(p,y))
∏
i y
αi−1
i dy

∝ exp

r ∑
i,pi 6=0

pi log(yi/pi)

∏
i

yαi−1
i

∝
∏
i,pi 6=0

yrpii

∏
i

yαi−1
i =

∏
i

yrpi+αi−1
i ,

which is exactly the density function of Dirichlet(rp + α).156

4



2.4 Polygamma functions157

In most of this study, we take advantage of several nice properties of the log-gamma function and its158

derivatives. Specifically, ψ(x) := d
dx log Γ(x) is concave and increasing, while its derivative ψ′(x) is159

positive, convex, and decreasing. In addition, ψ′ can be approximated by the reciprocals:160

1

x
+

1

2x2
< ψ′(x) <

1

x
+

1

x2
,

which implies that ψ′(x) ≈ 1
x2 as x→ 0 and ψ′(x) ≈ 1

x as x→∞.161

3 Main privacy results162

3.1 Truncated concentrated differential privacy163

Theorem 1. Let α ∈ Rd>0 and αm := mini αi. Let γ ∈ (0, αm). Let ∆2,∆∞ > 0 be constants that164

satisfy
∑
i(xi − x′i)2 ≤ ∆2

2 and maxi |xi − x′i| ≤ ∆∞ whenever x,x′ ∈ R2
≥0 are sample statistics165

of any two datasets differing on a single entry. The one-time sampling from Dirichlet(x + α) is166

(ρ, ω)-tCDP, where ω = γ
∆∞

+ 1 and167

ρ =
1

2
∆2

2ψ
′(αm − γ). (2)

Note that (ρ,∞)-tCDP is not obtainable, as the ratio between two Dirichlet densities blows up as168

ω →∞. We present here a short proof that skips some calculations (see Appendix 1 for a full proof).169

proof. Consider any λ ∈
(

1, γ
∆∞

+ 1
)

. Let u := x+α and u′ := x′ +α′. Let P (y) be the density170

of Dirichlet(u) and P ′(y) be the density of Dirichlet(u′). A quick calculation shows that:171

Ey∼P (y)

[
P (y)λ−1

P ′(y)λ−1

]
=
B(u′)λ−1

B(u)λ−1
· B(u + (λ− 1)(u− u′))

B(u)
. (3)

We take the logarithm on both sides and apply the second-order Taylor expansion to the following172

G(ui, u
′
i) and H(ui, u

′
i) terms that appear on the right-hand side. As a result, there exist ξ between173

ui + (λ− 1)(ui − u′i) and ui, and ξ′ between ui and u′i such that174

G(ui, u
′
i) := (λ− 1)(log Γ(u′i)− log Γ(ui))

= −(λ− 1)(xi − x′i)ψ(ui) +
1

2
(λ− 1)(xi − x′i)2ψ′(ξ′) (4)

H(ui, u
′
i) := log Γ(ui + (λ− 1)(ui − u′i))− log Γ(ui)

= (λ− 1)(xi − x′i)ψ(ui) +
1

2
(λ− 1)2(xi − x′i)2ψ′(ξ), (5)

Note that ψ′ is increasing. If xi > x′i, then ξ and ξ′ are bounded below by u′i ≥ αm. On the175

other hand, if xi ≤ x′i, then ξ and ξ′ are bounded below by ui − (λ − 1)|ui − u′i|. The condition176

λ < γ
∆∞

+ 1 guarantees that ui − (λ− 1)|ui − u′i| > αm − γ. All cases considered, we have177

G(ui, u
′
i) +H(ui, u

′
i) ≤

1

2

(
(λ− 1) + (λ− 1)2

)
(xi − x′i)2ψ′(αm − γ)

=
1

2
λ(λ− 1)(xi − x′i)2ψ′(αm − γ).

Denoting u0 :=
∑
i ui and u′0 :=

∑
i u
′
i, the same argument shows that G(u0, u

′
0) +H(u0, u

′
0) > 0.178

Therefore,179

Dλ(P (y)‖P ′(y)) =
1

λ− 1

(∑
i

(G(ui, u
′
i) +H(ui, u

′
i))−G(u0, u

′
0)−H(u0, u

′
0)

)

<
1

λ− 1

∑
i

(G(ui, u
′
i) +H(ui, u

′
i))

≤ 1

2
λ
∑
i

(xi − x′i)2ψ′(αm − γ) ≤ 1

2
λ∆2

2ψ
′(αm − γ).
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Figure 1: Left: the actual values of ρ = 1
2 D2(P‖P ′) and the worst case (ρ, 2)-tCDP guarantees (2)

at ∆2
2 = ∆∞ = 1. Here, P and P ′ are Dirichlet posterior densities over x = (11, 8, 65, 25, 38, 0),

x′ = (11, 8, 65, 25, 38, 1), and α = (α, . . . , α). Right: comparison between (ε, δ)-DP guarantees of
the Dirichlet posterior samplings (8) with different uniform priors: α = (α, . . . , α).

