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Abstract

To advance deep learning methodologies in the next decade, a theoretical framework for
reasoning about modern neural networks is needed. While efforts are increasing toward
demystifying why deep learning is so effective, a comprehensive picture remains lacking,
suggesting that a better theory is possible. We argue that a future deep learning theory
should inherit three characteristics: a hierarchically structured network architecture, pa-
rameters iteratively optimized using stochastic gradient-based methods, and information
from the data that evolves compressively. As an instantiation, we integrate these char-
acteristics into a graphical model called neurashed. This model effectively explains some
common empirical patterns in deep learning. In particular, neurashed enables insights into
implicit regularization, information bottleneck, and local elasticity. Finally, we discuss how
neurashed can guide the development of deep learning theories.

1 Introduction

Deep learning is recognized as a monumentally successful approach to many data-extensive applications in
image recognition, natural language processing, and board game programs (Krizhevsky et al., 2017; LeCun
et al., 2015; Silver et al., 2016). Despite extensive efforts (Jacot et al., 2018; Bartlett et al., 2017; Berner
et al., 2021), however, our theoretical understanding of how this increasingly popular machinery works and
why it is so effective remains incomplete. This is exemplified by the substantial vacuum between the highly
sophisticated training paradigm of modern neural networks and the capabilities of existing theories. For
instance, the optimal architectures for certain specific tasks in computer vision remain unclear (Tolstikhin
et al., 2021).

To better fulfill the potential of deep learning methodologies in increasingly diverse domains, heuristics
and computation are unlikely to be adequate—a comprehensive theoretical foundation for deep learning is
needed. Ideally, this theory would demystify these black-box models, visualize the essential elements, and
enable principled model design and training. A useful theory would, at a minimum, reduce unnecessary
computational burden and human costs in present-day deep-learning research, even if it could not make all
complex training details transparent.

Unfortunately, it is unclear how to develop a deep learning theory from first principles. Instead, in this
paper we take a phenomenological approach that captures some important characteristics of deep learning.
Roughly speaking, a phenomenological model provides an overall picture rather than focusing on details, and
allows for useful intuition and guidelines so that a more complete theoretical foundation can be developed.

To address what characteristics of deep learning should be considered in a phenomenological model, we
recall the three key components in deep learning: architecture, algorithm, and data (Zdeborová, 2020). The
most pronounced characteristic of modern network architectures is their hierarchical composition of sim-
ple functions. Indeed, overwhelming evidence shows that multiple-layer architectures are superior to their
shallow counterparts (Eldan & Shamir, 2016), reflecting the fact that high-level features are hierarchically
represented through low-level features (Hinton, 2021; Bagrov et al., 2020). The optimization workhorse for
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training neural networks is stochastic gradient descent or Adam (Kingma & Ba, 2015), which iteratively
updates the network weights using noisy gradients evaluated from small batches of training samples. Over-
whelming evidence shows that the solution trajectories of iterative optimization are crucial to generalization
performance (Soudry et al., 2018). It is also known that the effectiveness of deep learning relies heavily on
the structure of the data (Blum & Rivest, 1992; Goldt et al., 2020), which enables the compression of data
information in the late stages of deep learning training (Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby,
2017).

2 Neurashed

We introduce a simple, interpretable, white-box model that simultaneously possesses the hierarchical, it-
erative, and compressive characteristics to guide the development of a future deep learning theory. This
model, called neurashed, is represented as a graph with nodes partitioned into different levels (Figure 1).
The number of levels is the same as the number of layers of the neural network that neurashed imitates.
Instead of corresponding with a single neuron in the neural network, an l-level node in neurashed represents
a feature that the neural network can learn in its l-layer. For example, the nodes in the first/bottom level
denote lowest-level features, whereas the nodes in the last/top level correspond to the class membership in
the classification problem. To describe the dependence of high-level features on low-level features, neurashed
includes edges between a node and its dependent nodes in the preceding level. This reflects the hierarchical
nature of features in neural networks.

Figure 1: A neurashed model that imitates a four-layer neural network for a three-class classification
problem. For instance, the feature represented by the leftmost node in the second level is formed by
the features represented by the three leftmost nodes in the first level.