The guaranteed upper bound (2) is independent of the sample statistics. As a result, the bound applies180

even in worst settings i.e., when xi = 0 and x′i = ∆∞, or vice versa, for some i. As we can see in181

Figure 1, the upper bound is a close approximation to the actual value of ρ when x6 = 0 and x′6 = 1.182

However, being a sample independent bound, the difference becomes substantial when all xi’s are183

large. There is one way to get around this issue: if there is no privacy violation in assuming that184

the sample statistics are always bounded below by some threshold τ , then we can incorporate the185

threshold into the prior (thus ψ′(αm − γ) in (2) is replaced by ψ′(αm + τ − γ)).186

The parameter γ allows us to adjust the moment bound ω as desired. Even though a higher ω usually187

leads to a better privacy guarantee, there are two downsides to picking γ close to αm in this case.188

First, note that ρ contains ψ′(αm− γ); as γ → αm, the value of ρ diverges to∞, leading to a weaker189

privacy guarantee instead. Second, as the Taylor approximation (5) is accurate when ui is close to190

ui + (λ− 1)(ui − u′i), having a large value of λ would push the guaranteed upper bound away from191

the actual privacy loss. Thus it is recommended to pick γ so that γ/∆∞ ≥ 1 and αm − γ � 0.192

Alternatively, we can choose the value of γ that minimizes ε when converting from tCDP to (ε, δ)-DP193

using Lemma 1—this method will be explored in the next subsection.194

Theorem 1 can be easily applied to sampling from Dirichlet(rx+α). Replacing x with rx, we have195

∆2 replaced by r∆2 and ∆∞ replaced by r∆∞. Consequently, the sampling is
(
ρ, γ

r∆∞
+ 1
)

-tCDP,196

where ρ = 1
2r

2∆2
2ψ
′(αm − γ). In Appendix 4, we analyze the scaling of r in conjunction with αm197

at a fixed privacy budget ρ.198

3.2 Approximate differential privacy199

We now convert the tCDP guarantee to an approximate DP guarantee. Let δ ∈ (0, 1). Using Lemma 1,200

the Dirichlet posterior sampling with Dirichlet(α) as the prior is (ε, δ)-DP with201

ε =

{
ρ(γ) + 2

√
ρ(γ) log(1/δ) if log(1/δ) ≤ γ2ρ(γ)/∆2

∞

ρ(γ)
(

γ
∆∞

+ 1
)

+ log(1/δ)∆∞
γ if log(1/δ) > γ2ρ(γ)/∆2

∞
, (6)

where ρ(γ) = 1
2∆2

2ψ
′(αm − γ).202

We try to minimize ε by adjusting the value of γ. First, we consider the case log(1/δ) ≤ γ2ρ(γ)/∆2
∞.203

Since ρ(γ) is a strictly increasing function of γ, both ρ(γ) + 2
√
ρ(γ) log(1/δ) and γ2ρ(γ)/∆2

∞204

are both strictly increasing function of γ. Therefore, ε is minimized at the minimum possible205

value of γ in this case, that is, at the unique γM that satisfies log(1/δ) = γ2
Mρ(γM )/∆2

∞ =206
1
2γ

2
M∆2

2ψ
′(αm − γM )/∆2

∞.207
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Now we consider the second case, when γ < γM . As ρ(γ) is an increasing positive convex function208

of γ, the function209

f(γ) :=
1

2
∆2

2ψ
′(αm − γ)

(
γ

∆∞
+ 1

)
+

log(1/δ)∆∞
γ

; γ ∈ (0, γM ], (7)

is also convex in γ, and thus has a unique minimizer γm ∈ (0, γM ]. Comparing to the first case, we210

have f(γm) ≤ f(γM ) = ρ(γM ) + 2
√
ρ(γM ) log(1/δ). We then conclude that ε = f(γm).211

Theorem 2. Let α ∈ R2
>0 and denote αm = mini αi. Let ∆2,∆∞ > 0 be constants that satisfy212 ∑

i(xi − x′i)2 ≤ ∆2
2 and maxi |xi − x′i| ≤ ∆∞ whenever x,x′ ∈ Rd≥0 are sample statistics of any213

two datasets differing on a single entry. For any δ ∈ (0, 1), let γM be the solution to the equation214

log(1/δ) = 1
2γ

2∆2
2ψ
′(αm − γ)/∆2

∞. The one-time sampling from Dirichlet(x + α) is (ε, δ)-DP,215

where216

ε = min
γ∈(0,γM ]

f(γ). (8)

Figure 1 shows how δ decays as a function of ε at three different values of αm.217

4 Utility218

Using the results from the previous section, we analyze the Dirichlet posterior sampling’s utility in219

two specific tasks.220

4.1 Multinomial-Dirichlet sampling221

Suppose that we are observing N trials, each of which has d possible outcomes. For each i ∈222

{1, . . . , d}, let xi be the number of times the i-th outcome was observed. Then we have the223

multinomial likelihood p(x|y) ∝
∏
i y
xi
i . From this, we sample from the Dirichlet posterior:224

Y ∼ Dirichlet(x + α). (9)

Suppose that we want to sample from a true distribution PX ∼ Dirichlet(x + α), but for privacy225

reasons, we instead sample from Qx ∼ Dirichlet(x + α′) where α′i > αi for all i. The utility of the226

privacy scheme is then measured by the KL-divergence between Px and Qx. Assuming that x is an227

observation of Multinomial(p), the following Theorem tells us that, on average, the KL-divergence228

is small when the sample size is large, and the pi’s are evenly distributed.229

Theorem 3. Let p := (p1, . . . , pd) where pi > 0 for all i and
∑
i pi = 1. Define a random230

variable X ∼ Multinomial(p). Let PX ∼ Dirichlet(X + α) and QX ∼ Dirichlet(X + α′) where231

α′i ≥ αi ≥ 1 for all i. The following estimate holds:232

EX[DKL(PX‖QX)] ≤ 1

N + 1

∑
i

(α′i − αi)2 · 1

pi
. (10)

The proof is given in Appendix 2. Let us consider a simple privacy scheme where we fix s > 0 and233

let α′i = αi + s for all i. Thus (10) becomes:234

EX[DKL(PX‖QX)] ≤ G(p)s2

N + 1
, (11)

where G(p) :=
∑
i 1/pi. Now we take into account the privacy parameters. Let ρ = ∆2

2ψ
′(αm − γ)235

and ρ′ = ∆2
2ψ
′(α′m−γ), where αm = mini αi, α′m = mini α

′
i, and γ < αm. Here, we approximate236

the values of ψ′(αm − γ) and ψ′(α′m − γ) under two regimes:237

High-privacy regime: α′m − γ > 1. We have ψ′(α′m − γ) ≈ 1/(α′m − γ), which implies238

α′m−γ ≈ ∆2
2/ρ
′. We also have αm−γ ≈ ∆2

2/ρ for αm−γ ≥ 1 and αm−γ > (αm−γ)2 ≈ ∆2
2/ρ239

for α− γ < 1. Thus we have the following bound for the right-hand side of (11):240

G(p)s2

N + 1
=
G(p)(α′m − αm)2

N + 1
.

∆4
2G(p)

N + 1

(
1

ρ′
− 1

ρ

)2

<
∆4

2G(p)

ρ′2(N + 1)
. (12)

Consequently, we have DKL(P‖Q) < ε for N = Ω
(

∆4
2G(p)
ρ′2ε

)
.241
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Low-privacy regime: 1 > α′m − γ > 0. This is similar as above, except we have α′m − γ ≈242

∆2/ρ
′1/2 and αm − γ ≈ ∆2/ρ

1/2. Similar computation as (12) shows that DKL(P‖Q) < ε when243

N = Ω
(

∆2
2G(p)
ρ′ε

)
.244

We observe that, in both regimes, the sample size scales faster with respect to ε with a higher value of245

G(p), which is associated with a higher number of outcomes d, and more concentrated multinomial246

parameter p; this agrees with the result of our simulation in Appendix 3. Moreover, for small ρ′ the247

sample size scales as 1/ρ′2, while for large ρ′ the sample size scales as 1/ρ′.248

4.2 Private normalized histograms249

Let x = (x1, . . . , xd) be a histogram of N observations and p := x/N . We can privatize p by250

sampling a probability vector: Y ∼ Dirichlet(x + α). Note that Y is a biased estimator of p.251

Denoting α0 :=
∑
i αi, the bias of each component of Y is given by E[Y]− pi. Hence,252

|Bias(Yi)| =
∣∣∣∣ xi + αi
N + α0

− pi
∣∣∣∣ =
|xiα0 −Nαi|
N(N + α0)

≤ Nα0

N(N + α0)
=

α0

N + α0
.

Since Yi ∼ Beta(xi + αi, N + α0 − xi − αi) is 1
4(N+α0+1) -sub-Gaussian [MA17], we have,253

P[|Yi − pi| > t+ |Bias(Yi)|] ≤ P[|Yi − E[Yi]|+ |Bias(Yi)| > t+ |Bias(Yi)|]
= P[|Yi − E[Yi]| > t]

≤ 2e−2t2(N+α0+1).