Given any input sample, a node in neurashed is in one of two states: firing or not firing. The unique last-level
node that fires for an input corresponds with the label of the input. Whether a node in the first level fires
or not is determined by the input. For a middle-level node, its state is determined by the firing pattern of
its dependent nodes in the preceding levels. For example, let a node represent cat and its dependent nodes
be cat head and cat tail. We activate cat when either or both of the two dependent nodes are firing.
Alternatively, let a node represent panda head and consider its dependent nodes dark circle, black ear,
and white face. The panda head node fires only if all three dependent nodes are firing.

We call the subgraph induced by the firing nodes the feature pathway of a given input. Samples from different
classes have relatively distinctive feature pathways, commonly shared at lower levels but more distinct at
higher levels. By contrast, feature pathways of same-class samples are identical or similar. An illustration is
given in Figure 2.

To enable prediction, all nodes F except for the last-level nodes are assigned a nonnegative value λF as a
measure of each node’s ability to sense the corresponding feature. A large value of λF means that when this
node fires it can send out strong signals to connected nodes in the next level. Hence, λF is the amplification
factor of F . Moreover, let ηfF denote the weight of a connected second-last-level node f and last-level node
F . Given an input, we define the score of each node, which is sent to its connected nodes on the next level:
For any first-level node F , let score SF = λF if F is firing and SF = 0 otherwise; for any firing middle-level
node F , we recursively define

SF = λF

∑
f→F

Sf ,
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(a) Class 1a (b) Class 1b

(c) Class 2 (d) Class 3

Figure 2: Feature pathways of the neurashed model in Figure 1. Firing nodes are marked in red.
Class 1 includes two types of samples with slightly different feature pathways, which is a reflection of
heterogeneity in real-life data (Feldman, 2020).

where the sum is over all dependent nodes f of F in the lower level. Likewise, let SF = 0 for any non-firing
middle-level node F . For the last-level nodes F1, . . . , FK corresponding to the K classes, let

Zj =
∑

f→Fj

ηfFj
Sf (1)

be the logit for the jth class, where the sum is over all second-last-level dependent nodes f of Fj . Finally,
we predict the probability that this input is in the jth class as

pj(x) = exp(Zj)∑K
i=1 exp(Zi)

.

To mimic the iterative characteristic of neural network training, we must be able to update the amplification
factors for neurashed during training. At initialization, because there is no predictive ability as such for
neurashed, we set λF and ηfF to zero, other constants, or random numbers. In each backpropagation,
a node is firing if it is in the union of the feature pathways of all training samples in the mini-batch for
computing the gradient. We increase the amplification ability of any firing node. Specifically, if a node F is
firing in the backpropagation, we update its amplification factor λF by letting

λF ← g+(λF ),

where g+ is an increasing function satisfying g+(x) > x for all x ≥ 0. The simplest choices include g+(x) = ax
for a > 1 and g+(x) = x + c for c > 0. The strengthening of firing feature pathways is consistent with a
recent analysis of simple hierarchical models (Poggio et al., 2020; Allen-Zhu & Li, 2020). By contrast, for
any node F that is not firing in the backpropagation, we decrease its amplification factor by setting

λF ← g−(λF )

for an increasing function g− satisfying 0 ≤ g−(x) ≤ x; for example, g−(x) = bx for some 0 < b ≤ 1.
This recognizes regularization techniques such as weight decay, batch normalization (Ioffe & Szegedy, 2015),
layer normalization (Ba et al., 2016), and dropout (Srivastava et al., 2014) in deep-learning training, which
effectively impose certain constraints on the weight parameters (Fang et al., 2021). Update rules g+, g−

generally vary with respect to nodes and iteration number. Likewise, we apply rule g+ to ηfF when the
connected second-last-level node f and last-level node F both fire; otherwise, g− is applied.
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The training dynamics above could improve neurashed’s predictive ability. In particular, the update rules
allow nodes appearing frequently in feature pathways to quickly grow their amplification factors. Conse-
quently, for an input x belonging to the jth class, the amplification factors of most nodes in its feature
become relatively large during training, and the true-class logit Zj also becomes much larger than the other
logits Zi for i ̸= j. This shows that the probability of predicting the correct class pj(x)→ 1 as the number
of iterations tends to infinity.

The modeling strategy of neurashed is similar to a watershed, where tributaries meet to form a larger stream
(hence “neurashed”). This modeling strategy gives neurashed the innate characteristics of a hierarchical
structure and iterative optimization. As a caveat, we do not regard the feature representation of neurashed
as fixed. Although the graph is fixed, the evolving amplification factors represent features in a dynamic
manner. Note that neurashed is different from capsule networks (Sabour et al., 2017) and GLOM (Hinton,
2021) in that our model is meant to shed light on the black box of deep learning, not serve as a working
system.

3 Insights into Puzzles

Implicit regularization. Conventional wisdom from statistical learning theory suggests that a model may
not perform well on test data if its parameters outnumber the training samples; to avoid overfitting, explicit
regularization is needed to constrain the search space of the unknown parameters (Friedman et al., 2001).
In contrast to other machine learning approaches, modern neural networks—where the number of learnable
parameters is often orders of magnitude larger than that of the training samples—enjoy surprisingly good
generalization even without explicit regularization (Zhang et al., 2021a). From an optimization viewpoint,
this shows that simple stochastic gradient-based optimization for training neural networks implicitly induces
a form of regularization biased toward local minima of low “complexity” (Soudry et al., 2018; Bartlett et al.,
2020). However, it remains unclear how implicit regularization occurs from a geometric perspective (Na-
garajan & Kolter, 2019; Razin & Cohen, 2020; Zhou, 2021).

To gain geometric insights into implicit regularization using our conceptual model, recall that only firing
features grow during neurashed training, whereas the remaining features become weaker during backpropa-
gation. For simplicity, consider stochastic gradient descent with a mini-batch size of 1. Here, only common
features shared by samples from different classes constantly fire in neurashed, whereas features peculiar
to some samples or certain classes fire less frequently. As a consequence, these common features become
stronger more quickly, whereas the other features grow less rapidly or even diminish.

Small-batch training Large-batch training

Figure 3: Part of neurashed that corresponds to a single class. The two top plots in the left panel
show two feature pathways, and the top plot in the right panel denotes the firing pattern when both
feature pathways are included in the batch (the last-level node is firing but is not marked in red for
simplicity). The two bottom plots represent the learned neurashed models, where larger nodes indicate
larger amplification factors.
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When gradient descent or large-batch stochastic gradient descent are used, many features fire in each update
of neurashed, thereby increasing their amplification factors simultaneously. By contrast, a small-batch
method constructs the feature pathways in a sparing way. Consequently, the feature pathways learned using
small batches are sparser, suggesting a form of compression. This comparison is illustrated in Figure 3,
which implies that different samples from the same class tend to exhibit vanishing variability in their high-
level features during later training, and is consistent with the recently observed phenomenon of neural
collapse (Papyan et al., 2020). Intuitively, this connection is indicative of neurashed’s compressive nature.

Although neurashed’s geometric characterization of implicit regularization is currently a hypothesis, much
supporting evidence has been reported, empirically and theoretically. Empirical studies in Keskar et al.
(2016); Smith et al. (2020) showed that neural networks trained by small-batch methods generalize better
than when trained by large-batch methods. Moreover, Ilyas et al. (2019); Xiao et al. (2021) showed that
neural networks tend to be more accurate on test data if these models leverage less information of the images.
From a theoretical angle, HaoChen et al. (2020) related generalization performance to a solution’s sparsity
level when a simple nonlinear model is trained using stochastic gradient descent.