With the union bound, we plug in t =
√

log(2d/β)
2(N+α0+1) , for any β ∈ (0, 1), to obtain the following254

accuracy guarantee of the private normalized histogram:255

Theorem 4. Let Y ∼ Dirichlet(x + α), where x ∈ Rd≥0 and α ∈ Rd>0, and p := x/N . For any256

β ∈ (0, 1), with probability at least 1− β, the following inequality holds:257

‖Y − p‖∞ ≤

√
log(2d/β)

2(N + α0 + 1)
+

α0

N + α0
. (13)

Given ε > 0, we use (13) to find a lower bound for N that gives ‖Y − p‖∞ < ε w.p. 1− β when258

Y is sampled with ρ-tCDP. For simplicity, we consider a uniform prior: αi = α > 0 for all i.259

Thus, ρ = 1
2∆2

2ψ
′(α− γ), where γ might be chosen according to Corollary 2. We consider the two260

following regimes:261

High-privacy regime: α−γ > 1. In this case, ψ′(α−γ) ≈ 1/(α−γ). From ρ = 1
2∆2

2ψ
′(α−γ),262

we have α ≈ ∆2
2/2ρ+ γ. Replacing α0 by dα in (13) yields the sample size:263

N = Ω

(
log(2d/β)

ε2
+
d

ε

(
∆2

2

2ρ
+ γ

))
, (14)

for the desired accuracy.264

Low-privacy regime: α − γ < 1. This is the same as above, except now we have ψ′(α − γ) ≈265

1/(α − γ)2, which implies α ≈ ∆2/(2ρ)1/2 + γ. The sample size that guarantees the desired266

accuracy is:267

N = Ω

(
log(2d/β)

ε2
+
d

ε

(
∆2√
2ρ

+ γ

))
. (15)

Let us compare this result to the Gaussian mechanism, which adds a noise Z ∼ N(0, σ2Id) to the268

normalized histogram p directly. Thus the `2-sensitivity in this case is ∆2/N . We have that the269

Gaussian mechanism is ρ-zCDP where ρ = ∆2

2N2σ2 [BS16]. Using the same argument as above, with270

probability at least 1− β, the following inequality holds for all i:271

‖Z‖∞ ≤

√
log(2d/β)∆2

2

N2ρ
. (16)
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Figure 2: The `∞-accuracy, as a function of N , of Dirichlet posterior sampling (γ = 1) and Gaussian
mechanisms for private normalized histograms (∆2

2 = 2 and ∆∞ = 1). For each N, d and ρ, we
generated the inputs x1, . . . ,x200, where xk ∼ Multinomial(qk) and qk ∼ Dirichlet(5, . . . , 5).

Hence, the sample size of N = Ω
(√

log(2d/β)∆2
2/ρε

2
)

guarantees the desired accuracy. Compar-272

ing this to (14), if we assume ε < 1, the AM-GM inequality tells us that273

log(2d/β)

ε2
+
d∆2

2

ρε
>

log(2d/β)

ε2
+

∆2
2

ρ
≥ 2

√
log(2d/β)∆2

2

ρε2
. (17)

The inequality (17) implies that the Gaussian mechanism requires less sample than the Dirichlet274

mechanism in order to guarantee the same level of accuracy. The Gaussian mechanism is also better275

in the low-privacy regime as the ρ in (15) satisfies
√
ρ < ρ and ∆2 ≈ ∆2

2, leading to the same276

inequality (17). Nonetheless, the decay in (16) is linear in d, while that in (13) has α0 = dα in277

the denominators. This observation suggests that, when x is a sparse histogram i.e. when N ≤ d,278

the `∞-accuracy of the Dirichlet mechanism is smaller than that of the Gaussian mechanism. This279

conclusion is supported by our simulation in Figure 2. We see that the `∞-accuracy of the Dirichlet280

mechanism is smaller than that of the Gaussian mechanism for small N when d = 1000. The code281

for all experiments in this study can be found in the supplemental material.282

Potential negative societal impacts283

It is important to note that, when ρ becomes unacceptably large (e.g., ρ = 104), the sampling is far284

away from being private. Thus any organization that deploys the posterior sampling on sensitive data285

must not vacuously refer to this study and claim that its algorithm is private. It is the organization’s286

responsibility to fully publish the prior parameters, and educate its users/customers on differential287

privacy and how the privacy guarantees are calculated.288

It is desirable that differentially private algorithms are accurate for the task at hand, especially when289

the data is used for important decision-making. Thus, one needs to make sure that there is enough290

sample to achieve the desired level of accuracy. For a large differentially private system, privacy291

budgets need to be allocated to the parts that require accurate outputs.292

Lastly, one must be careful with the choice of prior parameters; if a uniform prior is used, smaller293

groups will suffer a relatively larger statistical bias. As a result, private statistics of small populations294

(such as ethnic or racial minorities) will be relatively less accurate. One way to get around this issue295

is to (privately) impose larger prior parameters on larger populations.296
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