Information bottleneck. In Tishby & Zaslavsky (2015); Shwartz-Ziv & Tishby (2017), the information
bottleneck theory of deep learning was introduced, based on the observation that neural networks undergo
an initial fitting phase followed by a compression phase. In the initial phase, neural networks seek to both
memorize the input data and fit the labels, as manifested by the increase in mutual information between
a hidden level and both the input and labels. In the second phase, the networks compress all irrelevant
information from the input, as demonstrated by the decrease in mutual information between the hidden
level and input.
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Figure 4: A neurashed model for a binary classification problem. All four firing patterns of Class 1
on the first level (from left to right): (1, 2, 7), (2, 3, 7), (4, 5, 7), (5, 6, 7). In the second level, the first
and third nodes fire if one or more dependent nodes fire, and the second (dominant) node fires if
two or more dependent nodes fire. The left panel displays a feature pathway of Class 1. Class 2 has
four feature pathways that are symmetric to those of Class 1. The right panel shows the information
bottleneck phenomenon for this neurashed model. As with Shwartz-Ziv & Tishby (2017), noise is
added in calculating the mutual information (MI) between the first/second level and the input (8
types)/labels (2 types). More details are given in the appendix.

Instead of explaining how this mysterious phenomenon emerges in deep learning, which is beyond our scope,
we shed some light on information bottleneck by producing the same phenomenon using neurashed. As
with implicit regularization, we observe that neurashed usually contains many redundant feature pathways
when learning class labels. Initially, many nodes grow and thus encode more information regarding both
the input and class labels. Subsequently, more frequently firing nodes become more dominant than less
frequently firing ones. Because nodes compete to grow their amplification factors, dominant nodes tend to
dwarf their weaker counterparts after a sufficient amount of training. Hence, neurashed starts to “forget” the
information encoded by the weaker nodes, thereby sharing less mutual information with the input samples
(see an illustration in Figure 4). The compressive characteristic of neurashed arises, loosely speaking, from
the internal competition among nodes. This interpretation of the information bottleneck via neurashed is
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reminiscent of the human brain, which has many neuron synapses during childhood that are pruned to leave
fewer firing connections in adulthood (Feinberg, 1982).

Local elasticity. Last, we consider a recently observed phenomenon termed local elasticity (He & Su, 2020)
in deep learning training, which asks how the update of neural networks via backpropagation at a base input
changes the prediction at a test sample. Formally, for K-class classification, let z1(x, w), . . . , zK(x, w) be
the logits prior to the softmax operation with input x and network weights w. Writing w+ for the updated
weights using the base input x, we define

LE(x, x′) :=

√∑K
i=1(zi(x′, w+)− zi(x′, w))2√∑K
i=1(zi(x, w+)− zi(x, w))2

as a measure of the impact of base x on test x′. A large value of this measure indicates that the base
has a significant impact on the test input. Through extensive experiments, He & Su (2020) demonstrated
that well-trained neural networks are locally elastic in the sense that the value of this measure depends
on the semantic similarity between two samples x and x′. If they are similar—say, images of a cat and
tiger—the impact is significant, and if they are dissimilar—say, images of a cat and turtle—the impact is
low. Experimental results are shown in Figure 5. For comparison, local elasticity does not appear in linear
classifiers because of the leverage effect. More recently, Chen et al. (2020); Deng et al. (2021); Zhang et al.
(2021b) showed that local elasticity implies good generalization ability.
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Figure 5: Histograms of LE(x, x′) evaluated on the pre-trained VGG-19 network (Simonyan & Zis-
serman, 2014). For example, in the left panel the base input x are images of brown bears. Each class
contains 120 images sampled from ImageNet (Deng et al., 2009). Tiger and leopard are felines and
similar.

We now show that neurashed exhibits the phenomenon of local elasticity, which yields insights into how local
elasticity emerges in deep learning. To see this, note that similar training samples share more of their feature
pathways. For example, the two types of samples in Class 1 in Figure 2 are presumably very similar and
indeed have about the same feature pathways; Class 1 and Class 2 are more similar to each other than Class
1 and Class 3 in terms of feature pathways. Metaphorically speaking, applying backpropagation at an image
of a leopard, the feature pathway for leopard strengthens as the associated amplification factors increase.
While this update also strengthens the feature pathway for tiger, it does not impact the brown bear feature
pathway as much, which presumably overlaps less with the leopard feature pathway. This update in turn
leads to a more significant change in the logits equation 1 of an image of a tiger than those of a brown bear.
Returning to Figure 2 for an illustration of this interpretation, the impact of updating at a sample in Class
1a is most significant on Class 1b, less significant on Class 2, and unnoticeable on Class 3.

6



Under review as submission to TMLR

4 Outlook

In addition to shedding new light on implicit regularization, information bottleneck, and local elasticity,
neurashed is likely to facilitate insights into other common empirical patterns of deep learning. First, a
byproduct of our interpretation of implicit regularization might evidence a subnetwork with comparable
performance to the original, which could have implications on the lottery ticket hypothesis of neural net-
works (Frankle & Carbin, 2018). Second, while a significant fraction of classes in ImageNet (Deng et al.,
2009) have fewer than 500 training samples, deep neural networks perform well on these classes in tests.
Neurashed could offer a new perspective on these seemingly conflicting observations—many classes are ba-
sically the same (for example, ImageNet contains 120 dog-breed classes), so the effective sample size for
learning the common features is much larger than the size of an individual class. Last, neurashed might
help reveal the benefit of data augmentation techniques such as cropping. In the language of neurashed,
cat head and cat tail each are sufficient to identify cat. If both concepts appear in the image, cropping
reinforces the neurashed model by impelling it to learn these concepts separately. Nevertheless, these views
are preliminary and require future consolidation.

While closely resembling neural networks in many aspects, neurashed is not merely intended to better
explain some phenomena in deep learning. Instead, our main goal is to offer insights into the development
of a comprehensive theoretical foundation for deep learning in future research. In particular, neurashed’s
efficacy in interpreting many puzzles in deep learning could imply that neural networks and neurashed evolve
similarly during training. We therefore believe that a comprehensive deep learning theory is unlikely without
incorporating the hierarchical, iterative, and compressive characteristics. That said, useful insights can be
derived from analyzing models without these characteristics in some specific settings (Jacot et al., 2018;
Chizat et al., 2019; Wu et al., 2018; Mei et al., 2018; Chizat & Bach, 2018; Belkin et al., 2019; Lee et al.,
2019; Xu et al., 2019; Oymak & Soltanolkotabi, 2020; Chan et al., 2021).

Integrating the three characteristics in a principled manner might necessitate a novel mathematical frame-
work for reasoning about the composition of nonlinear functions. Because it could take years before such
mathematical tools become available, a practical approach for the present, given that such theoretical guide-
lines are urgently needed (E, 2021), is to better relate neurashed to neural networks and develop finer-grained
models. For example, an important question is to determine the unit in neural networks that corresponds
with a feature node in neurashed. Is it a filter in the case of convolutional neural networks? Another topic
is the relationship between neuron activations in neural networks and feature pathways in neurashed. To
generalize neurashed, edges could be fired instead of nodes. Another potential extension is to introduce
stochasticity to rules g+ and g− for updating amplification factors and rendering feature pathways random
or adaptive to learned amplification factors. Owing to the flexibility of neurashed as a graphical model, such
possible extensions are endless.
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Appendix

All eight feature pathways of the neurashed model in Figure 4. The left column and right column correspond
to Class 1 and Class 2, respectively.

In the experimental setup of the right panel of Figure 4, all amplification factors at initialization are set to
independent uniform random variables on (0, 0.01). We use g−(λF ) = 1.022− 1

4 λF and g+(λF ) = 1.022 11
4 λF

for all hidden nodes except for the 7th (from left to right) node, which uses g+(λF ) = 1.022 3
4 λF . In the early

phase of training, the firing pattern on the second level improves at distinguishing the two types of samples
in Class 1, depending on whether the 1st or 3rd node fires. This also applies to Class 2. Hence, the mutual
information between the second level and the input tends to log2 4 = 2. By contrast, in the late stages, the
amplification factors of the 1st and 3rd nodes become negligible compared with that of the 2nd node, leading
to indistinguishability between the two types in Class 1. As a consequence, the mutual information tends to
log2 2 = 1. The discussion on the first level is similar and thus is omitted.
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